(A LOBALSUCHALGORITHMEN I

ALLGEMEINE PROBLEMSTRUKTUR

Generate & Test

REDUKTIONSSTRUKTUR LOKALE STRUKTUR

/I\ Lokalsuche

KOMPLEMENTIERUNG - REDUKTION v-REDUKTION

Sie% l\

STATISCH REKURSIV STATISCH REKURSIV
Operator Match Divide & Conquer Fallanalyse Globalsuche

A-v-REDUKTION
Dynamische Programmierung

e Bestimmung aller Losungen eines Problems
— Aufzahlen von Kandidaten
— Eliminieren von Kandidaten, die keine Losungen darstellen

— Verallgemeinerung von Backtracking, Binarsuche, . ..

e V-Reduktion des Problems
— Gesamtlosung ist Vereinigung unabhangiger Teillosungen

— Gut geeignet fur Parallelverarbeitung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 1 Globalsuchalgorithmen

(GLOBALSUCHE: GENERELLE IDEE

Durchsuchen des gesamten Bildbereichs

e Suche von aufien '

— Global: Untersuchung von ganzen Kandidaten

Mengen von Losungskandidaten menge

— Wiederholtes Aufteilen von Kandidatenmengen

Zertellen

— Elimination von Kandidatenmengen ohne Losung
von Kandidaten

— Extraktion von tatsachlichen Losungen

e Reprasentanten erforderlich

— Verarbeitung der Mengen selbst zu aufwendig Extraktion

— Codiere Kandidatenmengen durch Deskriptoren und Test

— Simuliere Aufteilen und Filtern auf Deskriptoren

— Notwendige Informationen bei der Spezifikation: Eliminierte Kandidaten
- Wann ist ein Deskriptor eine sinnvolle Beschreibung einer Menge?
- Wie beschreibt man Zugehorigkeit zur Menge mittels Deskriptoren?

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 2 Globalsuchalgorithmen

EIN EINFACHER (GLOBALSUCHALGORITHMUS I

e Suche alle Indizes eines Wertes k in einer geordneten Liste L
FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N| ie{1..|LI}AL=k}

e Binare Suche und Aufsammeln von Losungen
— Spalte Indexmenge {1..|L|}in {1..m} und {m+1..|L|}
— Durchsuche linke & rechte Halfte und vereinige jeweilige Losungsmengen

e Vereinfache Verwaltungsaufwand mit Suchraumdeskriptoren
— Grenzen 1 und r der Indexmengen sind hinreichende Reprasentanten
— Reprasentanten sind nur dann sinnvoll wenn 1<1<r<|L|

— Verwende Hilfsfunktion o,,,(L,k,1,r) mit Initialaufruf o, (L,k,1,|L]|)
FUNCTION o,,,(L,k,1,r:Seq(Z) xZxNxN)
WHERE L#[] A ordered(L) » 1<1<r<|L|
RETURNS {i:N| ie{l..r} A L=k}

e Hilfsfunktion durchlauft Suchraum rekursiv
{1} falls 1=r A L=k
Ouur (L, k,1,1) = ¢ () falls 1=r A L#k
Ogur (L, k,1,m) Uoy,, (L,k,m+1,r) falls 1<r; m=(1+r)/2

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 3 Globalsuchalgorithmen

(G LOBALSUCHALGORITHMEN: EINHEITLICHE DARSTELLUNG I

e Vereinheitlichung durch Mengendarstellung
04 (L,k,1,r) = {i| ie{l}nri=r A L=k }
U U{ Our (L,k,n,m) | (n,m) e{(1, (1+r)/2), ((1+r)/2+1,r) | 1<r} }
— Mengenschreibweise unabhangig von binarer Aufspaltung des Suchraums
— (n,m) wird aus Aufspaltungsmenge ausgewahlt
— Losungsmenge wird durch Vereinigung einer Losungstamilie gebildet
— Direkte Losung wird durch Extraktion aus {1} = {1..1} erzeugt

e Optimierung durch Einsatz von Filtern
— Suche berticksichtigt nicht, dafl Liste geordnet ist (linearer Algorithmus)
— Suchraum {n..m} ohne Losung, falls L >k oder L <k
— Erganze Filter L <k<L fiir Aufspaltungsmenge (logarithmischer Algorithmus)

e Endform: effizienter, wohlstrukturierter Algorithmus
FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N| ie{1..|LI} A Lzk}
= let rec o4, (L,k,1,r) = {i]| ie{l} A i=r A L=k}
UlJ{ 0ue (Lo k,m,m) | (mym) e{(1, (1+1)/2), ((1+1)/2+1,7) | 1<r}
A L<k<L }
in if L<k<Lj; then 04, (L,k,1,IL]) else {

