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e Problemlosung durch kleine Veranderungen
— Bewertung der Qualitat von Elementen des Bildbereichs
— Qualitét einer (Teil-)Losung wird schrittweise verbessert
— Gut fiir Optimierungsprobleme (Travelling Salesman, Scheduling, ... )
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A-v-REDUKTION
Dynamische Programmierung

e Problemlosung durch kleine Veranderungen
— Bewertung der Qualitat von Elementen des Bildbereichs
— Qualitét einer (Teil-)Losung wird schrittweise verbessert
— Gut fiir Optimierungsprobleme (Travelling Salesman, Scheduling, ... )

e Losungsverfahren: Hillclimbing
— Beginne irgendwo im Losungsraum
— Durchsuche lokale Nachbarschaft bis keine bessere Losung zu finden
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LOKALSUCH-ALGORITHMEN: (GENERELLE IDEE I

e Optimierung als Minimierung von Kosten
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e Optimierung als Minimierung von Kosten
— Spezifikation des Problems besitzt viele mogliche “Losungen”

— Losungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . ..
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e Optimierung als Minimierung von Kosten
— Spezifikation des Problems besitzt viele mogliche “Losungen”
— Losungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . ..

— Gesucht ist Losung mit optimaler (0.B.d.A. minimaler) Bewertung
— Exakte Optimierung oft NP-vollstiandig

e Losungsverfahren durchsucht Nachbarschaft

— Ubergang auf Nachbarn, solange Verbesserungen méglich

— Verfahren endet in lokalen Optima

— Nachbarschaftstruktur entscheidet iiber Giite der Losung \\

- Zu fein = Vertahren fuhrt nicht zu globalem Optimum
- Zu grob = Suche + Test auf lokale Optimalitat ineffizient
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e Optimierung als Minimierung von Kosten
— Spezifikation des Problems besitzt viele mogliche “Losungen”
— Losungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . ..

— Gesucht ist Losung mit optimaler (0.B.d.A. minimaler) Bewertung
— Exakte Optimierung oft NP-vollstandig

e Losungsverfahren durchsucht Nachbarschaft

— Ubergang auf Nachbarn, solange Verbesserungen méglich

— Verfahren endet in lokalen Optima

— Nachbarschaftstruktur entscheidet iiber Giite der Losung \\

- Zu fein = Vertahren fuhrt nicht zu globalem Optimum
- Zu grob = Suche + Test auf lokale Optimalitat ineffizient

— Bestimmung einer guten Nachbarschaftstruktur ist wichtig
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(FRUNDSCHEMA VON LOKALSUCH-ALGORITHMEN I

FUNCTION f.p(z:D):R WHERE I[z] RETURNS y
SUCH THAT Olz,y] A Vt:R. (Olx,t] = clx,y|<c|x,t])
= let frs(x,z)
= if VteN|x,z|. (Olx,t] = clz,z]<c|z,t]) then z
else frs(x,arb({t|teNlz,z|rO[x, t]| nclz, t]<clz, 2]} ))

in frs(x, Initjz])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 3 Lokalsuch-Algorithmen




(FRUNDSCHEMA VON LOKALSUCH-ALGORITHMEN I

FUNCTION f.p(z:D):R WHERE I[z] RETURNS y
SUCH THAT Olz,y] A Vt:R. (Olx,t] = clx,y|<c|x,t])
= let frs(x,z)
= if VteN|x,z|. (Olx,t] = clz,z]<c|z,t]) then z
else frs(x,arb({t|teNlz,z|rO[x, t]| nclz, t]<clz, 2]} ))
in frs(x, Initjz])

e 3 zentrale Komponenten der Algorithmentheorie
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(FRUNDSCHEMA VON LOKALSUCH-ALGORITHMEN I

FUNCTION f.p(z:D):R WHERE I[z] RETURNS y
SUCH THAT Olz,y] A Vt:R. (Olx,t] = clx,y|<c|x,t])
= let frs(x,z)
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else frs(x,arb({t|teNlz,z|rO[x, t]| nclz, t]<clz, 2]} ))
in frs(x, Initjz])

e 3 zentrale Komponenten der Algorithmentheorie
—Init.: D— R [nitiallosung fiir Basisspezifikation (D, R,1,0)
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(FRUNDSCHEMA VON LOKALSUCH-ALGORITHMEN I

FUNCTION f,,,(z:D):R WHERE I[z] RETURNS y
SUCH THAT Olz,y] A Vt:R. (Olx,t] = clx,y|<c|x,t])
= let frs(x,z)
= if VteN|x,z|. (Olx,t] = clz,z]<c|z,t]) then z
else frs(x,arb({t|teNlz,z|rO[x, t]| nclz, t]<clz, 2]} ))
in frs(x, Initjz])

e 3 zentrale Komponenten der Algorithmentheorie
—Init.: D— R [nitiallosung fiir Basisspezifikation (D, R,1,0)

~-c. R—R Kostenfunktion auf geordnetem Kostenraum (R, <)

Zusatzspezifikation des Optimierungsproblems
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(FRUNDSCHEMA VON LOKALSUCH-ALGORITHMEN I

FUNCTION f,,,(z:D):R WHERE I[z] RETURNS y
SUCH THAT Olz,y] A Vt:R. (Olx,t] = clx,y|<c|x,t])
= let frs(x,z)
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in frs(x, Initjz])

e 3 zentrale Komponenten der Algorithmentheorie
—Init.: D— R [nitiallosung fiir Basisspezifikation (D, R,1,0)

~-c. R—R Kostenfunktion auf geordnetem Kostenraum (R, <)

Zusatzspezifikation des Optimierungsproblems

— NN: Dx R—Set(R) Nachbarschaftsstruktur

Suchraumbeschreibung fiir lokale Variationen
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KORREKTHEIT DES LOKALSUCH-SCHEMAS I

