
Automatisierte Logik und Programmierung

Lektion 19

Korrektheitserhaltende Optimierungen

1. Logische Vereinfachungen

2. Partielle Auswertung

3. Endliche Differenzierung

4. Fallanalyse

5. Datentyp-Verfeinerung

Automatisierte Logik und Programmierung II §19 1 Korrektheitserhaltende Optimierungen

Optimierung schematisch erzeugter Algorithmen

Eliminiere überflüssige Berechnungen

• Simplifikation: Logische Vereinfachung
– Äquivalenzumwandlung von Teilausdrücken, ggf. im Kontext

• Partielle Auswertung
– Symbolische Auswertung von Ausdrücken mit konstanten Komponenten

• Endliche Differenzierung
– Inkrementelle Berechnung von Teilausdrücken in Schleifen

• Fallanalyse
– Analyse und Vereinfachung von Teilausdrücken

• Datentyp-Verfeinerung
– Bestimmung konkreter Implementierungen für abstrakte Datentypen

• Sprachabhängige Optimierung & Compilierung
– Ausnutzen der Besonderheiten einer konkreten Zielsprache

Automatisierte Logik und Programmierung II §19 2 Korrektheitserhaltende Optimierungen

Simplifikation

Logische Vereinfachung von Teilausdrücken

• Transformation in äquivalente Ausdrücke
– Term-Rewriting mit gerichteten Gleichungen

– Gleichungen formuliert als Lemmata der Wissensbank

– Identifikation geeigneter Lemmata über Operatoren im Ausdruck

a ∈(x.[])◦(b.L)7→ a=x ∨ a=b ∨ a ∈L

• Kontextunabhängige CI-Simplifikation
– Anwendung einfacher Gleichungen ohne Rahmenbedingungen

– Nur der aktuelle Teilausdruck muß betrachtet werden

– Automatische Ausführung solange anwendbare Lemmata vorhanden

• Kontextabhängige CD-Simplifikation
– Anwendung von Gleichungen mit Rahmenbedingungen

– Rahmenbedingungen müssen durch Kontext erfüllt werden

• Benutzerinteraktion
– Auswahl von Teilausdruck und Art der Vereinfachung (CI/CD)

– Optional bei CD: Begrenzung der Vor- und Rückwärtsinferenzen

Automatisierte Logik und Programmierung II §19 3 Korrektheitserhaltende Optimierungen

Optimierung des Costas-Arrays Algorithmus

Ausgangspunkt: schematischer Globalsuchalgorithmus

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if nodups([]) ∧ ∀j<|[]|.nodups(dtrow([],j))

then Costasgs(n,[]) else ∅

FUNCTION Costasaux (n,s:Z×Seq(Z))

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ { p | p ∈{s} ∧ perm(p,{1..n}) ∧ ∀j<|p|. nodups(dtrow(p,j)) }

∪
⋃

{ Costasgs(n,t) | t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dtrow(t,j))}

Automatisierte Logik und Programmierung II §19 4 Korrektheitserhaltende Optimierungen

CI-Simplifikationen im Hauptalgorithmus Costas

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if nodups([]) ∧ ∀j<|[]|.nodups(dtrow([],j))

then Costasgs(n,[]) else ∅

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ Costasgs(n,[])

Automatisierte Logik und Programmierung II §19 5 Korrektheitserhaltende Optimierungen

CI-Simplifikationen in der Hilfsfunktion Costasaux

FUNCTION Costasaux (n,s:Z×Seq(Z))

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ { p | p ∈{s} ∧ perm(p,{1..n}) ∧ ∀j<|p|. nodups(dtrow(p,j)) }

∪
⋃

{ Costasgs(n,t) | t ∈{ s·i|i ∈{1..n} } ∧ nodups(t)

∧ ∀j<|t|. nodups(dtrow(t,j))}

FUNCTION Costasaux (n,s:Z×Seq(Z))

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if perm(s,{1..n}) ∧ ∀j<|s|. nodups(dtrow(s,j)) then {s} else ∅

∪
⋃

{ Costasgs(n,s·i) | i ∈{1..n} ∧ nodups(s·i)

∧ ∀j<|s·i|. nodups(dtrow(s·i,j)) }

Automatisierte Logik und Programmierung II §19 6 Korrektheitserhaltende Optimierungen

Kontextabhängige Simplifikation

Vereinfachung unter Berücksichtigung von Kontext

• Anwendung bedingter Gleichungen

– Gleichung A≡B mit Vorbedingung C

– Formuliert als Lemma der Form C ⇒A≡B

• Anwendbarbarkeit abhängig vom Kontext

– Ersetze Teilausdruck A durch B, wenn Kontext Bedingung C erfüllt

– Kontext ergibt sich aus Syntaxbaum des Gesamtausdrucks

· Bei Programmen: benachbarter Programmcode und Vorbedingung

– Hauptanwendung: Elimination redundanter Teilausdrücke

• Komplizierter als CI-Simplifikation

– Vorbedingung kann auch Teil einer Gleichung C ∧A≡B sein

– Gleichung kann oft auch von rückwärts angewandt werden

– Automatische Anwendung muß tiefenbeschränkt werden

Automatisierte Logik und Programmierung II §19 7 Korrektheitserhaltende Optimierungen