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 4 Globalsuchalgorithmen

ALLGEMEINES GLOBALSUCH-SCHEMA I

FUNCTION f(x:D) WHERE I[z] RETURNS {y:R | Olz,y|}
= let rec [, (x,8) = {z|zeext|s] nOlx,z|}

U U fsla,t) 1 tesplite,s] A x4}
in if Pz, sp(x)| then f(x,so(z)) else ()

e 7 zentrale Komponenten der Algorithmentheorie

- 5.5 Deskriptor fiir Kandidatenmengen

—sp: D— S Initialdeskriptor

— split:Dx.S — Set(S) Rekursive Aufteilung von Kandidatenmengen

- O0:DxS—B Filter zur Elimination unnotiger Deskriptoren
—ext:S— R Extraktion von Losungskandidaten aus Deskriptoren

Selektion mit Ausgabebedingung O|x, z]
-~ J:DxS—B J|x, s]: Deskriptor s ist sinnvoll fiir Eingabewert x

—sat:RxS—B sat|z, s|: z gehort zu der durch s beschriebenen Menge

Korrektheit folgt aus wenigen Voraussetzungen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 5 Globalsuchalgorithmen

KORREKTHEIT DES (GZLOBALSUCH-SCHEMAS I

FUNCTION f(z:D) WHERE [[z] RETURNS {y:R | O[z,]}

= let rec f,(x,s) = {zlzeext[s|]aOx, 2]} U U{ fos(x,t) | tesplitix, s|n Oz, 1] }
in if Pz, so(x)] then fi(x,so(x)) else 0

ist korrekt, wenn 6 Axiome erfullt sind

g=(D,R,1,0, S, J, s, sat, split, ,ext) wohlfundierte Globalsuchtheorie

1. Initialdeskriptor ist sinnvoll fiir zulassige Eingaben
Ix] = J[x,so(x)]

2. Splitting erhalt sinnvoller Deskriptoren
Ix]|AJd[x,s] = Vtesplit|z,s].J|x,t]

3. Initialdeskriptor enthalt alle Losungen
I[x] AO[x, 2] = sat[z, so(x)]

4. Filter ist notwendig (keine Losung wird eliminiert)
Iz AJ[x,s] = (®[x,s] <= Tz:R. sat|z,s] rOx, z])

5. Alle Losungen in endlich vielen Schritten extrahierbar
I[z] AO[x, 2] AT [z, 8] = (sat[z,s] < Fk:N.3tesplith[z,s]. z cext[t])

6. Splitting (mit Filterung) ist wohlfundiert
Iz]aJ[x,s] = 3Tk:N. splith[z,s] = 0

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 6 Globalsuchalgorithmen

(GLOBALSUCH-SCHEMA: KORREKTHEITSBEWEIS I

e Abspalten und Spezifikation der Hilfsfunktion f,

FUNCTION f(z:D) WHERE I[z] RETURNS {y:R | Olz, |}
= if Plx,so(x)] then [z, so(x)) else 0

FUNCTION f,s(x,s:DxS) WHERE I[x]AJ[x,s]A®[z,s] RETURNS {y:R|O|x,y|rsatly,s|}
= {z|zeext|s|nOlx, 2] } U U{ fos(x,t) | tesplitix, s|n Oz, 1] }

e Korrektheit von f folgt aus der von f,; mit Axiom 1, 3 & 4

— Fiir den Startwert so(z) gilt J|x, so(x)] (Axiom 1)
— Aus I[z] folgt {y: R | O|x,y| rsatly, so(x)]} = {y: R | Olz,y]} (Axiom 3)
— Aus {y: R | Olx,y] rsatly, so(x)]} # 0 folgt Oz, so(x)] (Axiom 4)

e Partielle Korrektheit von f,; folgt aus Axiom 5 & 2
spliti|x,s] = if k=0 then {s} else U{splitlgl[x,t]|tesplit[m,s]/\®[a:,t]}
Satz: Halt f,s|x, s| nach ¢ Schritten an (splity[z, s] = 0), so ist das Resultat
UL {z| zcext[t] n O[z, 2]} | t €| J{splith[z, s] | 0<j<i} }
(Lésungen, die aus Deskriptoren extrahierbar sind , die zu einem split} [z, s] gehbren)

