(A LOBALSUCHALGORITHMEN I

ALLGEMEINE PROBLEMSTRUKTUR
Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/l\ Lokalsuche

KOMPLEMENTIERUNG\- REDUKTION v-REDUKTION

Sie% l\

STATISCH REKURSIV STATISCH REKURSIV
Operator Match Divide & Conquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

e Bestimmung aller Losungen eines Problems
— Aufzahlen von Kandidaten
— Eliminieren von Kandidaten, die keine Losungen darstellen

— Verallgemeinerung von Backtracking, Binarsuche, . ..

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 1 Globalsuchalgorithmen

(A LOBALSUCHALGORITHMEN I

ALLGEMEINE PROBLEMSTRUKTUR
Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/l\ Lokalsuche

KOMPLEMENTIERUNG\- REDUKTION v-REDUKTION

STATISCH REKURSIV STATISCH REKURSIV
Operator Match Divide & Conquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

e Bestimmung aller Losungen eines Problems
— Aufzahlen von Kandidaten
— Eliminieren von Kandidaten, die keine Losungen darstellen

— Verallgemeinerung von Backtracking, Binarsuche, . ..

e V-Reduktion des Problems
— Gesamtlosung ist Vereinigung unabhangiger Teillosungen

— Gut geeignet fiir Parallelverarbeitung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 1 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE I

Durchsuchen des gesamten Bildbereichs

e Suche von aufien

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE I

Durchsuchen des gesamten Bildbereichs

e Suche von aufien

— Global: Untersuchung von ganzen
Mengen von Losungskandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE

Durchsuchen des gesamten Bildbereichs

e Suche von aufien '

— GGlobal: Untersuchung von ganzen K andideten
Mengen von Losungskandidaten menge
— Wiederholtes Aufteilen von Kandidatenmengen
l Zerteilen
von Kandidaten

Extraktion
und Test

Eliminierte Kandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE

Durchsuchen des gesamten Bildbereichs

e Suche von aufien '

— Global: Untersuchung von ganzen K andidaten
menge

Mengen von Losungskandidaten
— Wiederholtes Aufteilen von Kandidatenmengen

— Elimination von Kandidatenmengen ohne Losung i S erteilen

von Kandidaten

Extraktion

und Test

Eliminierte Kandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE

Durchsuchen des gesamten Bildbereichs

e Suche von aufien '

— Global: Untersuchung von ganzen K andidaten
menge

Mengen von Losungskandidaten

— Wiederholtes Aufteilen von Kandidatenmengen

Zerteilen

— Elimination von Kandidatenmengen ohne Losung
von Kandidaten

— Extraktion von tatsachlichen Losungen

Extraktion

und Test

Eliminierte Kandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE

Durchsuchen des gesamten Bildbereichs

e Suche von aufien '

— GGlobal: Untersuchung von ganzen K andideten
Mengen von Losungskandidaten menge
— Wiederholtes Aufteilen von Kandidatenmengen
Zerteilen

— Elimination von Kandidatenmengen ohne Losung i

— Extraktion von tatsachlichen Losungen von Kandidaten

e Reprasentanten erforderlich
— Verarbeitung der Mengen selbst zu autwendig Extraktion
und Test

Eliminierte Kandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE

Durchsuchen des gesamten Bildbereichs

e Suche von aufien '

— GGlobal: Untersuchung von ganzen Kandidaten
Mengen von Losungskandidaten menge
— Wiederholtes Aufteilen von Kandidatenmengen
Zerteilen

— Elimination von Kandidatenmengen ohne Losung i

— Extraktion von tatsachlichen Losungen von Kandidaten

e Reprasentanten erforderlich
— Verarbeitung der Mengen selbst zu autwendig Extraktion
— Codiere Kandidatenmengen durch Deskriptoren und Test

Eliminierte Kandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE

Durchsuchen des gesamten Bildbereichs

e Suche von aufien '

— GGlobal: Untersuchung von ganzen Kandidaten
Mengen von Losungskandidaten menge
— Wiederholtes Aufteilen von Kandidatenmengen
Zerteilen

— Elimination von Kandidatenmengen ohne Losung i

— Extraktion von tatsachlichen Losungen von Kandidaten

e Reprasentanten erforderlich
— Verarbeitung der Mengen selbst zu autwendig Extraktion
— Codiere Kandidatenmengen durch Deskriptoren und Test
— Simuliere Aufteilen und Filtern auf Deskriptoren

Eliminierte Kandidaten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE

Durchsuchen des gesamten Bildbereichs

e Suche von aufien '

— GGlobal: Untersuchung von ganzen Kandidaten
Mengen von Losungskandidaten menge
— Wiederholtes Aufteilen von Kandidatenmengen
Zerteilen

— Elimination von Kandidatenmengen ohne Losung i

— Extraktion von tatsachlichen Losungen von Kandidaten

e Reprasentanten erforderlich
— Verarbeitung der Mengen selbst zu autwendig Extraktion
— Codiere Kandidatenmengen durch Deskriptoren und Test
— Simuliere Aufteilen und Filtern auf Deskriptoren

— Notwendige Informationen bei der Spezifikation: Eliminierte Kandidaten
- Wann ist ein Deskriptor eine sinnvolle Beschreibung einer Menge?
- Wie beschreibt man Zugehorigkeit zur Menge mittels Deskriptoren?

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

EIN EINFACHER (GLOBALSUCHALGORITHMUS I

e Suche alle Indizes eines Wertes k in einer geordneten Liste L
FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N| ie{1..|L|}AL=k}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 3 Globalsuchalgorithmen

EIN EINFACHER (GLOBALSUCHALGORITHMUS I

e Suche alle Indizes eines Wertes k in einer geordneten Liste L
FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N| ie{1..|LI} L=k}

e Binare Suche und Aufsammeln von Losungen
— Spalte Indexmenge {1..|L|}in {1..m} und {m+1..|L|}
— Durchsuche linke & rechte Halfte und vereinige jeweilige Losungsmengen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 3 Globalsuchalgorithmen

EIN EINFACHER (GLOBALSUCHALGORITHMUS I

e Suche alle Indizes eines Wertes k in einer geordneten Liste L
FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N| ie{1..|LI}AL=k}

e Binare Suche und Aufsammeln von Losungen
— Spalte Indexmenge {1..|L|}in {1..m} und {m+1..|L|}
— Durchsuche linke & rechte Halfte und vereinige jeweilige Losungsmengen

® Vereinfache Verwaltungsaufwand mit Suchraumdeskriptoren
— Grenzen 1 und r der Indexmengen sind hinreichende Reprasentanten
— Reprasentanten sind nur dann sinnvoll wenn 1<1<r<|L|

— Verwende Hiltstunktion o, (L,k,1,r) mit Initialautruf o,,.(L,k,1,|L]|)
FUNCTION o,,,(L,k,1,r:Seq(Z) xZxNxN)
WHERE L#[] A ordered(L) » 1<1<r<]|L|
RETURNS {i:N| ie{l..r} A L=k}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 3 Globalsuchalgorithmen

EIN EINFACHER (GLOBALSUCHALGORITHMUS I

e Suche alle Indizes eines Wertes k in einer geordneten Liste L
FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N| ie{1..|LI}AL=k}

e Binare Suche und Aufsammeln von Losungen
— Spalte Indexmenge {1..|L|}in {1..m} und {m+1..|L|}
— Durchsuche linke & rechte Halfte und vereinige jeweilige Losungsmengen

® Vereinfache Verwaltungsaufwand mit Suchraumdeskriptoren
— Grenzen 1 und r der Indexmengen sind hinreichende Reprasentanten
— Reprasentanten sind nur dann sinnvoll wenn 1<1<r<|L|

— Verwende Hiltstunktion o, (L,k,1,r) mit Initialautruf o,,.(L,k,1,|L]|)
FUNCTION o,,,(L,k,1,r:Seq(Z) xZxNxN)
WHERE L#[] A ordered(L) » 1<1<r<]|L|
RETURNS {i:N| ie{l..r} A L=k}

e Hilfsfunktion durchlauft Suchraum rekursiv
{1} falls 1=r A L=k
Oguz (L,k,1,1) = ¢ 0 falls 1=r A L#k
Ogur (L,k,1,m) Uoy,, (L,k,m+1,r) falls 1<r; m=(1+r)/2

