
Automatisierte Logik und Programmierung II §17 1 Globalsuchalgorithmen

Globalsuchalgorithmen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Operator Match

rekursiv
Divide&Conquer

∨ -Reduktion

statisch
Fallanalyse

rekursiv
Globalsuche

∧ - ∨ -Reduktion
Dynamische Programmierung

• Bestimmung aller Lösungen eines Problems

– Aufzählen von Kandidaten

– Eliminieren von Kandidaten, die keine Lösungen darstellen

– Verallgemeinerung von Backtracking, Binärsuche, . . .



Automatisierte Logik und Programmierung II §17 1 Globalsuchalgorithmen

Globalsuchalgorithmen

Allgemeine Problemstruktur
Generate & Test

Lokale Struktur
Lokalsuche

Reduktionsstruktur

Komplementierung
Siebe

∧ -Reduktion

statisch
Operator Match

rekursiv
Divide&Conquer

∨ -Reduktion

statisch
Fallanalyse

rekursiv
Globalsuche

∧ - ∨ -Reduktion
Dynamische Programmierung

• Bestimmung aller Lösungen eines Problems

– Aufzählen von Kandidaten

– Eliminieren von Kandidaten, die keine Lösungen darstellen

– Verallgemeinerung von Backtracking, Binärsuche, . . .

• ∨ -Reduktion des Problems

– Gesamtlösung ist Vereinigung unabhängiger Teillösungen

– Gut geeignet für Parallelverarbeitung



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen

– Global: Untersuchung von ganzen

Mengen von Lösungskandidaten



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen

– Global: Untersuchung von ganzen

Mengen von Lösungskandidaten
Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Wiederholtes Aufteilen von Kandidatenmengen



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen

– Global: Untersuchung von ganzen

Mengen von Lösungskandidaten
Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Wiederholtes Aufteilen von Kandidatenmengen

– Elimination von Kandidatenmengen ohne Lösung



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen

– Global: Untersuchung von ganzen

Mengen von Lösungskandidaten
Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Wiederholtes Aufteilen von Kandidatenmengen

– Elimination von Kandidatenmengen ohne Lösung

– Extraktion von tatsächlichen Lösungen



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen

– Global: Untersuchung von ganzen

Mengen von Lösungskandidaten
Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Wiederholtes Aufteilen von Kandidatenmengen

– Elimination von Kandidatenmengen ohne Lösung

– Extraktion von tatsächlichen Lösungen

• Repräsentanten erforderlich

– Verarbeitung der Mengen selbst zu aufwendig



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen

– Global: Untersuchung von ganzen

Mengen von Lösungskandidaten
Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Wiederholtes Aufteilen von Kandidatenmengen

– Elimination von Kandidatenmengen ohne Lösung

– Extraktion von tatsächlichen Lösungen

• Repräsentanten erforderlich

– Verarbeitung der Mengen selbst zu aufwendig

– Codiere Kandidatenmengen durch Deskriptoren



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen

– Global: Untersuchung von ganzen

Mengen von Lösungskandidaten
Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Wiederholtes Aufteilen von Kandidatenmengen

– Elimination von Kandidatenmengen ohne Lösung

– Extraktion von tatsächlichen Lösungen

• Repräsentanten erforderlich

– Verarbeitung der Mengen selbst zu aufwendig

– Codiere Kandidatenmengen durch Deskriptoren

– Simuliere Aufteilen und Filtern auf Deskriptoren



Automatisierte Logik und Programmierung II §17 2 Globalsuchalgorithmen

Globalsuche: Generelle Idee

Durchsuchen des gesamten Bildbereichs

• Suche von außen

– Global: Untersuchung von ganzen

Mengen von Lösungskandidaten
Kandidaten-

Zerteilen

Extraktion

und Test

menge

von Kandidaten

Eliminierte Kandidaten

– Wiederholtes Aufteilen von Kandidatenmengen

– Elimination von Kandidatenmengen ohne Lösung

– Extraktion von tatsächlichen Lösungen

• Repräsentanten erforderlich

– Verarbeitung der Mengen selbst zu aufwendig

– Codiere Kandidatenmengen durch Deskriptoren

– Simuliere Aufteilen und Filtern auf Deskriptoren

– Notwendige Informationen bei der Spezifikation:

· Wann ist ein Deskriptor eine sinnvolle Beschreibung einer Menge?

· Wie beschreibt man Zugehörigkeit zur Menge mittels Deskriptoren?



Automatisierte Logik und Programmierung II §17 3 Globalsuchalgorithmen

Ein einfacher Globalsuchalgorithmus

• Suche alle Indizes eines Wertes k in einer geordneten Liste L

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }



Automatisierte Logik und Programmierung II §17 3 Globalsuchalgorithmen

Ein einfacher Globalsuchalgorithmus

• Suche alle Indizes eines Wertes k in einer geordneten Liste L

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }

• Binäre Suche und Aufsammeln von Lösungen

– Spalte Indexmenge {1..|L|} in {1..m} und {m+1..|L|}

– Durchsuche linke & rechte Hälfte und vereinige jeweilige Lösungsmengen



Automatisierte Logik und Programmierung II §17 3 Globalsuchalgorithmen

Ein einfacher Globalsuchalgorithmus

• Suche alle Indizes eines Wertes k in einer geordneten Liste L

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }

• Binäre Suche und Aufsammeln von Lösungen

– Spalte Indexmenge {1..|L|} in {1..m} und {m+1..|L|}

– Durchsuche linke & rechte Hälfte und vereinige jeweilige Lösungsmengen

• Vereinfache Verwaltungsaufwand mit Suchraumdeskriptoren

– Grenzen l und r der Indexmengen sind hinreichende Repräsentanten

– Repräsentanten sind nur dann sinnvoll wenn 1≤l≤r≤|L|

– Verwende Hilfsfunktion oaux(L,k,l,r) mit Initialaufruf oaux(L,k,1,|L|)

FUNCTION oaux(L,k,l,r:Seq(Z)×Z×N×N)

WHERE L 6=[] ∧ ordered(L) ∧ 1≤l≤r≤|L|

RETURNS { i:N | i ∈{l..r} ∧ L
i
=k }



Automatisierte Logik und Programmierung II §17 3 Globalsuchalgorithmen

Ein einfacher Globalsuchalgorithmus

• Suche alle Indizes eines Wertes k in einer geordneten Liste L

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }

• Binäre Suche und Aufsammeln von Lösungen

– Spalte Indexmenge {1..|L|} in {1..m} und {m+1..|L|}

– Durchsuche linke & rechte Hälfte und vereinige jeweilige Lösungsmengen

• Vereinfache Verwaltungsaufwand mit Suchraumdeskriptoren

– Grenzen l und r der Indexmengen sind hinreichende Repräsentanten

– Repräsentanten sind nur dann sinnvoll wenn 1≤l≤r≤|L|

– Verwende Hilfsfunktion oaux(L,k,l,r) mit Initialaufruf oaux(L,k,1,|L|)

FUNCTION oaux(L,k,l,r:Seq(Z)×Z×N×N)

