
Automatisierte Logik und Programmierung II §17 1 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen

Allgemeine Problemstruktur

Generate & Test

Lokale Struktur

Lokalsuche
Reduktionsstruktur

Komplementierung

Siebe
∧ -Reduktion

statisch

Operator Match
rekursiv

Divide&Conquer

∨ -Reduktion

statisch

Fallanalyse
rekursiv

Globalsuche

∧ - ∨ -Reduktion

Dynamische Programmierung

Automatisierte Logik und Programmierung II §17 1 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen

Allgemeine Problemstruktur

Generate & Test

Lokale Struktur

Lokalsuche
Reduktionsstruktur

Komplementierung

Siebe
∧ -Reduktion

statisch

Operator Match
rekursiv

Divide&Conquer

∨ -Reduktion

statisch

Fallanalyse
rekursiv

Globalsuche

∧ - ∨ -Reduktion

Dynamische Programmierung

• Problemlösung durch kleine Veränderungen
– Bewertung der Qualität von Elementen des Bildbereichs

– Qualität einer (Teil-)Lösung wird schrittweise verbessert

– Gut für Optimierungsprobleme (Travelling Salesman, Scheduling, . . .)

Automatisierte Logik und Programmierung II §17 1 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen

Allgemeine Problemstruktur

Generate & Test

Lokale Struktur

Lokalsuche
Reduktionsstruktur

Komplementierung

Siebe
∧ -Reduktion

statisch

Operator Match
rekursiv

Divide&Conquer

∨ -Reduktion

statisch

Fallanalyse
rekursiv

Globalsuche

∧ - ∨ -Reduktion

Dynamische Programmierung

• Problemlösung durch kleine Veränderungen
– Bewertung der Qualität von Elementen des Bildbereichs

– Qualität einer (Teil-)Lösung wird schrittweise verbessert

– Gut für Optimierungsprobleme (Travelling Salesman, Scheduling, . . .)

• Lösungsverfahren: Hillclimbing
– Beginne irgendwo im Lösungsraum

– Durchsuche lokale Nachbarschaft bis keine bessere Lösung zu finden

Automatisierte Logik und Programmierung II §17 2 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen: Generelle Idee

• Optimierung als Minimierung von Kosten

Automatisierte Logik und Programmierung II §17 2 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen: Generelle Idee

• Optimierung als Minimierung von Kosten

– Spezifikation des Problems besitzt viele mögliche “Lösungen”

– Lösungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . . .

Automatisierte Logik und Programmierung II §17 2 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen: Generelle Idee

• Optimierung als Minimierung von Kosten

– Spezifikation des Problems besitzt viele mögliche “Lösungen”

– Lösungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . . .

– Gesucht ist Lösung mit optimaler (o.B.d.A. minimaler) Bewertung

– Exakte Optimierung oft NP-vollständig

Automatisierte Logik und Programmierung II §17 2 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen: Generelle Idee

• Optimierung als Minimierung von Kosten

– Spezifikation des Problems besitzt viele mögliche “Lösungen”

– Lösungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . . .

– Gesucht ist Lösung mit optimaler (o.B.d.A. minimaler) Bewertung

– Exakte Optimierung oft NP-vollständig

• Lösungsverfahren durchsucht Nachbarschaft

Automatisierte Logik und Programmierung II §17 2 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen: Generelle Idee

• Optimierung als Minimierung von Kosten

– Spezifikation des Problems besitzt viele mögliche “Lösungen”

– Lösungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . . .

– Gesucht ist Lösung mit optimaler (o.B.d.A. minimaler) Bewertung

– Exakte Optimierung oft NP-vollständig

• Lösungsverfahren durchsucht Nachbarschaft

– Übergang auf Nachbarn, solange Verbesserungen möglich

– Verfahren endet in lokalen Optima

Automatisierte Logik und Programmierung II §17 2 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen: Generelle Idee

• Optimierung als Minimierung von Kosten

– Spezifikation des Problems besitzt viele mögliche “Lösungen”

– Lösungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . . .

– Gesucht ist Lösung mit optimaler (o.B.d.A. minimaler) Bewertung

– Exakte Optimierung oft NP-vollständig

• Lösungsverfahren durchsucht Nachbarschaft

– Übergang auf Nachbarn, solange Verbesserungen möglich

– Verfahren endet in lokalen Optima

– Nachbarschaftstruktur entscheidet über Güte der Lösung

· Zu fein ⇒ Verfahren führt nicht zu globalem Optimum

· Zu grob ⇒ Suche + Test auf lokale Optimalität ineffizient

Automatisierte Logik und Programmierung II §17 2 Lokalsuch-Algorithmen

Lokalsuch-Algorithmen: Generelle Idee

• Optimierung als Minimierung von Kosten

– Spezifikation des Problems besitzt viele mögliche “Lösungen”

– Lösungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . . .

– Gesucht ist Lösung mit optimaler (o.B.d.A. minimaler) Bewertung

– Exakte Optimierung oft NP-vollständig

• Lösungsverfahren durchsucht Nachbarschaft

– Übergang auf Nachbarn, solange Verbesserungen möglich

– Verfahren endet in lokalen Optima

– Nachbarschaftstruktur entscheidet über Güte der Lösung

· Zu fein ⇒ Verfahren führt nicht zu globalem Optimum

· Zu grob ⇒ Suche + Test auf lokale Optimalität ineffizient

– Bestimmung einer guten Nachbarschaftstruktur ist wichtig

Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

in fLS(x,Init[x])

Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

in fLS(x,Init[x])

• 3 zentrale Komponenten der Algorithmentheorie

Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

in fLS(x,Init[x])

• 3 zentrale Komponenten der Algorithmentheorie

– Init: D→R Initiallösung für Basisspezifikation (D,R,I,O)

Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

in fLS(x,Init[x])

• 3 zentrale Komponenten der Algorithmentheorie

– Init: D→R Initiallösung für Basisspezifikation (D,R,I,O)

– c: R→R Kostenfunktion auf geordnetem Kostenraum (R,≤)

