LOKALSUCH-ALGORITHMEN I

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Sie% l\

STATISCH REKURSIV STATISCH REKURSIV

Operator Match \l&e&(]onquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

e Problemlosung durch kleine Veranderungen
— Bewertung der Qualitat von Elementen des Bildbereichs
— Qualitéat einer (Teil-)Losung wird schrittweise verbessert
— Gut fiir Optimierungsprobleme (Travelling Salesman, Scheduling, .. .)

e Losungsverfahren: Hillclimbing
— Beginne irgendwo im Losungsraum
— Durchsuche lokale Nachbarschaft bis keine bessere Losung zu finden
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LOKALSUCH-ALGORITHMEN: (GENERELLE IDEE

e Optimierung als Minimierung von Kosten
— Sperzifikation des Problems besitzt viele mogliche “Losungen”
— Losungen werden bewertet nach Nutzen, Kosten, Korrekheitsgrad, . ..
— Gesucht ist Losung mit optimaler (0.B.d.A. minimaler) Bewertung
— Exakte Optimierung oft NP-vollstandig

e Losungsverfahren durchsucht Nachbarschaft

— Ubergang auf Nachbarn, solange Verbesserungen moglich

— Verfahren endet in lokalen Optima

— Nachbarschaftstruktur entscheidet iiber Giite der Losung \\
- Zu fein = Verfahren fihrt nicht zu globalem Optimum -
- Zu grob = Suche + Test auf lokale Optimalitat ineffizient

— Bestimmung einer guten Nachbarschaftstruktur ist wichtig
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(FRUNDSCHEMA VON LOKALSUCH-ALGORITHMEN I

FUNCTION fop(z:D):R WHERE I[z] RETURNS y
SUCH THAT Olz,y] A Vt:R. (Olx,t] = clx,y|<c[x,t])
= let frs(x,z)
= if VteN|x,z|. (O|x,t] = clz,z|<c|x,t]) then z
else frs(z,arb({t|teNlz, 2| A Olx, t| nclz, t]<clz, 2]} ))
in frs(x, Initlx])

¢ 3 zentrale Komponenten der Algorithmentheorie
— Init: D — R [nitiallosung fir Basisspezifikation (D, R,1,0)

~-c. R—R Kostenfunktion auf geordnetem Kostenraum (R, <)

Zusatzspezifikation des Optimierungsproblems

— NN: Dx R—Set (R) Nachbarschaftsstruktur

Suchraumbeschreibung fiir lokale Variationen
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KORREKTHEIT DES LOKALSUCH-SCHEMAS I

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS vy
SUCH THAT O[z,y] » Vt:R. (Olx,t] = clx,y|<clz,t])
= let frs(z,z) = if VteN|x, z|. (Olz,t] = clz,z]<c[z,t]) then z
else frs(x,arb({t|teN|x, 2| Oz, t]rclx, t]<c|x, 2]} ))
in fLS(x,Im't[x])

ist korrekt, wenn 4 Axiome erfullt sind

1. Init|x| berechnet giiltige Initiallosung fiir O
FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Olz,]

2. Nachbarschaftsstruktur N ist reflexiv
Ve:D.Vy:R. Ilx] nOlx,y] = yeN|[z,y]
3. Lokale Optima sind exakt — Optimale Algorithmen
Ve:D.Vy:R. I[x]AOlx,y] = (VteN][z,y|.Olx,t] = c[z,y|<c[z,t])
= Vz:R. (Olx, z] = clz,y]|<c[z, z])
4. Alle giiltigen Losungen sind endlich erreichbar
Ve:D . Vy,z:R. I[z]AOlz,y] AO[x,z] = Fk:N.zeNj[z,y]

N§lz, 9] = {y} N5z, 9] = ANz, t] |t N[z, y] 2 O(z,1) }
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LOKALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion fi,

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS vy
SUCH THAT Ol[x,y] A Vt:R. (Olx,t] = clx,y|<clz,t])
= frs(x,Initlx])

FUNCTION fjs(x,z:DxR):R WHERE [I[x| A O|x,z] RETURNS y
SUCH THAT Ol[x,y] A VteN[x,y]. (Olz,t] = clz,y|<clx,t])
= if VteN|z,z|. (Olx,t] = clx,z]|<c|z,t]) then z
else frs(x,arb({t|teNlx, 2| Olx, t]nclz, t]<c|x, z]}))
e Korrektheit von f,,; folgt aus der von f;; mit Axiomen 1 & 3
— Fiir den Startwert z = Init|x| gilt Olx, 2|
—Fury = frs(@,2) gilt Olz,y] A VteN|z,y|. (Olz,t] = cz,y|<clz,])
— Mit Axiom 3 folgt Vt:R. (Olx,t] = clz,y|<c|z,t])