Beweis: Induktion tiber 7, Auffalten der Rekursion, Standardlemmata

e Terminierung von f,; folgt aus Axiom 6

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 7 Globalsuchalgorithmen

BEISPIEL EINER (GLOBALSUCHTHEORIE
® Theorie gs osearch fur osearch

D —> Seq(N) xN

R — N

I — AL,k. L#[] rordered(L)

O +— AL,k,i.ie{1l..|LI}aL=k

S — Seq(N) xSeq(N)

J — ALk, 1,r. 1<1<r<|L|

s, AL,k. (1,IL])

sat AM,1l,r.ie{l..r}

split — MAL,k,1,r.if 1<r then {(1,(1+r)/2), ((1+r)/2+1,r)} else ()
) — AL,k, 1 ,r. L<k<L,

ext Al,r.if 1l=r then {1} else ()

e Alle 6 Axiome sind erfillt

. L#[] nordered(L) = 1<1<|L|<|L]

. L#[] rordered(L) r1<1<r<|L| = V(x,y)esplit[L,k,1,r]. 1<x<y<|L|
. L#[] nordered(L) nie{1l..|LI}aAL=k = ie{1..|L|}

. L#[] rordered(L) n1<1<r<|L| =
L<k<L, <« 3Jz:N.ze{l..rjaze{l..ILI}AL;=k
5. L#[] /\OI‘deI'ed(L)/\1<l<I'<|L|/\16{1 ILI} AL=k =
ie{l..r} & Ik:N.3(x,y) esplith [L,k,1,r].iec(if x=y then {x} else ()
6. L#[] nordered(L) n1<1<r<|L| = Jk:N.splith[L,k,1,r] =0

B W NN -

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 8 Globalsuchalgorithmen

SCHEMATISCHER (GLOBALSUCHALGORITHMUS FUR osearch I

FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)
RETURNS {i:N|ie{tl..|LI}AL=k}
= let rec f,(L,k,1,r)
= {z| ze(if 1l=r then {1} else) A ze{l..|L|}AL,=k}
Ul J{ 0w (L k,n,m) | (,m) € (if 1<r
then {(1, (1+r)/2), ((1+r)/2+1,r)}
else) » L<k<L }
in if L<k<Lj; then 0,4, (L,k, 1,IL|) else ()

Nach Optimierung durch Simplifikationen

FUNCTION osearch(L,k:Seq(Z)xZ) WHERE L#[] A ordered(L)

RETURNS {i:N| ie{1..|LI}AL=k}
= let rec f,(L,k,1,r)

= if 1=r then if L=k then {1} else ()

else let m = (1+r)/2 in
(if L<k<L, then o, (L,k,1,m) else ()
U (if L[m+1]<k<L, then o, (L,k,m+1,r) else ()
in if L<k<Lj; then o,, (L,k, 1,|L]) else f

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §17 9 Globalsuchalgorithmen

SYNTHESE VON (GLOBALSUCH-ALGORITHMEN I

Spezialisiere vorformuliertes Programmierwissen

e (Globalsuchtheorie: allgemeine Suchstruktur fur R
— Vorgefertigte Zerlegungsstruktur, die Axiome 1-5 erfullt
— Formalisiert als Objekt G = (D, R, 1,0, S, J, s,
— Wissensbank speichert Globalsuchtheorien fiir Grunddatentypen

sat, split, True, ext)

e Filter ® zur Verfeinerung der split-Operation

— Wohlfundiertheit: Filter garantiert Terminierung von splitg
Wissensbank speichert Wohlfundiertheitsfilter zu GS-Theorien +— Axiom 6

— Notwendigkeit: Filter eliminiert keine Losungen
System priift Axiom 4 zur Laufzeit

— Effizienzsteigerung: System verfeinert notwendige Filter heuristisch

e Spezialisierungsmechanismen fir ¢ und ¢

— Wahle G passend zum Bildbereich der Spezifikation spec = (D,R,I,0)
— Beweise spec < specg und extrahiere Substitution 6:D— Dg
— Modifiziere G und ® mit € zu wohlfundierter Globalsuchtheorie fiir spec