Zusatzspezifikation des Optimierungsproblems

Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

in fLS(x,Init[x])

• 3 zentrale Komponenten der Algorithmentheorie

– Init: D→R Initiallösung für Basisspezifikation (D,R,I,O)

– c: R→R Kostenfunktion auf geordnetem Kostenraum (R,≤)

Zusatzspezifikation des Optimierungsproblems

– N : D×R→Set(R) Nachbarschaftsstruktur

Suchraumbeschreibung für lokale Variationen

Automatisierte Logik und Programmierung II §17 4 Lokalsuch-Algorithmen

Korrektheit des Lokalsuch-Schemas

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z) = if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))
in fLS(x,Init[x])

ist korrekt, wenn 4 Axiome erfüllt sind

Automatisierte Logik und Programmierung II §17 4 Lokalsuch-Algorithmen

Korrektheit des Lokalsuch-Schemas

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z) = if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))
in fLS(x,Init[x])

ist korrekt, wenn 4 Axiome erfüllt sind

1. Init[x] berechnet gültige Initiallösung für O

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

Automatisierte Logik und Programmierung II §17 4 Lokalsuch-Algorithmen

Korrektheit des Lokalsuch-Schemas

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z) = if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))
in fLS(x,Init[x])

ist korrekt, wenn 4 Axiome erfüllt sind

1. Init[x] berechnet gültige Initiallösung für O

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

2. Nachbarschaftsstruktur N ist reflexiv

∀x:D.∀y:R. I[x] ∧O[x, y] ⇒ y ∈N [x, y]

Automatisierte Logik und Programmierung II §17 4 Lokalsuch-Algorithmen

Korrektheit des Lokalsuch-Schemas

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z) = if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))
in fLS(x,Init[x])

ist korrekt, wenn 4 Axiome erfüllt sind

1. Init[x] berechnet gültige Initiallösung für O

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

2. Nachbarschaftsstruktur N ist reflexiv

∀x:D.∀y:R. I[x] ∧O[x, y] ⇒ y ∈N [x, y]

3. Lokale Optima sind exakt 7→ Optimale Algorithmen

∀x:D.∀y:R. I[x] ∧O[x, y] ⇒ (∀t ∈N [x, y].O[x, t] ⇒ c[x, y]≤c[x, t])

⇒ ∀z:R. (O[x, z] ⇒ c[x, y]≤c[x, z])

Automatisierte Logik und Programmierung II §17 4 Lokalsuch-Algorithmen

Korrektheit des Lokalsuch-Schemas

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z) = if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))
in fLS(x,Init[x])

ist korrekt, wenn 4 Axiome erfüllt sind

1. Init[x] berechnet gültige Initiallösung für O

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

2. Nachbarschaftsstruktur N ist reflexiv

∀x:D.∀y:R. I[x] ∧O[x, y] ⇒ y ∈N [x, y]

3. Lokale Optima sind exakt 7→ Optimale Algorithmen

∀x:D.∀y:R. I[x] ∧O[x, y] ⇒ (∀t ∈N [x, y].O[x, t] ⇒ c[x, y]≤c[x, t])

⇒ ∀z:R. (O[x, z] ⇒ c[x, y]≤c[x, z])

4. Alle gültigen Lösungen sind endlich erreichbar

∀x:D.∀y, z:R. I[x] ∧O[x, y] ∧O[x, z] ⇒ ∃k:N.z ∈Nk
O[x, y]

N0
O[x, y] = {y} Nk+1

O [x, y] =
⋃

{ Nk[x, t] | t ∈N [x, y] ∧ O(x, t) }

Automatisierte Logik und Programmierung II §17 5 Lokalsuch-Algorithmen

Lokalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fls

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ fLS(x,Init[x])

FUNCTION fls(x, z:D×R):R WHERE I [x] ∧ O[x, z] RETURNS y

SUCH THAT O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

Automatisierte Logik und Programmierung II §17 5 Lokalsuch-Algorithmen

Lokalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fls

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ fLS(x,Init[x])

FUNCTION fls(x, z:D×R):R WHERE I [x] ∧ O[x, z] RETURNS y

SUCH THAT O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

• Korrektheit von fopt folgt aus der von fls mit Axiomen 1 & 3

– Für den Startwert z = Init[x] gilt O[x, z]

– Für y = fLS(x,z) gilt O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

– Mit Axiom 3 folgt ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

∀x:D.I [x] ⇒ O[x, Init[x]]

∀x:D.∀z:R. I [x] ∧O[x, z] ⇒ O[x, fls[x, z]]
∧ ∀t ∈N [x, fls[x, z]]. (O[x, t] ⇒ c[x, fls[x, z]]≤c[x, t])

∀x:D.∀y:R. I [x] ∧O[x, y] ⇒ (∀t ∈N [x, y].O[x, t] ⇒ c[x, y]≤c[x, t])
⇒ ∀z:R. (O[x, z] ⇒ c[x, y]≤c[x, z])

Automatisierte Logik und Programmierung II §17 5 Lokalsuch-Algorithmen

Lokalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fls

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ fLS(x,Init[x])

FUNCTION fls(x, z:D×R):R WHERE I [x] ∧ O[x, z] RETURNS y

SUCH THAT O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

• Korrektheit von fopt folgt aus der von fls mit Axiomen 1 & 3

– Für den Startwert z = Init[x] gilt O[x, z]

– Für y = fLS(x,z) gilt O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

– Mit Axiom 3 folgt ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

• Partielle Korrektheit von fls folgt aus Programmkörper

– Hält fls mit Ausgabe z, so gilt ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t])

Automatisierte Logik und Programmierung II §17 5 Lokalsuch-Algorithmen

Lokalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fls

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ fLS(x,Init[x])

FUNCTION fls(x, z:D×R):R WHERE I [x] ∧ O[x, z] RETURNS y

SUCH THAT O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]}))

• Korrektheit von fopt folgt aus der von fls mit Axiomen 1 & 3

– Für den Startwert z = Init[x] gilt O[x, z]

