Automatisierte Logik und Programmierung

Wergy,
SOVETSy,

Lektion 19 ) i @ﬁs

. P
%m
.

Korrektheitserhaltende Optimierungen :

1. Logische Vereinfachungen
2. Partielle Auswertung

3. Endliche Differenzierung
4. Fallanalyse

5. Datentyp-Verfeinerung



OPTIMIERUNG SCHEMATISCH ERZEUGTER ALGORITHMEN I

Eliminiere uiberfliissige Berechnungen

e Simplifikation: Logische Vereinfachung

— Aquivalenzumwandlung von Teilausdriicken, gef. im Kontext

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 1 Korrektheitserhaltende Optimierungen




OPTIMIERUNG SCHEMATISCH ERZEUGTER ALGORITHMEN I

Eliminiere uiberfliissige Berechnungen

e Simplifikation: Logische Vereinfachung

— Aquivalenzumwandlung von Teilausdriicken, gef. im Kontext

e Partielle Auswertung
— Symbolische Auswertung von Ausdriicken mit konstanten Komponenten

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 1 Korrektheitserhaltende Optimierungen




OPTIMIERUNG SCHEMATISCH ERZEUGTER ALGORITHMEN I

Eliminiere uiberfliissige Berechnungen

e Simplifikation: Logische Vereinfachung

— Aquivalenzumwandlung von Teilausdriicken, gef. im Kontext

e Partielle Auswertung
— Symbolische Auswertung von Ausdriicken mit konstanten Komponenten

e Endliche Differenzierung
— Inkrementelle Berechnung von Teilausdriicken in Schleifen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 1 Korrektheitserhaltende Optimierungen




OPTIMIERUNG SCHEMATISCH ERZEUGTER ALGORITHMEN I

Eliminiere uiberfliissige Berechnungen

e Simplifikation: Logische Vereinfachung

— Aquivalenzumwandlung von Teilausdriicken, gef. im Kontext

e Partielle Auswertung
— Symbolische Auswertung von Ausdriicken mit konstanten Komponenten

e Endliche Differenzierung
— Inkrementelle Berechnung von Teilausdriicken in Schleifen

e Fallanalyse
— Analyse und Vereinfachung von Teilausdriicken

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 1 Korrektheitserhaltende Optimierungen




OPTIMIERUNG SCHEMATISCH ERZEUGTER ALGORITHMEN I

Eliminiere uiberfliissige Berechnungen

e Simplifikation: Logische Vereinfachung

— Aquivalenzumwandlung von Teilausdriicken, gef. im Kontext

e Partielle Auswertung
— Symbolische Auswertung von Ausdriicken mit konstanten Komponenten

e Endliche Differenzierung
— Inkrementelle Berechnung von Teilausdriicken in Schleifen

e Fallanalyse
— Analyse und Vereinfachung von Teilausdriicken

e Datentyp-Verfeinerung

— Bestimmung konkreter Implementierungen fir abstrakte Datentypen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 1 Korrektheitserhaltende Optimierungen




OPTIMIERUNG SCHEMATISCH ERZEUGTER ALGORITHMEN I

Eliminiere tuiberfliissige Berechnungen

e Simplifikation: Logische Vereinfachung

— Aquivalenzumwandlung von Teilausdriicken, gef. im Kontext

e Partielle Auswertung
— Symbolische Auswertung von Ausdriicken mit konstanten Komponenten

e Endliche Differenzierung
— Inkrementelle Berechnung von Teilausdriicken in Schleifen

e Fallanalyse
— Analyse und Vereinfachung von Teilausdriicken

e Datentyp-Verfeinerung

— Bestimmung konkreter Implementierungen fir abstrakte Datentypen

e Sprachabhangige Optimierung & Compilierung

— Ausnutzen der Besonderheiten einer konkreten Zielsprache

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 1 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen



SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L)

(x.L)oL,= z.(LOL,) append / cons

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L) — aex.([Jo(b.L))

(x.L)oL,= z.(LOL,) append / cons

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L) — aex.([Jo(b.L))

[JoL = L append / nil

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(.L) — aex.([Jo(m.L)) — aecx.(b.L)

[JoL = L append / nil

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L) — aex.(b.L)

reca.L & r=avxel member / cons

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(m.L) — acx.(b.L) — a=x v acb.L

reca.L & r=avxel member / cons

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L) — a=x v acb.L

reca.L & r=avxel member / cons

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen



SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L) — a=x v aeb.L— a=x v a=b v acL

reca.L & r=avxel member / cons

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen



SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L) — a=x v a=b v acL
e Kontextunabhangige CI-Simplifikation
— Anwendung einfacher Gleichungen ohne Rahmenbedingungen

— Nur der aktuelle Teilausdruck mufl betrachtet werden
— Automatische Ausfiihrung solange anwendbare Lemmata vorhanden

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(.L) — a=x v a=b v aclL
e Kontextunabhangige CI-Simplifikation
— Anwendung einfacher Gleichungen ohne Rahmenbedingungen

— Nur der aktuelle Teilausdruck mufl betrachtet werden
— Automatische Ausfiihrung solange anwendbare Lemmata vorhanden

e Kontextabhangige CD-Simplifikation
— Anwendung von Gleichungen mit Rahmenbedingungen
— Rahmenbedingungen miissen durch Kontext erfillt werden