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 10 Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

Suche = Aufzahlung der Prafixe einer Liste L

a,... aa... aa... aa...

a, a4 as

[]
® Deskriptoren: gemeinsamer Prafix s sat|L,s] = sc L
e Initialdeskriptor: leerer Prafix s(M) =[]
e Splitting: Verlangern des Prafix split|M, s| = {s-alacM}
e Extraktion: Gesamter Prafix extls] = {s}
e Sinnvoll: nur Elemente aus M JIM,s] = s‘c/M

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 11 Globalsuchalgorithmen

(GS-THEORIE FUR LISTEN UBER ENDLICHER MENGE M Co

e Deskriptoren: gemeinsamer Préfix s sat|L,s] = st L
e Initialdeskriptor: leerer Prifix s{M)

e Splitting: Verlangern des Préfix split|lM, s| = {s-alaeM }
e Fixtraktion: Gesamter Prafix exts] = {s}
e Sinnvoll: nur Elemente aus M JIM,s] = s’ M

Darstellung als formales Objekt der Wissensbank

gs_seqset(a) = D — Set (av)
R - Seq ()
I — AM. true
0, — AM, L. range (L) <M
S Lo Seq(a)
J — AM, s. range(s)cM
S, — AM. [
sat +— AL, s. sCL
split — MM, s. {s-alaeM}
ext — As. {s}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 12 Globalsuchalgorithmen

WOHLFUNDIERTHEITSFILTER FUR gs_seq_set (a) |

o d (M, s] = |s|<k
— Filter testet absolute Langenbegrenzung der Deskriptorfolge
— Einfacher, schnell auszufiihrender Test

~ Filter garantiert Terminierung nach & Schritten, BaumgroBe |M|*

o b M, s| = |s|<k=*|M|
— Filter testet Langenbegrenzung relativ zur Grofie von M

— Einfacher, schnell auszufihrender Test

— Terminierung nach k * | M| Schritten, BaumgréBe | M |#*1Y]

e $3[M, s] = nodups(s)
— Filter testet Deskriptorfolge auf Duplikate
— Test ist aufwendiger und sollte optimiert werden

— Terminierung nach | M| Schritten, Baumgroie | M |!

Jeder Filter macht gs seq set(a) wohlfundiert

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 13 Globalsuchalgorithmen

ENTWICKLUNG EINES GLOBALSUCH-ALGORITHMUS
FUR DAS COSTAS-ARRAYS PROBLEM

e Costas Array der Grofie n:

— Permutation von {1..n} ohne Duplikate in Zeilen der Differenzentafel

24,116 5|3
-2 3 -5 1 2
1 -2 -4 3

-4 -1 -2

-3 1

-1

e Ziel: Berechnung aller Costas Arrays der Grofie n

e Formalisierung vorkommender Begriffe:

dtrow(L,j) = [L[i]-L[i+j] liel1..ILI-4]]
perm(L,S) = nodups(L) A range(L)=S

e Spezifikation des Problems

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) r» Vjedomain(p) .nodups(dtrow(p,j))}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 14 Globalsuchalgorithmen

SPEZIALISIERE gs seq set(Z) UND ®3 AUF COSTAS-ARRAYS I

D —
FUNCTION Costas (n:7Z) WHERE n>1 . zetio‘;
— eq(a
RETURNS {p:Seq(Z) | perm(p,{1..n}) W trwe
n Vjedomain(p) .nodups (dtrow(p,j))} O +—)M, L.range(L)ch
1. Bildbereich stimmt mit Rg=Seq(Z) iiberein oo Seq(a)
J — AM, s.range(s)cM
2. Eingabebereiche Z, Dg=Set(Z) sind anzupassen | s, +~— AN []
. . . . sat +— ML, s.sCL
3. Keine Eingabebedingung zu priifen: Ig(M)=true| .. . < fsalach)
4. Zu zeigen ist also: ext — As.{s}

~Vn:Z.n>1 = dM:Set(Z).Vp:Seq(Z).O(n,p) = range(p)<M
— Heuristik: Suche Folgerungen von O (n,p), in denen range (p) vorkommt

— Auffalten von perm liefert: perm(p,{1..n}) = range(p)c{l..n}
— WéhleM = {1..n} und extrahiere 8 = An.{1..n}