WHERE L 6=[] ∧ ordered(L) ∧ 1≤l≤r≤|L|

RETURNS { i:N | i ∈{l..r} ∧ L
i
=k }

• Hilfsfunktion durchläuft Suchraum rekursiv

oaux(L,k,l,r) =











{l} falls l=r ∧ L
l
=k

∅ falls l=r ∧ L
l
6=k

oaux(L,k,l,m)∪ oaux(L,k,m+1,r) falls l<r; m=(l+r)/2



Automatisierte Logik und Programmierung II §17 4 Globalsuchalgorithmen

Globalsuchalgorithmen: einheitliche Darstellung

• Vereinheitlichung durch Mengendarstellung
oaux(L,k,l,r) = { i | i ∈{l} ∧i=r ∧ L

i
=k }

∪
⋃

{ oaux(L,k,n,m) | (n,m) ∈{(l,(l+r)/2),((l+r)/2 + 1,r) | l<r} }

– Mengenschreibweise unabhängig von binärer Aufspaltung des Suchraums

– (n,m) wird aus Aufspaltungsmenge ausgewählt

– Lösungsmenge wird durch Vereinigung einer Lösungsfamilie gebildet

– Direkte Lösung wird durch Extraktion aus {l} = {l..l} erzeugt



Automatisierte Logik und Programmierung II §17 4 Globalsuchalgorithmen

Globalsuchalgorithmen: einheitliche Darstellung

• Vereinheitlichung durch Mengendarstellung
oaux(L,k,l,r) = { i | i ∈{l} ∧i=r ∧ L

i
=k }

∪
⋃

{ oaux(L,k,n,m) | (n,m) ∈{(l,(l+r)/2),((l+r)/2 + 1,r) | l<r} }

– Mengenschreibweise unabhängig von binärer Aufspaltung des Suchraums

– (n,m) wird aus Aufspaltungsmenge ausgewählt

– Lösungsmenge wird durch Vereinigung einer Lösungsfamilie gebildet

– Direkte Lösung wird durch Extraktion aus {l} = {l..l} erzeugt

• Optimierung durch Einsatz von Filtern

– Suche berücksichtigt nicht, daß Liste geordnet ist (linearer Algorithmus)

– Suchraum {n..m} ohne Lösung, falls Ln>k oder Lm<k

– Ergänze Filter Ln≤k≤Lm für Aufspaltungsmenge (logarithmischer Algorithmus)



Automatisierte Logik und Programmierung II §17 4 Globalsuchalgorithmen

Globalsuchalgorithmen: einheitliche Darstellung

• Vereinheitlichung durch Mengendarstellung
oaux(L,k,l,r) = { i | i ∈{l} ∧i=r ∧ L

i
=k }

∪
⋃

{ oaux(L,k,n,m) | (n,m) ∈{(l,(l+r)/2),((l+r)/2 + 1,r) | l<r} }

– Mengenschreibweise unabhängig von binärer Aufspaltung des Suchraums

– (n,m) wird aus Aufspaltungsmenge ausgewählt

– Lösungsmenge wird durch Vereinigung einer Lösungsfamilie gebildet

– Direkte Lösung wird durch Extraktion aus {l} = {l..l} erzeugt

• Optimierung durch Einsatz von Filtern

– Suche berücksichtigt nicht, daß Liste geordnet ist (linearer Algorithmus)

– Suchraum {n..m} ohne Lösung, falls Ln>k oder Lm<k

– Ergänze Filter Ln≤k≤Lm für Aufspaltungsmenge (logarithmischer Algorithmus)

• Endform: effizienter, wohlstrukturierter Algorithmus
FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧ L
i
=k }

≡ let rec oaux(L,k,l,r) = { i | i ∈{l} ∧ i=r ∧ L
i
=k}

∪
⋃

{ oaux(L,k,n,m) | (n,m) ∈{(l,(l+r)/2),((l+r)/2 + 1,r) | l<r}

∧ L
n
≤k≤L

m
}

in if L
1
≤k≤L|L| then oaux(L,k,1,|L|) else ∅



Automatisierte Logik und Programmierung II §17 5 Globalsuchalgorithmen

Allgemeines Globalsuch-Schema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧ O[x, z] }

∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅



Automatisierte Logik und Programmierung II §17 5 Globalsuchalgorithmen

Allgemeines Globalsuch-Schema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧ O[x, z] }

∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

• 7 zentrale Komponenten der Algorithmentheorie



Automatisierte Logik und Programmierung II §17 5 Globalsuchalgorithmen

Allgemeines Globalsuch-Schema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧ O[x, z] }

∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

• 7 zentrale Komponenten der Algorithmentheorie

– s:S Deskriptor für Kandidatenmengen

– s0: D→S Initialdeskriptor



Automatisierte Logik und Programmierung II §17 5 Globalsuchalgorithmen

Allgemeines Globalsuch-Schema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧ O[x, z] }

∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

• 7 zentrale Komponenten der Algorithmentheorie

– s:S Deskriptor für Kandidatenmengen

– s0: D→S Initialdeskriptor

– split:D×S →Set(S) Rekursive Aufteilung von Kandidatenmengen



Automatisierte Logik und Programmierung II §17 5 Globalsuchalgorithmen

Allgemeines Globalsuch-Schema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧ O[x, z] }

∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

• 7 zentrale Komponenten der Algorithmentheorie

– s:S Deskriptor für Kandidatenmengen

– s0: D→S Initialdeskriptor

– split:D×S →Set(S) Rekursive Aufteilung von Kandidatenmengen

– Φ:D×S →B Filter zur Elimination unnötiger Deskriptoren



Automatisierte Logik und Programmierung II §17 5 Globalsuchalgorithmen

Allgemeines Globalsuch-Schema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧ O[x, z] }

∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

• 7 zentrale Komponenten der Algorithmentheorie

– s:S Deskriptor für Kandidatenmengen

– s0: D→S Initialdeskriptor

– split:D×S →Set(S) Rekursive Aufteilung von Kandidatenmengen

– Φ:D×S →B Filter zur Elimination unnötiger Deskriptoren

– ext:S→R Extraktion von Lösungskandidaten aus Deskriptoren

Selektion mit Ausgabebedingung O[x, z]

– J :D×S →B J [x, s]: Deskriptor s ist sinnvoll für Eingabewert x

– sat:R×S →B sat[z, s]: z gehört zu der durch s beschriebenen Menge



Automatisierte Logik und Programmierung II §17 5 Globalsuchalgorithmen

Allgemeines Globalsuch-Schema

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧ O[x, z] }

∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

• 7 zentrale Komponenten der Algorithmentheorie

– s:S Deskriptor für Kandidatenmengen

– s0: D→S Initialdeskriptor

– split:D×S →Set(S) Rekursive Aufteilung von Kandidatenmengen

– Φ:D×S →B Filter zur Elimination unnötiger Deskriptoren

– ext:S→R Extraktion von Lösungskandidaten aus Deskriptoren

Selektion mit Ausgabebedingung O[x, z]

– J :D×S →B J [x, s]: Deskriptor s ist sinnvoll für Eingabewert x

– sat:R×S →B sat[z, s]: z gehört zu der durch s beschriebenen Menge

Korrektheit folgt aus wenigen Voraussetzungen



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind

1. Initialdeskriptor ist sinnvoll für zulässige Eingaben

I[x] ⇒ J [x, s0(x)]



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind

1. Initialdeskriptor ist sinnvoll für zulässige Eingaben

I[x] ⇒ J [x, s0(x)]