– Für y = fLS(x,z) gilt O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

– Mit Axiom 3 folgt ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

• Partielle Korrektheit von fls folgt aus Programmkörper

– Hält fls mit Ausgabe z, so gilt ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t])

• Terminierung von fls folgt aus Ordnung (R,≤) und Axiom 4

∀x:D.∃z:R. O[x, z] ∧ c[x, z] = min{ c[x, t] | t ∈R ∧O[x, t] }

∀x:D.∀y, z:R. I [x] ∧O[x, y] ∧O[x, z] ⇒ ∃k:N.z ∈Nk
O[x, y]

Automatisierte Logik und Programmierung II §17 6 Lokalsuch-Algorithmen

Sortieren mit Lokalsuchalgorithmen

• Formuliere Sortierung als Ordnungsoptimierung
– Einfache Basisspezifikation O[L,S] = rearranges(L,S)

– Kostenfunktion c[L, S] = #>(S): Anzahl der Fehlstellungen Si>Si+1

– Es gilt #>(S)≥0 und #>(S) = 0 ⇒ ordered(S)

– Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S

SUCH THAT rearranges(L,S) ∧

∀S’:Seq(Z). rearranges(L,S’) ⇒ #>(S)≤#>(S’)

Automatisierte Logik und Programmierung II §17 6 Lokalsuch-Algorithmen

Sortieren mit Lokalsuchalgorithmen

• Formuliere Sortierung als Ordnungsoptimierung
– Einfache Basisspezifikation O[L,S] = rearranges(L,S)

– Kostenfunktion c[L, S] = #>(S): Anzahl der Fehlstellungen Si>Si+1

– Es gilt #>(S)≥0 und #>(S) = 0 ⇒ ordered(S)

– Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S

SUCH THAT rearranges(L,S) ∧

∀S’:Seq(Z). rearranges(L,S’) ⇒ #>(S)≤#>(S’)

• Lokalsuchalgorithmus
– Initiallösung Init[L] = L 7→ Axiom 1

– Nachbarschaft N [S, S ′] = permutei,j(S,S
′): Vertauschen von Si und Sj

· Vertauschen ist reflexiv, Lokale Minima sind exakt 7→ Axiom 2,3

· Alle Umordnungen erreichbar durch iteratives Vertauschen 7→ Axiom 4

– Ergibt Sortieren durch beliebiges Austauschen von Elementen

· Ineffizient, da zu viele Nachbarn zu prüfen (vermutlich O(n3))

Automatisierte Logik und Programmierung II §17 6 Lokalsuch-Algorithmen

Sortieren mit Lokalsuchalgorithmen

• Formuliere Sortierung als Ordnungsoptimierung
– Einfache Basisspezifikation O[L,S] = rearranges(L,S)

– Kostenfunktion c[L, S] = #>(S): Anzahl der Fehlstellungen Si>Si+1

– Es gilt #>(S)≥0 und #>(S) = 0 ⇒ ordered(S)

– Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S

SUCH THAT rearranges(L,S) ∧

∀S’:Seq(Z). rearranges(L,S’) ⇒ #>(S)≤#>(S’)

• Lokalsuchalgorithmus
– Initiallösung Init[L] = L 7→ Axiom 1

– Nachbarschaft N [S, S ′] = permutei,j(S,S
′): Vertauschen von Si und Sj

· Vertauschen ist reflexiv, Lokale Minima sind exakt 7→ Axiom 2,3

· Alle Umordnungen erreichbar durch iteratives Vertauschen 7→ Axiom 4

– Ergibt Sortieren durch beliebiges Austauschen von Elementen

· Ineffizient, da zu viele Nachbarn zu prüfen (vermutlich O(n3))

• Lokalsuchalgorithmus mit kleinerer Nachbarschaft
– Restriktion auf benachbarte Komponenten

– Nachbarschaft N [S, S ′] = permi(S,S
′) = permutei,i+1(S,S

′)

– Ergibt Bubblesort (nach algorithmischer Optimierung)

Automatisierte Logik und Programmierung II §17 7 Lokalsuch-Algorithmen

Synthese von Lokalsuch-Algorithmen

Lokalsuche =̂ Nachbarschaft + Suchfilter

Automatisierte Logik und Programmierung II §17 7 Lokalsuch-Algorithmen

Synthese von Lokalsuch-Algorithmen

Lokalsuche =̂ Nachbarschaft + Suchfilter

• Bestimme effektive Nachbarschaftsstruktur

– Beschreibe Nachbarschaft als Perturbation (Verwirbelung)

– Inkrementelle Veränderung von Werten aus R

· Numerik: δ-Vektoren, Kombinatorik: Austausch von Komponenten

Automatisierte Logik und Programmierung II §17 7 Lokalsuch-Algorithmen

Synthese von Lokalsuch-Algorithmen

Lokalsuche =̂ Nachbarschaft + Suchfilter

• Bestimme effektive Nachbarschaftsstruktur

– Beschreibe Nachbarschaft als Perturbation (Verwirbelung)

– Inkrementelle Veränderung von Werten aus R

· Numerik: δ-Vektoren, Kombinatorik: Austausch von Komponenten

– Formalisiert als N [x, y] =̂ {Action [i, j, x, y] | i, j ∈π[x, y] }

· Änderungsaktion Action [i, j, x, y] modifiziert Lösungspunkt (x, y) ∈D×R

· Parameter i, j ∈π[x, y] sind minimale Bestandteile von (x, y)

Automatisierte Logik und Programmierung II §17 7 Lokalsuch-Algorithmen

Synthese von Lokalsuch-Algorithmen

Lokalsuche =̂ Nachbarschaft + Suchfilter

• Bestimme effektive Nachbarschaftsstruktur

– Beschreibe Nachbarschaft als Perturbation (Verwirbelung)

– Inkrementelle Veränderung von Werten aus R

· Numerik: δ-Vektoren, Kombinatorik: Austausch von Komponenten

– Formalisiert als N [x, y] =̂ {Action [i, j, x, y] | i, j ∈π[x, y] }

· Änderungsaktion Action [i, j, x, y] modifiziert Lösungspunkt (x, y) ∈D×R

· Parameter i, j ∈π[x, y] sind minimale Bestandteile von (x, y)

