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Globalsuchalgorithmen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Operator Match

rekursiv
Divide&Conquer
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Fallanalyse
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∧ - ∨ -Reduktion
Dynamische Programmierung

• Bestimmung aller Lösungen eines Problems
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• ∨ -Reduktion des Problems

– Gesamtlösung ist Vereinigung unabhängiger Teillösungen

– Gut geeignet für Parallelverarbeitung
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– Extraktion von tatsächlichen Lösungen

• Repräsentanten erforderlich

– Verarbeitung der Mengen selbst zu aufwendig

– Codiere Kandidatenmengen durch Deskriptoren

– Simuliere Aufteilen und Filtern auf Deskriptoren

– Notwendige Informationen bei der Spezifikation:

· Wann ist ein Deskriptor eine sinnvolle Beschreibung einer Menge?

· Wie beschreibt man Zugehörigkeit zur Menge mittels Deskriptoren?
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• Hilfsfunktion durchläuft Suchraum rekursiv

oaux(L,k,l,r) =











{l} falls l=r ∧ L
l
=k

∅ falls l=r ∧ L
l
6=k

oaux(L,k,l,m)∪ oaux(L,k,m+1,r) falls l<r; m=(l+r)/2
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– Suchraum {n..m} ohne Lösung, falls Ln>k oder Lm<k

– Ergänze Filter Ln≤k≤Lm für Aufspaltungsmenge (logarithmischer Algorithmus)

• Endform: effizienter, wohlstrukturierter Algorithmus
FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧ L
i
=k }

≡ let rec oaux(L,k,l,r) = { i | i ∈{l} ∧ i=r ∧ L
i
=k}

∪
⋃

{ oaux(L,k,n,m) | (n,m) ∈{(l,(l+r)/2),((l+r)/2 + 1,r) | l<r}

∧ L
n
≤k≤L

m
}

in if L
1
≤k≤L|L| then oaux(L,k,1,|L|) else ∅
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∪
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in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅
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I[x] ⇒ J [x, s0(x)]
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– Für den Startwert s0(x) gilt J [x, s0(x)] (Axiom 1)
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• Terminierung von fgs folgt aus Axiom 6
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• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅
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1. L 6=[] ∧ordered(L) ⇒ 1≤1≤|L|≤|L|

2. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∀(x,y) ∈split[L,k,l,r]. 1≤x≤y≤|L|

3. L 6=[] ∧ordered(L) ∧i ∈{1..|L|} ∧L
i
=k ⇒ i ∈{1..|L|}

4. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒
L

l
≤k≤Lr ⇐ ∃z:N.z ∈{l..r} ∧z ∈{1..|L|} ∧Lz=k



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅

• Alle 6 Axiome sind erfüllt
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• Alle 6 Axiome sind erfüllt
1. L 6=[] ∧ordered(L) ⇒ 1≤1≤|L|≤|L|

2. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∀(x,y) ∈split[L,k,l,r]. 1≤x≤y≤|L|

3. L 6=[] ∧ordered(L) ∧i ∈{1..|L|} ∧L
i
=k ⇒ i ∈{1..|L|}

4. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒
L

l
≤k≤Lr ⇐ ∃z:N.z ∈{l..r} ∧z ∈{1..|L|} ∧Lz=k

5. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ∧i ∈{1..|L|} ∧L
i
=k ⇒

i ∈{l..r} ⇔ ∃k:N.∃(x,y) ∈splitkΦ[L,k,l,r]. i ∈(if x=y then {x} else ∅)

6. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∃k:N.splitk
Φ[L,k,l,r] = ∅
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Schematischer Globalsuchalgorithmus für osearch

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }

≡ let rec fgs(L,k,l,r)

= { z | z ∈(if l=r then {l} else ∅) ∧ z ∈{1..|L|} ∧Lz=k}

∪
⋃

{ oaux(L,k,n,m) | (n,m) ∈(if l<r

then {(l,(l+r)/2),((l+r)/2 + 1,r)}
else ∅) ∧ L

n
≤k≤L

m
}

in if L
1
≤k≤L|L| then oaux(L,k, 1,|L|) else ∅
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⋃
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then {(l,(l+r)/2),((l+r)/2 + 1,r)}
else ∅) ∧ L

n
≤k≤L

m
}

in if L
1
≤k≤L|L| then oaux(L,k, 1,|L|) else ∅

Nach Optimierung durch Simplifikationen

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }

≡ let rec fgs(L,k,l,r)

= if l=r then if L
l
=k then {l} else ∅

else let m = (l+r)/2 in

(if L
l
≤k≤L

m
then oaux(L,k,l,m) else ∅)

∪ (if L[m+1]≤k≤Lr then oaux(L,k,m+1,r) else ∅)
in if L

1
≤k≤L|L| then oaux(L,k, 1,|L|) else ∅
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– Formalisiert als Objekt G = (D,R, I,O, S, J, s
0
, sat, split, True, ext)