2. Splitting erhält sinnvoller Deskriptoren

I[x] ∧J [x, s] ⇒ ∀t ∈split[x, s]. J [x, t]



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind

1. Initialdeskriptor ist sinnvoll für zulässige Eingaben

I[x] ⇒ J [x, s0(x)]

2. Splitting erhält sinnvoller Deskriptoren

I[x] ∧J [x, s] ⇒ ∀t ∈split[x, s]. J [x, t]

3. Initialdeskriptor enthält alle Lösungen

I[x] ∧0[x, z] ⇒ sat[z, s0(x)]



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind

1. Initialdeskriptor ist sinnvoll für zulässige Eingaben

I[x] ⇒ J [x, s0(x)]

2. Splitting erhält sinnvoller Deskriptoren

I[x] ∧J [x, s] ⇒ ∀t ∈split[x, s]. J [x, t]

3. Initialdeskriptor enthält alle Lösungen

I[x] ∧0[x, z] ⇒ sat[z, s0(x)]

4. Filter ist notwendig (keine Lösung wird eliminiert)

I[x] ∧J [x, s] ⇒ (Φ[x, s] ⇐ ∃z:R. sat[z, s] ∧O[x, z])



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind

1. Initialdeskriptor ist sinnvoll für zulässige Eingaben

I[x] ⇒ J [x, s0(x)]

2. Splitting erhält sinnvoller Deskriptoren

I[x] ∧J [x, s] ⇒ ∀t ∈split[x, s]. J [x, t]

3. Initialdeskriptor enthält alle Lösungen

I[x] ∧0[x, z] ⇒ sat[z, s0(x)]

4. Filter ist notwendig (keine Lösung wird eliminiert)

I[x] ∧J [x, s] ⇒ (Φ[x, s] ⇐ ∃z:R. sat[z, s] ∧O[x, z])

5. Alle Lösungen in endlich vielen Schritten extrahierbar

I[x] ∧0[x, z] ∧J [x, s] ⇒ (sat[z, s] ⇔ ∃k:N.∃t ∈splitk
Φ[x, s]. z ∈ext[t] )



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind

1. Initialdeskriptor ist sinnvoll für zulässige Eingaben

I[x] ⇒ J [x, s0(x)]

2. Splitting erhält sinnvoller Deskriptoren

I[x] ∧J [x, s] ⇒ ∀t ∈split[x, s]. J [x, t]

3. Initialdeskriptor enthält alle Lösungen

I[x] ∧0[x, z] ⇒ sat[z, s0(x)]

4. Filter ist notwendig (keine Lösung wird eliminiert)

I[x] ∧J [x, s] ⇒ (Φ[x, s] ⇐ ∃z:R. sat[z, s] ∧O[x, z])

5. Alle Lösungen in endlich vielen Schritten extrahierbar

I[x] ∧0[x, z] ∧J [x, s] ⇒ (sat[z, s] ⇔ ∃k:N.∃t ∈splitk
Φ[x, s]. z ∈ext[t] )

6. Splitting (mit Filterung) ist wohlfundiert

I[x] ∧J [x, s] ⇒ ∃k:N. splitk
Φ[x, s] = ∅



Automatisierte Logik und Programmierung II §17 6 Globalsuchalgorithmen

Korrektheit des Globalsuch-Schemas

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}

≡ let rec fgs(x,s) = { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }
in if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

ist korrekt, wenn 6 Axiome erfüllt sind
G = (D, R, I, O, S, J, s

0
, sat, split, Φ, ext) wohlfundierte Globalsuchtheorie

1. Initialdeskriptor ist sinnvoll für zulässige Eingaben

I[x] ⇒ J [x, s0(x)]

2. Splitting erhält sinnvoller Deskriptoren

I[x] ∧J [x, s] ⇒ ∀t ∈split[x, s]. J [x, t]

3. Initialdeskriptor enthält alle Lösungen

I[x] ∧0[x, z] ⇒ sat[z, s0(x)]

4. Filter ist notwendig (keine Lösung wird eliminiert)

I[x] ∧J [x, s] ⇒ (Φ[x, s] ⇐ ∃z:R. sat[z, s] ∧O[x, z])

5. Alle Lösungen in endlich vielen Schritten extrahierbar

I[x] ∧0[x, z] ∧J [x, s] ⇒ (sat[z, s] ⇔ ∃k:N.∃t ∈splitk
Φ[x, s]. z ∈ext[t] )

6. Splitting (mit Filterung) ist wohlfundiert

I[x] ∧J [x, s] ⇒ ∃k:N. splitk
Φ[x, s] = ∅



Automatisierte Logik und Programmierung II §17 7 Globalsuchalgorithmen

Globalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fgs

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [x, s] ∧Φ[x, s] RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }



Automatisierte Logik und Programmierung II §17 7 Globalsuchalgorithmen

Globalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fgs

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [x, s] ∧Φ[x, s] RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

• Korrektheit von f folgt aus der von fgs mit Axiom 1, 3 & 4

– Für den Startwert s0(x) gilt J [x, s0(x)] (Axiom 1)



Automatisierte Logik und Programmierung II §17 7 Globalsuchalgorithmen

Globalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fgs

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [x, s] ∧Φ[x, s] RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

• Korrektheit von f folgt aus der von fgs mit Axiom 1, 3 & 4

– Für den Startwert s0(x) gilt J [x, s0(x)] (Axiom 1)

– Aus I [x] folgt {y:R |O[x, y] ∧sat[y, s0(x)]} = {y:R |O[x, y]} (Axiom 3)



Automatisierte Logik und Programmierung II §17 7 Globalsuchalgorithmen

Globalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fgs

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [x, s] ∧Φ[x, s] RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

• Korrektheit von f folgt aus der von fgs mit Axiom 1, 3 & 4

– Für den Startwert s0(x) gilt J [x, s0(x)] (Axiom 1)

– Aus I [x] folgt {y:R |O[x, y] ∧sat[y, s0(x)]} = {y:R |O[x, y]} (Axiom 3)

– Aus {y:R |O[x, y] ∧sat[y, s0(x)]} 6= ∅ folgt Φ[x, s0(x)] (Axiom 4)



Automatisierte Logik und Programmierung II §17 7 Globalsuchalgorithmen

Globalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fgs

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [x, s] ∧Φ[x, s] RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

• Korrektheit von f folgt aus der von fgs mit Axiom 1, 3 & 4

– Für den Startwert s0(x) gilt J [x, s0(x)] (Axiom 1)

– Aus I [x] folgt {y:R |O[x, y] ∧sat[y, s0(x)]} = {y:R |O[x, y]} (Axiom 3)

– Aus {y:R |O[x, y] ∧sat[y, s0(x)]} 6= ∅ folgt Φ[x, s0(x)] (Axiom 4)

• Partielle Korrektheit von fgs folgt aus Axiom 5 & 2

splitkΦ[x, s] ≡ if k=0 then {s} else
⋃

{splitk−1
Φ [x, t] | t ∈split[x, s] ∧Φ[x, t]}



Automatisierte Logik und Programmierung II §17 7 Globalsuchalgorithmen

Globalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fgs

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [x, s] ∧Φ[x, s] RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

