Automatisierte Logik und Programmierung

Wergy,
SOVETSy,

Lektion 19) i @ﬁs

. P
%m
.

Korrektheitserhaltende Optimierungen :

1. Logische Vereinfachungen
2. Partielle Auswertung

3. Endliche Differenzierung
4. Fallanalyse

5. Datentyp-Verfeinerung

OPTIMIERUNG SCHEMATISCH ERZEUGTER ALGORITHMEN I

Eliminiere tuiberfliissige Berechnungen

e Simplifikation: Logische Vereinfachung
— Aquivalenzumwandlung von Teilausdriicken, gef. im Kontext

e Partielle Auswertung
— Symbolische Auswertung von Ausdriicken mit konstanten Komponenten

e Endliche Differenzierung
— Inkrementelle Berechnung von Teilausdriicken in Schleifen

e Fallanalyse
— Analyse und Vereinfachung von Teilausdriicken

e Datentyp-Verfeinerung

— Bestimmung konkreter Implementierungen fir abstrakte Datentypen

e Sprachabhangige Optimierung & Compilierung

— Ausnutzen der Besonderheiten einer konkreten Zielsprache

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 1 Korrektheitserhaltende Optimierungen

SIMPLIFIKATION

Logische Vereinfachung von Teilausdriucken

e Transformation in aquivalente Ausdriicke
— Term-Rewriting mit gerichteten Gleichungen
— Gleichungen formuliert als Lemmata der Wissensbank
— Identifikation geeigneter Lemmata tiber Operatoren im Ausdruck

ac(x.[]Do(b.B a=x v a=b v acl
e Kontextunabhangige CI-Simplifikation
— Anwendung einfacher Gleichungen ohne Rahmenbedingungen

— Nur der aktuelle Teilausdruck mufl betrachtet werden
— Automatische Ausfiihrung solange anwendbare Lemmata vorhanden

e Kontextabhangige CD-Simplifikation
— Anwendung von Gleichungen mit Rahmenbedingungen
— Rahmenbedingungen miissen durch Kontext erfillt werden

e Benutzerinteraktion

— Auswahl von Teilausdruck und Art der Vereinfachung (CI/CD)
— Optional bei CD: Begrenzung der Vor- und Riickwartsinferenzen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 2 Korrektheitserhaltende Optimierungen

OPTIMIERUNG DES COSTAS-ARRAYS ALGORITHMUS I

Ausgangspunkt: schematischer (zglobalsuchalgorithmus

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl.nodups(dtrow(p,j))}

= if nodups([]) A Vj<|[]|.nodups(dtrow([],j))
then Costas,(n,[]) else ()

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n stpa Vj<|pl.nodups(dtrow(p,j))}
= {plpe{s} n perm(p,{1..n}) A Vj<Ipl.nodups(dtrow(p,j)) }
U U{Costasgs(n,t) |te{silie{l..n}} A nodups(t)
n Vj<ltl].nodups(dtrow(t,j)) }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 3 Korrektheitserhaltende Optimierungen

CI-SIMPLIFIKATIONEN IM HAUPTALGORITHMUS COSTAS I

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl|.nodups(dtrow(p,j))}
= if nodups([]) A Vj<I[J|.nodups(dtrow([], j))
then Costas,(n,[]) else ()

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<Ipl|.nodups(dtrow(p,j))}
= Costasy(n, [])

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 4 Korrektheitserhaltende Optimierungen

CI-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS 41 I

FUNCTION Costas,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) » sCpa Vj<lpl.nodups(dtrow(p,j))}
= {plpe{s} » perm(p,{1..n}) A Vj<lpl.nodups(dtrow(p,j)) }
U U{Costasgs(n,t) |te{silie{l..n}} A nodups(t)
A Vi<ltl|.nodups(dtrow(t,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) » sCpa Vj<|pl.nodups(dtrow(p,j))}
= if perm(s,{l..n}) A Vj<lsl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costasys(n,s'i) |ie{l..n} A nodups(s-i)
A Vi<ls'il.nodups(dtrow(s-i,j)) }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 5 Korrektheitserhaltende Optimierungen

KONTEXTABHANGIGE SIMPLIFIKATION I

Vereinfachung unter Beriicksichtigung von Kontext

e Anwendung bedingter (leichungen
— Gleichung A = B mit Vorbedingung C
— Formuliert als Lemma der Form C'=A=8B

e Anwendbarbarkeit abhangig vom Kontext
— Ersetze Teilausdruck A durch B, wenn Kontext Bedingung C' erfiillt
— Kontext ergibt sich aus Syntaxbaum des Gesamtausdrucks
- Bei Programmen: benachbarter Programmcode und Vorbedingung