– Wissensbank speichert Globalsuchtheorien für Grunddatentypen
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Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α
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• Sinnvoll: nur Elemente aus M J [M, s] ≡ s ‘⊆′ M



Automatisierte Logik und Programmierung II §17 12 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}

• Extraktion: Gesamter Präfix ext[s] ≡ {s}

• Sinnvoll: nur Elemente aus M J [M, s] ≡ s ‘⊆′ M

Darstellung als formales Objekt der Wissensbank

gs seq set(α) ≡ D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM. true

O 7→ λM, L. range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s. range(s)⊆M

s
0

7→ λM. []

sat 7→ λL, s. svL

split 7→ λM, s. {s·a|a ∈M}

ext 7→ λs. {s}
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– Filter testet absolute Längenbegrenzung der Deskriptorfolge

– Einfacher, schnell auszuführender Test

– Filter garantiert Terminierung nach k Schritten, Baumgröße |M |k
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• Φ2[M, s] ≡ |s|≤k ∗ |M |
– Filter testet Längenbegrenzung relativ zur Größe von M
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• Φ3[M, s] ≡ nodups(s)

– Filter testet Deskriptorfolge auf Duplikate
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Jeder Filter macht gs seq set(α) wohlfundiert
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– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:
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• Formalisierung vorkommender Begriffe:

dtrow(L,j) ≡ [L[i]-L[i+j]| i ∈[1..|L|-j] ]

perm(L,S) ≡ nodups(L) ∧ range(L)=S



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen
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• Ziel: Berechnung aller Costas Arrays der Größe n

• Formalisierung vorkommender Begriffe:

dtrow(L,j) ≡ [L[i]-L[i+j]| i ∈[1..|L|-j] ]

perm(L,S) ≡ nodups(L) ∧ range(L)=S

• Spezifikation des Problems

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}
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2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true
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4. Zu zeigen ist also:

– ∀n:Z. n≥1 ⇒ ∃M:Set(Z). ∀p:Seq(Z).O(n,p) ⇒ range(p)⊆M

– Heuristik: Suche Folgerungen von O(n,p), in denen range(p) vorkommt

– Auffalten von perm liefert: perm(p,{1..n}) ⇒ range(p)⊆ {1..n}

– Wähle M ≡ {1..n} und extrahiere θ = λn.{1..n}

5. Modifiziere gs seq set(Z) und Φ3 mit θ und der Spezifikation



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein
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4. Bestimme zusätzlichen notwendigen Filter Ψ für Gθ

– Leite Eigenschaften von x und s aus sat[z, s] ∧O[x, z] ab (Vorwärtsinferenz)

5. Instantiiere Globalsuch-Schema mit Gθ, Φθ, Ψ

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[θ(x), s0(θ(x))] ∧Ψ[x, s0(θ(x))] then fgs(x, s0(θ(x))) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [θ(x), s] ∧Φ[θ(x), s] ∧Ψ[x, s]

RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[θ(x), s] ∧ Φ[θ(x), t] ∧ Ψ[x, s] }
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– Leicht beweisbar nur für Φ3[M,s] = nodups(s)

4. Leite zusätzlichen notwendigen Filter Ψ ab

– Aus perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j)) ∧ svp

leite ab Ψ[n,s] = ∀i ∈domain(s).nodups(dtrow(s,j))

5. Instantiiere den Standard-Globalsuchalgorithmus
FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}
≡ let rec Costasgs(n,s)

= { p | p ∈{s} ∧ perm(p,{1..n}) ∧ ∀j<n. nodups(dt-row(p,j)) }

∪
⋃

{ Costasgs(n,t) | t ∈{ s·i|i ∈{1..n} }
∧ nodups(t) ∧ ∀j< ∈domain(t). nodups(dt-row(t,j))}

in if nodups([]) ∧ ∀j ∈domain([]).nodups(dtrow([],j))

then Costasgs(n,[]) else ∅
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– Mathematische Notation übersetzbar in Programmiersprachen



Automatisierte Logik und Programmierung II §17 18 Globalsuchalgorithmen

Rückblick: Synthese mit Algorithmenschemata

Wissensbasierte Techniken zur Softwareentwicklung

• Erzeugte Algorithmen sind korrekt und effizient

– Formales theoretisches Fundament sichert Korrektheit

– Gute algorithmische Struktur liefert Effizienz
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– Nachträgliche Optimierung des schematischen Algorithmus möglich/nötig

– Mathematische Notation übersetzbar in Programmiersprachen

• Synthesetechniken sind automatisierbar

– Jeder Schritt basiert auf logischer Inferenz

– Wissen steuert alle Strategien des Algorithmenentwurfs

– Ähnliche Techniken für Entwurf verschiedener Algorithmenstrukturen

• Techniken sind praktisch erfolgreich

– KIDS erzeugt korrekte Scheduling Algorithmen in wenigen Stunden

– Erzeugter Lisp Code 2000 mal schneller als existierende ADA Software