• Korrektheit von f folgt aus der von fgs mit Axiom 1, 3 & 4

– Für den Startwert s0(x) gilt J [x, s0(x)] (Axiom 1)

– Aus I [x] folgt {y:R |O[x, y] ∧sat[y, s0(x)]} = {y:R |O[x, y]} (Axiom 3)

– Aus {y:R |O[x, y] ∧sat[y, s0(x)]} 6= ∅ folgt Φ[x, s0(x)] (Axiom 4)

• Partielle Korrektheit von fgs folgt aus Axiom 5 & 2

splitkΦ[x, s] ≡ if k=0 then {s} else
⋃

{splitk−1
Φ [x, t] | t ∈split[x, s] ∧Φ[x, t]}

Satz: Hält fgs[x, s] nach i Schritten an (splitiΦ[x, s] = ∅), so ist das Resultat
⋃

{ {z | z ∈ext[t] ∧O[x, z]} | t ∈

⋃

{split
j
Φ[x, s] | 0≤j<i } }

(Lösungen, die aus Deskriptoren extrahierbar sind , die zu einem split
j
Φ[x, s] gehören)



Automatisierte Logik und Programmierung II §17 7 Globalsuchalgorithmen

Globalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fgs

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [x, s] ∧Φ[x, s] RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

• Korrektheit von f folgt aus der von fgs mit Axiom 1, 3 & 4

– Für den Startwert s0(x) gilt J [x, s0(x)] (Axiom 1)

– Aus I [x] folgt {y:R |O[x, y] ∧sat[y, s0(x)]} = {y:R |O[x, y]} (Axiom 3)

– Aus {y:R |O[x, y] ∧sat[y, s0(x)]} 6= ∅ folgt Φ[x, s0(x)] (Axiom 4)

• Partielle Korrektheit von fgs folgt aus Axiom 5 & 2

splitkΦ[x, s] ≡ if k=0 then {s} else
⋃

{splitk−1
Φ [x, t] | t ∈split[x, s] ∧Φ[x, t]}

Satz: Hält fgs[x, s] nach i Schritten an (splitiΦ[x, s] = ∅), so ist das Resultat
⋃

{ {z | z ∈ext[t] ∧O[x, z]} | t ∈

⋃

{split
j
Φ[x, s] | 0≤j<i } }

(Lösungen, die aus Deskriptoren extrahierbar sind , die zu einem split
j
Φ[x, s] gehören)

Beweis: Induktion über i, Auffalten der Rekursion, Standardlemmata



Automatisierte Logik und Programmierung II §17 7 Globalsuchalgorithmen

Globalsuch-Schema: Korrektheitsbeweis

• Abspalten und Spezifikation der Hilfsfunktion fgs

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[x, s0(x)] then fgs(x, s0(x)) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [x, s] ∧Φ[x, s] RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[x, s] ∧ Φ[x, t] }

• Korrektheit von f folgt aus der von fgs mit Axiom 1, 3 & 4

– Für den Startwert s0(x) gilt J [x, s0(x)] (Axiom 1)

– Aus I [x] folgt {y:R |O[x, y] ∧sat[y, s0(x)]} = {y:R |O[x, y]} (Axiom 3)

– Aus {y:R |O[x, y] ∧sat[y, s0(x)]} 6= ∅ folgt Φ[x, s0(x)] (Axiom 4)

• Partielle Korrektheit von fgs folgt aus Axiom 5 & 2

splitkΦ[x, s] ≡ if k=0 then {s} else
⋃

{splitk−1
Φ [x, t] | t ∈split[x, s] ∧Φ[x, t]}

Satz: Hält fgs[x, s] nach i Schritten an (splitiΦ[x, s] = ∅), so ist das Resultat
⋃

{ {z | z ∈ext[t] ∧O[x, z]} | t ∈

⋃

{split
j
Φ[x, s] | 0≤j<i } }

(Lösungen, die aus Deskriptoren extrahierbar sind , die zu einem split
j
Φ[x, s] gehören)

Beweis: Induktion über i, Auffalten der Rekursion, Standardlemmata

• Terminierung von fgs folgt aus Axiom 6



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅

• Alle 6 Axiome sind erfüllt



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅

• Alle 6 Axiome sind erfüllt
1. L 6=[] ∧ordered(L) ⇒ 1≤1≤|L|≤|L|



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅

• Alle 6 Axiome sind erfüllt
1. L 6=[] ∧ordered(L) ⇒ 1≤1≤|L|≤|L|

2. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∀(x,y) ∈split[L,k,l,r]. 1≤x≤y≤|L|



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅

• Alle 6 Axiome sind erfüllt
1. L 6=[] ∧ordered(L) ⇒ 1≤1≤|L|≤|L|

2. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∀(x,y) ∈split[L,k,l,r]. 1≤x≤y≤|L|

3. L 6=[] ∧ordered(L) ∧i ∈{1..|L|} ∧L
i
=k ⇒ i ∈{1..|L|}



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅

• Alle 6 Axiome sind erfüllt
1. L 6=[] ∧ordered(L) ⇒ 1≤1≤|L|≤|L|

2. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∀(x,y) ∈split[L,k,l,r]. 1≤x≤y≤|L|

3. L 6=[] ∧ordered(L) ∧i ∈{1..|L|} ∧L
i
=k ⇒ i ∈{1..|L|}

4. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒
L

l
≤k≤Lr ⇐ ∃z:N.z ∈{l..r} ∧z ∈{1..|L|} ∧Lz=k



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅

• Alle 6 Axiome sind erfüllt
1. L 6=[] ∧ordered(L) ⇒ 1≤1≤|L|≤|L|

2. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∀(x,y) ∈split[L,k,l,r]. 1≤x≤y≤|L|

3. L 6=[] ∧ordered(L) ∧i ∈{1..|L|} ∧L
i
=k ⇒ i ∈{1..|L|}

4. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒
L

l
≤k≤Lr ⇐ ∃z:N.z ∈{l..r} ∧z ∈{1..|L|} ∧Lz=k

5. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ∧i ∈{1..|L|} ∧L
i
=k ⇒

i ∈{l..r} ⇔ ∃k:N.∃(x,y) ∈splitkΦ[L,k,l,r]. i ∈(if x=y then {x} else ∅)



Automatisierte Logik und Programmierung II §17 8 Globalsuchalgorithmen

Beispiel einer Globalsuchtheorie

• Theorie gs osearch für osearch
D 7→ Seq(N)×N

R 7→ N

I 7→ λL,k. L6=[] ∧ordered(L)

O 7→ λL,k, i. i ∈{1..|L|} ∧L
i
=k

S 7→ Seq(N)×Seq(N)

J 7→ λL,k, l,r. 1≤l≤r≤|L|

s
0

7→ λL,k. (1,|L|)

sat 7→ λi, l,r. i ∈{l..r}
split 7→ λL,k, l,r. if l<r then {(l,(l+r)/2),((l+r)/2 + 1,r)} else ∅
Φ 7→ λL,k, l,r. L

l
≤k≤Lr

ext 7→ λl,r. if l=r then {l} else ∅

• Alle 6 Axiome sind erfüllt
1. L 6=[] ∧ordered(L) ⇒ 1≤1≤|L|≤|L|

2. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∀(x,y) ∈split[L,k,l,r]. 1≤x≤y≤|L|