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 3 Globalsuchalgorithmen

(G LOBALSUCHALGORITHMEN: EINHEITLICHE DARSTELLUNG I

e Vereinheitlichung durch Mengendarstellung
0uur (L,k,1,r) = {i| ie{l}ni=r A L=k }
U {0 @ k,n,m) | (o,m) € {1, (1+1)/2), ((1+1)/2+1,1) | 1<r} }
— Mengenschreibweise unabhangig von binarer Aufspaltung des Suchraums
— (n,m) wird aus Aufspaltungsmenge ausgewahlt
— Losungsmenge wird durch Vereinigung einer Losungsfamilie gebildet
— Direkte Losung wird durch Extraktion aus {1} = {1..1} erzeugt

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 4 Globalsuchalgorithmen

(G LOBALSUCHALGORITHMEN: EINHEITLICHE DARSTELLUNG I

e Vereinheitlichung durch Mengendarstellung
0uur (L,k,1,r) = {i| ie{l}ni=r A L=k }
U {0 @ k,n,m) | (o,m) € {1, (1+1)/2), ((1+1)/2+1,1) | 1<r} }
— Mengenschreibweise unabhangig von binarer Aufspaltung des Suchraums
— (n,m) wird aus Aufspaltungsmenge ausgewahlt
— Losungsmenge wird durch Vereinigung einer Losungsfamilie gebildet
— Direkte Losung wird durch Extraktion aus {1} = {1..1} erzeugt

e Optimierung durch Einsatz von Filtern
— Suche berticksichtigt nicht, daf§ Liste geordnet ist (linearer Algorithmus)
— Suchraum {n..m} ohne Losung, falls L >k oder L <k
— Frganze Filter L <k<L fiir Aufspaltungsmenge (logarithmischer Algorithmus)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 4 Globalsuchalgorithmen

(G LOBALSUCHALGORITHMEN: EINHEITLICHE DARSTELLUNG I

e Vereinheitlichung durch Mengendarstellung
Oz (L,k,1,r) = {i| ie{l}ai=r A L=k }
U {0 @ k,n,m) | (o,m) € {1, (1+1)/2), ((1+1)/2+1,1) | 1<r} }
— Mengenschreibweise unabhangig von binarer Aufspaltung des Suchraums
— (n,m) wird aus Aufspaltungsmenge ausgewahlt
— Losungsmenge wird durch Vereinigung einer Losungsfamilie gebildet
— Direkte Losung wird durch Extraktion aus {1} = {1..1} erzeugt

e Optimierung durch Einsatz von Filtern
— Suche berticksichtigt nicht, daf§ Liste geordnet ist (linearer Algorithmus)
— Suchraum {n..m} ohne Losung, falls L >k oder L <k
— Frganze Filter L <k<L fiir Aufspaltungsmenge (logarithmischer Algorithmus)

e Endform: effizienter, wohlstrukturierter Algorithmus
FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N| ie{1..|LI} A Lzk}
= let rec o4, (L,k,1,r) = {i| ie{l} A i=r A L=k}
UU{ Our (L,k,n,m) | (n,m) e{(1, (1+r)/2), ((L+r)/2+1,r) | 1<r}
A L<k<L }
in if L<k<Lj; then o4, (L,k,1,I|L]) else {

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 4 Globalsuchalgorithmen

ALLGEMEINES GLOBALSUCH-SCHEMA I

FUNCTION f(x:D) WHERE [[x| RETURNS {y:R | Olz,y|}
= let rec f,(x,s) = {z|zeext|s] nOlzx,z|}

U U fsla,t) 1 tesplitle,s] A ®fx, 1]}
in if Pz, sp(x)| then fq(x,so(z)) else ()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 5 Globalsuchalgorithmen

ALLGEMEINES GLOBALSUCH-SCHEMA I

FUNCTION f(x:D) WHERE [[x| RETURNS {y:R | Olz,y|}
= let rec f,(x,s) = {z|zeext|s] nOlzx,z|}

U U fsla,t) 1 tesplitle,s] A ®fx, 1]}
in if Pz, sp(x)| then fq(x,so(z)) else ()

e 7 zentrale Komponenten der Algorithmentheorie

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 5 Globalsuchalgorithmen

ALLGEMEINES GLOBALSUCH-SCHEMA I

FUNCTION f(x:D) WHERE [[x| RETURNS {y:R | Olz,y|}
= let rec f,(x,s) = {z|zeext|s] nOlzx,z|}

U U fsla,t) 1 tesplitle,s] A ®fx, 1]}
in if Pz, sp(x)| then fq(x,so(z)) else ()

e 7 zentrale Komponenten der Algorithmentheorie
- 5.5 Deskriptor fiir Kandidatenmengen

—sp: D— S Initialdeskriptor

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 5 Globalsuchalgorithmen

ALLGEMEINES GLOBALSUCH-SCHEMA I

FUNCTION f(x:D) WHERE [[x| RETURNS {y:R | Olz,y|}
= let rec f,(x,s) = {z|zeext|s] nOlzx,z|}

U U fsla,t) 1 tesplitle,s] A ®fx, 1]}
in if Pz, sp(x)| then fq(x,so(z)) else ()

e 7 zentrale Komponenten der Algorithmentheorie
- 5.5 Deskriptor fiir Kandidatenmengen
—sp: D— S Initialdeskriptor
— split:Dx.S — Set(S) Rekursive Aufteilung von Kandidatenmengen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 5 Globalsuchalgorithmen

ALLGEMEINES GLOBALSUCH-SCHEMA I

FUNCTION f(x:D) WHERE [[x| RETURNS {y:R | Olz,y|}
= let rec f,(x,s) = {z|zeext|s] nOlzx,z|}

U U fsla,t) 1 tesplitle,s] A ®fx, 1]}
in if Pz, sp(x)| then fq(x,so(z)) else ()

e 7 zentrale Komponenten der Algorithmentheorie
- 5.5 Deskriptor fiir Kandidatenmengen
—sp: D— S Initialdeskriptor
— split:Dx.S — Set(S) Rekursive Aufteilung von Kandidatenmengen

- P:DxS—B Filter zur Elimination unnotiger Deskriptoren

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 5 Globalsuchalgorithmen

ALLGEMEINES GLOBALSUCH-SCHEMA I

FUNCTION f(x:D) WHERE [[x| RETURNS {y:R | Olz,y|}
= let rec fy(x,s) = {z|zecext|s] nOlx,z]}

U U fsla,t) 1 tesplitle,s] A ®fx, 1]}
in if Pz, sp(x)| then fq(x,so(z)) else ()

e 7 zentrale Komponenten der Algorithmentheorie

- 5.5 Deskriptor fiir Kandidatenmengen

—sp: D— S Initialdeskriptor

— split:Dx.S — Set(S) Rekursive Aufteilung von Kandidatenmengen

- P:DxS—B Filter zur Elimination unnotiger Deskriptoren
—ext:S— R Extraktion von Losungskandidaten aus Deskriptoren

Selektion mit Ausgabebedingung O|x, 2]
-~ J:DxS—B J|x, s]: Deskriptor s ist sinnvoll fiir Eingabewert x

—sat:RxS—B sat|z, s]: z gehort zu der durch s beschriebenen Menge

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 5 Globalsuchalgorithmen

ALLGEMEINES GLOBALSUCH-SCHEMA I

FUNCTION f(x:D) WHERE [[x| RETURNS {y:R | Olz,y|}
= let rec f,(x,s) = {z|zeext|s] nOlzx,z|}

U U fsla,t) 1 tesplitle,s] A ®fx, 1]}
in if Pz, sp(x)| then fq(x,so(z)) else ()

e 7 zentrale Komponenten der Algorithmentheorie

- 5.5 Deskriptor fiir Kandidatenmengen

—sp: D— S Initialdeskriptor

— split:Dx.S — Set(S) Rekursive Aufteilung von Kandidatenmengen

- P:DxS—B Filter zur Elimination unnotiger Deskriptoren
—ext:S— R Extraktion von Losungskandidaten aus Deskriptoren

Selektion mit Ausgabebedingung O|x, 2]
-~ J:DxS—B J|x, s]: Deskriptor s ist sinnvoll fiir Eingabewert x

—sat:RxS—B sat|z, s]: z gehort zu der durch s beschriebenen Menge

Korrektheit folgt aus wenigen Voraussetzungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 5 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | O[z,y|}
= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | O[z,y|}
= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | O[z,y|}
= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