• Bestimme effiziente Suchfilter

– Optimiere Nachbarschaftsstruktur durch frühzeitiges Abschneiden

· Feasibility Constraint für O[x, y]

· Optimality Constraint für ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t])

Automatisierte Logik und Programmierung II §17 8 Lokalsuch-Algorithmen

Wissensbasierte Synthese von Lokalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Lokalsuchtheorie: allgemeine Suchstruktur für R

– Vorgefertigte Nachbarschaftsstruktur, die Axiome 2–4 erfüllt

– Formalisiert als Objekt L = (D,R,I ,O,π,Action)

– Wissensbank speichert Lokalsuchtheorien für Grunddatentypen

Automatisierte Logik und Programmierung II §17 8 Lokalsuch-Algorithmen

Wissensbasierte Synthese von Lokalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Lokalsuchtheorie: allgemeine Suchstruktur für R

– Vorgefertigte Nachbarschaftsstruktur, die Axiome 2–4 erfüllt

– Formalisiert als Objekt L = (D,R,I ,O,π,Action)

– Wissensbank speichert Lokalsuchtheorien für Grunddatentypen

• Spezialisierungsmechanismen

– Synthetisiere Initiallösung Init[x] für Spezifikation spec = (D,R,I ,O)

– Wähle L für Bildbereich R, so daß spec�specL beweisbar

– Extrahiere Substitution θ:D→DL und spezialisiere L mit θ

· Ergibt Nachbarschaftsstruktur N für Problemstellung

– Generiere Filter zur Beschränkung auf optimale Lösungen

Automatisierte Logik und Programmierung II §17 8 Lokalsuch-Algorithmen

Wissensbasierte Synthese von Lokalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Lokalsuchtheorie: allgemeine Suchstruktur für R

– Vorgefertigte Nachbarschaftsstruktur, die Axiome 2–4 erfüllt

– Formalisiert als Objekt L = (D,R,I ,O,π,Action)

– Wissensbank speichert Lokalsuchtheorien für Grunddatentypen

• Spezialisierungsmechanismen

– Synthetisiere Initiallösung Init[x] für Spezifikation spec = (D,R,I ,O)

– Wähle L für Bildbereich R, so daß spec�specL beweisbar

– Extrahiere Substitution θ:D→DL und spezialisiere L mit θ

· Ergibt Nachbarschaftsstruktur N für Problemstellung

– Generiere Filter zur Beschränkung auf optimale Lösungen

• Eventuell Verzicht auf Exaktheit

– Liefert effizienteren, aber suboptimalen Algorithmus

Automatisierte Logik und Programmierung II §17 9 Lokalsuch-Algorithmen

Standard-Lokalsuchtheorien

• Umordnung von Folgen
– Suche =̂ Permutation einzelner Elemente einer Folge

– Änderungsparameter: Indizes der Eingabeliste L

– Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S

Automatisierte Logik und Programmierung II §17 9 Lokalsuch-Algorithmen

Standard-Lokalsuchtheorien

• Umordnung von Folgen
– Suche =̂ Permutation einzelner Elemente einer Folge

– Änderungsparameter: Indizes der Eingabeliste L

– Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S
LS seq re(α) ≡ D 7→ Seq(α)

R 7→ Seq(α)
I 7→ λL.true
O 7→ λL, S.rearranges(L,S)
π 7→ λL,S.(domain(S),domain(S))
Action 7→ λi,j,L,S.[S(i↔j)(k) | k ∈domain(S)]

(i↔j)(k) =̂ if k=i then j else if k=j then i else k

Automatisierte Logik und Programmierung II §17 9 Lokalsuch-Algorithmen

Standard-Lokalsuchtheorien

• Umordnung von Folgen
– Suche =̂ Permutation einzelner Elemente einer Folge

– Änderungsparameter: Indizes der Eingabeliste L

– Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S
LS seq re(α) ≡ D 7→ Seq(α)

R 7→ Seq(α)
I 7→ λL.true
O 7→ λL, S.rearranges(L,S)
π 7→ λL,S.(domain(S),domain(S))
Action 7→ λi,j,L,S.[S(i↔j)(k) | k ∈domain(S)]

(i↔j)(k) =̂ if k=i then j else if k=j then i else k

• Teilmengen fester Größe
– Suche =̂ Austausch einzelner Elemente einer Menge

– Änderungsparameter: Elemente der Ein- und Ausgabemenge

– Perturbation: Austausch zweier Elemente in Ausgabemenge

Automatisierte Logik und Programmierung II §17 9 Lokalsuch-Algorithmen

Standard-Lokalsuchtheorien

• Umordnung von Folgen
– Suche =̂ Permutation einzelner Elemente einer Folge

– Änderungsparameter: Indizes der Eingabeliste L

– Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S
LS seq re(α) ≡ D 7→ Seq(α)

R 7→ Seq(α)
I 7→ λL.true
O 7→ λL, S.rearranges(L,S)
π 7→ λL,S.(domain(S),domain(S))
Action 7→ λi,j,L,S.[S(i↔j)(k) | k ∈domain(S)]

(i↔j)(k) =̂ if k=i then j else if k=j then i else k

• Teilmengen fester Größe
– Suche =̂ Austausch einzelner Elemente einer Menge

– Änderungsparameter: Elemente der Ein- und Ausgabemenge

– Perturbation: Austausch zweier Elemente in Ausgabemenge
LS subsets(α) ≡ D 7→ Set(α)×N

R 7→ Set(α)
I 7→ λS,m.m≤|S|
O 7→ λS,m, S’.S’⊆S ∧ |S’|=m
π 7→ λS,m,S’.(S\S’, S’)
Action 7→ λi,j,S,m,S’.S’ = (S∪{i})-y

Automatisierte Logik und Programmierung II §17 10 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

Start: FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

Automatisierte Logik und Programmierung II §17 10 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

Start: FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

1. Wähle Lokalsuchtheorie L mit Ausgabetyp R aus Wissensbank

Automatisierte Logik und Programmierung II §17 10 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

