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• Problemlösung durch kleine Veränderungen
– Bewertung der Qualität von Elementen des Bildbereichs

– Qualität einer (Teil-)Lösung wird schrittweise verbessert

– Gut für Optimierungsprobleme (Travelling Salesman, Scheduling, . . . )

• Lösungsverfahren: Hillclimbing
– Beginne irgendwo im Lösungsraum

– Durchsuche lokale Nachbarschaft bis keine bessere Lösung zu finden
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· Zu fein ⇒ Verfahren führt nicht zu globalem Optimum

· Zu grob ⇒ Suche + Test auf lokale Optimalität ineffizient

– Bestimmung einer guten Nachbarschaftstruktur ist wichtig



Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]} ))

in fLS(x,Init[x])



Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]} ))

in fLS(x,Init[x])

• 3 zentrale Komponenten der Algorithmentheorie



Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]} ))

in fLS(x,Init[x])

• 3 zentrale Komponenten der Algorithmentheorie

– Init: D→R Initiallösung für Basisspezifikation (D,R,I,O)



Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]} ))

in fLS(x,Init[x])

• 3 zentrale Komponenten der Algorithmentheorie

– Init: D→R Initiallösung für Basisspezifikation (D,R,I,O)

– c: R→R Kostenfunktion auf geordnetem Kostenraum (R,≤)

Zusatzspezifikation des Optimierungsproblems



Automatisierte Logik und Programmierung II §17 3 Lokalsuch-Algorithmen

Grundschema von Lokalsuch-Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ let fLS(x,z)

= if ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t]) then z

else fLS(x, arb({t | t ∈N [x, z] ∧O[x, t] ∧c[x, t]<c[x, z]} ))

in fLS(x,Init[x])

• 3 zentrale Komponenten der Algorithmentheorie

– Init: D→R Initiallösung für Basisspezifikation (D,R,I,O)

– c: R→R Kostenfunktion auf geordnetem Kostenraum (R,≤)

Zusatzspezifikation des Optimierungsproblems

– N : D×R→Set(R) Nachbarschaftsstruktur

Suchraumbeschreibung für lokale Variationen
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∀x:D.∀y, z:R. I[x] ∧O[x, y] ∧O[x, z] ⇒ ∃k:N.z ∈Nk
O[x, y]

N0
O[x, y] = {y} Nk+1

O [x, y] =
⋃

{ Nk[x, t] | t ∈N [x, y] ∧ O(x, t) }
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• Formuliere Sortierung als Ordnungsoptimierung
– Einfache Basisspezifikation O[L,S] = rearranges(L,S)

– Kostenfunktion c[L, S] = #>(S): Anzahl der Fehlstellungen Si>Si+1

– Es gilt #>(S)≥0 und #>(S) = 0 ⇒ ordered(S)

– Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S

SUCH THAT rearranges(L,S) ∧

∀S’:Seq(Z). rearranges(L,S’) ⇒ #>(S)≤#>(S’)



Automatisierte Logik und Programmierung II §17 6 Lokalsuch-Algorithmen

Sortieren mit Lokalsuchalgorithmen

• Formuliere Sortierung als Ordnungsoptimierung
– Einfache Basisspezifikation O[L,S] = rearranges(L,S)

– Kostenfunktion c[L, S] = #>(S): Anzahl der Fehlstellungen Si>Si+1

– Es gilt #>(S)≥0 und #>(S) = 0 ⇒ ordered(S)

– Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S

SUCH THAT rearranges(L,S) ∧

∀S’:Seq(Z). rearranges(L,S’) ⇒ #>(S)≤#>(S’)

• Lokalsuchalgorithmus
– Initiallösung Init[L] = L 7→ Axiom 1

– Nachbarschaft N [S, S ′] = permutei,j(S,S
′): Vertauschen von Si und Sj

· Vertauschen ist reflexiv, Lokale Minima sind exakt 7→ Axiom 2,3

· Alle Umordnungen erreichbar durch iteratives Vertauschen 7→ Axiom 4
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– Nachbarschaft N [S, S ′] = permutei,j(S,S
′): Vertauschen von Si und Sj