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS y
SUCH THAT Ofx,y] » Vt:R. (Olx,t] = clx,y|<clz,t])
= let frs(z,z) = if VteN|z, z|. (Olz,t] = clz,z]<c|z,t]) then z
else frs(x,arb({t|teN|x, 2| Oz, t]rc|x, t]<clx, 2]} ))
in fLS(x,Inz't[x])

ist korrekt, wenn 4 Axiome erfullt sind
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FUNCTION fopt(2z:D): R WHERE I|x] RETURNS y
SUCH THAT Ofx,y] » Vt:R. (Olx,t] = clx,y|<clz,t])
= let frs(z,z) = if VteN|z, z|. (Olz,t] = clz,z]<c|z,t]) then z
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ist korrekt, wenn 4 Axiome erfullt sind

1. Init|z| berechnet giiltige Initiallosung fiir O
FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Oz,
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1. Init|z| berechnet giiltige Initiallosung fiir O
FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

2. Nachbarschaftsstruktur /N ist reflexiv
Ve:D .Vy:R. Ilx]  Olx,y] = yeN|[z,y]

Lokalsuch-Algorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 4




KORREKTHEIT DES LOKALSUCH-SCHEMAS I

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS vy
SUCH THAT Olx,y] » Vt:R. (Olx,t] = clx,y|<clz,t])
= let frs(z,z) = if VteN|z, z|. (Olz,t] = clz,z]<c|z,t]) then z
else frs(x,arb({t|teN[x, 2| Olx, t| nclx, t]<c|x, 2]} ))
in fLS(x,Im't[x])

ist korrekt, wenn 4 Axiome erfullt sind

1. Init|z| berechnet giiltige Initiallosung fiir O
FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

2. Nachbarschaftsstruktur /N ist reflexiv
Ve:D .Vy:R. Ilx]  Olx,y] = yeN|[z,y]

3. Lokale Optima sind exakt — Optimale Algorithmen
Ve:D .Vy:R. Ix]nOlx,y] = VteNlx,y]. Olx,t] = c[z,y|<clz,t])
= Vz:R. (Olzx, z] = clz,y]<c[z, z])
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KORREKTHEIT DES LOKALSUCH-SCHEMAS I

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS vy
SUCH THAT Olx,y] » Vt:R. (Olx,t] = clx,y|<clz,t])
= let frs(z,z) = if VteN|z, z|. (Olz,t] = clz,z]<c|z,t]) then z
else frs(x,arb({t|teN[x, 2| Olx, t| nclx, t]<c|x, 2]} ))
in fLS(x,Im't[x])

ist korrekt, wenn 4 Axiome erfullt sind

1. Init|z| berechnet giiltige Initiallosung fiir O
FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Oz,

2. Nachbarschaftsstruktur N ist reflexiv
Ve:D .Vy:R. Ilx]  Olx,y] = yeN|[z,y]
3. Lokale Optima sind exakt — Optimale Algorithmen
Ve:D.Vy:R. Ilx]AO[zx,y] = VteN]z,y|. Olx,t] = c[z,y|<c[z,t])
= Vz:R. (Olzx, z] = clz,y]<c[z, z])
4. Alle giiltigen Losungen sind endlich erreichbar
Ve:D .Vy,z:R. I[x]Olz,y] AO[z,2] = TFk:N.ze N[z, y]

Ng[fl?, yl = {y} N(’;+1[£B,y] = U{ Nk[wat] |teN[z,y] »n O(z,t) }
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LOKALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS y
SUCH THAT Ofx,y] » Vt:R. (Olx,t] = clx,y|<clz,t])
= frs(x, Init]x])
FUNCTION fi,(x, 2: DxR): R WHERE I[z]  Olz, 2] RETURNS y
SUCH THAT Olz,y] » VieN|x,y]. (Olz,t] = clx,y|<c[z, ]
= if VteN|z,z]. (Olz,t] = clz,2|<c[z,t]) then z
else frs(x,arb({t|teNlx, 2| Olx, t]nclz, t]<c|x, z]}))
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LOKALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f;,
FUNCTION fopt(2z:D): R WHERE I|x] RETURNS y
SUCH THAT Ofx,y] » Vt:R. (Olx,t] = clx,y|<clz,t])
= frs(x, Initjx])
FUNCTION fjs(x,z:DxR):R WHERE [I[x| A O|x,z] RETURNS y
SUCH THAT Ofx,y] » VteN|x,y]. (Olz,t] = cz,y|<cz,t])
= if VteN|z,z]. (Olz,t] = clz,2|<c[z,t]) then z
else frs(x,arb({t|teNlx, 2| Olx, t]nclz, t]<c|x, z]}))

e Korrektheit von f,,; folgt aus der von f;; mit Axiomen 1 & 3
— Fiir den Startwert z = Init|z] gilt Olz, 2]
~Firy = frs(x,2) gt Olx,y] » VteN|x,y|. (Olz,t] = clz,y|<clz,t])
— Mit Axiom 3 folgt Vi:R. (Olx,t] = clz,y|<c|z,t])
Ve:D. Ix] = Olz, Init|x]]
Ve:D.Vz:R. Ix)7Olx,z] = Olx, fis|x, 2]]
n VteNlz, fis[r, 2]]. (Olz,t] = cx, fis|z, 2]]<c[z, t])

Ve:D . NMy:R. I[z]7Olz,y] = VteNl[z,y|. Olx,t] = clz,y|<c[z,t])
= Vz:R. (Olz, 2| = clz,y|<d|z, 2])
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LOKALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS vy
SUCH THAT Olzx,y] A Vt:R. (Olx,t] = clx,y|<clz,t])
= frs(x, Init]x])