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




SIMPLIFIKATION I

Logische Vereinfachung von Teilausdricken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[])o(b.L) — a=x v a=b v acL

e Kontextunabhangige CI-Simplifikation
— Anwendung einfacher Gleichungen ohne Rahmenbedingungen
— Nur der aktuelle Teilausdruck mufl betrachtet werden
— Automatische Ausfiihrung solange anwendbare Lemmata vorhanden

e Kontextabhangige CD-Simplifikation
— Anwendung von Gleichungen mit Rahmenbedingungen
— Rahmenbedingungen miissen durch Kontext erfillt werden

e Benutzerinteraktion

— Auswahl von Teilausdruck und Art der Vereinfachung (CI/CD)
— Optional bei CD: Begrenzung der Vor- und Riickwartsinferenzen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen




OPTIMIERUNG DES COSTAS-ARRAYS ALGORITHMUS I

Ausgangspunkt: schematischer (zglobalsuchalgorithmus

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<|pl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,(n,[]) else ()

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n stpar Vj<lpl|.nodups(dtrow(p,j))}
= {plpe{s} A perm(p,{1..n}) A Vj<lpl.nodups(dtrow(p,j)) }
U U{Costasgs(n,t) |te{silie{l..n}} A nodups(t)
n Vj<ltl].nodups(dtrow(t,j)) }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 3 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl.nodups(dtrow(p,j))}

= if nodups([]) A Vj<|[1|.nodups(dtrow([],3))
then Costas,(n,[]) else ()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen




CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl.nodups(dtrow(p,j))}

= if nodups([]) A Vj<|[|.nodups(dtrow([],j))
then Costas,(n,[]) else ()

Domanenwissen: nodups([]) = true

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen




CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}

= if true A Vj<|[]|.nodups(dtrow([],]))
then Costas,(n,[]) else ()

Domanenwissen: nodups([]) = true

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen




CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}

= if true A Vj<|[]|.nodups(dtrow([],j))
then Costas,(n,[]) else ()

Domanenwissen: |[[]| = 0

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen




CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}
= if true A Vj<0.nodups(dtrow([],j))
then Costas,(n,[]) else ()

Domanenwissen: |[[]| = 0
Doméinenwissen: Vr<0.Plx] = true

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}

= 1f true A true

then Costas,(n,[]) else ()

Domanenwissen: |[[]| = 0
Doméinenwissen: Vr<0.Plx] = true

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}

= 1if true A true

then Costas,(n,[]) else ()

Domanenwissen: true A true = true

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}

= 1if true

then Costas,(n,[]) else ()

Domanenwissen: true A true = true

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}

= 1if true

then Costas,(n,[]) else ()

Domanenwissen: if true then a else b = «a

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}
= Costasy(n, [])

Domanenwissen: if true then a else b = «a

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,s(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl|.nodups(dtrow(p,j))}
= Costasy(n, [])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen




CI-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 4+ I

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n stpar Vj<lpl|.nodups(dtrow(p,j))}
= {plpe{s} A perm(p,{1..n}) A Vj<lpl.nodups(dtrow(p,j)) }
U U{Costasgs(n,t) |te{s'ilie{l..n}} A nodups(t)
n Vj<ltl].nodups(dtrow(t,j)) }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 5 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 4+ I

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n stpar Vj<lpl|.nodups(dtrow(p,j))}
= {plpe{s} A perm(p,{1..n}) A Vj<lpl.nodups(dtrow(p,j)) }
U U{Costasgs(n,t) |te{s'ilie{l..n}} A nodups(t)
n Vj<ltl].nodups(dtrow(t,j)) }

Doméanenwissen: {z | ze{x} rn P[z]} = if P|x] then {z} else ()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 5 Korrektheitserhaltende Optimierungen




CI-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 1 I

FUNCTION Costas., (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= {plpe{s} A perm(p,{1..n}) A Vj<lpl.nodups(dtrow(p,j)) }
U U{ Costas,s(n,t) |te{silic{l..n}} A nodups(t)
A Vi<ltl|.nodups(dtrow(t,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<lsl|.nodups(dtrow(s,j)) then {s} else ()
U U{Costasgs(n,t) |te{silie{l..n}} A nodups(t)
n Vj<ltl].nodups(dtrow(t,j)) }

Doméanenwissen: {z | ze{x} r Pz]} = if Plz| then {z} else ()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 5 Korrektheitserhaltende Optimierungen



CI-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 1 I

FUNCTION Costas., (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= {plpe{s} A perm(p,{1..n}) A Vj<lpl.nodups(dtrow(p,j)) }
U U{ Costas,s(n,t) |te{silic{l..n}} A nodups(t)
A Vi<ltl|.nodups(dtrow(t,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) r sCpa Vj<lpl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<lsl|.nodups(dtrow(s,j)) then {s} else
U U{Costasgs(n,t) |te{silie{l..n}} A nodups(t)
A Vi<lt|.nodups(dtrow(t,j)) }

Doméanenwissen: { flz,t] | te{glz,y|lyeS} A hlt]}
= {[flz, glz,yl] 1yeS nhlgle,yl]}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 5 Korrektheitserhaltende Optimierungen




CI-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 1 I

FUNCTION Costas., (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= {plpe{s} A perm(p,{1..n}) A Vj<lpl.nodups(dtrow(p,j)) }
U U{ Costas,s(n,t) |te{silic{l..n}} A nodups(t)
A Vi<ltl|.nodups(dtrow(t,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<lsl|.nodups(dtrow(s,j)) then {s} else
U U{Costasgs(n,s-i) | ie{l..n} A nodups(s-i)
A Vi<ls'il.nodups(dtrow(s-i,j)) }