1. Initialdeskriptor ist sinnvoll fiir zulassige Eingaben
Ix] = J[x,so(x)]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | O[z,y|}
= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

1. Initialdeskriptor ist sinnvoll fiir zulassige Eingaben
Ix] = J[x,so(x)]

2. Splitting erhalt sinnvoller Deskriptoren
Ix|AJd[x,s] = Vtesplit|z,s].J|x,t]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | O[z,y|}
= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

1. Initialdeskriptor ist sinnvoll fiir zulassige Eingaben
Ix] = J[x,so(x)]

2. Splitting erhalt sinnvoller Deskriptoren
Ix|AJd[x,s] = Vtesplit|z,s].J|x,t]

3. Initialdeskriptor enthalt alle Losungen
Iz] AO[x, z] = sat|[z,so(x)]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | O[z,y|}
= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

1. Initialdeskriptor ist sinnvoll fiir zulassige Eingaben
Ix] = J[x,so(x)]

2. Splitting erhalt sinnvoller Deskriptoren
Ix|AJd[x,s] = Vtesplit|z,s].J|x,t]

3. Initialdeskriptor enthalt alle Losungen
Iz] AO[x, z] = sat|[z,so(x)]

4. Filter ist notwendig (keine Losung wird eliminiert)
Iz AJ[x,s] = (®[x,s] <= Tz:R. sat|z,s] rOx, z])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | O[z,y|}
= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

1. Initialdeskriptor ist sinnvoll fiir zulassige Eingaben
Ix] = J[x,so(x)]
2. Splitting erhalt sinnvoller Deskriptoren
Ix|AJd[x,s] = Vtesplit|z,s].J|x,t]
3. Initialdeskriptor enthalt alle Losungen
Iz] AO[x, z] = sat|[z,so(x)]
4. Filter ist notwendig (keine Losung wird eliminiert)
Iz AJ[x,s] = (®[x,s] <= Tz:R. sat|z,s] rOx, z])
5. Alle Losungen in endlich vielen Schritten extrahierbar
I[z] AO[x, 2] AT [z, 8] = (sat[z,s] < Tk:N.3tesplith[z,s]. z cext[t])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | O[z,y|}
= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

1. Initialdeskriptor ist sinnvoll fiir zulassige Eingaben
Ix] = J[x,so(x)]

2. Splitting erhalt sinnvoller Deskriptoren
Ix|AJd[x,s] = Vtesplit|z,s].J|x,t]

3. Initialdeskriptor enthalt alle Losungen
Iz] AO[x, z] = sat|[z,so(x)]

4. Filter ist notwendig (keine Losung wird eliminiert)
Iz AJ[x,s] = (®[x,s] <= Tz:R. sat|z,s] rOx, z])

5. Alle Losungen in endlich vielen Schritten extrahierbar
I[z] AO[x, 2] AT [z, 8] = (sat[z,s] < Tk:N.3tesplith[z,s]. z cext[t])

6. Splitting (mit Filterung) ist wohlfundiert
Iz]anJ[x,s] = 3Fk:N. splith[z,s] = 0

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(z:D) WHERE [[z] RETURNS {y:R | O[z,]}

= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if ®fz,so(z)] then fys(z,s0(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

g=(D,R,I1,0,S,J,s,sat, split, ®,ext) wohlfundierte Globalsuchtheorie

1. Initialdeskriptor ist sinnvoll fiir zulassige Eingaben
Ix] = J[x,so(x)]

2. Splitting erhalt sinnvoller Deskriptoren
Ix|AJd[x,s] = Vtesplit|z,s].J|x,t]

3. Initialdeskriptor enthalt alle Losungen
Iz] AO[x, z] = sat|[z,so(x)]

4. Filter ist notwendig (keine Losung wird eliminiert)
Iz AJ[x,s] = (®[x,s] <= Tz:R. sat|z,s] rOx, z])

5. Alle Losungen in endlich vielen Schritten extrahierbar
I[z] AO[x, 2] AT [z, 8] = (sat[z,s] < Tk:N.3tesplith[z,s]. z cext[t])

6. Splitting (mit Filterung) ist wohlfundiert
Iz]anJ[x,s] = 3Fk:N. splith[z,s] = 0

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(x:D) WHERE [[x]| RETURNS {y:R | Olz,y|}
= if Ofz,so(x)] then f(z,s0(x)) else 0

FUNCTION fys(x,s:DxS) WHERE [[z]AJ[z,s]n®[x,s] RETURNS {y:R|O|x,y|rsatly, s|}
= {z|zeext[s|nOlx, 2]} U U{fgs(ajat> | tesplit|z,s|n ®lx,t] }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(x:D) WHERE [[x]| RETURNS {y:R | Olz,y|}
= if Ofz,so(x)] then f(z,s0(x)) else 0

FUNCTION f,s(x,s:DxS) WHERE I[z]nJ|x,s]An®|x,s] RETURNS {y:R|O|x,y|satly,s]}
= {z|zeext|s|nOlx, 2]} U U{ fos(@,t) | tesplitix, s|n Oz,] }

e Korrektheit von f folgt aus der von f,; mit Axiom 1, 3 & 4
— Fiir den Startwert so(z) gilt J|x, so(x)] (Axiom 1)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(x:D) WHERE [[x]| RETURNS {y:R | Olz,y|}
= if Ofz,so(x)] then f(z,s0(x)) else 0

FUNCTION f,s(x,s:DxS) WHERE I[z]nJ|x,s]An®|x,s] RETURNS {y:R|O|x,y|satly,s]}
= {z|zeext[s]nOlz,z]} U U{ fos(@,t) | tesplitix, s|n Oz,] }
e Korrektheit von f folgt aus der von f,; mit Axiom 1, 3 & 4
— Fiir den Startwert so(z) gilt J|x, so(x)] (Axiom 1)
— Aus I[x] folgt {y: R | O|x,y| rsatly, so(x)]} = {y: R | Olz,y|} (Axiom 3)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(x:D) WHERE [[x]| RETURNS {y:R | Olz,y|}
= if Ofz,so(x)] then f(z,s0(x)) else 0

FUNCTION f,s(x,s:DxS) WHERE I[z]nJ|x,s]An®|x,s] RETURNS {y:R|O|x,y|satly,s]}
= {z|zeext[s]nOlz,z]} U U{ fos(@,t) | tesplitix, s|n Oz,] }

e Korrektheit von f folgt aus der von f,; mit Axiom 1, 3 & 4

— Fiir den Startwert so(z) gilt J|x, so(x)] (Axiom 1)
— Aus I[x] folgt {y: R | O|x,y| rsatly, so(x)]} = {y: R | Olz,y|} (Axiom 3)
— Aus {y: R | Olz,y| rsat[y, so(x)]} # 0 folgt Oz, so(x)] (Axiom 4)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(x:D) WHERE [[x]| RETURNS {y:R | Olz,y|}
= if Ofz,so(x)] then f(z,s0(x)) else 0

FUNCTION f,s(x,s:DxS) WHERE I[z]nJ|x,s]An®|x,s] RETURNS {y:R|O|x,y|satly,s]}
= {z|zeext[s]nOlz,z]} U U{ fos(@,t) | tesplitix, s|n Oz,] }
e Korrektheit von f folgt aus der von f,; mit Axiom 1, 3 & 4
— Fiir den Startwert so(z) gilt J|x, so(x)] (Axiom 1)
— Aus I[z] folgt {y: R | Olz,y| rsatly, so(z)]} = {y: R | Olx,y|} (Axiom 3)
— Aus {y: R | Olz,y| rsat[y, so(x)]} # 0 folgt Oz, so(x)] (Axiom 4)

e Partielle Korrektheit von f . folgt aus Axiom 5 & 2
splith|r,s] = if k=0 then {s} else U{Splitl&;_l[l‘,t] |t esplit|x, s] APz, t]}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(x:D) WHERE [[x]| RETURNS {y:R | Olz,y|}
= if Ofz,so(x)] then f(z,s0(x)) else 0