FUNCTION fjs(x,z:DxR):R WHERE [I[x| A O|x,z] RETURNS y
SUCH THAT Ofx,y] » VteN|x,y]. (Olz,t] = cz,y|<cz,t])
= if VteN|z,z]. (Olz,t] = clz,2|<c[z,t]) then z
else frs(x,arb({t|teNlx, 2| Olx, t]nclz, t]<c|x, z]}))
e Korrektheit von f,,; folgt aus der von f;; mit Axiomen 1 & 3
— Fiir den Startwert z = Init|z] gilt Olz, 2]
- Fury = frs(@,2) gilt Olz,y] A VteN|z,y|. (Olz,t] = cz,y|<clz,])
— Mit Axiom 3 folgt Vi:R. (Olx,t] = clz,y|<c|z,t])

e Partielle Korrektheit von f;; folgt aus Programmkorper
— Halt f;s mit Ausgabe z, so gilt VieN|x, z|. (Olz,t] = clz, z|<c[z,t])
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LOKALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS vy
SUCH THAT Olzx,y] A Vt:R. (Olx,t] = clx,y|<clz,t])
= frs(x, Initjx])

FUNCTION fjs(x,z:DxR):R WHERE [I[x| A O|x,z] RETURNS y
SUCH THAT Olx,y] A VteN[z,y]. (Olz,t] = clz,y]<c|z,t])
= if VteN|z,z]. (Olz,t] = clz,2|<c[z,t]) then z
else frs(x,arb({t|teNlx, 2| Olx, t]nclz, t]<c|x, z]}))
e Korrektheit von f,,; folgt aus der von f;; mit Axiomen 1 & 3
— Fiir den Startwert z = Init|z] gilt Olz, 2]
- Fury = frs(@,2) gilt Olz,y] A VteN|z,y|. (Olz,t] = cz,y|<clz,])
— Mit Axiom 3 folgt Vi:R. (Olx,t] = clz,y|<c|z,t])

e Partielle Korrektheit von f;; folgt aus Programmkorper

— Halt f;s mit Ausgabe z, so gilt VieN|x, z|. (Olz,t] = clz, z|<c[z,t])

e Terminierung von fj; folgt aus Ordnung (R,<) und Axiom 4

Ve:D.3z:R. Olx,z| A clx,z] = min{clx,t]|te RrO|x,t]}
Vao:D.Vy,z:R. I[z] 7 Olz,y|rOlx,2] = Fk:N.zeNEx, 1]
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SORTIEREN MIT LOKALSUCHALGORITHMEN I

e Formuliere Sortierung als Ordnungsoptimierung
— Einfache Basisspezifikation O|L, S| = rearranges (L, 5)
— Kostenfunktion ¢[L, S| = #.(5): Anzahl der Fehlstellungen S;>95;
— Es gilt #.(9)>0 und #.(S) =0 = ordered(S5)

— Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S
SUCH THAT rearranges(L,S) x
VS’ :8eq(Z) . rearranges(L,S’) = #.(S)<#.(S’)
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SORTIEREN MIT LOKALSUCHALGORITHMEN I

e Formuliere Sortierung als Ordnungsoptimierung
— Einfache Basisspezifikation O|L, S| = rearranges (L, 5)
— Kostenfunktion ¢[L, S| = #.(5): Anzahl der Fehlstellungen S;>95;
— Es gilt #.(5)>0 und #.(5) =0 = ordered(S5)

— Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S
SUCH THAT rearranges(L,S) x
VS’ :8eq(Z) . rearranges(L,S’) = #.(S)<#.(S’)
e Lokalsuchalgorithmus

— Initiallosung Init/L] = L — Axiom 1
— Nachbarschaft N|S, S| = permute, ; (S, S"): Vertauschen von S; und S;
- Vertauschen ist reflexiv, Lokale Minima sind exakt — Axiom 2,3

- Alle Umordnungen erreichbar durch iteratives Vertauschen — +— Axiom 4
— Ergibt Sortieren durch beliebiges Austauschen von Elementen
- Inefhizient, da zu viele Nachbarn zu prifen (vermutlich O(n?))
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SORTIEREN MIT LOKALSUCHALGORITHMEN I

e Formuliere Sortierung als Ordnungsoptimierung
— Einfache Basisspezifikation O|L, S| = rearranges (L, 5)
— Kostenfunktion ¢[L, S| = #.(5): Anzahl der Fehlstellungen S;>95;
— Es gilt #.(5)>0 und #.(5) =0 = ordered(S5)

— Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S
SUCH THAT rearranges(L,S) A
VS’ :8eq(Z) . rearranges(L,S’) = #.(S)<#.(S’)
e Lokalsuchalgorithmus

— Initiallésung Init/L] = L — Axiom 1
— Nachbarschaft N|S, S| = permute, ; (S, S"): Vertauschen von S; und S;
- Vertauschen ist reflexiv, Lokale Minima sind exakt — Axiom 2,3

- Alle Umordnungen erreichbar durch iteratives Vertauschen — +— Axiom 4
— Ergibt Sortieren durch beliebiges Austauschen von Elementen
- Inefhizient, da zu viele Nachbarn zu prifen (vermutlich O(n?))

e Lokalsuchalgorithmus mit kleinerer Nachbarschaft
— Restriktion aut benachbarte Komponenten

— Nachbarschaft N|S, S| = perm,;(S,5") = permute,;;;1(S5,S")
— Ergibt Bubblesort (nach algorithmischer Optimierung)
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SYNTHESE VON LOKALSUCH-ALGORITHMEN I

Lokalsuche = Nachbarschaft + Suchfilter
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SYNTHESE VON LOKALSUCH-ALGORITHMEN I