3. L 6=[] ∧ordered(L) ∧i ∈{1..|L|} ∧L
i
=k ⇒ i ∈{1..|L|}

4. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒
L

l
≤k≤Lr ⇐ ∃z:N.z ∈{l..r} ∧z ∈{1..|L|} ∧Lz=k

5. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ∧i ∈{1..|L|} ∧L
i
=k ⇒

i ∈{l..r} ⇔ ∃k:N.∃(x,y) ∈splitkΦ[L,k,l,r]. i ∈(if x=y then {x} else ∅)

6. L 6=[] ∧ordered(L) ∧1≤l≤r≤|L| ⇒ ∃k:N.splitk
Φ[L,k,l,r] = ∅



Automatisierte Logik und Programmierung II §17 9 Globalsuchalgorithmen

Schematischer Globalsuchalgorithmus für osearch

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }

≡ let rec fgs(L,k,l,r)

= { z | z ∈(if l=r then {l} else ∅) ∧ z ∈{1..|L|} ∧Lz=k}

∪
⋃

{ oaux(L,k,n,m) | (n,m) ∈(if l<r

then {(l,(l+r)/2),((l+r)/2 + 1,r)}
else ∅) ∧ L

n
≤k≤L

m
}

in if L
1
≤k≤L|L| then oaux(L,k, 1,|L|) else ∅



Automatisierte Logik und Programmierung II §17 9 Globalsuchalgorithmen

Schematischer Globalsuchalgorithmus für osearch

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }

≡ let rec fgs(L,k,l,r)

= { z | z ∈(if l=r then {l} else ∅) ∧ z ∈{1..|L|} ∧Lz=k}

∪
⋃

{ oaux(L,k,n,m) | (n,m) ∈(if l<r

then {(l,(l+r)/2),((l+r)/2 + 1,r)}
else ∅) ∧ L

n
≤k≤L

m
}

in if L
1
≤k≤L|L| then oaux(L,k, 1,|L|) else ∅

Nach Optimierung durch Simplifikationen

FUNCTION osearch(L,k:Seq(Z)×Z) WHERE L6=[] ∧ ordered(L)

RETURNS { i:N | i ∈{1..|L|} ∧L
i
=k }

≡ let rec fgs(L,k,l,r)

= if l=r then if L
l
=k then {l} else ∅

else let m = (l+r)/2 in

(if L
l
≤k≤L

m
then oaux(L,k,l,m) else ∅)

∪ (if L[m+1]≤k≤Lr then oaux(L,k,m+1,r) else ∅)
in if L

1
≤k≤L|L| then oaux(L,k, 1,|L|) else ∅



Automatisierte Logik und Programmierung II §17 10 Globalsuchalgorithmen

Synthese von Globalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Globalsuchtheorie: allgemeine Suchstruktur für R
– Vorgefertigte Zerlegungsstruktur, die Axiome 1–5 erfüllt

– Formalisiert als Objekt G = (D,R, I,O, S, J, s
0
, sat, split, True, ext)

– Wissensbank speichert Globalsuchtheorien für Grunddatentypen



Automatisierte Logik und Programmierung II §17 10 Globalsuchalgorithmen

Synthese von Globalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Globalsuchtheorie: allgemeine Suchstruktur für R
– Vorgefertigte Zerlegungsstruktur, die Axiome 1–5 erfüllt

– Formalisiert als Objekt G = (D,R, I,O, S, J, s
0
, sat, split, True, ext)

– Wissensbank speichert Globalsuchtheorien für Grunddatentypen

• Filter Φ zur Verfeinerung der split-Operation
– Wohlfundiertheit: Filter garantiert Terminierung von splitΦ

Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien 7→ Axiom 6



Automatisierte Logik und Programmierung II §17 10 Globalsuchalgorithmen

Synthese von Globalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Globalsuchtheorie: allgemeine Suchstruktur für R
– Vorgefertigte Zerlegungsstruktur, die Axiome 1–5 erfüllt

– Formalisiert als Objekt G = (D,R, I,O, S, J, s
0
, sat, split, True, ext)

– Wissensbank speichert Globalsuchtheorien für Grunddatentypen

• Filter Φ zur Verfeinerung der split-Operation
– Wohlfundiertheit: Filter garantiert Terminierung von splitΦ

Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien 7→ Axiom 6

– Notwendigkeit: Filter eliminiert keine Lösungen
System prüft Axiom 4 zur Laufzeit



Automatisierte Logik und Programmierung II §17 10 Globalsuchalgorithmen

Synthese von Globalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Globalsuchtheorie: allgemeine Suchstruktur für R
– Vorgefertigte Zerlegungsstruktur, die Axiome 1–5 erfüllt

– Formalisiert als Objekt G = (D,R, I,O, S, J, s
0
, sat, split, True, ext)

– Wissensbank speichert Globalsuchtheorien für Grunddatentypen

• Filter Φ zur Verfeinerung der split-Operation
– Wohlfundiertheit: Filter garantiert Terminierung von splitΦ

Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien 7→ Axiom 6

– Notwendigkeit: Filter eliminiert keine Lösungen
System prüft Axiom 4 zur Laufzeit

– Effizienzsteigerung: System verfeinert notwendige Filter heuristisch



Automatisierte Logik und Programmierung II §17 10 Globalsuchalgorithmen

Synthese von Globalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Globalsuchtheorie: allgemeine Suchstruktur für R
– Vorgefertigte Zerlegungsstruktur, die Axiome 1–5 erfüllt

– Formalisiert als Objekt G = (D,R, I,O, S, J, s
0
, sat, split, True, ext)

– Wissensbank speichert Globalsuchtheorien für Grunddatentypen

• Filter Φ zur Verfeinerung der split-Operation
– Wohlfundiertheit: Filter garantiert Terminierung von splitΦ

Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien 7→ Axiom 6

– Notwendigkeit: Filter eliminiert keine Lösungen
System prüft Axiom 4 zur Laufzeit

– Effizienzsteigerung: System verfeinert notwendige Filter heuristisch

• Spezialisierungsmechanismen für G und Φ
– Wähle G passend zum Bildbereich der Spezifikation spec = (D,R,I ,O)



Automatisierte Logik und Programmierung II §17 10 Globalsuchalgorithmen

Synthese von Globalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Globalsuchtheorie: allgemeine Suchstruktur für R
– Vorgefertigte Zerlegungsstruktur, die Axiome 1–5 erfüllt

– Formalisiert als Objekt G = (D,R, I,O, S, J, s
0
, sat, split, True, ext)

– Wissensbank speichert Globalsuchtheorien für Grunddatentypen

• Filter Φ zur Verfeinerung der split-Operation
– Wohlfundiertheit: Filter garantiert Terminierung von splitΦ

Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien 7→ Axiom 6

– Notwendigkeit: Filter eliminiert keine Lösungen
System prüft Axiom 4 zur Laufzeit

– Effizienzsteigerung: System verfeinert notwendige Filter heuristisch

• Spezialisierungsmechanismen für G und Φ
– Wähle G passend zum Bildbereich der Spezifikation spec = (D,R,I ,O)

– Beweise spec�specG und extrahiere Substitution θ:D→DG

R⊆RG ∧ ∀x:D.I [x] ⇒ ∃x′:DG. (IG[x′] ∧ ∀y:R.O[x, y] ⇒ OG [x′, y])