FUNCTION f,s(x,s:DxS) WHERE I[z]nJ|x,s]An®|x,s] RETURNS {y:R|O|x,y|satly,s]}
= {z|zeext[s]nOlz,z]} U U{ fos(@,t) | tesplitix, s|n Oz,] }

e Korrektheit von f folgt aus der von f,; mit Axiom 1, 3 & 4

— Fiir den Startwert so(z) gilt J|x, so(x)] (Axiom 1)
— Aus I[z] folgt {y: R | Olz,y| rsatly, so(z)]} = {y: R | Olx,y|} (Axiom 3)
— Aus {y: R | Olz,y| rsat[y, so(x)]} # 0 folgt Oz, so(x)] (Axiom 4)

e Partielle Korrektheit von f . folgt aus Axiom 5 & 2
splith|r,s] = if k=0 then {s} else U{Splitl&;_l[l‘,t] |t esplit|x, s] APz, t]}
Satz: Halt f,s|x, s| nach ¢ Schritten an (splity[z, s] = 0), so ist das Resultat
U {z| zcext[t] nO[z, 2]} | t | J{splith [z, s] | 0<j<i} }

(Lésungen, die aus Deskriptoren extrahierbar sind , die zu einem split};[z, s| gehoren)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(x:D) WHERE [[x]| RETURNS {y:R | Olz,y|}
= if Ofz,so(x)] then f(z,s0(x)) else 0

FUNCTION f,s(x,s:DxS) WHERE I[z]nJ|x,s]An®|x,s] RETURNS {y:R|O|x,y|satly,s]}
= {z|zeext[s]nOlz,z]} U U{ fos(@,t) | tesplitix, s|n Oz,] }

e Korrektheit von f folgt aus der von f,; mit Axiom 1, 3 & 4

— Fiir den Startwert so(z) gilt J|x, so(x)] (Axiom 1)
— Aus I[z] folgt {y: R | Olz,y| rsatly, so(z)]} = {y: R | Olx,y|} (Axiom 3)
— Aus {y: R | Olz,y| rsat[y, so(x)]} # 0 folgt Oz, so(x)] (Axiom 4)

e Partielle Korrektheit von f . folgt aus Axiom 5 & 2
splith|r,s] = if k=0 then {s} else U{Splitl&;_l[l’,t] |t esplit|x, s] APz, t]}
Satz: Halt f,s|x, s| nach ¢ Schritten an (splity[z, s] = 0), so ist das Resultat
UL {=z 1z ceat[t] A O[x, 21} | t | {splity [z, s] | 0<j<i} }
(Lésungen, die aus Deskriptoren extrahierbar sind , die zu einem split};[z, s| gehoren)

Beweis: Induktion tiber 7, Auffalten der Rekursion, Standardlemmata

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(x:D) WHERE [[x]| RETURNS {y:R | Olz,y|}
= if Ofz,so(x)] then f(z,s0(x)) else 0

FUNCTION f,s(x,s:DxS) WHERE I[z]nJ|x,s]An®|x,s] RETURNS {y:R|O|x,y|satly,s]}
= {z|zeext[s]nOlz,z]} U U{ fos(@,t) | tesplitix, s|n Oz,] }
e Korrektheit von f folgt aus der von f,; mit Axiom 1, 3 & 4
— Fiir den Startwert so(z) gilt J|x, so(x)] (Axiom 1)
— Aus I[z] folgt {y: R | Olz,y| rsatly, so(z)]} = {y: R | Olx,y|} (Axiom 3)
— Aus {y: R | Olz,y| rsat[y, so(x)]} # 0 folgt Oz, so(x)] (Axiom 4)

e Partielle Korrektheit von f . folgt aus Axiom 5 & 2
splith|r,s] = if k=0 then {s} else U{Splitl&;_l[l’,t] |t esplit|x, s] APz, t]}
Satz: Halt f,s|x, s| nach ¢ Schritten an (splity[z, s] = 0), so ist das Resultat
U {z| zcext[t] nO[z, 2]} | t | J{splith [z, s] | 0<j<i} }

(Lésungen, die aus Deskriptoren extrahierbar sind , die zu einem split};[z, s| gehoren)

Beweis: Induktion tiber 7, Auffalten der Rekursion, Standardlemmata

e Terminierung von f,; folgt aus Axiom 6

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE I

® Theorie gs _osearch fiir osearch

D — Seq(N) xN

R — N

I — AL,k. L#[] rordered (L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — ML,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
& — M.,k,1,r.L<k<L,

ext Al,r.if 1l=r then {1} else ()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE I

® Theorie gs _osearch fiir osearch

D — Seq(N) xN

R — N

I — AL,k. L#[] rordered (L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — ML,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
& — M.,k,1,r.L<k<L,

ext Al,r.if 1l=r then {1} else ()

e Alle 6 Axiome sind erfullt

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE I

® Theorie gs _osearch fiir osearch

D — Seq(N) xN

R — N

I — AL,k. L#[] rordered (L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — ML,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
& — M.,k,1,r.L<k<L,

ext Al,r.if 1l=r then {1} else ()

e Alle 6 Axiome sind erfullt
1. L#[] nordered(L) = 1<1<|L|<|L]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE I

® Theorie gs _osearch fiir osearch

D — Seq(N) xN

R — N

I — AL,k. L#[] rordered (L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — ML,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
& — M.,k,1,r.L<k<L,

ext Al,r.if 1l=r then {1} else ()

e Alle 6 Axiome sind erfullt
1. L#[] nordered(L) = 1<1<|L|<|L]
2. L#[] nordered(L) r1<1<r<|L| = V(x,y)esplit[L,k,1,r]. 1<x<y<|L|

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE I

® Theorie gs _osearch fiir osearch

D — Seq(N) xN

R — N

I — AL,k. L#[] rordered (L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — ML,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
& — M.,k,1,r.L<k<L,

ext Al,r.if 1l=r then {1} else ()

e Alle 6 Axiome sind erfullt
1. L#[] nordered(L) = 1<1<|L|<|L]
2. L#[] rnordered(L) n1<1<r<|L| = V(x,y) esplit[L,k,1,r]. 1<x<y<|L]|
3. L#[] rordered(L) nie{l..|Ll}AL=k = ie{1l..|L|}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE I

® Theorie gs _osearch fiir osearch

D — Seq(N) xN

R — N

I — AL,k. L#[] rordered (L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — ML,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
& — M.,k,1,r.L<k<L,

ext Al,r.if 1l=r then {1} else ()

e Alle 6 Axiome sind erfullt

. L#[] nordered(L) = 1<1<|L|<|L]

. L#[] rordered (L) n1<1<r<|L| = V(x,y)esplit[L,k,1,r].1<x<y<|L|
. L#[] rordered(L) nie{l..|Ll}aAL=k = ie{1l..|L|}

. L#[] nordered(L) n1<1<r<|L| =
L<k<L, < Jz:N.ze{l..r}jarze{l..|LI}rL.=k

B w0 NN -

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE I

® Theorie gs _osearch fiir osearch

D — Seq(N) xN

R — N

I — AL,k. L#[] rordered (L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — ML,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
& — M.,k,1,r.L<k<L,

ext Al,r.if 1l=r then {1} else ()

e Alle 6 Axiome sind erfillt
. L#[] nordered(L) = 1<1<|L|<|L]
. L#[] rordered (L) n1<1<r<|L| = V(x,y)esplit[L,k,1,r].1<x<y<|L|
. L#[] rordered(L) nie{l..|Ll}aAL=k = ie{1l..|L|}
. L#[] nordered(L) n1<1<r<|L| =
L<k<L, < Jz:N.ze{l..r}jarze{l..|LI}rL.=k

5. L#[] nordered(L) n1<1<r<|L|aie{l..|L|I}AL=k =

ie{l..r} & Tx:N.3(x,y)esplith [L,k,1,r].iec(if x=y then {x} else ())

B w0 NN -

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE I

® Theorie gs _osearch fiir osearch

D — Seq(N) xN

R — N

I — AL,k. L#[] rordered (L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — ML,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
& — M.,k,1,r.L<k<L,

ext Al,r.if 1l=r then {1} else ()

e Alle 6 Axiome sind erfullt
. L#[] nordered(L) = 1<1<|L|<|L]
. L#[] rordered (L) n1<1<r<|L| = V(x,y)esplit[L,k,1,r].1<x<y<|L|
. L#[] rordered(L) nie{l..|Ll}aAL=k = ie{1l..|L|}
. L#[] nordered(L) n1<1<r<|L| =
L<k<L, < Jz:N.ze{l..r}jarze{l..|LI}rL.=k

5. L#[] nordered(L) n1<1<r<|L|aie{l..|L|I}AL=k =

ie{l..r} & Tx:N.3(x,y)esplith [L,k,1,r].iec(if x=y then {x} else ())
6. L#£[] rordered(L) n1<1<r<|L| = Jk:N.splith[L,k,1,r]=()