e Partielle Korrektheit von f;; folgt aus Programmkorper
— Halt f;; mit Ausgabe z, so gilt VieN|x, z|. (Olz,t] = clz, z|<c[z,t])

e Terminierung von fj; folgt aus Ordnung (R,<) und Axiom 4
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SORTIEREN MIT LOKALSUCHALGORITHMEN I

e Formuliere Sortierung als Ordnungsoptimierung
— Einfache Basisspezifikation O[L, S| = rearranges(L,S)
— Kostenfunktion ¢[L, S] = #.(5): Anzahl der Fehlstellungen S;>5; 1
— Es gilt #.(5)>0 und #.(5) =0 = ordered(S5)

— Spezifikation FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true RETURNS S
SUCH THAT rearranges(L,S) A
VS’ :8eq(Z) . rearranges(L,S’) = #.(S)<#.(S’)
e Lokalsuchalgorithmus

— Initiallosung Init/L] = L — Axiom 1
— Nachbarschaft N|S, S| = permute, ;(S,S"): Vertauschen von S; und S;
- Vertauschen ist reflexiv, Lokale Minima sind exakt — Axiom 2,3

- Alle Umordnungen erreichbar durch iteratives Vertauschen — + Axiom 4
— Ergibt Sortieren durch beliebiges Austauschen von Elementen
- Inefhizient, da zu viele Nachbarn zu prifen (vermutlich O(n?))

e Lokalsuchalgorithmus mit kleinerer Nachbarschaft
— Restriktion auf benachbarte Komponenten

— Nachbarschaft N|S, S| = perm,(S,S5") = permute,;;;(S5,S")
— Ergibt Bubblesort (nach algorithmischer Optimierung)
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SYNTHESE VON LOKALSUCH-ALGORITHMEN I

Lokalsuche = Nachbarschaft + Suchfilter

e Bestimme effektive Nachbarschaftsstruktur
— Beschreibe Nachbarschaft als Perturbation (Verwirbelung)
— Inkrementelle Veranderung von Werten aus R
- Numerik: 0-Vektoren, Kombinatorik: Austausch von Komponenten
— Formalisiert als N|x,y| = { Actionli, j,x,y| |1, en|z,y] }
. Anderungsaktion Actionli, j, z,y] modifiziert Losungspunkt (z,v) e DX R

- Parameter 4, j e[z, y| sind minimale Bestandteile von (z, y)

e Bestimme effiziente Suchfilter
— Optimiere Nachbarschaftsstruktur durch frithzeitiges Abschneiden
- Feasibility Constraint fiir Oz, y]
- Optimality Constraint fir Vt e Nz, z]. (Olz, t| = |z, z|<c|z, t])
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WISSENSBASIERTE SYNTHESE VON LOKALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e Lokalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Nachbarschaftsstruktur, die Axiome 24 erfiillt
— Formalisiert als Objekt £ = (D,R,I,0, 7, Action)
— Wissensbank speichert Lokalsuchtheorien fiir Grunddatentypen

e Spezialisierungsmechanismen
— Synthetisiere Initiallosung Init[z] fiir Spezifikation spec = (D, R,1,0)
— Wahle £ fir Bildbereich R, so da} spec < spec, beweisbar
— Extrahiere Substitution 6:D— D, und spezialisiere £ mit
- Ergibt Nachbarschaftsstruktur NV fir Problemstellung

— Generiere Filter zur Beschrankung auf optimale Losungen

e FE-ventuell Verzicht auf Exaktheit

— Liefert effizienteren, aber suboptimalen Algorithmus

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Lokalsuch-Algorithmen




STANDARD-LOKALSUCHTHEORIEN I

e Umordnung von Folgen
— Suche = Permutation einzelner Elemente einer Folge
— Anderungsparameter: Indizes der Eingabeliste L
— Perturbation: Vertauschung zweier Elemente einer Ausgabeliste S

LS seqre(a) = D — Seq(a)
R — Seq(a)
I — AL. true
O — AL, S.rearranges(L,S)
T — AL,S. (domain(S) ,domain(S))
Action —  Ai,],L,8. [S(.j) | kedomain(8)]

(i—j)(k) = if k=i then j else if k=j then i else k
e Teilmengen fester Grofle
— Suche = Austausch einzelner Elemente einer Menge
— Anderungsparameter: Elemente der Ein- und Ausgabemenge
— Perturbation: Austausch zweier Elemente in Ausgabemenge

LS _subsets(a) = D — Set () xN
R — Set (av)
1 — AS,m.m<|S|
O — AS,m,S’.S’CS A [S’|=m
s — AS,m,S’. (S\S’,S’)
Action +—  Ai,j,S,m,S’.S° = (SU{ip)-y
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