Start: FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

1. Wähle Lokalsuchtheorie L mit Ausgabetyp R aus Wissensbank

2. Beweise (D,R,I,O) � specL

– Extrahiere Substitution θ und setze Lθ = (D,R,I,O,πθ,Actionθ)

R⊆R’ ∧ ∀x:D.I [x] ⇒ ∃x′:D’. (I ′[x′] ∧ ∀y:R.O[x, y] ⇒ O′[x′, y′])

πθ[x, y] = π[θ(x), y]

Actionθ[i, j, x, y] = Action [i, j, θ(x), y]

Automatisierte Logik und Programmierung II §17 10 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

Start: FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

1. Wähle Lokalsuchtheorie L mit Ausgabetyp R aus Wissensbank

2. Beweise (D,R,I,O) � specL

– Extrahiere Substitution θ und setze Lθ = (D,R,I,O,πθ,Actionθ)

3. Generiere Lösungs-Filter FC für Lθ (Feasibility Constraint)

– Filter eliminiert Punkte, die keine gültigen Lösungen bzgl. O sind

· I [x] ∧O[x, y] ∧O[x,Action [i, j, θ(x), y]] ⇒ FC[i, j, x, y]

– Vorwärtsinferenz: Vereinfachung der linken Seite ergibt FC

Automatisierte Logik und Programmierung II §17 10 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

Start: FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

1. Wähle Lokalsuchtheorie L mit Ausgabetyp R aus Wissensbank

2. Beweise (D,R,I,O) � specL

– Extrahiere Substitution θ und setze Lθ = (D,R,I,O,πθ,Actionθ)

3. Generiere Lösungs-Filter FC für Lθ (Feasibility Constraint)

– Filter eliminiert Punkte, die keine gültigen Lösungen bzgl. O sind

· I [x] ∧O[x, y] ∧O[x,Action [i, j, θ(x), y]] ⇒ FC[i, j, x, y]

– Vorwärtsinferenz: Vereinfachung der linken Seite ergibt FC

4. Generiere Optimalitäts-Filter OC für Lθ (Optimality Constraint)

– Filter eliminiert kostenungünstigere Punkte

· I [x] ∧O[x, y] ∧O[x,Action [i, j, θ(x), y]] ∧c[x, y]≤c[x,Action [i, j, θ(x), y]]

⇒ OC[i, j, x, y]

– Lokale Optima müssen Bedingung ∀i, j ∈π(x, y). OC(i, j, x, y) erfüllen

Automatisierte Logik und Programmierung II §17 10 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

Start: FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

1. Wähle Lokalsuchtheorie L mit Ausgabetyp R aus Wissensbank

2. Beweise (D,R,I,O) � specL

– Extrahiere Substitution θ und setze Lθ = (D,R,I,O,πθ,Actionθ)

3. Generiere Lösungs-Filter FC für Lθ (Feasibility Constraint)

– Filter eliminiert Punkte, die keine gültigen Lösungen bzgl. O sind

· I [x] ∧O[x, y] ∧O[x,Action [i, j, θ(x), y]] ⇒ FC[i, j, x, y]

– Vorwärtsinferenz: Vereinfachung der linken Seite ergibt FC

4. Generiere Optimalitäts-Filter OC für Lθ (Optimality Constraint)

– Filter eliminiert kostenungünstigere Punkte

· I [x] ∧O[x, y] ∧O[x,Action [i, j, θ(x), y]] ∧c[x, y]≤c[x,Action [i, j, θ(x), y]]

⇒ OC[i, j, x, y]

– Lokale Optima müssen Bedingung ∀i, j ∈π(x, y). OC(i, j, x, y) erfüllen

5. Synthetisiere Initiallösung Init für Spezifikation

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]

Automatisierte Logik und Programmierung II §17 11 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

6. Instantiiere Schema für suboptimale Lokalsuch Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ fLS(x,Init[x])

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y] ≡ Init[x]

FUNCTION fls(x, z:D×R):R WHERE I [x] ∧ O[x, z] RETURNS y

SUCH THAT O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ if ∀i, j ∈π[θ(x), z]. FC[i, j, x, z] ∧O[x,Action[i, j, θ(x), y]]

⇒ OC[i, j, x, z] ∧c[x, z]≤c[x,Action[i, j, θ(x), y]] then z

else fLS(x, arb({Action[i, j, θ(x), y] | i, j ∈π[θ(x), z].

∧ FC[i, j, x, z] ∧O[x,Action[i, j, θ(x), y]]

∧ ¬OC[i, j, x, z] ∨c[x, z]>c[x,Action[i, j, θ(x), y]] }))

Automatisierte Logik und Programmierung II §17 11 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

6. Instantiiere Schema für suboptimale Lokalsuch Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ fLS(x,Init[x])

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y] ≡ Init[x]

FUNCTION fls(x, z:D×R):R WHERE I [x] ∧ O[x, z] RETURNS y

SUCH THAT O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ if ∀i, j ∈π[θ(x), z]. FC[i, j, x, z] ∧O[x,Action[i, j, θ(x), y]]

⇒ OC[i, j, x, z] ∧c[x, z]≤c[x,Action[i, j, θ(x), y]] then z

else fLS(x, arb({Action[i, j, θ(x), y] | i, j ∈π[θ(x), z].

∧ FC[i, j, x, z] ∧O[x,Action[i, j, θ(x), y]]

∧ ¬OC[i, j, x, z] ∨c[x, z]>c[x,Action[i, j, θ(x), y]] }))

Lösungs- und Optimalitätstests notwendig für Korrektheit

Algorithmus testet nur Parameter, welche die Filter FC und OC passieren

Effiziente Abarbeitung nutzt andthen/orelse Semantik von ∧ und ∨

Automatisierte Logik und Programmierung II §17 11 Lokalsuch-Algorithmen

Synthesestrategie für Lokalsuch-Algorithmen

6. Instantiiere Schema für suboptimale Lokalsuch Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ fLS(x,Init[x])

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y] ≡ Init[x]

FUNCTION fls(x, z:D×R):R WHERE I [x] ∧ O[x, z] RETURNS y

SUCH THAT O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ if ∀i, j ∈π[θ(x), z]. FC[i, j, x, z] ∧O[x,Action[i, j, θ(x), y]]

⇒ OC[i, j, x, z] ∧c[x, z]≤c[x,Action[i, j, θ(x), y]] then z

else fLS(x, arb({Action[i, j, θ(x), y] | i, j ∈π[θ(x), z].