Doméanenwissen: { flz,t] | te{glz,y|lyeS} A hlt]}
= {[flz, glz,yl] 1yeS nhlgle,yl]}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 5 Korrektheitserhaltende Optimierungen




CI-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costas., (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= {plpe{s} A perm(p,{1..n}) A Vj<lpl.nodups(dtrow(p,j)) }
U U{Costasgs(n,t) |te{silie{l..n}} A nodups(t)
A Vi<ltl|.nodups(dtrow(t,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) r sCpa Vj<lpl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<lsl|.nodups(dtrow(s,j)) then {s} else ()
U U{Costasgs(n,s-i) | ie{l..n} A nodups(s-i)
A Vi<ls'il.nodups(dtrow(s-i,j)) }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 5 Korrektheitserhaltende Optimierungen



KONTEXTABHANGIGE SIMPLIFIKATION I

Vereinfachung unter Beriicksichtigung von Kontext

e Anwendung bedingter (zleichungen
— Gleichung A = B mit Vorbedingung C'
— Formuliert als Lemma der Form C'= A=0B

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 6 Korrektheitserhaltende Optimierungen




KONTEXTABHANGIGE SIMPLIFIKATION I

Vereinfachung unter Beriicksichtigung von Kontext

e Anwendung bedingter (zleichungen
— Gleichung A = B mit Vorbedingung C'
— Formuliert als Lemma der Form C'= A=0B

e Anwendbarbarkeit abhangig vom Kontext
— Ersetze Teilausdruck A durch B, wenn Kontext Bedingung C' erfiillt
— Kontext ergibt sich aus Syntaxbaum des Gesamtausdrucks
- Bei Programmen: benachbarter Programmcode und Vorbedingung

— Hauptanwendung: Elimination redundanter Teilausdriicke

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 6 Korrektheitserhaltende Optimierungen




KONTEXTABHANGIGE SIMPLIFIKATION I

Vereinfachung unter Beriicksichtigung von Kontext

e Anwendung bedingter (zleichungen
— Gleichung A = B mit Vorbedingung C'
— Formuliert als Lemma der Form C'= A=0B

e Anwendbarbarkeit abhangig vom Kontext
— Ersetze Teilausdruck A durch B, wenn Kontext Bedingung C' erfiillt
— Kontext ergibt sich aus Syntaxbaum des Gesamtausdrucks
- Bei Programmen: benachbarter Programmcode und Vorbedingung

— Hauptanwendung: Elimination redundanter Teilausdriicke

e Komplizierter als CI-Simplifikation
— Vorbedingung kann auch Teil einer Gleichung C'r A= B sein
— Gleichung kann oft auch von riickwarts angewandt werden
— Automatische Anwendung muf tiefenbeschrankt werden

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 6 Korrektheitserhaltende Optimierungen




CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<lsl|.nodups(dtrow(s,j)) then {s} else
U U{ Costasgs(n,s'i) |ie{l..n} A nodups(s-i)
A Vi<ls'il.nodups(dtrow(s-i,j)) }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<lsl|.nodups(dtrow(s,j)) then {s} else
U U{Costasgs(n,s-i) |ie{l..n} A nodups(s-i)
A Vi<ls'il.nodups(dtrow(s-i,j)) }

Domanenwissen: P = (Q » P = Q)

Kontext der Vorbedingung: Vj<l|s|.nodups(dtrow(s,j))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasy,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if perm(s,{1..n}) then {s} else
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(si,j)) }

Domanenwissen: P = (Q » P = Q)

Kontext der Vorbedingung: Vj<l|s|.nodups(dtrow(s,j))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasy,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if perm(s,{1..n}) then {s} else 0
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(si,j)) }

Domanenwissen: perm(L,M) = range(L)cM s Mcrange(L) A nodups(L)

Kontext der Vorbedingung: range(s)c{1..n} » nodups(s)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasy,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if {1..n}crange(s) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(si,j)) }

Domanenwissen: perm(L,M) = range(L)cM s Mcrange(L) A nodups(L)
Kontext der Vorbedingung: range(s)c{1..n} » nodups(s)

Domanenwissen: McM' = M\M'=()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasy,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(si,j)) }

Domanenwissen: perm(L,M) = range(L)cM s Mcrange(L) A nodups(L)
Kontext der Vorbedingung: range(s)c{1..n} » nodups(s)

Domanenwissen: McM' = M\M'=()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasy,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()
U U{Costasgs(n,s-i) | ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(si,j)) }

Domanenwissen: nodups(L:z) = nodups(L) n z¢L

Kontext der Vorbedingung: nodups(s)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasy,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()

U U{Costasgs(n,s-i) lie{l..n} A i¢s
A Vj<ls'il.nodups(dtrow(si,j)) }

Domanenwissen: nodups(L:z) = nodups(L) n z¢L
Kontext der Vorbedingung: nodups(s)

Domanenwissen: x<M A 2¢L = xcM\range(L)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasy,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()

U U{ Costasg(n,s'i) | ie{1l..n}\range(s)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

Domanenwissen: nodups(L:z) = nodups(L) n z¢L
Kontext der Vorbedingung: nodups(s)

Domanenwissen: x<M A 2¢L = xcM\range(L)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()

U U{ Costasgs(n,s'i) | ie{1l..n}\range(s)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

Domanenwissen: dtrow(L-x,i) = dtrow(L,i) (Lip,-; — )

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()

U U{ Costasgs(n,s'i) | ie{1l..n}\range(s)
n Vj<ls-il.nodups(dtrow(s,j) (s|.i—;-1)) }