— Hauptanwendung: Elimination redundanter Teilausdriicke

e Komplizierter als CI-Simplifikation
— Vorbedingung kann auch Teil einer Gleichung C'Ar A= B sein
— Gleichung kann oft auch von ruckwarts angewandt werden

— Automatische Anwendung muf tiefenbeschrankt werden

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 6 Korrektheitserhaltende Optimierungen

CD-SIMPLIFIKATIONEN IN DER HILFSFUNKTION COSTAS ur I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) A stpar Vj<|pl.nodups(dtrow(p,j))}
= if perm(s,{1..n}) A Vj<l|sl|.nodups(dtrow(s,j)) then {s} else ()
U U{ Costas,s(n,s'i) |ie{1..n} A nodups(s-i)
A Vj<ls'il.nodups(dtrow(s'i,j)) }

FUNCTION Costas,,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) » sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else 0
U U{ Costasy,(n,si) |ie{l..n}\range(s) A Vj<lIsl|. s ;-1 ¢dtrow(s,]) }

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 7 Korrektheitserhaltende Optimierungen

PARTIELLE AUSWERTUNG I

Auswertung von Ausdricken mit Konstanten

e Symbolische Auswertung zur Entwurfszeit
— Reduktion von Ausdriicken, deren “Wert” bestimmt werden kann
— Anwendbar, solange ein konstanter Teilausdruck vorhanden
— Formale Technik: Auffalten von Definitionen + Simplifikation
Je nach Inhalt der Wissensbank auch reine Simplifikation

Beispiel:

| [x;5]0L]| unfold append
— lx. ([6]oL)]| unfold append
— lx. (6. ([1oL))] unfold append
— |x. (6. L) unfold length
— 1 + |5. L] unfold length
— 1+ 1+ |L] simplify
— 2 + | L]

e Benutzerinteraktion:
— Auswahl von auszuwertendem Ausdruck und Optimierungstechnik

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 8 Korrektheitserhaltende Optimierungen

ENDLICHE DIFFERENZIERUNG I

e Inkrementelle Berechnung wiederkehrender Teilausdriicke
— Ersetze Teilausdruck Elz] in f(z) durch neue Variable ¢
— Initialisiere mit ¢ Ausdruck fir Basiswerte
— Bestimme differentielle Veranderungen bei rekursivem Aufruf
— Effizienter als standige Neuberechnung

e Endliche Differenzierung am Beispiel
FUNCTION Costas,, (n,s:ZxSeq(Z)) WHERE .. RETURNS ..
= if {1..n}\range(s)=(then {s} else)
U U{ Costasy,(n,s'i) | ie{l..n}\range(s) A Vj<Isl|. s _;-1 ¢dtrow(s,j)}

FUNCTION Costas,,(n,s,pool ..) WHERE .. pool = {1..n}\range(s)
= if pool=() then {s} else ()
U U{ Costas,s(n,s i,pool\{i}) | iepool
AVi<lsl. sjgi—; -1 ¢ dtrow(s,j)}

— Benutzer identifiziert {1. .n}\range(s) als wiederkehrende Berechnung

— System andert Costas,,,(n,s) in Costas,,(n,s,pool)
und andert Aufrufe von Costas,,, entsprechend

— System erginzt pool = {1..n}\range(s) zur Eingabebedingung
— System vereinfacht Vorkommen von {1..n}\range(s) zu pool

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 9 Korrektheitserhaltende Optimierungen

ENDLICHE DIFFERENZIERUNG — FORMALIA I

e Abstraktion iiber Ausdruck E[x] in Funktion f(x)

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f(x)...
FUNCTION f(z:D):R WHERE I[z] RETURNS y SUCH THAT Olz,y]
= ..Elz]...f(t[x]).

— Erweitere f zu neuem f’; so dafl f(x) = f'(z, F|x])
— Ersetze alle Aufrufe der Art f(t[z]) durch f/'(t[x], E[t|z]])
— Erginze Gleichung c=F|x| zur Eingabebedingung von f’

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... = ...f'(xo, Elzg))....