Automatisierte Logik und Programmierung II §17 10 Globalsuchalgorithmen

Synthese von Globalsuch-Algorithmen

Spezialisiere vorformuliertes Programmierwissen

• Globalsuchtheorie: allgemeine Suchstruktur für R
– Vorgefertigte Zerlegungsstruktur, die Axiome 1–5 erfüllt

– Formalisiert als Objekt G = (D,R, I,O, S, J, s
0
, sat, split, True, ext)

– Wissensbank speichert Globalsuchtheorien für Grunddatentypen

• Filter Φ zur Verfeinerung der split-Operation
– Wohlfundiertheit: Filter garantiert Terminierung von splitΦ

Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien 7→ Axiom 6

– Notwendigkeit: Filter eliminiert keine Lösungen
System prüft Axiom 4 zur Laufzeit

– Effizienzsteigerung: System verfeinert notwendige Filter heuristisch

• Spezialisierungsmechanismen für G und Φ
– Wähle G passend zum Bildbereich der Spezifikation spec = (D,R,I ,O)

– Beweise spec�specG und extrahiere Substitution θ:D→DG

– Modifiziere G und Φ mit θ zu wohlfundierter Globalsuchtheorie für spec



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

a
1

a
2

a
3

a4 a5 ...

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

a
1

a
2

a
3

a4 a5 ...

a
1
a

1
...

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

a
1

a
2

a
3

a4 a5 ...

a
1
a

1
... a

2
a

1
...

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

a
1

a
2

a
3

a4 a5 ...

a
1
a

1
... a

2
a

1
... a

3
a

1
...

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

a
1

a
2

a
3

a4 a5 ...

a
1
a

1
... a

2
a

1
... a

3
a

1
... a4a1

...

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

a
1

a
2

a
3

a4 a5 ...

a
1
a

1
... a

2
a

1
... a

3
a

1
... a4a1

...

... ... ... ...

. . .

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

a
1

a
2

a
3

a4 a5 ...

a
1
a

1
... a

2
a

1
... a

3
a

1
... a4a1

...

... ... ... ...

. . .

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}

• Extraktion: Gesamter Präfix ext[s] ≡ {s}



Automatisierte Logik und Programmierung II §17 11 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

Suche =̂ Aufzählung der Präfixe einer Liste L

[]

a
1

a
2

a
3

a4 a5 ...

a
1
a

1
... a

2
a

1
... a

3
a

1
... a4a1

...

... ... ... ...

. . .

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}

• Extraktion: Gesamter Präfix ext[s] ≡ {s}

• Sinnvoll: nur Elemente aus M J [M, s] ≡ s ‘⊆′ M



Automatisierte Logik und Programmierung II §17 12 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}

• Extraktion: Gesamter Präfix ext[s] ≡ {s}

• Sinnvoll: nur Elemente aus M J [M, s] ≡ s ‘⊆′ M



Automatisierte Logik und Programmierung II §17 12 Globalsuchalgorithmen

GS-Theorie für Listen über endlicher Menge M⊆α

• Deskriptoren: gemeinsamer Präfix s sat[L, s] ≡ s v L

• Initialdeskriptor: leerer Präfix s
0
(M) ≡ []

• Splitting: Verlängern des Präfix split[M, s] ≡ {s·a|a ∈M}

• Extraktion: Gesamter Präfix ext[s] ≡ {s}

• Sinnvoll: nur Elemente aus M J [M, s] ≡ s ‘⊆′ M

Darstellung als formales Objekt der Wissensbank

gs seq set(α) ≡ D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM. true

O 7→ λM, L. range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s. range(s)⊆M

s
0

7→ λM. []

sat 7→ λL, s. svL

split 7→ λM, s. {s·a|a ∈M}

ext 7→ λs. {s}



Automatisierte Logik und Programmierung II §17 13 Globalsuchalgorithmen

Wohlfundiertheitsfilter für gs seq set(α)

• Φ1[M, s] ≡ |s|≤k

– Filter testet absolute Längenbegrenzung der Deskriptorfolge

– Einfacher, schnell auszuführender Test

– Filter garantiert Terminierung nach k Schritten, Baumgröße |M |k



Automatisierte Logik und Programmierung II §17 13 Globalsuchalgorithmen

Wohlfundiertheitsfilter für gs seq set(α)

• Φ1[M, s] ≡ |s|≤k

– Filter testet absolute Längenbegrenzung der Deskriptorfolge

– Einfacher, schnell auszuführender Test

– Filter garantiert Terminierung nach k Schritten, Baumgröße |M |k

• Φ2[M, s] ≡ |s|≤k ∗ |M |
– Filter testet Längenbegrenzung relativ zur Größe von M

– Einfacher, schnell auszuführender Test

– Terminierung nach k ∗ |M | Schritten, Baumgröße |M |k∗|M |



Automatisierte Logik und Programmierung II §17 13 Globalsuchalgorithmen

Wohlfundiertheitsfilter für gs seq set(α)

• Φ1[M, s] ≡ |s|≤k

– Filter testet absolute Längenbegrenzung der Deskriptorfolge

– Einfacher, schnell auszuführender Test

– Filter garantiert Terminierung nach k Schritten, Baumgröße |M |k

• Φ2[M, s] ≡ |s|≤k ∗ |M |
– Filter testet Längenbegrenzung relativ zur Größe von M

– Einfacher, schnell auszuführender Test

– Terminierung nach k ∗ |M | Schritten, Baumgröße |M |k∗|M |

• Φ3[M, s] ≡ nodups(s)

– Filter testet Deskriptorfolge auf Duplikate

– Test ist aufwendiger und sollte optimiert werden

– Terminierung nach |M | Schritten, Baumgröße |M |!



Automatisierte Logik und Programmierung II §17 13 Globalsuchalgorithmen

Wohlfundiertheitsfilter für gs seq set(α)

• Φ1[M, s] ≡ |s|≤k

– Filter testet absolute Längenbegrenzung der Deskriptorfolge

– Einfacher, schnell auszuführender Test

– Filter garantiert Terminierung nach k Schritten, Baumgröße |M |k

• Φ2[M, s] ≡ |s|≤k ∗ |M |
– Filter testet Längenbegrenzung relativ zur Größe von M

– Einfacher, schnell auszuführender Test

– Terminierung nach k ∗ |M | Schritten, Baumgröße |M |k∗|M |

• Φ3[M, s] ≡ nodups(s)

– Filter testet Deskriptorfolge auf Duplikate

– Test ist aufwendiger und sollte optimiert werden

– Terminierung nach |M | Schritten, Baumgröße |M |!