B w0 NN -

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

SCHEMATISCHER (GLOBALSUCHALGORITHMUS FUR osearch I

FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N|ie{1l..|LI}AL=k}
= let rec f,(L,k,1,r)
= {z| ze(if l=r then {1} else 1) A ze{l..|L|}AL,=k}
UU{ ogur (L,k,n,m) | (n,m) € (if 1<r
then { (1, (1+r)/2), ((1+r)/2+1,r)}
else) A L<k<L }
in if L,<k<L; then o,,,(L,k, 1,IL|) else

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 9 Globalsuchalgorithmen

SCHEMATISCHER (GLOBALSUCHALGORITHMUS FUR osearch I

FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N|ie{1l..|LI}AL=k}
= let rec f,(L,k,1,r)
= {z| ze(if l=r then {1} else 1) A ze{l..|L|}AL,=k}
U 0uur (o kom,m) | (nym) € (if 1<r
then { (1, (1+r)/2), ((1+r)/2+1,r)}
else) A L<k<L }
in if L,<k<L; then o,,,(L,k, 1,IL|) else

Nach Optimierung durch Simplifikationen

FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)

RETURNS {i:N| ie{1..|L|}AL=k}
= let rec f,(L,k,1,r)

= if 1=r then if L=k then {1} else ()

else let m = (1+r)/2 in
(if L<k<L, then o4, (L,k,1,m) else ()
U (if L[m+1]<k<L, then o, (L,k,m+1,r) else ()
in if L<k<Lj; then o4,(L,k, 1,IL]) else {

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 9 Globalsuchalgorithmen

SYNTHESE VON (GLOBALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e (Globalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Zerlegungsstruktur, die Axiome 1-5 erfillt
— Formalisiert als Objekt G = (D, R, [,0, S, J, s,
— Wissensbhank speichert Globalsuchtheorien fiir Grunddatentypen

sat, split, True, ext)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 10 Globalsuchalgorithmen

SYNTHESE VON (GLOBALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e (zlobalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Zerlegungsstruktur, die Axiome 1-5 erfullt
— Formalisiert als Objekt G = (D, R, [,0, S, J, s,
— Wissensbhank speichert Globalsuchtheorien fiir Grunddatentypen

sat, split, True, ext)

e Filter ® zur Verfeinerung der split-Operation

— Wohlfundiertheit: Filter garantiert Terminierung von splitg
Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien +— Axiom 6

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 10 Globalsuchalgorithmen

SYNTHESE VON (GLOBALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e (zlobalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Zerlegungsstruktur, die Axiome 1-5 erfullt
— Formalisiert als Objekt G = (D, R, [,0, S, J, s,
— Wissensbhank speichert Globalsuchtheorien fiir Grunddatentypen

sat, split, True, ext)

e Filter ® zur Verfeinerung der split-Operation

— Wohlfundiertheit: Filter garantiert Terminierung von splitg
Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien +— Axiom 6

— Notwendigkeit: Filter eliminiert keine Losungen
System prift Axiom 4 zur Laufzeit

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 10 Globalsuchalgorithmen

SYNTHESE VON (GLOBALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e (zlobalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Zerlegungsstruktur, die Axiome 1-5 erfullt
— Formalisiert als Objekt G = (D, R, [,0, S, J, s,
— Wissensbhank speichert Globalsuchtheorien fiir Grunddatentypen

sat, split, True, ext)

e Filter ® zur Verfeinerung der split-Operation

— Wohlfundiertheit: Filter garantiert Terminierung von splitg
Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien +— Axiom 6

— Notwendigkeit: Filter eliminiert keine Losungen
System prift Axiom 4 zur Laufzeit

— Effizienzsteigerung: System verfeinert notwendige Filter heuristisch

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 10 Globalsuchalgorithmen

SYNTHESE VON (GLOBALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e (zlobalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Zerlegungsstruktur, die Axiome 1-5 erfullt
— Formalisiert als Objekt G = (D, R, [,0, S, J, s,
— Wissensbhank speichert Globalsuchtheorien fiir Grunddatentypen

sat, split, True, ext)

e Filter ® zur Verfeinerung der split-Operation

— Wohlfundiertheit: Filter garantiert Terminierung von splitg
Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien +— Axiom 6

— Notwendigkeit: Filter eliminiert keine Losungen
System priift Axiom 4 zur Laufzeit

— Effizienzsteigerung: System verfeinert notwendige Filter heuristisch

e Spezialisierungsmechanismen fiir G und ¢
— Wahle G passend zum Bildbereich der Spezifikation spec = (D,R,I,0)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 10 Globalsuchalgorithmen

SYNTHESE VON (GLOBALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e (zlobalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Zerlegungsstruktur, die Axiome 1-5 erfullt
— Formalisiert als Objekt G = (D, R, [,0, S, J, s,
— Wissensbhank speichert Globalsuchtheorien fiir Grunddatentypen

sat, split, True, ext)

e Filter ® zur Verfeinerung der split-Operation

— Wohlfundiertheit: Filter garantiert Terminierung von splitg
Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien +— Axiom 6

— Notwendigkeit: Filter eliminiert keine Losungen
System priift Axiom 4 zur Laufzeit

— Effizienzsteigerung: System verfeinert notwendige Filter heuristisch

e Spezialisierungsmechanismen fiir G und ¢

— Wahle G passend zum Bildbereich der Spezifikation spec = (D,R,I,0)
— Beweise spec < specg und extrahiere Substitution 6:D— Dg

RcRg A Vx:D.Ix] = 3dx':Dg. (Ug[x'] A Yy:R. Olx,y] = Oglz', y])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 10 Globalsuchalgorithmen

SYNTHESE VON (GLOBALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e (zlobalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Zerlegungsstruktur, die Axiome 1-5 erfullt
— Formalisiert als Objekt G = (D, R, [,0, S, J, s,
— Wissensbhank speichert Globalsuchtheorien fiir Grunddatentypen

sat, split, True, ext)

e Filter ® zur Verfeinerung der split-Operation

— Wohlfundiertheit: Filter garantiert Terminierung von splitg
Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien +— Axiom 6

— Notwendigkeit: Filter eliminiert keine Losungen
System priift Axiom 4 zur Laufzeit

— Effizienzsteigerung: System verfeinert notwendige Filter heuristisch

e Spezialisierungsmechanismen fiir G und ¢

— Wahle G passend zum Bildbereich der Spezifikation spec = (D,R,I,0)

— Beweise spec < specg und extrahiere Substitution 6:D— Dg
— Modifiziere G und ® mit 6 zu wohlfundierter Globalsuchtheorie fiir spec

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 10 Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

In
-

e Deskriptoren: gemeinsamer Prafix s sat|L,s] = s

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11 Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

[]

e Deskriptoren: gemeinsamer Prafix s

e Initialdeskriptor: leerer Prafix

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11

Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

1 9 a, a4 a; ...

e Deskriptoren: gemeinsamer Prafix s
e Initialdeskriptor: leerer Prafix

e Splitting: Verlangern des Prafix splitlM, s] = {s-alacM}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11

Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

alalN/
a a, a, a4 a; ...
[]

e Deskriptoren: gemeinsamer Prafix s
e Initialdeskriptor: leerer Prafix

e Splitting: Verlangern des Prafix splitlM, s] = {s-alacM}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11

Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

alalN/ azaN/
a a, a, a4 a; ...

e Deskriptoren: gemeinsamer Prafix s
e Initialdeskriptor: leerer Prafix

e Splitting: Verlangern des Prafix splitlM, s] = {s-alacM}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11

Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

ad,. .. ad,;. .. agd;. ..