Domanenwissen: dtrow(L-x,i) = dtrow(L,i) (Lip,-; — )

nodups(L-x) = mnodups(L) A x¢L

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()

U U{ Costasgs(n,s'i) | ie{1l..n}\range(s)
n Vi<ls-il.nodups(dtrow(s,j)) A sju—;-i ¢ dtrow(s,j) }

Domanenwissen: nodups(L:z) = nodups(L) A x¢L
Vi<|L-xz|.Pli] = Yi<|LI.P[i » P|L|]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if {1..n}\range(s)=0 then {s} else ()
U U{ Costasgs(n,s'i) | ie{1l..n}\range(s)
n Vj<lsl|.nodups(dtrow(s,j)) A S| -1 ¢ dtrow(s,j)
n nodups(dtrow(s,|s|)) A sj_; -1 ¢ dtrow(s,|sl)}

Domanenwissen: Vi<|L-x|.Plii = Vi<|L|.Pli| » P[|L]]
dtrow(L,|L|) = []

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasy,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if {1..n}\range(s)=0 then {s} else ()
U U{ Costasgs(n,s'i) | ie{1l..n}\range(s)
A Vj<lsl.nodups(dtrow(s,j)) A s|.—;j—1 ¢ dtrow(s,j)
n nodups ([1) A sjg—;-i¢ [1}

Domanenwissen: dtrow(L,|L|) = I[]
nodups([]) = true
r¢[] = +true

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) r sCpa Vj<l|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()

U U{ Costasgs(n,s'i) | ie{1l..n}\range(s)
n Vi<lsl|.nodups(dtrow(s,j)) A s|.—;j-i ¢ dtrow(s,j) }

Domanenwissen: nodups([]) = true
r¢l] = true
Ve. Plz|nQlx] = Vx.Plx] n Vo.Q|x]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) r sCpa Vj<l|pl.nodups(dtrow(p,j))}
= if {1..n}\range(s)=0 then {s} else ()
U U{ Costas,s(n,si) | ie{l..n}\range(s) A Vj<I|s|.nodups(dtrow(s,j))
n Vi<lsl. s|s—j-i ¢ dtrow(s,j) }

Domanenwissen: Vz. Plz] Qz] = V. Plz] » Vo. Qlz]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if {1..n}\range(s)=0 then {s} else ()
U U{ Costas,s(n,si) | ie{l..n}\range(s) A Vj<l|s|.nodups(dtrow(s,j))
n Vi<lsl. s|s—j-i ¢ dtrow(s,j) }

Kontext der Vorbedingung: Vj<|s|.nodups(dtrow(s,j))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()
U U{ Costasy(n,s'i) | ie{l..n}\range(s) A Vj<lsl|.s|.—;j-1¢dtrow(s,j) }

Kontext der Vorbedingung: Vj<|s|.nodups(dtrow(s,j))

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS ur I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) An stpar Vj<l|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{l..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) r sCpa Vj<l|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=(0 then {s} else 0
U U{ Costasys(n,s'i) | ie{l..n}\range(s) A Vj<lIsl|.s|g—;-1 ¢dtrow(s,j) }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen



PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation
Beispiel:
| [x;5]0L]| unfold append

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation
Beispiel:
| [x;5]0L]| unfold append
— lx. ([6]oL)]| unfold append

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation

Beispiel:
| [x;5]0L]| unfold append
— lx. ([6]oL)]| unfold append
— lx. (6. ([J]oL))| unfold append

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation

Beispiel:
| [x;5]0L]| unfold append
— lx. ([6]oL)]| unfold append
— lx. (6. ([J]oL))| unfold append
— |x. (5. L) unfold length

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation

Beispiel:
| [x;5]0L]| unfold append
— lx. ([6]oL)]| unfold append
— |z, (6. ([1oL))| unfold append
— |x. (5. L) unfold length
— 1 + |5. L] unfold length

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation

Beispiel:
| [x;5]0L]| unfold append
— lx. ([6]oL)]| unfold append
— |z, (6. ([1oL))| unfold append
— |x. (5. L) unfold length
— 1 + |5. L] unfold length
— 1+ 1+ |L| simplify

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation

Beispiel:

| [x;5]0L]| unfold append
— lx. ([6]oL)]| unfold append
— |z, (6. ([1oL))| unfold append
— |x. (5. L) unfold length
— 1 + |5. L] unfold length
— 1+ 1+ |L| simplify
— 2 + | L]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation

Beispiel:

| [x;5]0L]| unfold append
— lx. ([6]oL)]| unfold append
— |z, (6. ([1oL))| unfold append
— |x. (5. L) unfold length
— 1 + |5. L] unfold length
— 1+ 1+ |L| simplify
— 2 + | L]

e Benutzerinteraktion:
— Auswahl von auszuwertendem Ausdruck und Optimierungstechnik