∧ FC[i, j, x, z] ∧O[x,Action[i, j, θ(x), y]]

∧ ¬OC[i, j, x, z] ∨c[x, z]>c[x,Action[i, j, θ(x), y]] }))

Lösungs- und Optimalitätstests notwendig für Korrektheit

Algorithmus testet nur Parameter, welche die Filter FC und OC passieren

Effiziente Abarbeitung nutzt andthen/orelse Semantik von ∧ und ∨

7. Generiere Bedingungen für Exaktheit (Global Optimality Constraint)

– Zusätzlicher (optionaler) Filter eliminiert suboptimale Lösungen

· I [x] ∧O[x, y] ∧O[x,Action [i, j, θ(x), y]] ∧c[x, y]≤c[x,Action [i, j, θ(x), y]]

∧∀t:R. O[x, t] ⇒ c[x, y]≤c[x, t] ⇒ GOC[x, y]

Automatisierte Logik und Programmierung II §17 12 Lokalsuch-Algorithmen

Lokalsuche: Anwendungsbeispiele

• Minimal Spanning Tree

– Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstände,. . .)

– Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar

Automatisierte Logik und Programmierung II §17 12 Lokalsuch-Algorithmen

Lokalsuche: Anwendungsbeispiele

• Minimal Spanning Tree

– Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstände,. . .)

– Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar

– Initialwert: Erzeuge spannenden Baum

– Perturbation: Ergänze neue Kante, entferne eine andere

Automatisierte Logik und Programmierung II §17 12 Lokalsuch-Algorithmen

Lokalsuche: Anwendungsbeispiele

• Minimal Spanning Tree

– Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstände,. . .)

– Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar

– Initialwert: Erzeuge spannenden Baum

– Perturbation: Ergänze neue Kante, entferne eine andere

– Feasibility Constraint: Entfernte Kante muß redundant sein

– Optimality Constraint: Hinzugefügte Kante ist teurer als bisheriger Weg

Automatisierte Logik und Programmierung II §17 12 Lokalsuch-Algorithmen

Lokalsuche: Anwendungsbeispiele

• Minimal Spanning Tree

– Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstände,. . .)

– Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar

– Initialwert: Erzeuge spannenden Baum

– Perturbation: Ergänze neue Kante, entferne eine andere

– Feasibility Constraint: Entfernte Kante muß redundant sein

– Optimality Constraint: Hinzugefügte Kante ist teurer als bisheriger Weg

• Lineare Programmierung

– Minimiere lineare Funktion f(x1, ..xn)=Σc
i
x

i
unter Restriktionen A

j
[x1, ..xn]

Standard Darstellung: Minimiere c ? x unter A ? x=b ∧ ∀i≤n.x
i
≥0

Automatisierte Logik und Programmierung II §17 12 Lokalsuch-Algorithmen

Lokalsuche: Anwendungsbeispiele

• Minimal Spanning Tree

– Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstände,. . .)

– Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar

– Initialwert: Erzeuge spannenden Baum

– Perturbation: Ergänze neue Kante, entferne eine andere

– Feasibility Constraint: Entfernte Kante muß redundant sein

– Optimality Constraint: Hinzugefügte Kante ist teurer als bisheriger Weg

• Lineare Programmierung

– Minimiere lineare Funktion f(x1, ..xn)=Σc
i
x

i
unter Restriktionen A

j
[x1, ..xn]

Standard Darstellung: Minimiere c ? x unter A ? x=b ∧ ∀i≤n.x
i
≥0

– Initiallösung: Setze xm+1, ..xn := 0 und löse A1..m ? x1..m mit ∀i≤m.x
i
> 0

durch Gauß-Verfahren

– Perturbation: Setze ein x
i
:=0, wähle neues x

j
6=0

Automatisierte Logik und Programmierung II §17 12 Lokalsuch-Algorithmen

Lokalsuche: Anwendungsbeispiele

• Minimal Spanning Tree

– Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstände,. . .)

– Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar

– Initialwert: Erzeuge spannenden Baum

– Perturbation: Ergänze neue Kante, entferne eine andere

– Feasibility Constraint: Entfernte Kante muß redundant sein

– Optimality Constraint: Hinzugefügte Kante ist teurer als bisheriger Weg

• Lineare Programmierung

– Minimiere lineare Funktion f(x1, ..xn)=Σc
i
x

i
unter Restriktionen A

j
[x1, ..xn]

Standard Darstellung: Minimiere c ? x unter A ? x=b ∧ ∀i≤n.x
i
≥0

– Initiallösung: Setze xm+1, ..xn := 0 und löse A1..m ? x1..m mit ∀i≤m.x
i
> 0

durch Gauß-Verfahren

– Perturbation: Setze ein x
i
:=0, wähle neues x

j
6=0

– Feasibility Constraint: Alte + neue x-Komponenten nach Lösung positiv

– Optimality Constraint: Relative Kosten steigen durch Veränderung

Automatisierte Logik und Programmierung II §17 13 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren

Allgemeine Problemstruktur

Generate & Test

Lokale Struktur

Lokalsuche
Reduktionsstruktur

Komplementierung

Siebe
∧ -Reduktion

statisch

Operator Match
rekursiv

Divide&Conquer

∨ -Reduktion

statisch

Fallanalyse
rekursiv

Globalsuche

∧ - ∨ -Reduktion

Problemreduktionsgeneratoren

• ∨ -∧ -Reduktion von Problemen

– Problem besitzt mehrere Lösungen

– Gesamtlösung ist Summe unabhängiger Einzellösungen (∨ -Reduktion)

– Einzellösungen aus Teillösungen zusammengesetzt (∧ -Reduktion)

– Verallgemeinert Dynamisches Programmieren, Spielbaumsuche, . . .