Lokalsuche = Nachbarschaft + Suchfilter

e Bestimme effektive Nachbarschaftsstruktur
— Beschreibe Nachbarschaft als Perturbation (Verwirbelung)
— Inkrementelle Veranderung von Werten aus R

- Numerik: d-Vektoren, Kombinatorik: Austausch von Komponenten
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SYNTHESE VON LOKALSUCH-ALGORITHMEN I

Lokalsuche = Nachbarschaft + Suchfilter

e Bestimme eflfektive Nachbarschaftsstruktur
— Beschreibe Nachbarschaft als Perturbation (Verwirbelung)
— Inkrementelle Veranderung von Werten aus R
- Numerik: d-Vektoren, Kombinatorik: Austausch von Komponenten
— Formalisiert als Nz, y| = { Actionli, j,x,y||i,jen|z,y] }
. Anderungsaktion Actionli, j, z, y] modifiziert Losungspunkt (x,y) e DX R

- Parameter ¢, j e[z, y| sind minimale Bestandteile von (x, y)
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e Bestimme eflfektive Nachbarschaftsstruktur
— Beschreibe Nachbarschaft als Perturbation (Verwirbelung)
— Inkrementelle Veranderung von Werten aus R
- Numerik: d-Vektoren, Kombinatorik: Austausch von Komponenten
— Formalisiert als N[z, y| = { Actionli, j,x,y||i,jen|z,y] }
. Anderungsaktion Actionli, j, z, y] modifiziert Losungspunkt (x,y) e DX R

- Parameter ¢, j e[z, y| sind minimale Bestandteile von (x, y)

e Bestimme effiziente Suchfilter
— Optimiere Nachbarschaftsstruktur durch frithzeitiges Abschneiden
- Feasibility Constraint fiir Oz, y]
- Optimality Constraint fir Vt e N[z, z]. (Olz, t| = |z, z|<c|z, t])
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WISSENSBASIERTE SYNTHESE VON LOKALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e Lokalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Nachbarschaftsstruktur, die Axiome 24 erfillt
— Formalisiert als Objekt £ = (D,R,[,0, 7, Action)
— Wissensbank speichert Lokalsuchtheorien fiir Grunddatentypen
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WISSENSBASIERTE SYNTHESE VON LOKALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e Lokalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Nachbarschaftsstruktur, die Axiome 24 erfillt
— Formalisiert als Objekt £ = (D,R,[,0, 7, Action)
— Wissensbank speichert Lokalsuchtheorien fiir Grunddatentypen

e Spezialisierungsmechanismen
— Synthetisiere Initiallosung Init[z] fiir Spezifikation spec = (D, R,1,0)
— Wahle L fiir Bildbereich R, so da} spec < spec, beweisbar
— Extrahiere Substitution #:D— D, und spezialisiere £ mit
- Ergibt Nachbarschaftsstruktur N fir Problemstellung

— Generiere Filter zur Beschrankung auf optimale Losungen
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WISSENSBASIERTE SYNTHESE VON LOKALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e Lokalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Nachbarschaftsstruktur, die Axiome 24 erfiillt
— Formalisiert als Objekt £ = (D,R,[,0, 7, Action)
— Wissensbank speichert Lokalsuchtheorien fiir Grunddatentypen

e Spezialisierungsmechanismen
— Synthetisiere Initiallosung Init|z| fiir Spezifikation spec = (D, R,1,0)
— Wahle L fiir Bildbereich R, so dal spec < spec, beweisbar
— Extrahiere Substitution #:D— D, und spezialisiere £ mit
- Ergibt Nachbarschaftsstruktur N fir Problemstellung

— Generiere Filter zur Beschrankung auf optimale Losungen

e Eventuell Verzicht auf Exaktheit
— Liefert effizienteren, aber suboptimalen Algorithmus
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STANDARD-LOKALSUCHTHEORIEN I

e Umordnung von Folgen
— Suche = Permutation einzelner Elemente einer Folge
— Anderungsparameter: Indizes der Eingabeliste L
— Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S
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STANDARD-LOKALSUCHTHEORIEN I

e Umordnung von Folgen
— Suche = Permutation einzelner Elemente einer Folge
— Anderungsparameter: Indizes der Eingabeliste L
— Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S

LS seqre(a) = D — Seq(a)
R — Seq(a)
I — AL. true
O — AL, S.rearranges(L,S)
T — AL,S. (domain(S) ,domain(S))
Action +—  Ai,j,L,S. [S(i<—>j)(k;) | kcdomain(S)]

(i<»j) (k) = if k=i then j else if k=j then i else k
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STANDARD-LOKALSUCHTHEORIEN I

e Umordnung von Folgen
— Suche = Permutation einzelner Elemente einer Folge
— Anderungsparameter: Indizes der Eingabeliste L
— Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S

LS seqre(a) = D — Seq(a)
R — Seq(a)
I — AL. true
O — AL, S.rearranges(L,S)
T — AL,S. (domain(S) ,domain(S))
Action —  Ai,],L,8. [S(.ju) | kedomain(8)]

(i—j) (k) = if k=i then j else if k=j then i else k
e Teilmengen fester Grofle
— Suche = Austausch einzelner Elemente einer Menge
— Anderungsparameter: Elemente der Ein- und Ausgabemenge
— Perturbation: Austausch zweier Elemente in Ausgabemenge
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STANDARD-LOKALSUCHTHEORIEN I

e Umordnung von Folgen
— Suche = Permutation einzelner Elemente einer Folge
— Anderungsparameter: Indizes der Eingabeliste L
— Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S

LS seqre(a) = D — Seq(a)
R — Seq(a)
I — AL. true
O — AL, S.rearranges(L,S)
T — AL,S. (domain(S) ,domain(S))
Action —  Ai,],L,8. [S(.ju) | kedomain(8)]