FUNCTION f(x,c:DxD’):R WHERE I[z]rc=FE[z] RETURNS y SUCH THAT Oz,
= ..Elz]...f'(t[z], E[tfz]]).

e Simplifikation mit Gleichung ¢ = FE|x]
— Transformiere Ausdriicke der Form FE/|g|x|] in die Form ¢'[F[x]]
— Ersetze alle Vorkommen von E|z| durch ¢

e Benutzerinteraktion:
— Auswahl des zu ersetzenden Teilausdrucks Elz| in f(x)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 10 Korrektheitserhaltende Optimierungen

ENDLICHE DIFFERENZIERUNG VON Costasgyr I

FUNCTION Costasg,, (n,s:ZxSeq(Z))
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|sl|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}

= if {1..n}\range(s)=0 then {s} else ()
U U{ Costasy(n,si) |ie{l..n}\range(s) A Vj<lsl.s|.—-;j-1¢dtrow(s,j)}

FUNCTION Costas,,(n,s,pool,ssize:ZXxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{ Costasys(n,s i,pool\{i},ssize+1) | iepool

<ssize. Sggizet1—j—1 ¢ dtrow(s,j)}

Modifizierter Aufruf aus Hauptfuﬁl&jlon

FUNCTION Costas (n:Z) WHERE n>1
RETURNS {p:Seq(Z) | perm(p,{1..n}) » Vj<lpl.nodups(dtrow(p,j))}
= Costas,(n,[],{1..n},0)

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 11 Korrektheitserhaltende Optimierungen

FALLANALYSE I

e Separate Analyse von Einzelfallen
— Auswertung von Tests aus anderen Programmteilen
— Zweck: globale Vereinfachung durch lokale Einzelanalyse

— Formal: Erzeugung eines Kontexts 4+ CD-Simplifikation

e Kontexterzeugung mit Pradikat P
— Ersetze Ausdruck Ex| durch if P[z] then F[z]| else F|z]
— Vereinfache F[z] in den entsprechenden Kontexten P|x| und = P|x]

— Distributiere if P[z] then...else...
tiber Ausdriicke aulerhalb von FE/|x]

e Benutzerinteraktion:

— Auswahl des zu ersetzenden Teilausdrucks F|z]
— Auswahl des Pridikats P|x]

— Auslosung der nachfolgenden Simplifikationen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 12 Korrektheitserhaltende Optimierungen

FALLANALYSE IN Costasgyr

FUNCTION Costasgy, (n,s,pool,ssize:ZXSeq(Z) xSeq(Z) XZ)
WHERE n>1 A range(s)<{l..n} A nodups(s) A Vj<l|sl|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s} else ()
U U{Costasgs(n,S'i,pool\{i},ssize+1) | i epool
A Vj<ssize. Sggizer1—j —1 ¢ dtrow(s,j)}

FUNCTION Costas,, (n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xX7Z)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s]|
RETURNS {p:Seq(Z) | perm(p,{1..n}) r sCpa Vj<|pl.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costas,s(n,s i,pool\{i},ssize+1) | i epool

A Vj<ssize. Sggizer1—j—1 ¢ dtrow(s,j)}

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG 11 §19 13 Korrektheitserhaltende Optimierungen

DATENTYPVERFEINERUNG I

Ersetze abstrakte Datentypen

durch effiziente konkrete Implementierung

e Endliche Mengen
— Listen: Standardimplementierung
— Bitvektor: Mengen tiber endlichem Domain
— Charakteristische Funktion: effiziente Elementrelation/Einfiigen /Loschen

e Folgen
— Verkettete Liste: Standardimplementierung
— Umgekehrt verkettete Liste: gut fiir append-Operation -

e Benutzerinteraktion:
— System stellt Auswahl von Implementierungen bereit
— Benutzer wahlt Nichtstandard-Implementierung einzeln fiir jede Variable
— System ersetzt abstrakte Notation durch konkrete Implementierung
und figt gef. Konversionen ein

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 14 Korrektheitserhaltende Optimierungen

DATENTYPVERFEINERUNG FUR Costasgyr I

FUNCTION Costas,,,(n,s,pool,ssize:ZxSeq(Z) xSeq(Z) xXZ)
WHERE n>1 A range(s)c{l..n} A nodups(s) A Vj<|s|.nodups(dtrow(s,j))
n pool = {1..n}\range(s) A ssize=|s|
RETURNS {p:Seq(Z) | perm(p,{1..n}) n sCpar Vj<lpl|.nodups(dtrow(p,j))}
= if pool=() then {s}
else U{ Costas,s(n,s i,pool\{i},ssize+1) | iepool

A Vj<ssize. Sggizet1—j —1 ¢ dtrow(s,j)}

n: 7 — Standardimplementierung positiver ganzen Zahlen
s: Seq(Z), Elemente werden hinten angehangt — umgekehrt verkettete Liste
pool: Set(Z): Elemente werden aus fester Menge entnommen — Bitvektor

ssize: Z — Standardimplementierung positiver ganzen Zahlen

AUTOMATISIERTE LOGIK UND PROGRAMMIERUNG II §19 15 Korrektheitserhaltende Optimierungen