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG I

e Inkrementelle Berechnung wiederkehrender Teilausdriicke
— Ersetze Teilausdruck Elz] in f(z) durch neue Variable ¢
— Initialisiere mit ¢ Ausdruck fir Basiswerte
— Bestimme differentielle Veranderungen bei rekursivem Aufruf
— Effizienter als standige Neuberechnung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 9 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG I

e Inkrementelle Berechnung wiederkehrender Teilausdriicke
— Ersetze Teilausdruck Elz] in f(z) durch neue Variable ¢
— Initialisiere mit ¢ Ausdruck fir Basiswerte
— Bestimme differentielle Veranderungen bei rekursivem Aufruf
— Effizienter als standige Neuberechnung

e Endliche Differenzierung am Beispiel
FUNCTION Costas,, (n,s:ZxSeq(Z)) WHERE .. RETURNS ..
= if {1..n}\range(s)=(0 then {s} else )
U U{ Costasy,(n,s'i) | ie{l..n}\range(s) A Vj<Isl|.s|_;-1 ¢ dtrow(s,j)}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 9 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG I

e Inkrementelle Berechnung wiederkehrender Teilausdriicke
— Ersetze Teilausdruck Elz] in f(z) durch neue Variable ¢
— Initialisiere mit ¢ Ausdruck fir Basiswerte
— Bestimme differentielle Veranderungen bei rekursivem Aufruf
— Effizienter als standige Neuberechnung

e Endliche Differenzierung am Beispiel
FUNCTION Costas,, (n,s:ZxSeq(Z)) WHERE .. RETURNS ..
= if {1..n}\range(s)=(0 then {s} else )
U U{ Costasy,(n,si) | ie{l..n}\range(s) A Vj<Isl|.s_;-1 ¢ dtrow(s,j)}

— Benutzer identifiziert {1..n}\range(s) als wiederkehrende Berechnung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 9 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG I

e Inkrementelle Berechnung wiederkehrender Teilausdriicke
— Ersetze Teilausdruck Elz] in f(z) durch neue Variable ¢
— Initialisiere mit ¢ Ausdruck fir Basiswerte
— Bestimme differentielle Veranderungen bei rekursivem Aufruf
— Effizienter als standige Neuberechnung

e Endliche Differenzierung am Beispiel
FUNCTION Costas,, (n,s:ZxSeq(Z)) WHERE .. RETURNS ..
= if {1..n}\range(s)=(0 then {s} else )
U U{ Costasy,(n,si) | ie{l..n}\range(s) A Vj<Isl|.s_;-1 ¢ dtrow(s,j)}

FUNCTION Costas,,.(n,s,pool:ZxSeq(Z) xSeq(Z)) WHERE ... RETURNS ...
= if {1..n}\range(s)=( then {s} else )
U U{ Costas,s(n,si,{1..n}\range(s-i)) | ie{1l..n}\range(s)
nVi<lsl. sjsi—; -1 ¢ dtrow(s,j)}

— Benutzer identifiziert {1..n}\range(s) als wiederkehrende Berechnung

— System andert Costas,,(n,s) in Costas,, (n,s,pool)
und andert Aufrufe von Costas,,, entsprechend

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 9 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG I

e Inkrementelle Berechnung wiederkehrender Teilausdriicke
— Ersetze Teilausdruck Elz] in f(z) durch neue Variable ¢
— Initialisiere mit ¢ Ausdruck fir Basiswerte
— Bestimme differentielle Veranderungen bei rekursivem Aufruf
— Effizienter als standige Neuberechnung

e Endliche Differenzierung am Beispiel
FUNCTION Costas,, (n,s:ZxSeq(Z)) WHERE .. RETURNS ..
= if {1..n}\range(s)=(0 then {s} else )
U U{ Costasy,(n,si) | ie{l..n}\range(s) A Vj<Isl|.s_;-1 ¢ dtrow(s,j)}

FUNCTION Costas,,(n,s,pool ..) WHERE .. pool = {1..n}\range(s)
= if {1..n}\range(s)=( then {s} else )
U U{ Costas,s(n,si,{1..n}\range(s-i)) | ie{1l..n}\range(s)
nVi<lsl. sjsi—; -1 ¢ dtrow(s,j)}

— Benutzer identifiziert {1..n}\range(s) als wiederkehrende Berechnung

— System andert Costas,,(n,s) in Costas,, (n,s,pool)
und andert Aufrufe von Costas,,, entsprechend

— System erginzt pool = {1..n}\range(s) zur Eingabebedingung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 9 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG I

e Inkrementelle Berechnung wiederkehrender Teilausdriicke
— Ersetze Teilausdruck Elz] in f(z) durch neue Variable ¢
— Initialisiere mit ¢ Ausdruck fir Basiswerte
— Bestimme differentielle Veranderungen bei rekursivem Aufruf
— Effizienter als standige Neuberechnung

e Endliche Differenzierung am Beispiel
FUNCTION Costas,, (n,s:ZxSeq(Z)) WHERE .. RETURNS ..
= if {1..n}\range(s)=(0 then {s} else )
U U{ Costasy,(n,si) | ie{l..n}\range(s) A Vj<Isl|.s_;-1 ¢ dtrow(s,j)}

FUNCTION Costas,,(n,s,pool ..) WHERE .. pool = {1..n}\range(s)
= if {1..n}\range(s)=( then {s} else )
U U{ Costas,s(n,si,{1..n}\range(s-i)) | ie{1l..n}\range(s)
nVi<lsl. sjsi—; -1 ¢ dtrow(s,j)}

— Benutzer identifiziert {1..n}\range(s) als wiederkehrende Berechnung

— System andert Costas,,(n,s) in Costas,, (n,s,pool)
und andert Aufrufe von Costas,,, entsprechend

— System erginzt pool = {1..n}\range(s) zur Eingabebedingung
— System vereinfacht Vorkommen von {1..n}\range(s) zu pool

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 9 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG I

e Inkrementelle Berechnung wiederkehrender Teilausdriicke
— Ersetze Teilausdruck Elz] in f(z) durch neue Variable ¢
— Initialisiere mit ¢ Ausdruck fir Basiswerte
— Bestimme differentielle Veranderungen bei rekursivem Aufruf
— Effizienter als standige Neuberechnung

e Endliche Differenzierung am Beispiel
FUNCTION Costas,, (n,s:ZxSeq(Z)) WHERE .. RETURNS ..
= if {1..n}\range(s)=(0 then {s} else )
U U{ Costasy,(n,si) | ie{l..n}\range(s) A Vj<Isl|.s_;-1 ¢ dtrow(s,j)}