(i—j) (k) = if k=i then j else if k=j then i else k
e Teilmengen fester Grofle
— Suche = Austausch einzelner Elemente einer Menge
— Anderungsparameter: Elemente der Ein- und Ausgabemenge
— Perturbation: Austausch zweier Elemente in Ausgabemenge

LS _subsets(a) = D — Set () xN
R — Set («v)
1 — AS,m.m<|S|
O — AS,m,S’.S’CS A [S’|=m
s — AS,m,S’. (S\S’,S’)
Action +—  Ai,j,S,m,S’.S° = (SU{ip)-y
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

Start: FUNCTION fo;(z:D):R WHERE I[z] RETURNS y
SUCH THAT Olz,y| A Vi:R. (Olx,t] = clx,y|<c|z,t])
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

Start: FUNCTION f,,;(x:D):R WHERE [|x|] RETURNS y
SUCH THAT Olz,y| A Vi:R. (Olx,t] = clx,y|<c|z,t])

1. Wahle Lokalsuchtheorie £ mit Ausgabetyp R aus Wissensbank
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

Start: FUNCTION f,,;(x:D):R WHERE [|x|] RETURNS y
SUCH THAT Olz,y| A Vi:R. (Olx,t] = clx,y|<c|z,t])
1. Wahle Lokalsuchtheorie £ mit Ausgabetyp R aus Wissensbank
2. Beweise (D,R,[,0) < specy
— Extrahiere Substitution 6 und setze Ly = (D,R,[,0, wy, Actiony)

RER’ A Vx:D.Iz] = 32':D’. (I'l2'] »n Yy:R. Olx,y| = O'[2,y']

molz,y| = w[0(z),y]
Actiongli, j, z,y] = Actionli, 7,0(x), 1]
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

Start: FUNCTION f,,;(x:D):R WHERE [|x|] RETURNS y
SUCH THAT Olz,y| A Vi:R. (Olx,t] = clx,y|<c|z,t])
1. Wahle Lokalsuchtheorie £ mit Ausgabetyp R aus Wissensbank
2. Beweise (D,R,[,0) < specy
— Extrahiere Substitution 6 und setze Ly = (D,R, 1,0, wy, Actiony)

3. Generiere Losungs-Filter F'C fir L (Feasibility Constraint)
— Filter eliminiert Punkte, die keine giiltigen Losungen bzgl. O sind
- Az] A Oz, y| A O|x, Actionli, j,0(x),y]] = FCIi, 7,2,y
— Vorwartsinferenz: Vereinfachung der linken Seite ergibt F'C'
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

Start: FUNCTION f,,;(x:D):R WHERE [|x|] RETURNS y
SUCH THAT Olz,y| A Vi:R. (Olx,t] = clx,y|<c|z,t])

1. Wahle Lokalsuchtheorie £ mit Ausgabetyp R aus Wissensbank

2. Beweise (D,R,[,0) < specy
— Extrahiere Substitution 6 und setze Ly = (D, R,1,0, my, Actiong)
3. Generiere Losungs-Filter F'C fir L (Feasibility Constraint)
— Filter eliminiert Punkte, die keine giiltigen Losungen bzgl. O sind
- Az] A Oz, y| A O|x, Actionli, j,0(x),y]] = FCIi, 7,2,y
— Vorwartsinferenz: Vereinfachung der linken Seite ergibt F'C
4. (Generiere Optimalitats-Filter OC fur Ly (Optimality Constraint)
— Filter eliminiert kostenungtinstigere Punkte
- Iz] A Oz, y| A O|x, Actionli, 7, 0(x), y|| rclx, y|<c|x, Action|i, j,0(x), y]]
= OC|i, j,x,y]
— Lokale Optima miissen Bedingung Vi, j em(x,y). OC(7, j, x,y) erfiillen
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

Start: FUNCTION f,,:(x:D):R WHERE I|x] RETURNS y
SUCH THAT Olx,y] A Vt:R. (Olz,t] = clx,y|<clz,t])

1. Wahle Lokalsuchtheorie £ mit Ausgabetyp R aus Wissensbank

2. Beweise (D,R,[,0) < specy
— Extrahiere Substitution 6 und setze Ly = (D,R, 1,0, wy, Actiony)

3. Generiere Losungs-Filter F'C fur Ly (Feasibility Constraint)
— Filter eliminiert Punkte, die keine giiltigen Losungen bzgl. O sind
- Iz] AOlz, y| A Olx, Actionli, 7,0(x),y]] = FCIi, j,x, ]
— Vorwartsinferenz: Vereinfachung der linken Seite ergibt F'C
4. (Generiere Optimalitats-Filter OC fur Ly (Optimality Constraint)
— Filter eliminiert kostenungtinstigere Punkte
- Iz] A Oz, y| A O|x, Actionli, 7, 0(x), y|| rclx, y|<c|x, Action|i, j,0(x), y]]
= OC|i, j,x,y]
— Lokale Optima miissen Bedingung Vi, j em(x,y). OC(7, j, x,y) erfiillen
5. Synthetisiere Initiallosung [nit fur Spezifikation
FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y]
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

6. Instantiiere Schema fiir suboptimale Lokalsuch Algorithmen

FUNCTION fopt(z:D): R WHERE I|x] RETURNS vy
SUCH THAT Ofx,y] » Vt:R. (Olx,t] = clz,y|<clz,t])
= frs(x, Initx])
FUNCTION f(x:D):R WHERE [[z] RETURNS y SUCH THAT Olr,y| = Initlx]