NN

a, a4 as
[]

e Deskriptoren: gemeinsamer Prafix s
e Initialdeskriptor: leerer Prafix

e Splitting: Verlangern des Prafix splitlM, s] = {s-alacM}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11

Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

NVAVAVAV
g a4 as
[]

e Deskriptoren: gemeinsamer Prafix s
e Initialdeskriptor: leerer Prafix

e Splitting: Verlangern des Prafix splitlM, s] = {s-alacM}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11

Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

NAVAVAVY
g a4 as
[]

e Deskriptoren: gemeinsamer Prafix s
e Initialdeskriptor: leerer Prafix

e Splitting: Verlangern des Prafix splitlM, s] = {s-alacM}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11

Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

ag,. .. aag... asal.. asa,. . .

a, a4 as

[]
e Deskriptoren: gemeinsamer Prafix s sat|L,s] = s c L
e Initialdeskriptor: leerer Prafix s(M) = T[]
e Splitting: Verlangern des Prafix splitlM, s] = {s-alacM}
e Extraktion: Gesamter Prafix ext[s] = {s}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11 Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

a,... ag... agl.. asa,. . .

a, a4 as

[]
e Deskriptoren: gemeinsamer Prafix s sat|L,s] = s c L
e Initialdeskriptor: leerer Prafix s(M) = T[]
e Splitting: Verlangern des Priafix splitlM, s] = {s-alacM}
e Extraktion: Gesamter Prafix ext[s] = {s}
e Sinnvoll: nur Elemente aus M JIM,s] = s‘c/M

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11 Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

e Deskriptoren: gemeinsamer Préfix s sat[L,s] = sc L
e [nitialdeskriptor: leerer Prafix s(M) = [1
e Splitting: Verldngern des Préfix split|lM, s] = {s-alae M}
e Extraktion: Gesamter Prafix ext[s] = {s}
e Sinnvoll: nur Elemente aus M JIM,s| = s'd’M

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 12 Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

e Deskriptoren: gemeinsamer Prafix s

e Initialdeskriptor: leerer Prafix
e Splitting: Verlangern des Prafix
e Eixtraktion: Gesamter Prafix

e Sinnvoll: nur Elemente aus M

sat[L,s] = sc L
s(M) =[]

split[M,s] = {s-alacM}

ext[s] = {s}
JIM,s] = s’ M

Darstellung als formales Objekt der Wissensbank

gs seqset(a) = D

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17

L A A A

AM.
AM, L.

AM, s.
AM.
AL, s.
M, s.
AS.

12

Set (av)

Seq ()
true
range (L) cM
Seq ()
range (s) <M
[]

StL
{s-alaeM}

s}

Globalsuchalgorithmen

WOHLFUNDIERTHEITSFILTER FUR gs_seq_set (a) |

e P [M,s] = |s|<k
— Filter testet absolute Langenbegrenzung der Deskriptorfolge
— Einfacher, schnell auszufiihrender Test

~ Filter garantiert Terminierung nach k Schritten, Baumgréfe | M |*

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 13 Globalsuchalgorithmen

WOHLFUNDIERTHEITSFILTER FUR gs_seq_set (a) |

o d (M, s] = |s|<k
— Filter testet absolute Langenbegrenzung der Deskriptorfolge
— Einfacher, schnell auszufiihrender Test

~ Filter garantiert Terminierung nach k Schritten, Baumgréfe | M |*

o b M, s| = |s|<k=*|M|
— Filter testet Langenbegrenzung relativ zur Grofie von M

— Einfacher, schnell auszutithrender Test

— Terminierung nach k * | M| Schritten, BaumgréBe | M |#*1M]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 13 Globalsuchalgorithmen

WOHLFUNDIERTHEITSFILTER FUR gs_seq_set (a) |

o d (M, s] = |s|<k
— Filter testet absolute Langenbegrenzung der Deskriptorfolge
— Einfacher, schnell auszufiihrender Test

~ Filter garantiert Terminierung nach & Schritten, BaumgroBe |M|*

o b M, s| = |s|<k=*|M|
— Filter testet Langenbegrenzung relativ zur Grofie von M

— Einfacher, schnell auszufihrender Test

— Terminierung nach k * | M| Schritten, BaumgréBe | M |#*1M]

e &3[M, s] = nodups(s)
— Filter testet Deskriptorfolge auf Duplikate
— Test ist aufwendiger und sollte optimiert werden

— Terminierung nach | M| Schritten, Baumgroie | M |!

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 13 Globalsuchalgorithmen

WOHLFUNDIERTHEITSFILTER FUR gs_seq_set (a) |

o d (M, s] = |s|<k
— Filter testet absolute Langenbegrenzung der Deskriptorfolge
— Einfacher, schnell auszufiihrender Test

~ Filter garantiert Terminierung nach & Schritten, BaumgroBe |M|*

o b M, s| = |s|<k=*|M|
— Filter testet Langenbegrenzung relativ zur Grofie von M
— Einfacher, schnell auszufihrender Test

— Terminierung nach k * | M| Schritten, BaumgréBe | M |#*1M]

e &3[M, s] = nodups(s)
— Filter testet Deskriptorfolge auf Duplikate
— Test ist aufwendiger und sollte optimiert werden

— Terminierung nach | M| Schritten, Baumgroie | M |!

Jeder Filter macht gs seq set(a) wohlfundiert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 13 Globalsuchalgorithmen

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:

— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel
214,16 5|3

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 14 Globalsuchalgorithmen

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:

— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

241, 6] 5|3
-2

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 14 Globalsuchalgorithmen

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:

— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

241, 6] 5|3
-2 3

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 14 Globalsuchalgorithmen

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:

— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

24,1 6| 5|3
-2 3|-5] 1| 2

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 14 Globalsuchalgorithmen

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:

— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

204,116 5|3
-2 3|-9| 1] 2
1-2/-4| 3

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 14 Globalsuchalgorithmen

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

21 4] 1] 6] 5] 3
2] 3[-5] 1] 2
1]-2]-4] 3
4[-1]-2

14 Globalsuchalgorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel
2/ 4,1/ 6|5 3

-2 3|-9| 1] 2
1-2/-4| 3

Globalsuchalgorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 14

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:

— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

204,116 5|3
-2 3|-9| 1] 2
1-2/-4| 3

-4 -1 -2

-3 1

-1

e Ziel: Berechnung aller Costas Arrays der Grofie n

Globalsuchalgorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 14

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:

— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

204,116 5|3
-2 3|-9| 1] 2
1-2/-4| 3

-4 -1 -2

-3 1

-1

e Ziel: Berechnung aller Costas Arrays der Grofie n

e Formalisierung vorkommender Begriffe:

dtrow(L,j) = [L[i]1-Lli+j] liel1..|ILI-j]1]
perm(L,S) = nodups(L) A range(L)=S

Globalsuchalgorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 14

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:
— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

204,116 5|3
-2 3|-9| 1] 2
1-2/-4| 3

-4 -1 -2

-3 1

-1

e Ziel: Berechnung aller Costas Arrays der Grofie n

e Formalisierung vorkommender Begriffe:

dtrow(L,j) = [L[i]1-Lli+j] liel1..|ILI-j]1]
perm(L,S) = nodups(L) A range(L)=S

e Spezifikation des Problems

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vjedomain(p) .nodups(dtrow(p,j))}

Globalsuchalgorithmen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 14

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1 b sevta)
R — Seq(a)
RETURNS {p:Seq(Z) | perm(p,{1..n}) W true
A Vjedomain(p) .nodups(dtrow(p,j))} O — \M,L.range(L)2M
S — Seq(a)
J — AM, s.range(s)cM
s, AM.]
sat +— AL, s.sCL
split — MM, s. {s-alacM}
ext As. {s}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

D Set
FUNCTION Costas (n:Z) WHERE n>1 - el
R — Seq(a)
RETURNS {p:Seq(Z) | perm(p,{1..n}) W true
n Vjedomain(p) .nodups (dtrow(p,j))} O +—)M, L.range(L)ch
1. Bildbereich stimmt mit Rg=Seq(Z) iiberein o Seq(a)
J — AM, s.range(s)cM
s, — AM. (]
sat +— AL, s.sCL
split — MM, s.{s-alaeM}
ext As. {s}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1 b setta)
R — Seq(a)
RETURNS {p:Seq(Z) | perm(p,{1..n}) W true
A Vjedomain(p) .nodups (dtrow(p,j)) } O — AN, L.range(L)cM
1. Bildbereich stimmt mit Rg=Seq(Z) iiberein o Seq(a)
J — AM, s.range(s)cM
2. Eingabebereiche Z, Dg=Set(Z) sind anzupassen s, AL
sat +— AL, s.sCL
split — MM, s.{s-alaeM}
ext As. {s}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1 D = Set ()
R - Seq(a)
RETURNS {p:Seq(Z) | perm(p,{1..n}) | B [
A Vjedomain(p) .nodups (dtrow(p,j))} O — A, L.range(L)cM
1. Bildbereich stimmt mit R;=Seq(Z) iiberein S Seq(a)
J — AM, s.range(s)cM
2. Eingabebereiche Z, Dg=Set (Z) sind anzupassen | s, ~— 0. []
. . . . sat +— AL, s.sCL
3. Keine Eingabebedingung zu priifen: Ig(M)=true slit s 5. {salacH)
ext As. {s}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1 g -

RETURNS {p:Seq(Z) | perm(p,{1..n}) I
A Vjedomain(p) .nodups (dtrow(p,j))} O — M, L.