Start: FUNCTION f,,(z:D):R WHERE I[z] RETURNS y
SUCH THAT Olz,y] A Vt:R. (Olx,t] = clx,y|<c|x,t])

1. Wahle Lokalsuchtheorie £ mit Ausgabetyp R aus Wissensbank
2. Beweise (D,R,[1,0) < specy
— Extrahiere Substitution 6 und setze Ly = (D, R,[1,0, my, Actiongy)
3. Generiere Losungs-Filter F'C fur Ly (Feasibility Constraint)
— Filter eliminiert Punkte, die keine giiltigen Losungen bzgl. O sind
- Ax] AOlzx, y| A Olx, Actionli, 7,0(x),y]]| = FCIi, j,x,vy]
— Vorwartsinferenz: Vereinfachung der linken Seite ergibt F'C
4. Generiere Optimalitats-Filter OC fur Ly (Optimality Constraint)
— Filter eliminiert kostenungunstigere Punkte
- Ax) A Olx, y| A O|x, Actionlt, j,0(x), y|| nclz, y|<cl|x, Action|i, j,0(x), y]]
= OC|i,j,x,y]
— Lokale Optima miissen Bedingung Vi, j em(x,y). OC(i, j, x,y) erfiillen
5. Synthetisiere Initiallosung Init fiir Spezifikation
FUNCTION f(x:D):R WHERE I[z] RETURNS y SUCH THAT Oz, ]
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SYNTHESESTRATEGIE FUR LOKALSUCH-ALGORITHMEN I

6. Instantiiere Schema fiir suboptimale Lokalsuch Algorithmen

FUNCTION fopt(2z:D): R WHERE I|x] RETURNS vy
SUCH THAT Ol[x,y] A Vt:R. (Olx,t] = clx,y|<clz,t])
= frs(x, Initx])
FUNCTION f(x:D):R WHERE [[z] RETURNS y SUCH THAT Olr,y| = Initlx]

FUNCTION fjs(x,z:DxR):R WHERE [I[x| A O|x,z] RETURNS y
SUCH THAT Ol[zx,y] A VteN[z,y]. (Olz,t] = clz,y]<clz,t])
= if Vi,jen|0(x),z|. FCi,j,x,z]AOlz, Actionli, j,0(x), y|]
= OCi, j,z, z| nelx, z|<clx, Actionli, 7,0(x),y]] then =z
else frs(x, arb({ Action[i,j,0(zx),y] | i,jen[0(z),z].
n FCli,j,x, 2zl nOlx, Action|i, j, 0(x), y]]
n =OCi, j, x, z] vclx, 2|>clx, Action[i, 7,0(x),y]] 1))
Losungs- und Optimalitatstests notwendig fur Korrektheit
Algorithmus testet nur Parameter, welche die Filter F'C' und OC' passieren

Effiziente Abarbeitung nutzt andthen/orelse Semantik von A und v

7. Generiere Bedingungen fiir Exaktheit (Global Optimality Constraint)
— Zusatzlicher (optionaler) Filter eliminiert suboptimale Losungen
Ax) A Olx, y| AO|x, Action|t, j,0(x), y|| nclz, y|<cl|x, Action|i, j,0(x), y]]
AVER. Olx, t| = clz, y|<clz,t] = GOCx,y]
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LOKALSUCHE: ANWENDUNGSBEISPIELE I

e Minimal Spanning Tree
— Gegeben: Graph mit gewichteten Kanten (Zugriffszeiten, Abstéande,. . .)
— Gesucht: Baum, auf dem alle Knoten mit minimalen Kosten erreichbar
— Initialwert: Erzeuge spannenden Baum
— Perturbation: Erganze neue Kante, entferne eine andere
— Feasibility Constraint: Entfernte Kante mufl redundant sein

— Optimality Constraint: Hinzugetfiigte Kante ist teurer als bisheriger Weg

e Lineare Programmierung

— Minimiere lineare Funktion f(z,, ..z,)=Ycz, unter Restriktionen A v, ..z |
Standard Darstellung: Minimiere ¢ x o unter A x x=b A Vi<n.x >0

— Initiallosung: Setze @41, .., := 0 und lose A ,,, x x1_,, mit Vi<m.x > 0
durch Gauf-Verfahren

— Perturbation: Setze ein x,:=0, wihle neues x 70
— Feasibility Constraint: Alte 4+ neue z-Komponenten nach Losung positiv

— Optimality Constraint: Relative Kosten steigen durch Veranderung
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PROBLEMREDUKTIONSGENERATOREN I