FUNCTION fi5(z, 2: DxR):R WHERE I[z] n Olz,z] RETURNS y
SUCH THAT Olx,y] » VieN[z,y]. (Olx,t] = cx,y|<c[z,t])
= if Vi,jew|f(x),z]. FCli,j,x, 2] nOlx, Actionli, j,0(x), y]]
= OC|i,j,x, z| nclx, z|<clz, Action[i, j,0(x),y]] then z
else frs(x, arb({ Action|i,j,0(z),y] | i,jen[0(x),z].
n FCli,j,x, 2] AOlx, Actionli, j, 0(x), y]]
n —OC, j, z, 2| velx, z|>clx, Actionli, 7,0(z),y]] }))
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

6. Instantiiere Schema fiir suboptimale Lokalsuch Algorithmen
FUNCTION fou¢(x:D): R WHERE [[z] RETURNS y
SUCH THAT Olx,y] A Vt:R. (Olx,t] = clx,y|<clz,t])
= frs(x, Initx])

FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y| = Init[z]

FUNCTION fjs(x,z:DxR):R WHERE [[z] n O|x,z| RETURNS y
SUCH THAT Ol[x,y] A VteN[x,y]. (Olz,t] = clz,y|<clz,t])
= if Vi,jew|f(x),z]. FCli,j,x, 2] nOlx, Actionli, j,0(x), y]]
= OCi, j,z, 2| nc|x, z]<clx, Actionli, j,0(x),y]] then =z
else frs(x, arb({ Action[i,j,0(x),y] | i,jen[0(x),z].
n FCli,j,x, 2] nO[x, Actionli, 7, 0(x), y]|
n 2OC, gy, 2] v elz, 2]>clz, Actionli, j, 0(x), yl] 1))
Losungs- und Optimalitatstests notwendig fur Korrektheit
Algorithmus testet nur Parameter, welche die Filter F'C' und OC' passieren

Effiziente Abarbeitung nutzt andthen/orelse Semantik von A und v
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

6. Instantiiere Schema fiir suboptimale Lokalsuch Algorithmen

FUNCTION fopt(z:D): R WHERE I|x] RETURNS vy
SUCH THAT O|x,y] » Vt:R. (Olx,t] = clz,y|<clz,t])
= frs(x, Initx])
FUNCTION f(x:D):R WHERE [[z] RETURNS y SUCH THAT Olr,y| = Initlx]

FUNCTION fjs(x,z:DxR):R WHERE [[z] n O|x,z| RETURNS y
SUCH THAT Ol[x,y] A VteN[x,y]. (Olz,t] = clz,y|<clz,t])
= if Vi,jew|f(x),z]. FCli,j,x, 2] nOlx, Actionli, j,0(x), y]]
= OCi, j,z, 2| nc|x, z]<clx, Actionli, j,0(x),y]] then =z
else frs(x, arb({ Action[i,j,0(x),y] | i,jen[0(x),z].
n FCli,j,x, 2] nO[x, Actionli, 7, 0(x), y]|
n =OCli, ],z z] ve|x, z]>clx, Action[i, j,0(x),y]] }))
Losungs- und Optimalitatstests notwendig fur Korrektheit
Algorithmus testet nur Parameter, welche die Filter F'C' und OC' passieren

Effiziente Abarbeitung nutzt andthen/orelse Semantik von A und v

7. Generiere Bedingungen fiir Exaktheit  (Global Optimality Constraint)
— Zusatzlicher (optionaler) Filter eliminiert suboptimale Losungen
- Ax] A Olx, y| AOlx, Action|i, j,0(x), y|| rnclz, y|<c|x, Action|i, j, 0(x), y]]
AVER. Olx, t| = clz, y|<clz,t] = GOClx,y]
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LOKALSUCHE: ANWENDUNGSBEISPIELE I

e Minimal Spanning Tree
— Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstéande,. . .)

— Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar
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LOKALSUCHE: ANWENDUNGSBEISPIELE I

e Minimal Spanning Tree
— Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstéande,. . .)
— Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar
— Initialwert: Erzeuge spannenden Baum

— Perturbation: Erganze neue Kante, entferne eine andere
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LOKALSUCHE: ANWENDUNGSBEISPIELE I

e Minimal Spanning Tree
— Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstéande,. . .)
— Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar
— Initialwert: Erzeuge spannenden Baum
— Perturbation: Erganze neue Kante, entferne eine andere
— Feasibility Constraint: Entfernte Kante mufl redundant sein

— Optimality Constraint: Hinzugetiigte Kante ist teurer als bisheriger Weg
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LOKALSUCHE: ANWENDUNGSBEISPIELE I

e Minimal Spanning Tree
— Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstéande,. . .)
— Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar
— Initialwert: Erzeuge spannenden Baum
— Perturbation: Erganze neue Kante, entferne eine andere
— Feasibility Constraint: Entfernte Kante mufl redundant sein

— Optimality Constraint: Hinzugefiigte Kante ist teurer als bisheriger Weg

e Lineare Programmierung

— Minimiere lineare Funktion f(x,, ..z )=Ycz, unter Restriktionen A |z ..x |
Standard Darstellung: Minimiere ¢ x o unter A x x=b A Vi<n.x >0
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LOKALSUCHE: ANWENDUNGSBEISPIELE I

e Minimal Spanning Tree
— Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstéande,. . .)
— Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar
— Initialwert: Erzeuge spannenden Baum
— Perturbation: Erganze neue Kante, entferne eine andere
— Feasibility Constraint: Entfernte Kante mufl redundant sein

— Optimality Constraint: Hinzugefiigte Kante ist teurer als bisheriger Weg

e Lineare Programmierung

— Minimiere lineare Funktion f(x,, ..z )=Ycz, unter Restriktionen A |z ..x |
Standard Darstellung: Minimiere ¢ x o unter A x x=b A Vi<n.x >0

— Initiallosung: Setze @41, ..z, = 0 und lose A; ,, x 21, mit Vi<m.z, > 0
durch Gauf-Verfahren