· Vertauschen ist reflexiv, Lokale Minima sind exakt 7→ Axiom 2,3

· Alle Umordnungen erreichbar durch iteratives Vertauschen 7→ Axiom 4

– Ergibt Sortieren durch beliebiges Austauschen von Elementen

· Ineffizient, da zu viele Nachbarn zu prüfen (vermutlich O(n3))

• Lokalsuchalgorithmus mit kleinerer Nachbarschaft
– Restriktion auf benachbarte Komponenten

– Nachbarschaft N [S, S ′] = permi(S,S
′) = permutei,i+1(S,S

′)

– Ergibt Bubblesort (nach algorithmischer Optimierung)
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· Änderungsaktion Action [i, j, x, y] modifiziert Lösungspunkt (x, y) ∈D×R

· Parameter i, j ∈π[x, y] sind minimale Bestandteile von (x, y)

• Bestimme effiziente Suchfilter

– Optimiere Nachbarschaftsstruktur durch frühzeitiges Abschneiden

· Feasibility Constraint für O[x, y]

· Optimality Constraint für ∀t ∈N [x, z]. (O[x, t] ⇒ c[x, z]≤c[x, t])
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– Formalisiert als Objekt L = (D,R,I ,O,π,Action)

– Wissensbank speichert Lokalsuchtheorien für Grunddatentypen
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– Generiere Filter zur Beschränkung auf optimale Lösungen
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– Wähle L für Bildbereich R, so daß spec�specL beweisbar

– Extrahiere Substitution θ:D→DL und spezialisiere L mit θ

· Ergibt Nachbarschaftsstruktur N für Problemstellung

– Generiere Filter zur Beschränkung auf optimale Lösungen

• Eventuell Verzicht auf Exaktheit

– Liefert effizienteren, aber suboptimalen Algorithmus
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– Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S
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• Teilmengen fester Größe
– Suche =̂ Austausch einzelner Elemente einer Menge

– Änderungsparameter: Elemente der Ein- und Ausgabemenge

– Perturbation: Austausch zweier Elemente in Ausgabemenge
LS subsets(α) ≡ D 7→ Set(α)×N
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5. Synthetisiere Initiallösung Init für Spezifikation

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]
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Synthesestrategie für Lokalsuch-Algorithmen

6. Instantiiere Schema für suboptimale Lokalsuch Algorithmen

FUNCTION fopt(x:D):R WHERE I [x] RETURNS y

SUCH THAT O[x, y] ∧ ∀t:R. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ fLS(x,Init[x])

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y] ≡ Init[x]

FUNCTION fls(x, z:D×R):R WHERE I [x] ∧ O[x, z] RETURNS y

SUCH THAT O[x, y] ∧ ∀t ∈N [x, y]. (O[x, t] ⇒ c[x, y]≤c[x, t])

≡ if ∀i, j ∈π[θ(x), z]. FC[i, j, x, z] ∧O[x,Action[i, j, θ(x), y]]

⇒ OC[i, j, x, z] ∧c[x, z]≤c[x,Action[i, j, θ(x), y]] then z

else fLS(x, arb({Action[i, j, θ(x), y] | i, j ∈π[θ(x), z].