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG A-REDUKTION v-REDUKTION

Siebe///7 l\

STATISCH REKURSIV STATISCH REKURSIV

Operator Match \l&e&(]onquer Fallanalyse Globalsuche

A-v-REDUKTION
Problemreduktionsgeneratoren

e V- A-Reduktion von Problemen
— Problem besitzt mehrere Losungen
— Gesamtlosung ist Summe unabhangiger FEinzellosungen — ( v-Reduktion)
— Einzellosungen aus Teillosungen zusammengesetzt ( A-Reduktion)

— Verallgemeinert Dynamisches Programmieren, Spielbaumsuche, . ..

e Synthese ahnlich zu Divide & Conquer Techniken
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PROBLEMREDUKTIONSGENERATOREN: (GRUNDIDEE I

e Verallgemeinertes Divide & Conquer Schema
— Unabhangige Divide & Conquer Algorithmen fur jede Einzellosung
- Dekompositionen und Kompositionen verschieden
- Teilprobleme konnen einander iiberlappen
- Basisfall primitiver Eingaben wird einfaches Divide & Conquer
— Losung durch Vereinigung aller Einzellosungen berechnen

e Allgemeines Algorithmenschema

FUNCTION f(x:D) WHERE [|x| RETURNS {y:R | Olz,y|}
= Ui,k((]ompasel. o (fix..xf;i) © Decompose,) (x)

e 4 zentrale Komponenten der Algorithmentheorie
— Decompose: D — D; x..xD;  Aufspalten der Eingabe in Teilprobleme
— Hiltstunktionen f;: D;; — R;;  evtl. rekursiver Aufrut von f
— Compose;: R x. . XR; — R Zusammensetzen der Teillosungen
— Wohlfundierte Ordnung > fiir Terminierungsgarantiee

— Erweitertes Strong Problem Reduction Principle
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PROBLEMREDUKTIONSGENERATOREN: KORREKTHEIT I

FUNCTION f(z:D) WHERE I[z] RETURNS {y:R | Olz,y]}
= Ui,k((]ompasel. o (fiyx..xfi ) © Decompose,) (x)

ist korrekt, wenn 5 Axiome erfillt sind

1. O rekursiv zerlegbar in Op,, O;, X..X0O;, und Oc, (SPRP)

O[:L',z] = HiZN,gZ':DhX..D QDZ'IRz'lx..RZ'k. ODz[m,y_,,] A Ozl,zk[y_z,tﬁz] A Oci[u_)i,z]

%)
Oil,..ik [yip “yik? Wi, "wi];l = Oil (yip wil) ARe /\Oik (ylk7 wl,)

2. Dekompositionen erfiullen Op, und ‘verkleinern’ Problem
FUNCTION f, (x:D) WHERE I[z] RETURNS {7;:D;, x..D;, | Op.[x, i na=i A L, i [5i] }
r-y; = x>y, turalle j mit D; =D

3. Hilfsfunktionen fz-j erfullen Oij
FUNCTION fij (ylj D%) WHERE ]z] [yz]] RETURNS {wij:Rij ‘ Oz] [y%,wlj]}

4. Kompositionen erfullen Oc,

FUNCTION f. (w;:R; x..xR;) WHERE true RETURNS {z;:R | Oc.[w;, zi]}

5. Verkleinerungsrelation > ist wohlfundierte Ordnung auf D
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SYNTHESE VON PROBLEMREDUKTIONSGENERATOREN I

e Aufspaltung des Reduktionsprizips in 2 Axiome
— Starke Korrektheit bzgl. Komposition und Dekomposition

ViIN,CUID,y_z'IDz'lx..DZ‘k,wiIRz'lX..Rik,ZZR. (1>
[[I] /\[il,..ik [y_l] /\Oil,..ik [gla /U_}Z} /\OCZ' [U_}h Z} = (ODZ [xa y_l} And O[CIZ’, Z])
ViIN,CUID,y_z'IDz'lx..DZ‘k,wiIRz'lX..Rik,ZZR. (2>

Iz)n Ly, i [Uil £ Op, |z, Gi) A Oy, i [Ui, W) = (Oc¢,|w;, 2] & Oz, 2])
— Vollstandigkeit bzgl. Komposition
VN, z:D,wi Ry X Ry, , 22 R.
Iz] A Oz, 2| N O¢, w5, 2] = FyiDiyx.. Dy, . (L), i, [9i] A Oy i, [Ui, Wi])

U )

e Strategie analog zu Divide & Conquer Verfahren

1. Wahle Decompose, aus Wissensbank

2. Konstruiere Hilfsfunktionen f;, (id oder rekursiver Aufruf von f)
3. Konstruiere Dekompositionen Compose, mit Korrektheitsaxiom 1
4. Wahle > aus der Wissensbank und verifiziere Decompose.

5. Verifiziere Vollstandigkeitsaxiom

6. Instantiiere Algorithmenschema
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