— Perturbation: Setze ein x.:=0, wahle neues XﬁéO
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LOKALSUCHE: ANWENDUNGSBEISPIELE I

e Minimal Spanning Tree
— Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstéande,. . .)
— Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar
— Initialwert: Erzeuge spannenden Baum
— Perturbation: Erganze neue Kante, entferne eine andere
— Feasibility Constraint: Entfernte Kante mufl redundant sein

— Optimality Constraint: Hinzugefiigte Kante ist teurer als bisheriger Weg

e Lineare Programmierung

— Minimiere lineare Funktion f(x,, ..z )=Ycz, unter Restriktionen A |z ..x |
Standard Darstellung: Minimiere ¢ x o unter A x x=b A Vi<n.x >0

— Initiallosung: Setze @41, ..z, = 0 und lose A; ,, x 21, mit Vi<m.z, > 0
durch Gauf-Verfahren

— Perturbation: Setze ein x,:=0, wihle neues x 70
— Feasibility Constraint: Alte + neue z-Komponenten nach Losung positiv

— Optimality Constraint: Relative Kosten steigen durch Veranderung
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PROBLEMREDUKTIONSGENERATOREN I

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe///7 l\

STATISCH REKURSIV STATISCH REKURSIV

Operator Match \@onquer Fallanalyse Globalsuche

A-v-REDUKTION
Problemreduktionsgeneratoren

e V- A-Reduktion von Problemen
— Problem besitzt mehrere Losungen
— Gesamtlosung ist Summe unabhéngiger Einzellosungen — ( v-Reduktion)
— Einzellosungen aus Teillosungen zusammengesetzt ( A-Reduktion)

— Verallgemeinert Dynamisches Programmieren, Spielbaumsuche, . ..
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PROBLEMREDUKTIONSGENERATOREN I

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe///7 l\

STATISCH REKURSIV STATISCH REKURSIV

Operator Match \@onquer Fallanalyse Globalsuche

A-v-REDUKTION
Problemreduktionsgeneratoren

e V- A-Reduktion von Problemen
— Problem besitzt mehrere Losungen
— Gesamtlosung ist Summe unabhangiger Einzellosungen — (v-Reduktion)
— Einzellosungen aus Teillosungen zusammengesetzt ( A-Reduktion)

— Verallgemeinert Dynamisches Programmieren, Spielbaumsuche, . ..

e Synthese ahnlich zu Divide & Conquer Techniken
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PROBLEMREDUKTIONSGENERATOREN: (GRUNDIDEE I

e Verallgemeinertes Divide & Conquer Schema
— Unabhangige Divide & Conquer Algorithmen fur jede Einzellosung
- Dekompositionen und Kompositionen verschieden
- Teilprobleme konnen einander iiberlappen
- Basisfall primitiver Eingaben wird einfaches Divide & Conquer
— Losung durch Vereinigung aller Einzellosungen berechnen
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PROBLEMREDUKTIONSGENERATOREN: (GRUNDIDEE I

e Verallgemeinertes Divide & Conquer Schema
— Unabhangige Divide & Conquer Algorithmen fur jede Einzellosung
- Dekompositionen und Kompositionen verschieden
- Teilprobleme konnen einander iiberlappen
- Basisfall primitiver Eingaben wird einfaches Divide & Conquer
— Losung durch Vereinigung aller Einzellosungen berechnen

e Allgemeines Algorithmenschema

FUNCTION f(z:D) WHERE I[z] RETURNS {y:R | O[z,y]}
= | Jix(Compose, o (fi,;x..xf;,) © Decompose,) (x)
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PROBLEMREDUKTIONSGENERATOREN: (GRUNDIDEE I

e Verallgemeinertes Divide & Conquer Schema
— Unabhangige Divide & Conquer Algorithmen fur jede Einzellosung
- Dekompositionen und Kompositionen verschieden
- Teilprobleme konnen einander iiberlappen
- Basisfall primitiver Eingaben wird einfaches Divide & Conquer
— Losung durch Vereinigung aller Einzellosungen berechnen

e Allgemeines Algorithmenschema

FUNCTION f(z:D) WHERE I[z] RETURNS {y:R | O[z,y]}
= | Jix(Compose, o (fi,;x..xf;,) © Decompose,) (x)

e 4 zentrale Komponenten der Algorithmentheorie
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PROBLEMREDUKTIONSGENERATOREN: (GRUNDIDEE I

e Verallgemeinertes Divide & Conquer Schema
— Unabhangige Divide & Conquer Algorithmen fur jede Einzellosung
- Dekompositionen und Kompositionen verschieden
- Teilprobleme konnen einander iiberlappen
- Basisfall primitiver Eingaben wird einfaches Divide & Conquer
— Losung durch Vereinigung aller Einzellosungen berechnen

e Allgemeines Algorithmenschema

FUNCTION f(z:D) WHERE I[z] RETURNS {y:R | O[z,y]}
= | Jix(Compose, o (fi,;x..xf;,) © Decompose,) (x)

e 4 zentrale Komponenten der Algorithmentheorie
— Decompose; D — Dy x..xD;  Aufspalten der Eingabe in Teilprobleme
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— Erweitertes Strong Problem Reduction Principle
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PROBLEMREDUKTIONSGENERATOREN: KORREKTHEIT I

FUNCTION f(x:D) WHERE I[z] RETURNS {y:R | Olz,y|}
= | Jix(Compose, © (fi;x..xfi,) © Decompose,) (x)

ist korrekt, wenn 5 Axiome erfullt sind
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ist korrekt, wenn 5 Axiome erfullt sind

1. O rekursiv zerlegbar in Op,, O;, X..X0O;_ und Oc, (SPRP)

O[CB,Z] & EIi:N,y‘i:Dilx..D wiIRz'lX..Rz'k. Opl[w,y_z] A Ozl,zk[y_z,zﬁz] A Oci[u_)i,z]