∧ FC[i, j, x, z] ∧O[x,Action[i, j, θ(x), y]]

∧ ¬OC[i, j, x, z] ∨c[x, z]>c[x,Action[i, j, θ(x), y]] }))
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Lösungs- und Optimalitätstests notwendig für Korrektheit

Algorithmus testet nur Parameter, welche die Filter FC und OC passieren

Effiziente Abarbeitung nutzt andthen/orelse Semantik von ∧ und ∨
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Lösungs- und Optimalitätstests notwendig für Korrektheit

Algorithmus testet nur Parameter, welche die Filter FC und OC passieren

Effiziente Abarbeitung nutzt andthen/orelse Semantik von ∧ und ∨

7. Generiere Bedingungen für Exaktheit (Global Optimality Constraint)

– Zusätzlicher (optionaler) Filter eliminiert suboptimale Lösungen

· I [x] ∧O[x, y] ∧O[x,Action [i, j, θ(x), y]] ∧c[x, y]≤c[x,Action [i, j, θ(x), y]]

∧∀t:R. O[x, t] ⇒ c[x, y]≤c[x, t] ⇒ GOC[x, y]
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• Minimal Spanning Tree

– Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstände,. . . )

– Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar
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i
≥0



Automatisierte Logik und Programmierung II §17 12 Lokalsuch-Algorithmen

Lokalsuche: Anwendungsbeispiele

• Minimal Spanning Tree

– Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstände,. . . )

– Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar

– Initialwert: Erzeuge spannenden Baum

– Perturbation: Ergänze neue Kante, entferne eine andere

– Feasibility Constraint: Entfernte Kante muß redundant sein
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:=0, wähle neues x
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– Feasibility Constraint: Alte + neue x-Komponenten nach Lösung positiv

– Optimality Constraint: Relative Kosten steigen durch Veränderung
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Problemreduktionsgeneratoren

Allgemeine Problemstruktur

Generate & Test

Lokale Struktur

Lokalsuche
Reduktionsstruktur

Komplementierung

Siebe
∧ -Reduktion

statisch

Operator Match
rekursiv

Divide&Conquer

∨ -Reduktion

statisch

Fallanalyse
rekursiv

Globalsuche

∧ - ∨ -Reduktion

Problemreduktionsgeneratoren

• ∨ -∧ -Reduktion von Problemen

– Problem besitzt mehrere Lösungen

– Gesamtlösung ist Summe unabhängiger Einzellösungen ( ∨ -Reduktion)

– Einzellösungen aus Teillösungen zusammengesetzt ( ∧ -Reduktion)

– Verallgemeinert Dynamisches Programmieren, Spielbaumsuche, . . .
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– Wohlfundierte Ordnung � für Terminierungsgarantiee



Automatisierte Logik und Programmierung II §17 14 Problemreduktionsgeneratoren

Problemreduktionsgeneratoren: Grundidee

• Verallgemeinertes Divide & Conquer Schema
– Unabhängige Divide & Conquer Algorithmen für jede Einzellösung

· Dekompositionen und Kompositionen verschieden

· Teilprobleme können einander überlappen

· Basisfall primitiver Eingaben wird einfaches Divide & Conquer

– Lösung durch Vereinigung aller Einzellösungen berechnen
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Automatisierte Logik und Programmierung II §17 16 Problemreduktionsgeneratoren

Synthese von Problemreduktionsgeneratoren

• Aufspaltung des Reduktionsprizips in 2 Axiome
– Starke Korrektheit bzgl. Komposition und Dekomposition
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– Vollständigkeit bzgl. Komposition

∀i:N, x:D, w̄i:Ri1×..Rik , z:R.

I [x] ∧O[x, z] ∧OCi
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[x, ȳi]⇔O[x, z])
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[x, ȳi] ∧Oi1,..ik [ȳi, w̄i] ⇒ (OCi

[w̄i, z]⇔O[x, z])
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[w̄i, z] ⇒ (ODi
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1. Wähle Decompose

i
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2. Konstruiere Hilfsfunktionen fij (id oder rekursiver Aufruf von f)

3. Konstruiere Dekompositionen Compose
i
mit Korrektheitsaxiom 1

4. Wähle � aus der Wissensbank und verifiziere Decompose
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∀i:N, x:D, ȳi:Di1×..Dik, w̄i:Ri1×..Rik , z:R. (1)
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