CD-Simplifikationen in der Hilfsfunktion Costasaux

FUNCTION Costasaux (n,s:Z×Seq(Z))

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if perm(s,{1..n}) ∧ ∀j<|s|. nodups(dtrow(s,j)) then {s} else ∅

∪
⋃

{ Costasgs(n,s·i) | i ∈{1..n} ∧ nodups(s·i)
∧ ∀j<|s·i|. nodups(dtrow(s·i,j)) }

FUNCTION Costasaux (n,s:Z×Seq(Z))

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if {1..n}\range(s)=∅ then {s} else ∅

∪
⋃

{ Costasgs(n,s·i) | i ∈{1..n}\range(s) ∧ ∀j<|s|. s|s·i|−j -i 6∈ dtrow(s,j) }

Automatisierte Logik und Programmierung II §19 8 Korrektheitserhaltende Optimierungen

Partielle Auswertung

Auswertung von Ausdrücken mit Konstanten

• Symbolische Auswertung zur Entwurfszeit
– Reduktion von Ausdrücken, deren “Wert” bestimmt werden kann

– Anwendbar, solange ein konstanter Teilausdruck vorhanden

– Formale Technik: Auffalten von Definitionen + Simplifikation

Je nach Inhalt der Wissensbank auch reine Simplifikation

Beispiel:
|[x;5] ◦L| unfold append

7→ |x. ([5] ◦L)| unfold append

7→ |x. (5. ([] ◦L))| unfold append

7→ |x. (5.L)| unfold length

7→ 1 + |5.L| unfold length

7→ 1 + 1 + |L| simplify

7→ 2 + |L|

• Benutzerinteraktion:
– Auswahl von auszuwertendem Ausdruck und Optimierungstechnik

Automatisierte Logik und Programmierung II §19 9 Korrektheitserhaltende Optimierungen

Endliche Differenzierung

• Inkrementelle Berechnung wiederkehrender Teilausdrücke

– Ersetze Teilausdruck E[x] in f(x) durch neue Variable c

– Initialisiere mit c Ausdruck für Basiswerte

– Bestimme differentielle Veränderungen bei rekursivem Aufruf

– Effizienter als ständige Neuberechnung

• Endliche Differenzierung am Beispiel
FUNCTION Costasaux(n,s:Z×Seq(Z)) WHERE ... RETURNS ...

≡ if {1..n}\range(s)=∅ then {s} else ∅

∪
⋃

{ Costasgs(n,s·i) | i ∈{1..n}\range(s) ∧ ∀j<|s|. s|s·i|−j -i 6∈ dtrow(s,j)}

FUNCTION Costasaux(n,s,pool ...) WHERE ... pool = {1..n}\range(s)

≡ if pool=∅ then {s} else ∅
∪

⋃
{ Costasgs(n,s·i,pool\{i}) | i ∈pool

∧ ∀j<|s|. s|s·i|−j -i 6∈ dtrow(s,j)}

– Benutzer identifiziert {1..n}\range(s) als wiederkehrende Berechnung

– System ändert Costasaux(n,s) in Costasaux(n,s,pool)

und ändert Aufrufe von Costasaux entsprechend

– System ergänzt pool = {1..n}\range(s) zur Eingabebedingung

– System vereinfacht Vorkommen von {1..n}\range(s) zu pool

Automatisierte Logik und Programmierung II §19 10 Korrektheitserhaltende Optimierungen

Endliche Differenzierung – Formalia

• Abstraktion über Ausdruck E[x] in Funktion f(x)
FUNCTION main... WHERE ... RETURNS ... SUCH THAT... ≡f(x0)....

FUNCTION f(x:D):R WHERE I [x] RETURNS y SUCH THAT O[x, y]
≡E[x]....f(t[x])..

– Erweitere f zu neuem f ′, so daß f(x) = f ′(x, E[x])

– Ersetze alle Aufrufe der Art f(t[x]) durch f ′(t[x], E[t[x]])

– Ergänze Gleichung c=E[x] zur Eingabebedingung von f ′

FUNCTION main... WHERE ... RETURNS ... SUCH THAT... ≡f ′(x0, E[x0])....

FUNCTION f(x, c:D×D’):R WHERE I [x] ∧c=E[x] RETURNS y SUCH THAT O[x, y]
≡E[x]....f ′(t[x], E[t[x]])..