Jeder Filter macht gs seq set(α) wohlfundiert



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3 -5 1 2



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2
-3 1
-1



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2
-3 1
-1

• Ziel: Berechnung aller Costas Arrays der Größe n



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2
-3 1
-1

• Ziel: Berechnung aller Costas Arrays der Größe n

• Formalisierung vorkommender Begriffe:

dtrow(L,j) ≡ [L[i]-L[i+j]| i ∈[1..|L|-j] ]

perm(L,S) ≡ nodups(L) ∧ range(L)=S



Automatisierte Logik und Programmierung II §17 14 Globalsuchalgorithmen

Entwicklung eines Globalsuch-Algorithmus

für das Costas-Arrays Problem

• Costas Array der Größe n:

– Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

2 4 1 6 5 3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2
-3 1
-1

• Ziel: Berechnung aller Costas Arrays der Größe n

• Formalisierung vorkommender Begriffe:

dtrow(L,j) ≡ [L[i]-L[i+j]| i ∈[1..|L|-j] ]

perm(L,S) ≡ nodups(L) ∧ range(L)=S

• Spezifikation des Problems

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true

4. Zu zeigen ist also:

– ∀n:Z. n≥1 ⇒ ∃M:Set(Z). ∀p:Seq(Z).O(n,p) ⇒ range(p)⊆M



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true

4. Zu zeigen ist also:

– ∀n:Z. n≥1 ⇒ ∃M:Set(Z). ∀p:Seq(Z).O(n,p) ⇒ range(p)⊆M

– Heuristik: Suche Folgerungen von O(n,p), in denen range(p) vorkommt



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true

4. Zu zeigen ist also:

– ∀n:Z. n≥1 ⇒ ∃M:Set(Z). ∀p:Seq(Z).O(n,p) ⇒ range(p)⊆M

– Heuristik: Suche Folgerungen von O(n,p), in denen range(p) vorkommt

– Auffalten von perm liefert: perm(p,{1..n}) ⇒ range(p)⊆ {1..n}



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true

4. Zu zeigen ist also:

– ∀n:Z. n≥1 ⇒ ∃M:Set(Z). ∀p:Seq(Z).O(n,p) ⇒ range(p)⊆M

– Heuristik: Suche Folgerungen von O(n,p), in denen range(p) vorkommt

– Auffalten von perm liefert: perm(p,{1..n}) ⇒ range(p)⊆ {1..n}

– Wähle M ≡ {1..n} und extrahiere θ = λn.{1..n}



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true

4. Zu zeigen ist also:

– ∀n:Z. n≥1 ⇒ ∃M:Set(Z). ∀p:Seq(Z).O(n,p) ⇒ range(p)⊆M

– Heuristik: Suche Folgerungen von O(n,p), in denen range(p) vorkommt

– Auffalten von perm liefert: perm(p,{1..n}) ⇒ range(p)⊆ {1..n}

– Wähle M ≡ {1..n} und extrahiere θ = λn.{1..n}

5. Modifiziere gs seq set(Z) und Φ3 mit θ und der Spezifikation



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true

4. Zu zeigen ist also:

– ∀n:Z. n≥1 ⇒ ∃M:Set(Z). ∀p:Seq(Z).O(n,p) ⇒ range(p)⊆M

– Heuristik: Suche Folgerungen von O(n,p), in denen range(p) vorkommt

– Auffalten von perm liefert: perm(p,{1..n}) ⇒ range(p)⊆ {1..n}

– Wähle M ≡ {1..n} und extrahiere θ = λn.{1..n}

5. Modifiziere gs seq set(Z) und Φ3 mit θ und der Spezifikation

Gθ = (Z,Seq(Z),λn.n≥1,O, Seq(Z), λn,s.range(s)⊆{1..n},

λn.[], λL,s. svL, λn,s.{V·a|a ∈{1..n}}, λs.{s} )



Automatisierte Logik und Programmierung II §17 15 Globalsuchalgorithmen

Spezialisiere gs seq set(Z) und Φ3 auf Costas-Arrays

D 7→ Set(α)

R 7→ Seq(α)

I 7→ λM.true

O 7→ λM, L.range(L)⊆M

S 7→ Seq(α)

J 7→ λM, s.range(s)⊆M

s
0

7→ λM.[]

sat 7→ λL, s.svL

split 7→ λM, s.{s·a|a ∈M}

ext 7→ λs.{s}

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n})

∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Bildbereich stimmt mit RG=Seq(Z) überein

2. Eingabebereiche Z, DG=Set(Z) sind anzupassen

3. Keine Eingabebedingung zu prüfen: IG(M)=true

4. Zu zeigen ist also:

– ∀n:Z. n≥1 ⇒ ∃M:Set(Z). ∀p:Seq(Z).O(n,p) ⇒ range(p)⊆M

– Heuristik: Suche Folgerungen von O(n,p), in denen range(p) vorkommt

– Auffalten von perm liefert: perm(p,{1..n}) ⇒ range(p)⊆ {1..n}

– Wähle M ≡ {1..n} und extrahiere θ = λn.{1..n}

5. Modifiziere gs seq set(Z) und Φ3 mit θ und der Spezifikation

Gθ = (Z,Seq(Z),λn.n≥1,O, Seq(Z), λn,s.range(s)⊆{1..n},

λn.[], λL,s. svL, λn,s.{V·a|a ∈{1..n}}, λs.{s} )

Φ3,θ(n,s) = Φ3({1..n},s) = nodups(s) Φ3,θ ist notwendig für Gθ



Automatisierte Logik und Programmierung II §17 16 Globalsuchalgorithmen

Synthesesestrategie für Globalsuchalgorithmen

Gegeben eine Problemspezifikation

FUNCTION f(x:D) WHERE I[x] RETURNS {y:R |O[x, y]}



Automatisierte Logik und Programmierung II §17 16 Globalsuchalgorithmen

Synthesesestrategie für Globalsuchalgorithmen

Gegeben eine Problemspezifikation

FUNCTION f(x:D) WHERE I[x] RETURNS {y:R |O[x, y]}

1. Wähle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)



Automatisierte Logik und Programmierung II §17 16 Globalsuchalgorithmen

Synthesesestrategie für Globalsuchalgorithmen

Gegeben eine Problemspezifikation

FUNCTION f(x:D) WHERE I[x] RETURNS {y:R |O[x, y]}

1. Wähle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R, I, O)�G und extrahiere Substitution θ

Verfeinere G zu Globalsuchtheorie Gθ für (D, R, I, O)



Automatisierte Logik und Programmierung II §17 16 Globalsuchalgorithmen

Synthesesestrategie für Globalsuchalgorithmen

Gegeben eine Problemspezifikation

FUNCTION f(x:D) WHERE I[x] RETURNS {y:R |O[x, y]}

1. Wähle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R, I, O)�G und extrahiere Substitution θ

Verfeinere G zu Globalsuchtheorie Gθ für (D, R, I, O)

3. Wähle Wohlfundiertheitsfilter Φ für G (Wissensbank)

Beweise ‘Φθ notwendig für Gθ’ (Axiom 4)



Automatisierte Logik und Programmierung II §17 16 Globalsuchalgorithmen

Synthesesestrategie für Globalsuchalgorithmen

Gegeben eine Problemspezifikation

FUNCTION f(x:D) WHERE I[x] RETURNS {y:R |O[x, y]}

1. Wähle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R, I, O)�G und extrahiere Substitution θ

Verfeinere G zu Globalsuchtheorie Gθ für (D, R, I, O)

3. Wähle Wohlfundiertheitsfilter Φ für G (Wissensbank)

Beweise ‘Φθ notwendig für Gθ’ (Axiom 4)

4. Bestimme zusätzlichen notwendigen Filter Ψ für Gθ

– Leite Eigenschaften von x und s aus sat[z, s] ∧O[x, z] ab (Vorwärtsinferenz)