FUNCTION Costas,,(n,s,pool ..) WHERE .. pool = {1..n}\range(s)
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i}) | iepool
AVi<lsl. sjgq—; -1 ¢ dtrow(s,j)}

— Benutzer identifiziert {1..n}\range(s) als wiederkehrende Berechnung

— System andert Costas,,(n,s) in Costas,, (n,s,pool)
und andert Aufrufe von Costas,,, entsprechend

— System erginzt pool = {1..n}\range(s) zur Eingabebedingung
— System vereinfacht Vorkommen von {1..n}\range(s) zu pool

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 9 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG — FORMALIA I

e Abstraktion iiber Ausdruck E|[x| in Funktion f(x)

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f(x)....
FUNCTION f(x:D):R WHERE I[x] RETURNS y SUCH THAT Oz,

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 10 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG — FORMALIA I

e Abstraktion iiber Ausdruck E|[x| in Funktion f(x)

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f(xg)....
FUNCTION f(z:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y]

— Erweitere f zu neuem f'; so dal f(x) = f'(z, E|x])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 10 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG — FORMALIA I

e Abstraktion iiber Ausdruck E|[x| in Funktion f(x)

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f(xg)....
FUNCTION f(z:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y]

— Erweitere f zu neuem f'; so dal f(x) = f'(z, E|x])
— Ersetze alle Aufrufe der Art f(t[z]) durch f'(t[x], E[t|z]])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 10 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG — FORMALIA I

e Abstraktion iiber Ausdruck E|[x| in Funktion f(x)

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f(xg)....
FUNCTION f(z:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y]

— Erweitere f zu neuem f'; so dal f(x) = f'(z, E|x])
— Ersetze alle Aufrufe der Art f(¢[z]) durch f/'(t[x], E[t|z]])
— Erganze Gleichung c=F|x] zur Eingabebedingung von f’

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 10 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG — FORMALIA I

e Abstraktion iiber Ausdruck E|[x| in Funktion f(x)

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f(xg)....
FUNCTION f(z:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y]

— Erweitere f zu neuem f'; so dal f(x) = f'(z, E|x])
— Ersetze alle Aufrufe der Art f(¢[z]) durch f/'(t[x], E[t|z]])
— Erganze Gleichung c=F|x] zur Eingabebedingung von f’

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f'(xo, E[xg))....

FUNCTION f(z,c:DxD’):R WHERE I[z]nc=FE[z] RETURNS y SUCH THAT O|z,y]
= Ex....f'(t[x], E[t[z]]).

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 10 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG — FORMALIA I

e Abstraktion iiber Ausdruck E|[x| in Funktion f(x)

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f(xg)....
FUNCTION f(z:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y]

— Erweitere f zu neuem f'; so dal f(x) = f'(z, E|x])
— Ersetze alle Aufrufe der Art f(¢[z]) durch f/'(t[x], E[t|z]])
— Erganze Gleichung c=F|x] zur Eingabebedingung von f’

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f'(xo, E[xg))....
FUNCTION f(z,c:DxD’):R WHERE I[z] nc=FE[r] RETURNS y SUCH THAT O|z,y]

= Elz)..f(t[z], Et[])..

e Simplifikation mit Gleichung ¢ = FE|x]
— Transformiere Ausdriicke der Form E| g|z|] in die Form ¢'| F|x] |
— Ersetze alle Vorkommen von El|z| durch ¢

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 10 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG — FORMALIA I

e Abstraktion iiber Ausdruck E|[x| in Funktion f(x)

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f(xg)....
FUNCTION f(z:D):R WHERE [[z] RETURNS y SUCH THAT Olz,y]

— Erweitere f zu neuem f'; so dal f(x) = f'(z, E|x])
— Ersetze alle Aufrufe der Art f(¢[z]) durch f/'(t[x], E[t|z]])
— Erganze Gleichung c=F|x] zur Eingabebedingung von f’

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f'(xo, E[xg))....
FUNCTION f(z,c:DxD’):R WHERE I[z] nc=FE[r] RETURNS y SUCH THAT O|z,y]

= Elz)..f(t[z], Et[])..

e Simplifikation mit Gleichung ¢ = FE|x]
— Transformiere Ausdriicke der Form E| g|z|] in die Form ¢'| F|x] |
— Ersetze alle Vorkommen von El|z| durch ¢

e Benutzerinteraktion:
— Auswahl des zu ersetzenden Teilausdrucks Elz| in f(x)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 10 Korrektheitserhaltende Optimierungen




ENDLICHE DIFFERENZIERUNG VON Costasgyr I

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpar Vj<lpl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=(0 then {s} else 0
U U{ Costasy,(n,s'i) | ie{l..n}\range(s) A Vj<lIsl.s|.—;-1¢dtrow(s,j)}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 11 Korrektheitserhaltende Optimierungen



ENDLICHE DIFFERENZIERUNG VON Costasgyr I

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpar Vj<lpl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=(0 then {s} else 0
U U{ Costasy(n,s'i) | ie{1l..n}\range(s) A Vj<lIsl|.s|.—;j-1¢dtrow(s,j)}

Benutzer identifiziert {1..n}\range(s) als wiederkehrende Berechnung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 11 Korrektheitserhaltende Optimierungen