1. Bildbereich stimmt mit Rg=Seq(Z) uberein i -~ .
— , S.
2. Eingabebereiche Z, Dg=Set(Z) sind anzupassen s, AN
sat +— AL, s.
3. Keine Eingabebedingung zu priifen: Ig(M)=true | .,
4. Zu zeigen ist also: ext — As.

Set (a)
Seq(a)
true

range (L) cM
Seq(a)
range (s) cM
[]

stL

{s-alaeM}

{s}

~Vn:Z.n>1 = dM:Set(Z).Vp:Seq(Z).O(,p) = range(p)cM

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

D S
FUNCTION Costas (n:Z) WHERE n>1 - el
8eq(Z) | pern(p, {1..n}) o e
RETURNS {p:Seq(perm(p,{1..n T true
n Vjedomain(p) .nodups (dtrow(p,j))} O +—)M, L.range(L)ch
1. Bildbereich stimmt mit Rg=Seq(Z) iiberein oo Seqla)
J — AM, s.range(s)cM
2. Eingabebereiche Z, Dg=Set(Z) sind anzupassen | s, +~ M. []
. . . . sat +— AL, s.sCL
3. Keine Eingabebedingung zu priifen: Ig(M)=true | . . i o (calacn)
4. Zu zeigen ist also: ext +— As.{s}

~Vn:Z.n>1 = dM:Set(Z).Vp:Seq(Z).O(,p) = range(p)cM
— Heuristik: Suche Folgerungen von O (n,p), in denen range (p) vorkommt

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n})
A Vjedomain(p) .nodups (dtrow(p,j))}

. Bildbereich stimmt mit Rg=Seq(Z) uberein
. Eingabebereiche Z, Dg=Set(Z) sind anzupassen

. Keine Eingabebedingung zu priifen: Ig(M)=true

- W N

. Zu zeigen ist also:

~ » O - ™ T

»

0

sat
split

ext

1117111 1 1 11

Set ()
Seq(a)
AM. true
AM, L. range (L) <M
Seq(a)
AM, s. range(s)cM
AM.]
AL, s.sCL
AM, s. {salaeM}

As. {s}

~Vn:Z.n>1 = dM:Set(Z).Vp:Seq(Z).O(,p) = range(p)cM
— Heuristik: Suche Folgerungen von O (n,p), in denen range (p) vorkommt
— Auffalten von perm liefert: perm(p,{1..n}) = range(p)c{l..n}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15

Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n})
A Vjedomain(p) .nodups (dtrow(p,j))}

. Bildbereich stimmt mit Rg=Seq(Z) uberein
. Eingabebereiche Z, Dg=Set(Z) sind anzupassen

. Keine Eingabebedingung zu priifen: Ig(M)=true

- W N

. Zu zeigen ist also:

~ » O - ™ T

»

0

sat
split

ext

1117111 1 1 11

Set ()
Seq(a)
AM. true
AM, L. range (L) <M
Seq(a)
AM, s. range(s)cM
AM.]
AL, s.sCL
AM, s. {salaeM}

As. {s}

~Vn:Z.n>1 = dM:Set(Z).Vp:Seq(Z).O(,p) = range(p)cM
— Heuristik: Suche Folgerungen von O (n,p), in denen range (p) vorkommt
— Auffalten von perm liefert: perm(p,{1..n}) = range(p)c{l..n}

— WéhleM = {1..n} und extrahiere ¢ = An.{1..n}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15

Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

D S
FUNCTION Costas (n:Z) WHERE n>1 B el
8eq(Z) | pern(p, {1..n}) o e
RETURNS {p:Seq(perm(p,{1..n T true
A Vjedomain(p) .nodups (dtrow(p,j))} O +— AM,L.range(L)cM
1. Bildbereich stimmt mit Rg=Seq(Z) iiberein oo Seqla)
J — AM, s.range(s)cM
2. Eingabebereiche Z, Dg=Set(Z) sind anzupassen | s, +~ M. []
. . . . sat +— AL, s.sCL
3. Keine Eingabebedingung zu priifen: Ig(M)=true | . . i o (calacn)
4. Zu zeigen ist also: ext +— As.{s}

~Vn:Z.n>1 = dM:Set(Z).Vp:Seq(Z).O(,p) = range(p)cM
— Heuristik: Suche Folgerungen von O (n,p), in denen range (p) vorkommt

— Auffalten von perm liefert: perm(p,{1..n}) = range(p)c{l..n}
—WihleM = {1..n} und extrahiere # = An.{1..n}

5. Modifiziere gs seq set(Z) und ¢3 mit 6 und der Spezifikation

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n})
A Vjedomain(p) .nodups (dtrow(p,j))}

. Bildbereich stimmt mit Rg=Seq(Z) uberein
. Eingabebereiche Z, Dg=Set(Z) sind anzupassen

. Keine Eingabebedingung zu priifen: Ig(M)=true

- W N

. Zu zeigen ist also:

~ » O - ™ T

»

0

sat
split

ext

1117111 1 1 11

Set ()
Seq(a)
AM. true
AM, L. range (L) <M
Seq(a)
AM, s. range(s)cM
AM.]
AL, s.sCL
AM, s. {salaeM}

As. {s}

~Vn:Z.n>1 = dM:Set(Z).Vp:Seq(Z).O(,p) = range(p)cM
— Heuristik: Suche Folgerungen von O (n,p), in denen range (p) vorkommt
— Auffalten von perm liefert: perm(p,{1..n}) = range(p)c{l..n}

—WihleM = {1..n} und extrahiere # = An.{1..n}

5. Modifiziere gs seq set(Z) und ¢3 mit 6 und der Spezifikation
Gy = (Z,8eq(Z) , n.n>1,0, Seq(Z), An,s.range(s)c{l..n},
An. [1, AL,s.scl, An,s.{Valae{l..n}}, As.{s})

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15

Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

D S
FUNCTION Costas (n:Z) WHERE n>1 B el
8eq(Z) | pern(p, {1..n}) o e
RETURNS {p:Seq(perm(p,{1..n T true
A Vjedomain(p) .nodups (dtrow(p,j))} O +— AM,L.range(L)cM
1. Bildbereich stimmt mit Rg=Seq(Z) iiberein oo Seqla)
J — AM, s.range(s)cM
2. Eingabebereiche Z, Dg=Set(Z) sind anzupassen | s, +~ M. []
. . . . sat +— AL, s.sCL
3. Keine Eingabebedingung zu priifen: Ig(M)=true | . . i o (calacn)
4. Zu zeigen ist also: ext +— As.{s}

~Vn:Z.n>1 = dM:Set(Z).Vp:Seq(Z).O(,p) = range(p)cM
— Heuristik: Suche Folgerungen von O (n,p), in denen range (p) vorkommt

— Auffalten von perm liefert: perm(p,{1..n}) = range(p)c{l..n}
—WihleM = {1..n} und extrahiere # = An.{1..n}

5. Modifiziere gs seq set(Z) und ¢3 mit 6 und der Spezifikation
Gy = (Z,8eq(Z) , n.n>1,0, Seq(Z), An,s.range(s)c{l..n},
An. [1, AL,s.scl, An,s.{Valae{l..n}}, As.{s})

P3g(n,s) = ¢3({1..n},s) = nodups(s) ®3 4 ist notwendig fiir G

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SYNTHESESESTRATEGIE FUR (ALOBALSUCHALGORITHMEN I

Gegeben eine Problemspezifikation
FUNCTION f(a:D) WHERE I[x] RETURNS {y:R | Olx,y]}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 16 Globalsuchalgorithmen

SYNTHESESESTRATEGIE FUR (ALOBALSUCHALGORITHMEN I

Gegeben eine Problemspezifikation
FUNCTION f(a:D) WHERE I[x] RETURNS {y:R | Olx,y]}

1. Wahle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 16 Globalsuchalgorithmen

SYNTHESESESTRATEGIE FUR (ALOBALSUCHALGORITHMEN I

Gegeben eine Problemspezifikation
FUNCTION f(a:D) WHERE I[x] RETURNS {y:R | Olx,y]}