Automatisierte Logik und Programmierung II §17 16 Globalsuchalgorithmen

Synthesesestrategie für Globalsuchalgorithmen

Gegeben eine Problemspezifikation

FUNCTION f(x:D) WHERE I[x] RETURNS {y:R |O[x, y]}

1. Wähle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R, I, O)�G und extrahiere Substitution θ

Verfeinere G zu Globalsuchtheorie Gθ für (D, R, I, O)

3. Wähle Wohlfundiertheitsfilter Φ für G (Wissensbank)

Beweise ‘Φθ notwendig für Gθ’ (Axiom 4)

4. Bestimme zusätzlichen notwendigen Filter Ψ für Gθ

– Leite Eigenschaften von x und s aus sat[z, s] ∧O[x, z] ab (Vorwärtsinferenz)

5. Instantiiere Globalsuch-Schema mit Gθ, Φθ, Ψ

FUNCTION f(x:D) WHERE I [x] RETURNS {y:R |O[x, y]}
≡ if Φ[θ(x), s0(θ(x))] ∧Ψ[x, s0(θ(x))] then fgs(x, s0(θ(x))) else ∅

FUNCTION fgs(x, s:D×S) WHERE I [x] ∧J [θ(x), s] ∧Φ[θ(x), s] ∧Ψ[x, s]

RETURNS {y:R|O[x, y] ∧sat[y, s]}

≡ { z | z ∈ext[s] ∧O[x, z] } ∪
⋃

{ fgs(x, t) | t ∈split[θ(x), s] ∧ Φ[θ(x), t] ∧ Ψ[x, s] }



Automatisierte Logik und Programmierung II §17 17 Globalsuchalgorithmen

Globalsuchalgorithmus für Costas Arrays

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}



Automatisierte Logik und Programmierung II §17 17 Globalsuchalgorithmen

Globalsuchalgorithmus für Costas Arrays

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Wähle Globalsuchtheorie G = gs seq set(Z)



Automatisierte Logik und Programmierung II §17 17 Globalsuchalgorithmen

Globalsuchalgorithmus für Costas Arrays

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Wähle Globalsuchtheorie G = gs seq set(Z)

2. Beweis für (D, R, I, O)�gs seq set(Z) liefert θ[n] = {1..n}



Automatisierte Logik und Programmierung II §17 17 Globalsuchalgorithmen

Globalsuchalgorithmus für Costas Arrays

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Wähle Globalsuchtheorie G = gs seq set(Z)

2. Beweis für (D, R, I, O)�gs seq set(Z) liefert θ[n] = {1..n}

3. Wähle WF-Filter Φ so, daß Φθ notwendig für Gθ beweisbar
– perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j)) ∧ sv p⇒ Φ[{1..n},s]

– Leicht beweisbar nur für Φ3[M,s] = nodups(s)



Automatisierte Logik und Programmierung II §17 17 Globalsuchalgorithmen

Globalsuchalgorithmus für Costas Arrays

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Wähle Globalsuchtheorie G = gs seq set(Z)

2. Beweis für (D, R, I, O)�gs seq set(Z) liefert θ[n] = {1..n}

3. Wähle WF-Filter Φ so, daß Φθ notwendig für Gθ beweisbar
– perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j)) ∧ sv p⇒ Φ[{1..n},s]

– Leicht beweisbar nur für Φ3[M,s] = nodups(s)

4. Leite zusätzlichen notwendigen Filter Ψ ab

– Aus perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j)) ∧ svp

leite ab Ψ[n,s] = ∀i ∈domain(s).nodups(dtrow(s,j))



Automatisierte Logik und Programmierung II §17 17 Globalsuchalgorithmen

Globalsuchalgorithmus für Costas Arrays

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}

1. Wähle Globalsuchtheorie G = gs seq set(Z)

2. Beweis für (D, R, I, O)�gs seq set(Z) liefert θ[n] = {1..n}

3. Wähle WF-Filter Φ so, daß Φθ notwendig für Gθ beweisbar
– perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j)) ∧ sv p⇒ Φ[{1..n},s]

– Leicht beweisbar nur für Φ3[M,s] = nodups(s)

4. Leite zusätzlichen notwendigen Filter Ψ ab

– Aus perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j)) ∧ svp

leite ab Ψ[n,s] = ∀i ∈domain(s).nodups(dtrow(s,j))

5. Instantiiere den Standard-Globalsuchalgorithmus
FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j ∈domain(p).nodups(dtrow(p,j))}
≡ let rec Costasgs(n,s)

= { p | p ∈{s} ∧ perm(p,{1..n}) ∧ ∀j<n. nodups(dt-row(p,j)) }

∪
⋃

{ Costasgs(n,t) | t ∈{ s·i|i ∈{1..n} }
∧ nodups(t) ∧ ∀j< ∈domain(t). nodups(dt-row(t,j))}

in if nodups([]) ∧ ∀j ∈domain([]).nodups(dtrow([],j))

then Costasgs(n,[]) else ∅



Automatisierte Logik und Programmierung II §17 18 Globalsuchalgorithmen

Rückblick: Synthese mit Algorithmenschemata

Wissensbasierte Techniken zur Softwareentwicklung

• Erzeugte Algorithmen sind korrekt und effizient

– Formales theoretisches Fundament sichert Korrektheit

– Gute algorithmische Struktur liefert Effizienz

– Nachträgliche Optimierung des schematischen Algorithmus möglich/nötig

– Mathematische Notation übersetzbar in Programmiersprachen



Automatisierte Logik und Programmierung II §17 18 Globalsuchalgorithmen

Rückblick: Synthese mit Algorithmenschemata

Wissensbasierte Techniken zur Softwareentwicklung

• Erzeugte Algorithmen sind korrekt und effizient

– Formales theoretisches Fundament sichert Korrektheit

– Gute algorithmische Struktur liefert Effizienz

– Nachträgliche Optimierung des schematischen Algorithmus möglich/nötig

– Mathematische Notation übersetzbar in Programmiersprachen

• Synthesetechniken sind automatisierbar

– Jeder Schritt basiert auf logischer Inferenz

– Wissen steuert alle Strategien des Algorithmenentwurfs

– Ähnliche Techniken für Entwurf verschiedener Algorithmenstrukturen



Automatisierte Logik und Programmierung II §17 18 Globalsuchalgorithmen

Rückblick: Synthese mit Algorithmenschemata

Wissensbasierte Techniken zur Softwareentwicklung

• Erzeugte Algorithmen sind korrekt und effizient

– Formales theoretisches Fundament sichert Korrektheit

– Gute algorithmische Struktur liefert Effizienz

– Nachträgliche Optimierung des schematischen Algorithmus möglich/nötig

– Mathematische Notation übersetzbar in Programmiersprachen

• Synthesetechniken sind automatisierbar

– Jeder Schritt basiert auf logischer Inferenz

– Wissen steuert alle Strategien des Algorithmenentwurfs

– Ähnliche Techniken für Entwurf verschiedener Algorithmenstrukturen

• Techniken sind praktisch erfolgreich

– KIDS erzeugt korrekte Scheduling Algorithmen in wenigen Stunden

– Erzeugter Lisp Code 2000 mal schneller als existierende ADA Software