ENDLICHE DIFFERENZIERUNG VON Costasgyr I

FUNCTION Costas.,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|sl|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()
U U{ Costasy(n,si) |ie{l..n}\range(s) A Vj<l|sl.s|.—-;j-1¢dtrow(s,j)}

FUNCTION Costas,(n,s,pool:ZxSeq(Z)xSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s)
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<l|pl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i}) | iepool
nVi<lsl. sjsi—;—1 ¢ dtrow(s, j)}

Benutzer identifiziert {1..n}\range(s) als wiederkehrende Berechnung
System andert Costas,,, (n,s) in Costas,,, (n,s,pool) und andert Aufrufe

System ergénzt pool = {1..n}\range(s) zur Eingabebedingung
und vereinfacht Vorkommen von {1..n}\range(s) zu pool

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 11 Korrektheitserhaltende Optimierungen



ENDLICHE DIFFERENZIERUNG VON Costasgyr I

FUNCTION Costas.,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|sl|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()
U U{ Costasy(n,si) |ie{l..n}\range(s) A Vj<l|sl.s|.—-;j-1¢dtrow(s,j)}

FUNCTION Costas, (n,s,pool:ZxSeq(Z)xSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s)
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<l|pl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i}) | i epool
nVji<lsl. sjsi—;—1 ¢ dtrow(s, j)}

Benutzer identifiziert |s| als wiederkehrende Berechnung

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 11 Korrektheitserhaltende Optimierungen



ENDLICHE DIFFERENZIERUNG VON Costasgyr I

FUNCTION Costas.,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|sl|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()
U U{ Costasy(n,si) |ie{l..n}\range(s) A Vj<l|sl.s|.—-;j-1¢dtrow(s,j)}

FUNCTION Costasg,(n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xX7)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<l|pl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | i epool

A Vj<ssize. Sggizer1—j 1 ¢ dtrow(s,j)}

Benutzer identifiziert |s| als wiederkehrende Berechnung
System andert Costas,,, (n,s,pool) in Costas,(n,s,pool,ssize)

System erganzt ssize = |s| zur Eingabebedingung

und vereinfacht Vorkommen von |s| zu ssize

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 11 Korrektheitserhaltende Optimierungen



ENDLICHE DIFFERENZIERUNG VON Costasgyr I

FUNCTION Costas.,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|sl|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()
U U{ Costasy(n,si) |ie{l..n}\range(s) A Vj<l|sl.s|.—-;j-1¢dtrow(s,j)}

FUNCTION Costas,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<l|pl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | i epool

A Vj<ssize. Sggizer1—j 1 ¢ dtrow(s,j)}

Modifizierter Aufruf aus Hauptfunktion

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) n Vj<Ipl.nodups(dtrow(p,j))}

= Costas,(n,[1,{1..n},0)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 11 Korrektheitserhaltende Optimierungen



FALLANALYSE I

e Separate Analyse von Einzelfallen
— Auswertung von Tests aus anderen Programmteilen
— Zweck: globale Vereinfachung durch lokale Einzelanalyse

— Formal: Erzeugung eines Kontexts + CD-Simplifikation

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 12 Korrektheitserhaltende Optimierungen



FALLANALYSE I

e Separate Analyse von Einzelfallen
— Auswertung von Tests aus anderen Programmteilen
— Zweck: globale Vereinfachung durch lokale Einzelanalyse

— Formal: Erzeugung eines Kontexts + CD-Simplifikation

e Kontexterzeugung mit Pradikat P
— Ersetze Ausdruck Ex| durch if P[z] then F[z]| else F|z]
— Vereinfache F[z] in den entsprechenden Kontexten P|x| und = P|x]

— Distributiere if P[z] then...else...
tiber Ausdriicke aulerhalb von F|x]

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 12 Korrektheitserhaltende Optimierungen




FALLANALYSE I

e Separate Analyse von Einzelfallen
— Auswertung von Tests aus anderen Programmteilen
— Zweck: globale Vereinfachung durch lokale Einzelanalyse

— Formal: Erzeugung eines Kontexts + CD-Simplifikation

e Kontexterzeugung mit Pradikat P
— Ersetze Ausdruck Ex| durch if P[z] then F[z]| else F|z]
— Vereinfache F[z] in den entsprechenden Kontexten P|x| und = P|x]

— Distributiere if P[z] then...else...
tiber Ausdriicke aulerhalb von F|x]

e Benutzerinteraktion:

— Auswahl des zu ersetzenden Teilausdrucks F|z]
— Auswahl des Pridikats P|x]

— Auslosung der nachfolgenden Simplifikationen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 12 Korrektheitserhaltende Optimierungen




FALLANALYSE IN Costasgyr

FUNCTION Costas,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizet1—j —1 ¢ dtrow(s,j)}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costas,,, (n,s,pool,ssize:ZxSeq(Z) xSeq(Z) x7Z)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1—j—1 ¢ dtrow(s,j)}

Markierung von Ausdruck und Testpradikat

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costasgu;(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<lpl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

FUNCTION Costasg, (n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE ... RETURNS ...
= if pool=() then {s} else ()
U if pool=( then U{ Costas,s(n,s i,pool\{i},ssize+1) | i epool
A Vj<ssize. Sggizer1—j—1 ¢ dtrow(s,j)}
else U{ Costas,s(n,s i,pool\{i},ssize+1) | i epool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

Aufspalten des Ausdrucks auf beide Falle

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costasgu;(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<l|sl|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<lpl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