. Modifiziere gs seq set(Z) und ®3; mit § und der Spezifikation

Gy = (Z,8eq(Z) ,An.n>1,0, Seq(Z), An,s.range(s)c{l..n},
An. [1, AL,s.sCL, An,s.{Valac{l..n}}, As.{s})

P39(n,s) = P3({1..n},s) = nodups(s) ®3 ¢ ist notwendig fiir G

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 15 Globalsuchalgorithmen

SYNTHESESESTRATEGIE FUR (GLOBALSUCHALGORITHMEN I

Gegeben eine Problemspezifikation
FUNCTION f(x:D) WHERE I[x] RETURNS {y:R | O[x,y]}

1. Wahle Globalsuchtheorie G mit Ausgabetyp R (Wissensbank)

2. Beweise (D, R,1,0) <G und extrahiere Substitution 6
Verfeinere G zu Globalsuchtheorie Gy fiir (D, R, I, O)

3. Wahle Wohlfundiertheitsfilter ® fiir G (Wissensbank)

Beweise ‘®Py notwendig fiir Gy’ (Axiom 4)

4. Bestimme zusatzlichen notwendigen Filter ¥ fir Gy

— Leite Eigenschaften von x und s aus sat|z, s] AOlz, z] ab (Vorwirtsinferenz)

5. Instantiiere (GGlobalsuch-Schema mit Gy, ®g9, ¥

FUNCTION f(x:D) WHERE [[z] RETURNS {y:R | O[z, |}
= if P[A(x), so(0(2))| AV]x, s0(0(x))] then f,i(z,s0(f(x))) else ()
FUNCTION f,s(x,s:DxS) WHERE I[z]rJ[0(x),s] AP 0(x),s]AnV]z, s]
RETURNS {y:RI|O|x,y|rsatly, s|}
= {z| zeext[s] Oz, z] } U U{ Jos(z,t) | tesplit|f(x), s|n O|0(x), t]n Y]z, s] }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 16 Globalsuchalgorithmen

(GLOBALSUCHALGORITHMUS FUR COSTAS ARRAYS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vj€edomain(p) .nodups(dtrow(p,j))}

1. Wahle Globalsuchtheorie G = gs seq set(Z)
2. Beweis fiir (D, R,I,0) < gs seq set(Z) liefert O[n] = {1..n}

3. Wahle WF-Filter ® so, dafl 49 notwendig fiir Gy beweisbar
— perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j)) nscp= P[{1..n},s]

— Leicht beweisbar nur fiir ®3M,s| = nodups(s)

4. Leite zusatzlichen notwendigen Filter ¥ ab
— Aus perm(p,{1..n}) A Vjedomain(p) .nodups(dtrow(p,j)) A sCp
leite ab Wn,s|] = Viedomain(s) .nodups(dtrow(s,j))

5. Instantiiere den Standard-Globalsuchalgorithmus
FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) A Vj edomain(p) .nodups(dtrow(p,j))}
= let rec Costasys(n,s)
= {plpe{s} A perm(p,{1..n}) A Vj<n.nodups(dt-row(p,j)) }
U U{ Costasgs(n,t) | te{s'ilie{l..n}}
A nodups(t) A Vj<edomain(t) . nodups(dt-row(t,j))}
in if nodups([]) A Vjedomain([]).nodups(dtrow([],j))
then Costasgys(n,[]) else ()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 17 Globalsuchalgorithmen

RUCKBLICK: SYNTHESE MIT ALGORITHMENSCHEMATA I

Wissensbasierte Techniken zur Softwareentwicklung

e Erzeugte Algorithmen sind korrekt und effizient
— Formales theoretisches Fundament sichert Korrektheit
— Gute algorithmische Struktur liefert Effizienz
— Nachtrégliche Optimierung des schematischen Algorithmus moglich /notig

— Mathematische Notation tibersetzbar in Programmiersprachen

e Synthesetechniken sind automatisierbar
— Jeder Schritt basiert auf logischer Inferenz
— Wissen steuert alle Strategien des Algorithmenentwurfs

— Ahnliche Techniken fiir Entwurf verschiedener Algorithmenstrukturen

e Techniken sind praktisch erfolgreich
— KIDS erzeugt korrekte Scheduling Algorithmen in wenigen Stunden
— Erzeugter Lisp Code 2000 mal schneller als existierende ADA Software

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §17 18 Globalsuchalgorithmen