Automatisierte Logik und Programmierung II §17 13 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren

Allgemeine Problemstruktur

Generate & Test

Lokale Struktur

Lokalsuche
Reduktionsstruktur

Komplementierung

Siebe
∧ -Reduktion

statisch

Operator Match
rekursiv

Divide&Conquer

∨ -Reduktion

statisch

Fallanalyse
rekursiv

Globalsuche

∧ - ∨ -Reduktion

Problemreduktionsgeneratoren

• ∨ -∧ -Reduktion von Problemen

– Problem besitzt mehrere Lösungen

– Gesamtlösung ist Summe unabhängiger Einzellösungen (∨ -Reduktion)

– Einzellösungen aus Teillösungen zusammengesetzt (∧ -Reduktion)

– Verallgemeinert Dynamisches Programmieren, Spielbaumsuche, . . .

• Synthese ähnlich zu Divide & Conquer Techniken

Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen

Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen

• Allgemeines Algorithmenschema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen

• Allgemeines Algorithmenschema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

• 4 zentrale Komponenten der Algorithmentheorie

Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen

• Allgemeines Algorithmenschema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

• 4 zentrale Komponenten der Algorithmentheorie
– Decompose

i
: D→Di1×..×Dik Aufspalten der Eingabe in Teilprobleme

Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen

• Allgemeines Algorithmenschema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

• 4 zentrale Komponenten der Algorithmentheorie
– Decompose

i
: D→Di1×..×Dik Aufspalten der Eingabe in Teilprobleme

– Hilfsfunktionen fij : Dij →Rij evtl. rekursiver Aufruf von f

Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen

• Allgemeines Algorithmenschema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

• 4 zentrale Komponenten der Algorithmentheorie
– Decompose

i
: D→Di1×..×Dik Aufspalten der Eingabe in Teilprobleme

– Hilfsfunktionen fij : Dij →Rij evtl. rekursiver Aufruf von f

– Compose
i
: Ri1×..×Rik →R Zusammensetzen der Teillösungen

Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen

• Allgemeines Algorithmenschema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

• 4 zentrale Komponenten der Algorithmentheorie
– Decompose

i
: D→Di1×..×Dik Aufspalten der Eingabe in Teilprobleme

– Hilfsfunktionen fij : Dij →Rij evtl. rekursiver Aufruf von f

– Compose
i
: Ri1×..×Rik →R Zusammensetzen der Teillösungen

– Wohlfundierte Ordnung � für Terminierungsgarantiee

Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen

• Allgemeines Algorithmenschema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

• 4 zentrale Komponenten der Algorithmentheorie
– Decompose

i
: D→Di1×..×Dik Aufspalten der Eingabe in Teilprobleme

– Hilfsfunktionen fij : Dij →Rij evtl. rekursiver Aufruf von f

– Compose
i
: Ri1×..×Rik →R Zusammensetzen der Teillösungen

– Wohlfundierte Ordnung � für Terminierungsgarantiee

– Erweitertes Strong Problem Reduction Principle

Automatisierte Logik und Programmierung II §17 15 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Korrektheit

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

ist korrekt, wenn 5 Axiome erfüllt sind

Automatisierte Logik und Programmierung II §17 15 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Korrektheit

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

ist korrekt, wenn 5 Axiome erfüllt sind

1. O rekursiv zerlegbar in ODi
, Oi1×..×Oik und OCi

(SPRP)

O[x, z] ⇔ ∃i:N, ȳi:Di1×..Dik, w̄i:Ri1×..Rik . ODi
[x, ȳi] ∧ Oi1,..ik[ȳi, w̄i] ∧ OCi

[w̄i, z]

Oi1,..ik[yi1, ..yik
, wi1, ..wik

] ≡ Oi1(yi1, wi1) ∧ .. ∧Oik(yik, wik)

Automatisierte Logik und Programmierung II §17 15 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Korrektheit

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

ist korrekt, wenn 5 Axiome erfüllt sind

1. O rekursiv zerlegbar in ODi
, Oi1×..×Oik und OCi

(SPRP)

O[x, z] ⇔ ∃i:N, ȳi:Di1×..Dik, w̄i:Ri1×..Rik . ODi
[x, ȳi] ∧ Oi1,..ik[ȳi, w̄i] ∧ OCi

[w̄i, z]

Oi1,..ik[yi1, ..yik
, wi1, ..wik

] ≡ Oi1(yi1, wi1) ∧ .. ∧Oik(yik, wik)

2. Dekompositionen erfüllen ODi
und ‘verkleinern’ Problem

FUNCTION fdi
(x:D) WHERE I [x] RETURNS { ȳi:Di1×..Dik | ODi

[x, ȳi] ∧x�ȳi ∧Ii1,..ik [ȳi] }

x�ȳi ≡ x � yij für alle j mit Dij=D

Automatisierte Logik und Programmierung II §17 15 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Korrektheit

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

ist korrekt, wenn 5 Axiome erfüllt sind

1. O rekursiv zerlegbar in ODi
, Oi1×..×Oik und OCi

(SPRP)

O[x, z] ⇔ ∃i:N, ȳi:Di1×..Dik, w̄i:Ri1×..Rik . ODi
[x, ȳi] ∧ Oi1,..ik[ȳi, w̄i] ∧ OCi

[w̄i, z]

Oi1,..ik[yi1, ..yik
, wi1, ..wik

] ≡ Oi1(yi1, wi1) ∧ .. ∧Oik(yik, wik)

2. Dekompositionen erfüllen ODi
und ‘verkleinern’ Problem

FUNCTION fdi
(x:D) WHERE I [x] RETURNS { ȳi:Di1×..Dik | ODi

[x, ȳi] ∧x�ȳi ∧Ii1,..ik [ȳi] }

x�ȳi ≡ x � yij für alle j mit Dij=D

3. Hilfsfunktionen fij erfüllen Oij

FUNCTION fij(yij:Dij) WHERE Iij [yij] RETURNS {wij :Rij | Oij [yij , wij]}

Automatisierte Logik und Programmierung II §17 15 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Korrektheit