FUNCTION Costasg, (n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE ... RETURNS ...
= if pool=() then {s} else ()
U if pool=() then U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizer1—j—1 ¢ dtrow(s,j)}
else U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sssizet+1—j -i ¢ dtrow(s ,j)}

Doménenwissen: U{f(i) |ie(} =0
Kontext der Fallanalyse: pool=()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costasgu;(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<lpl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

FUNCTION Costasg, (n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE ... RETURNS ...
= if pool=() then {s} else ()
U if pool=() then ()
else U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

Doménenwissen: U{f(i) i€} = ()
Kontext der Fallanalyse: pool=()

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costasgu;(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<lpl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

FUNCTION Costasg, (n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE ... RETURNS ...
= if pool=() then {s} else ()
U if pool=() then ()
else U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

Distribution von if pool=() then ... else .. lber U

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costasgu;(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<lpl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

FUNCTION Costasg, (n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE ... RETURNS ...
= if pool=() then {s}U
else ) U U{ Costas,s(n,s i,pool\{i},ssize+1) | i epool

A Vj<ssize. Sggizet1—j ~1 ¢ dtrow(s,j)}

Distribution von if pool=() then ... else .. iiber U

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costasgu;(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<lpl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

FUNCTION Costasg, (n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE ... RETURNS ...
= if pool=() then {s}Ul
else () U U{ Costas,s(n,s i,pool\{i},ssize+1) | i epool

A Vj<ssize. Sggizet1—j ~1 ¢ dtrow(s,j)}

Domanenwissen: SUD = () = QUS

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costasgu;(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<lpl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

FUNCTION Costasg, (n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE ... RETURNS ...
= if pool=() then {s}
else U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizet1—j ~1 ¢ dtrow(s,j)}

Domanenwissen: SUD = () = QUS

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 13 Korrektheitserhaltende Optimierungen



FALLANALYSE IN Costasgyr

FUNCTION Costasgu;(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<l|sl|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<lpl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool
A Vj<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

FUNCTION Costasg, (n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s]|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<l|pl.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costas,s(n,s i,pool\{i},ssize+1) | i epool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §19 13 Korrektheitserhaltende Optimierungen



DATENTYPVERFEINERUNG I

Ersetze abstrakte Datentypen

durch effiziente konkrete Implementierung

e Eindliche Mengen
— Listen: Standardimplementierung
— Bitvektor: Mengen tiber endlichem Domain
— Charakteristische Funktion: effiziente Elementrelation/Einfiigen /Loschen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 14 Korrektheitserhaltende Optimierungen




DATENTYPVERFEINERUNG I

Ersetze abstrakte Datentypen

durch effiziente konkrete Implementierung

e Eindliche Mengen
— Listen: Standardimplementierung
— Bitvektor: Mengen tiber endlichem Domain
— Charakteristische Funktion: effiziente Elementrelation/Einfiigen /Loschen

e Folgen
— Verkettete Liste: Standardimplementierung
— Umgekehrt verkettete Liste: gut fiir append-Operation -

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 14 Korrektheitserhaltende Optimierungen




DATENTYPVERFEINERUNG I

Ersetze abstrakte Datentypen

durch effiziente konkrete Implementierung

e Eindliche Mengen
— Listen: Standardimplementierung
— Bitvektor: Mengen tiber endlichem Domain
— Charakteristische Funktion: effiziente Elementrelation/Einfiigen /Loschen

e Folgen
— Verkettete Liste: Standardimplementierung
— Umgekehrt verkettete Liste: gut fiir append-Operation -

e Benutzerinteraktion:
— System stellt Auswahl von Implementierungen bereit
— Benutzer wahlt Nichtstandard-Implementierung einzeln fir jede Variable
— System ersetzt abstrakte Notation durch konkrete Implementierung
und figt gef. Konversionen ein

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 14 Korrektheitserhaltende Optimierungen




DATENTYPVERFEINERUNG FUR Costasgyr I

FUNCTION Costas,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 15 Korrektheitserhaltende Optimierungen



DATENTYPVERFEINERUNG FUR Costasgyr I

FUNCTION Costas,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

n: 7 — Standardimplementierung positiver ganzen Zahlen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 15 Korrektheitserhaltende Optimierungen



DATENTYPVERFEINERUNG FUR Costasgyr I

FUNCTION Costas,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1-j —1 ¢ dtrow(s,j)}

n: 7 — Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettete Liste

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 15 Korrektheitserhaltende Optimierungen



DATENTYPVERFEINERUNG FUR Costasgyr I

FUNCTION Costas,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

n: 7 — Standardimplementierung positiver ganzen Zahlen
s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettete Liste

pool: Set (Z): Elemente werden aus fester Menge entnommen — Bitvektor

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 15 Korrektheitserhaltende Optimierungen



DATENTYPVERFEINERUNG FUR Costasgyr I

FUNCTION Costas,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

n: 7 — Standardimplementierung positiver ganzen Zahlen
s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettete Liste
pool: Set (Z): Elemente werden aus fester Menge entnommen — Bitvektor

ssize: Z — Standardimplementierung positiver ganzen Zahlen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 15 Korrektheitserhaltende Optimierungen



DATENTYPVERFEINERUNG FUR Costasgyr I

FUNCTION Costas,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

n: 7 — Standardimplementierung positiver ganzen Zahlen
s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettete Liste
pool: Set (Z): Elemente werden aus fester Menge entnommen — Bitvektor

ssize: Z — Standardimplementierung positiver ganzen Zahlen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 15 Korrektheitserhaltende Optimierungen