• Simplifikation mit Gleichung c = E[x]
– Transformiere Ausdrücke der Form E[g[x]] in die Form g ′[E[x]]

– Ersetze alle Vorkommen von E[x] durch c

• Benutzerinteraktion:
– Auswahl des zu ersetzenden Teilausdrucks E[x] in f(x)

Automatisierte Logik und Programmierung II §19 11 Korrektheitserhaltende Optimierungen

Endliche Differenzierung von Costasaux

FUNCTION Costasaux (n,s:Z×Seq(Z))

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))
RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if {1..n}\range(s)=∅ then {s} else ∅

∪
⋃

{ Costasgs(n,s·i) | i ∈{1..n}\range(s) ∧ ∀j<|s|. s|s·i|−j -i 6∈ dtrow(s,j)}

FUNCTION Costasaux(n,s,pool,ssize:Z×Seq(Z)×Seq(Z)×Z)

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))

∧ pool = {1..n}\range(s) ∧ ssize=|s|

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if pool=∅ then {s} else ∅

∪
⋃

{ Costasgs(n,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<ssize. sssize+1−j -i 6∈ dtrow(s,j)}
Modifizierter Aufruf aus Hauptfunktion

FUNCTION Costas (n:Z) WHERE n≥1

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ Costasgs(n,[],{1..n},0)

Automatisierte Logik und Programmierung II §19 12 Korrektheitserhaltende Optimierungen

Fallanalyse

• Separate Analyse von Einzelfällen

– Auswertung von Tests aus anderen Programmteilen

– Zweck: globale Vereinfachung durch lokale Einzelanalyse

– Formal: Erzeugung eines Kontexts + CD-Simplifikation

• Kontexterzeugung mit Prädikat P

– Ersetze Ausdruck E[x] durch if P [x] then E[x] else E[x]

– Vereinfache E[x] in den entsprechenden Kontexten P [x] und ¬P [x]

– Distributiere if P [x] then...else...

über Ausdrücke außerhalb von E[x]

• Benutzerinteraktion:

– Auswahl des zu ersetzenden Teilausdrucks E[x]

– Auswahl des Prädikats P [x]

– Auslösung der nachfolgenden Simplifikationen

Automatisierte Logik und Programmierung II §19 13 Korrektheitserhaltende Optimierungen

Fallanalyse in Costasaux

FUNCTION Costasaux(n,s,pool,ssize:Z×Seq(Z)×Seq(Z)×Z)

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))
∧ pool = {1..n}\range(s) ∧ ssize=|s|

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if pool=∅ then {s} else ∅
∪

⋃
{ Costasgs(n,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<ssize. sssize+1−j -i 6∈ dtrow(s,j)}

FUNCTION Costasaux(n,s,pool,ssize:Z×Seq(Z)×Seq(Z)×Z)

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))

∧ pool = {1..n}\range(s) ∧ ssize=|s|

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if pool=∅ then {s}

else
⋃

{ Costasgs(n,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<ssize. sssize+1−j -i 6∈ dtrow(s,j)}

Automatisierte Logik und Programmierung II §19 14 Korrektheitserhaltende Optimierungen

Datentypverfeinerung

Ersetze abstrakte Datentypen

durch effiziente konkrete Implementierung

• Endliche Mengen
– Listen: Standardimplementierung

– Bitvektor: Mengen über endlichem Domain

– Charakteristische Funktion: effiziente Elementrelation/Einfügen/Löschen

• Folgen
– Verkettete Liste: Standardimplementierung

– Umgekehrt verkettete Liste: gut für append-Operation ·

• Benutzerinteraktion:
– System stellt Auswahl von Implementierungen bereit

– Benutzer wählt Nichtstandard-Implementierung einzeln für jede Variable

– System ersetzt abstrakte Notation durch konkrete Implementierung

und fügt ggf. Konversionen ein

Automatisierte Logik und Programmierung II §19 15 Korrektheitserhaltende Optimierungen

Datentypverfeinerung für Costasaux

FUNCTION Costasaux(n,s,pool,ssize:Z×Seq(Z)×Seq(Z)×Z)

WHERE n≥1 ∧ range(s)⊆{1..n} ∧ nodups(s) ∧ ∀j<|s|.nodups(dtrow(s,j))

∧ pool = {1..n}\range(s) ∧ ssize=|s|

RETURNS {p:Seq(Z) | perm(p,{1..n}) ∧ svp ∧ ∀j<|p|.nodups(dtrow(p,j))}

≡ if pool=∅ then {s}

else
⋃

{ Costasgs(n,s·i,pool\{i},ssize+1)| i ∈pool

∧ ∀j<ssize. sssize+1−j -i 6∈ dtrow(s,j)}

n: Z 7→ Standardimplementierung positiver ganzen Zahlen

s: Seq(Z), Elemente werden hinten angehängt 7→ umgekehrt verkettete Liste

pool: Set(Z): Elemente werden aus fester Menge entnommen 7→ Bitvektor

ssize: Z 7→ Standardimplementierung positiver ganzen Zahlen