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

ist korrekt, wenn 5 Axiome erfüllt sind

1. O rekursiv zerlegbar in ODi
, Oi1×..×Oik und OCi

(SPRP)

O[x, z] ⇔ ∃i:N, ȳi:Di1×..Dik, w̄i:Ri1×..Rik . ODi
[x, ȳi] ∧ Oi1,..ik[ȳi, w̄i] ∧ OCi

[w̄i, z]

Oi1,..ik[yi1, ..yik
, wi1, ..wik

] ≡ Oi1(yi1, wi1) ∧ .. ∧Oik(yik, wik)

2. Dekompositionen erfüllen ODi
und ‘verkleinern’ Problem

FUNCTION fdi
(x:D) WHERE I [x] RETURNS { ȳi:Di1×..Dik | ODi

[x, ȳi] ∧x�ȳi ∧Ii1,..ik [ȳi] }

x�ȳi ≡ x � yij für alle j mit Dij=D

3. Hilfsfunktionen fij erfüllen Oij

FUNCTION fij(yij:Dij) WHERE Iij [yij] RETURNS {wij :Rij | Oij [yij , wij]}

4. Kompositionen erfüllen OCi

FUNCTION fci
(w̄i:Ri1×..×Rik) WHERE true RETURNS { zi:R | OCi

[w̄i, zi]}

Automatisierte Logik und Programmierung II §17 15 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Korrektheit

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡
⋃

i,k(Compose
i
◦ (fi1×..×fik) ◦ Decompose

i
) (x)

ist korrekt, wenn 5 Axiome erfüllt sind

1. O rekursiv zerlegbar in ODi
, Oi1×..×Oik und OCi

(SPRP)

O[x, z] ⇔ ∃i:N, ȳi:Di1×..Dik, w̄i:Ri1×..Rik . ODi
[x, ȳi] ∧ Oi1,..ik[ȳi, w̄i] ∧ OCi

[w̄i, z]

Oi1,..ik[yi1, ..yik
, wi1, ..wik

] ≡ Oi1(yi1, wi1) ∧ .. ∧Oik(yik, wik)

2. Dekompositionen erfüllen ODi
und ‘verkleinern’ Problem

FUNCTION fdi
(x:D) WHERE I [x] RETURNS { ȳi:Di1×..Dik | ODi

[x, ȳi] ∧x�ȳi ∧Ii1,..ik [ȳi] }

x�ȳi ≡ x � yij für alle j mit Dij=D

3. Hilfsfunktionen fij erfüllen Oij

FUNCTION fij(yij:Dij) WHERE Iij [yij] RETURNS {wij :Rij | Oij [yij , wij]}

4. Kompositionen erfüllen OCi

FUNCTION fci
(w̄i:Ri1×..×Rik) WHERE true RETURNS { zi:R | OCi

[w̄i, zi]}

5. Verkleinerungsrelation � ist wohlfundierte Ordnung auf D

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
[w̄i, z] ⇒ ∃ȳi:Di1×..Dik. (Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i])

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
[w̄i, z] ⇒ ∃ȳi:Di1×..Dik. (Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i])

• Strategie analog zu Divide & Conquer Verfahren

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
[w̄i, z] ⇒ ∃ȳi:Di1×..Dik. (Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i])

• Strategie analog zu Divide & Conquer Verfahren
1. Wähle Decompose

i
aus Wissensbank

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
[w̄i, z] ⇒ ∃ȳi:Di1×..Dik. (Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i])

• Strategie analog zu Divide & Conquer Verfahren
1. Wähle Decompose

i
aus Wissensbank

2. Konstruiere Hilfsfunktionen fij (id oder rekursiver Aufruf von f)

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
[w̄i, z] ⇒ ∃ȳi:Di1×..Dik. (Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i])

• Strategie analog zu Divide & Conquer Verfahren
1. Wähle Decompose

i
aus Wissensbank

2. Konstruiere Hilfsfunktionen fij (id oder rekursiver Aufruf von f)

3. Konstruiere Dekompositionen Compose
i
mit Korrektheitsaxiom 1

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
[w̄i, z] ⇒ ∃ȳi:Di1×..Dik. (Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i])

• Strategie analog zu Divide & Conquer Verfahren
1. Wähle Decompose

i
aus Wissensbank

2. Konstruiere Hilfsfunktionen fij (id oder rekursiver Aufruf von f)

3. Konstruiere Dekompositionen Compose
i
mit Korrektheitsaxiom 1

4. Wähle � aus der Wissensbank und verifiziere Decompose
i

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
[w̄i, z] ⇒ ∃ȳi:Di1×..Dik. (Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i])

• Strategie analog zu Divide & Conquer Verfahren
1. Wähle Decompose

i
aus Wissensbank

2. Konstruiere Hilfsfunktionen fij (id oder rekursiver Aufruf von f)

3. Konstruiere Dekompositionen Compose
i
mit Korrektheitsaxiom 1

4. Wähle � aus der Wissensbank und verifiziere Decompose
i

5. Verifiziere Vollständigkeitsaxiom

Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)

I [x] ∧Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i] ∧OCi
[w̄i, z] ⇒ (ODi

[x, ȳi]⇔O[x, z])

∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (2)

I [x] ∧Ii1,..ik [ȳi] ∧ODi
[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])

– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
[w̄i, z] ⇒ ∃ȳi:Di1×..Dik. (Ii1,..ik [ȳi] ∧Oi1,..ik [ȳi, w̄i])

• Strategie analog zu Divide & Conquer Verfahren
1. Wähle Decompose

i
aus Wissensbank

2. Konstruiere Hilfsfunktionen fij (id oder rekursiver Aufruf von f)

3. Konstruiere Dekompositionen Compose
i
mit Korrektheitsaxiom 1

4. Wähle � aus der Wissensbank und verifiziere Decompose
i

5. Verifiziere Vollständigkeitsaxiom

6. Instantiiere Algorithmenschema