1. Wahle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R,I,0)< G und extrahiere Substitution 6
Verfeinere G zu Globalsuchtheorie Gy fiir (D, R, I, O)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 16 Globalsuchalgorithmen

SYNTHESESESTRATEGIE FUR (ALOBALSUCHALGORITHMEN I

Gegeben eine Problemspezifikation
FUNCTION f(a:D) WHERE I[x] RETURNS {y:R | Olx,y]}

1. Wahle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R,I,0)< G und extrahiere Substitution 6
Verfeinere G zu Globalsuchtheorie Gy fiir (D, R, I, O)

3. Wahle Wohlfundiertheitsfilter ® fiir G (Wissensbank)

Beweise ‘®y notwendig fiir Gy’ (Axiom 4)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 16 Globalsuchalgorithmen

SYNTHESESESTRATEGIE FUR (GLOBALSUCHALGORITHMEN I

Gegeben eine Problemspezifikation
FUNCTION f(a:D) WHERE I[x] RETURNS {y:R | Olx,y]}

1. Wahle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R,I,0)< G und extrahiere Substitution 6
Verfeinere G zu Globalsuchtheorie Gy fiir (D, R, I, O)

3. Wahle Wohlfundiertheitsfilter ® fiir G (Wissensbank)

Beweise ‘®y notwendig fiir Gy’ (Axiom 4)

4. Bestimme zusatzlichen notwendigen Filter W fir Gg

— Leite Eigenschaften von x und s aus sat|z, s] AOlz, z] ab (Vorwartsinferenz)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 16 Globalsuchalgorithmen

SYNTHESESESTRATEGIE FUR (GLOBALSUCHALGORITHMEN I

Gegeben eine Problemspezifikation
FUNCTION f(a:D) WHERE I[x] RETURNS {y:R | Olx,y]}

1. Wahle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R,I,0)< G und extrahiere Substitution 6
Verfeinere G zu Globalsuchtheorie Gy fiir (D, R, I, O)

3. Wahle Wohlfundiertheitsfilter ® fiir G (Wissensbank)

Beweise ‘®y notwendig fiir Gy’ (Axiom 4)

4. Bestimme zusatzlichen notwendigen Filter W fir Gg

— Leite Eigenschaften von x und s aus sat|z, s] AOlz, z] ab (Vorwartsinferenz)

5. Instantiiere (zlobalsuch-Schema mit Gy, ®g9, ¥

FUNCTION f(xz:D) WHERE [[z] RETURNS {y:R | Olz, |}
= if O[f(x),s0(0(x))] AV[z,s0(0(x))] then fy(x,s0(f(x))) else ()
FUNCTION f,s(x,s:DxS) WHERE I[z]AJ[0(x),s]AP0(x),s] nV[z, s]
RETURNS {y:R|O|z,y|rsatly, s]}
= {z|zeext[s]nO[zr,z]} U U{ Jos(@,t) | tesplit|f(x), s|n PO(x),t] A U]z, s] }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 16 Globalsuchalgorithmen

(GLOBALSUCHALGORITHMUS FUR COSTAS ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j))}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 17 Globalsuchalgorithmen

(GLOBALSUCHALGORITHMUS FUR COSTAS ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j))}

1. Wahle Globalsuchtheorie G = gs seq set (Z)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 17 Globalsuchalgorithmen

(GLOBALSUCHALGORITHMUS FUR COSTAS ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j))}

1. Wahle Globalsuchtheorie G = gs seq set (Z)
2. Beweis fiir (D, R, I,0) <gs seq set(Z) liefert 0[n] = {1..n}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 17 Globalsuchalgorithmen

(GLOBALSUCHALGORITHMUS FUR COSTAS ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j))}

1. Wahle Globalsuchtheorie G = gs seq set (Z)
2. Beweis fiir (D, R, I,0) <gs seq set(Z) liefert 0[n] = {1..n}

3. Wahle WF-Filter ® so, dafl &y notwendig fiir Gy beweisbar
— perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j)) rscp= P[{1..n},s]

— Leicht beweisbar nur fiir ®3[M,s| = nodups(s)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 17 Globalsuchalgorithmen

(GLOBALSUCHALGORITHMUS FUR COSTAS ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j))}

1. Wahle Globalsuchtheorie G = gs seq set (Z)

2. Beweis fiir (D, R, I,0) <gs seq set(Z) liefert 0[n] = {1..n}

3. Wahle WF-Filter ® so, dafl &y notwendig fiir Gy beweisbar
— perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j)) rscp= P[{1..n},s]
— Leicht beweisbar nur fiir ®3[M,s| = nodups(s)

4. Leite zusatzlichen notwendigen Filter ¥ ab
— Aus perm(p,{1..n}) A Vjedomain(p) .nodups (dtrow(p,j)) A sCp

leite ab W[n,s|] = Viedomain(s) .nodups(dtrow(s,j))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 17 Globalsuchalgorithmen

(GLOBALSUCHALGORITHMUS FUR COSTAS ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j))}

1. Wahle Globalsuchtheorie G = gs seq set (Z)
2. Beweis fiir (D, R, I,0) <gs seq set(Z) liefert 0[n] = {1..n}

3. Wahle WF-Filter ® so, dafl &y notwendig fiir Gy beweisbar
— perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j)) rscp= P[{1..n},s]

— Leicht beweisbar nur fiir ®3|M,s| = nodups(s)

4. Leite zusatzlichen notwendigen Filter ¥ ab
— Aus perm(p,{1..n}) A Vjedomain(p) .nodups (dtrow(p,j)) A sCp
leite ab W[n,s|] = Viedomain(s) .nodups(dtrow(s,j))

5. Instantiiere den Standard-Globalsuchalgorithmus
FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j))}
= let rec Costasgys(n,s)
= {plpe{s} A perm(p,{1l..n}) A Vj<n.nodups(dt-row(p,j)) }
U | J{costasgs(n,t) te{silie{l..n}}
A nodups(t) A Vj<edomain(t) . nodups(dt-row(t,j))}
in if nodups([]) A Vj edomain([]) .nodups(dtrow([],j))
then Costasgs(n,[]) else 0

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 17 Globalsuchalgorithmen

RUCKBLICK: SYNTHESE MIT ALGORITHMENSCHEMATA I

Wissensbasierte Techniken zur Softwareentwicklung

e Erzeugte Algorithmen sind korrekt und effizient
— Formales theoretisches Fundament sichert Korrektheit
— Gute algorithmische Struktur liefert Effizienz
— Nachtrégliche Optimierung des schematischen Algorithmus moglich /notig

— Mathematische Notation tibersetzbar in Programmiersprachen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 18 Globalsuchalgorithmen

RUCKBLICK: SYNTHESE MIT ALGORITHMENSCHEMATA I

Wissensbasierte Techniken zur Softwareentwicklung

e Erzeugte Algorithmen sind korrekt und effizient
— Formales theoretisches Fundament sichert Korrektheit
— Gute algorithmische Struktur liefert Effizienz
— Nachtrégliche Optimierung des schematischen Algorithmus moglich /notig

— Mathematische Notation tibersetzbar in Programmiersprachen

e Synthesetechniken sind automatisierbar
— Jeder Schritt basiert auf logischer Inferenz
— Wissen steuert alle Strategien des Algorithmenentwurfs

— Ahnliche Techniken fiir Entwurf verschiedener Algorithmenstrukturen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 18 Globalsuchalgorithmen

RUCKBLICK: SYNTHESE MIT ALGORITHMENSCHEMATA I

Wissensbasierte Techniken zur Softwareentwicklung

e Erzeugte Algorithmen sind korrekt und effizient
— Formales theoretisches Fundament sichert Korrektheit
— Gute algorithmische Struktur liefert Effizienz
— Nachtrégliche Optimierung des schematischen Algorithmus moglich /notig

— Mathematische Notation tibersetzbar in Programmiersprachen

e Synthesetechniken sind automatisierbar
— Jeder Schritt basiert auf logischer Inferenz
— Wissen steuert alle Strategien des Algorithmenentwurfs

— Ahnliche Techniken fiir Entwurf verschiedener Algorithmenstrukturen

e Techniken sind praktisch erfolgreich
— KIDS erzeugt korrekte Scheduling Algorithmen in wenigen Stunden
— Erzeugter Lisp Code 2000 mal schneller als existierende ADA Software

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 18 Globalsuchalgorithmen