%)

Oil,..ik [yip «oYipy Wiy wzk] = Oi1 (yip wil) ARE AO’ik(yik7 IUZ/)
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2. Dekompositionen erfiilllen Op, und ‘verkleinern’ Problem
FUNCTION fg (x:D) WHERE I[x] RETURNS {y;:D; x..D;, | Op |z, gl na=gin Ly i, 0] }
T-Yi = T >y fur alle 7 mit Dij:D
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2. Dekompositionen erfiilllen Op, und ‘verkleinern’ Problem
FUNCTION f, (x:D) WHERE I[x] RETURNS {g;:D; x..D;, | Op.[x, G nw=gi A L, i [5i] }
T-Yi = T >y fur alle 7 mit Dij:D

3. Hilfsfunktionen fij erfiillen Oij
FUNCTION f; (y;;:D;;) WHERE [ [y;,] RETURNS {w; R | Oy, wi}

4. Kompositionen erfullen Oc,

FUNCTION f. (w;:R; x..xR;) WHERE true RETURNS { z;:R | Oc.[w;, ]}
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4. Kompositionen erfullen Oc,

FUNCTION f,., (w;:R; x..xR;) WHERE true RETURNS {z;:R | O¢,[w;, 2]}

5. Verkleinerungsrelation > ist wohlfundierte Ordnung auf D
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SYNTHESE VON PROBLEMREDUKTIONSGENERATOREN I

e Aufspaltung des Reduktionsprizips in 2 Axiome
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SYNTHESE VON PROBLEMREDUKTIONSGENERATOREN I

e Aufspaltung des Reduktionsprizips in 2 Axiome
— Starke Korrektheit bzgl. Komposition und Dekomposition

ViN, x:D, y;: D, x..D; ,wi Ry X . R; , 2:R. (1)
Iz a1y i Ui 7 Oiy i Ui, Wil A Oy wy, 2] = (Op,|, 93] < Oz, 2])
ViN, x:D, y;: D % ..D; ,wi Ry X . R; , 2:R. (2)

Ix) a1y i [Uil £ Op, |z, Gi) A Oy, i [Ui, W) = (Oc,|w;, 2] & Oz, 2])
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e Strategie analog zu Divide & Conquer Verfahren
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1. Wahle Decompose, aus Wissensbank
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e Strategie analog zu Divide & Conquer Verfahren

1. Wahle Decompose, aus Wissensbank
2. Konstruiere Hilfsfunktionen f;. (id oder rekursiver Aufruf von f)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 16 Problemreduktionsgeneratoren




SYNTHESE VON PROBLEMREDUKTIONSGENERATOREN I

e Aufspaltung des Reduktionsprizips in 2 Axiome
— Starke Korrektheit bzgl. Komposition und Dekomposition
ViN, x:D, y;: D, x..D; ,wi Ry X . R; , 2:R. (1)
Iz) a1y i Ui £ Oiy i Ui, Wil A Ocy|w;, 2] = (Op,|z, 4] < Oz, 2])
ViN, x:D, y;: D % ..D; ,wi Ry X . R; , 2:R. (2)
x| n Ly 9] nOp,lx, gl £ Osy i[9, 0] = (Oc,lw;, 2] < Oz, 2])
— Vollstandigkeit bzgl. Komposition
VN, z:D,w;: R X .. R, , z:R.
Iz] A Oz, 2| N O¢, Wi, 2] = Fyi:Di,x..D;, . (L), i, [9i] A Oi, i, [Gi, Wi])

e Strategie analog zu Divide & Conquer Verfahren

1. Wahle Decompose, aus Wissensbank
2. Konstruiere Hilfsfunktionen f;. (id oder rekursiver Aufruf von f)
3. Konstruiere Dekompositionen Compose, mit Korrektheitsaxiom 1

Problemreduktionsgeneratoren

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 16




SYNTHESE VON PROBLEMREDUKTIONSGENERATOREN I

e Aufspaltung des Reduktionsprizips in 2 Axiome
— Starke Korrektheit bzgl. Komposition und Dekomposition

ViN, x:D, y;: D, x..D; ,wi Ry X . R; , 2:R. (1)
I[I] /\[il,..ik [y_l] /\Oil,..ik [gla /U_}Z} /\OCZ' [U_}h Z} = (ODZ [xa y_l} <~ O[CIZ’, Z])
ViN, x:D, y;: D % ..D; ,wi Ry X . R; , 2:R. (2)

Iz a1y i [9i) 7 Op, |z, i) £ Oy i |gis wi] = (Oc,|w;, 2] < Oz, 2])
— Vollstandigkeit bzgl. Komposition
VN, z:D,w;: R X .. R, , z:R.
Iz] A Oz, 2| N O¢, Wi, 2] = Fyi:Di,x..D;, . (L), i, [9i] A Oi, i, [Gi, Wi])

e Strategie analog zu Divide & Conquer Verfahren

1. Wahle Decompose, aus Wissensbank

2. Konstruiere Hilfsfunktionen f;. (id oder rekursiver Aufruf von f)
3. Konstruiere Dekompositionen Compose, mit Korrektheitsaxiom 1
4. Wahle > aus der Wissensbank und verifiziere Decompose,
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— Starke Korrektheit bzgl. Komposition und Dekomposition

ViN, x:D, y;: D, x..D; ,wi Ry X . R; , 2:R. (1)
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3. Konstruiere Dekompositionen Compose, mit Korrektheitsaxiom 1
4. Wahle > aus der Wissensbank und verifiziere Decompose,

5. Verifiziere Vollstandigkeitsaxiom

6. Instantiiere Algorithmenschema
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