
Übung zur Vorlesung

Automatisierte Logik und Programmierung
Prof. Chr. Kreitz

Universität Potsdam, Theoretische Informatik — Sommersemester 2004

Blatt 3 — Abgabetermin: —

Das dritte Übungsblatt befaßt sich mit der Formalisierung von Problemstellungen, der Erstellung
formaler Spezifikationen. und der Synthese durch Transformationen, ohne daß dabei eine spezielle
Strategie betrachtet wird.

Aufgabe 3.1 (Formale Spezifikationen)

Geben Sie formale Spezifikationen für die folgenden Probleme an.

3.1–a Sortierung: Eine Liste L ganzer Zahlen ist geordnet, wenn alle ihre Elemente in auf-
steigender Reihenfolge angeordnet sind. Sie ist Sortierung einer anderen Liste L’, wenn
L einer Permutation der Liste L’ und geordnet ist.

1. Gesucht ist ein Programm, welches eine Liste L’ ohne doppelte Elemente sortiert.

2. Gesucht ist ein Programm, welches eine beliebige Liste L’ sortiert.

Hinweis: der Begriff der Permutation ist im zweiten Fall etwas komplexer als im ersten und
muß formalisiert werden

3.1–b 8-Dame Problem: Gegeben ein Schachbrett mit 8x8 Feldern und 8 Dame Figuren. Eine
Dame kann alle Figuren schlagen, die sich auf derselben waagerechten oder senkrechten
Linie befinden sowie alle Figuren, die sich auf der von ihr ausgehenden Diagonale befin-
den.

Gesucht ist ein Programm, welches alle möglichen Plazierungen der 8 Damen auf dem
Schachbrett bestimmt, so daß keine Dame eine andere schlagen kann.

Stellen Sie eventuell notwendige Definitionen für neue Begriffe auf und beschreiben Sie die
Gesetze dieser neuen Konzepte.

Aufgabe 3.2

In der Vorlesung haben wir die formalen Grundbegriffe der Programmsynthese beschrieben.
Zur Vorbereitung eines formalen Schließens über Programme und ihre Eigenschaften müssen
auch diese formalisiert werden. Geben Sie formale Definitionen für die folgenden Konzepte
an:

3.2–a Die Klasse aller Spezifikationen als ein Datentyp SPECIFICATIONS

3.2–b Die Klasse aller Programme als ein Datentyp PROGRAMS

3.2–c Programmkorrektheit als ein “Prädikat” p ist korrekt (beachten Sie Terminierung!)

3.2–d Erfüllbarkeit von Spezifikationen als ein “Prädikat” spec ist erfüllbar

3.2–e Die Notation für Programme
FUNCTION f(x:D):R WHERE I(x) RETURNS y SUCH THAT O(x,y) = body(x)

Vorlesung Automatisierte Logik und Programmierung 2 Übung 3

Aufgabe 3.3 (Synthese durch Transformationen)

Gegeben sei die folgende Spezifikation des Sortierproblems

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

wobei das Prädikat ordered wie folgt definiert sei

ordered(S) ≡ ∀i ∈{1..|S|-1}.S[i]≤S[i+1]
Synthetisieren Sie ein Sortierprogramm durch Anwendung von Transformationen.
Stellen Sie dazu eine Spezifikationsformel auf und transformieren Sie die Ausgabebedingung
durch Äquivalenzumformungen bis ein rekursives Sortierprogramm entsteht. Begründen Sie,
warum das erzeugte Programm terminiert.

Hinweise: Je nach Art der Umformungen können sehr unterschiedliche Algorithmen erzeugt werden.
Stellen Sie die nötigen Lemmata, die nicht bereits im Appendix B des Skriptes zu finden sind, separat
auf, ohne sie formal zu beweisen.

Aufgabe 3.4 (Korrektheit von Algorithmenerzeugungsregeln)

Die Programme f , f ′ und g seien bereits als korrekt bekannt und P sei ein beliebiges Prädikat.

FUNCTION f(x:D):R WHERE I(x) RETURNS y SUCH THAT O(x,y) = bodyf(x)
FUNCTION f ′(x:D):R WHERE I’(x) RETURNS y SUCH THAT O’(x,y) = bodyf ′(x)
FUNCTION g(x,y:R):R’ WHERE J(x,y) RETURNS z SUCH THAT O’(x,y,z) = bodyg(x,y)

Zeigen Sie (semiformal), daß dann auch die folgenden Programme korrekt sind.

3.4–a FUNCTION F1(x:D):R WHERE I(x) ∨I’(x)
RETURNS y SUCH THAT O(x,y) ∨O’(x,y)

= if I(x) then bodyf(x) else bodyf ′(x)

3.4–b FUNCTION F2(x:D):R WHERE I(x) ∧P(x,bodyf(x))
RETURNS y SUCH THAT O(x,y) ∧P(x,y)

= bodyf(x)

3.4–c FUNCTION F3(x:D):R’ WHERE I(x) ∧ J(x,bodyf(x))
RETURNS z SUCH THAT ∃y:R. O(x,y) ∧O’(x,y,z)

= bodyg(x,bodyf(x))

Vorlesung Automatisierte Logik und Programmierung 1 Übung 3

Lösung 3.0 Die Loesungen sind z.T. von alten Musterloesungen uebernommen. Ich habe
ein paar kleinere Korrekturen vorgenommen aber nicht jedes kleine Detail überprüft.

Lösung 3.1 Ziel dieser Aufgabe ist es, die Formalisierung von Problemspezifikationen
einzuüben und dabei eventuell fehlende Begriffe zu formalisieren, sofern dies für die Problem-
stellung sinnvoller ist als die Verwendung der entsprechenden komplexeren Ausdrücke.

3.1–a Das Problem ist leicht zu beschreiben, wenn man die Begriffe “geordnet” und “Permu-
tation” formalisiert. Eine Liste L ist geordnet , wenn ihre Elemente in aufsteigender
Reihenfolge angeordnet sind. Dies legt z.B. die folgende Definition nahe.

ordered(L) ≡ ∀i ∈{1..|L|-1}.L[i]≤L[i+1]
1. Bei der Sortierung von Listen ohne doppelte Elemente kann man auf die bekannte

Definition der Permutationen einer Menge S zurückgreifen, denn eine Permuta-
tion der Elemente einer Liste L′ ist in diesem Fall eine Permutation der Menge
range(L′). Dies führt zu folgender Formalisierung des Sortierproblems

FUNCTION sort(L’:Seq(Z)):Seq(Z) WHERE nodups(L’)
RETURNS L SUCH THAT perm(L, range(L’)) ∧ ordered(L)

2. Enthält die Liste L′ doppelte Vorkommen von Elementen, so ist obige Beschreibung
unbrauchbar. Wir müssen nun eine echte Umordnung von Listen definieren, wofür
wir ein Prädikat rearranges(L’,L) neu definieren. Die naheliegendste Definition
hierfür besagt, daß L aus L’ durch eine Permutation der Indizes entsteht, also sich
beschreiben läßt als [L’[k] | k ∈I], wobei I Permutation von domain(L’) ist.

rearranges(L’,L) ≡ ∃I:Seq(Z).perm(I,domain(L’)) ∧ L=[L’[k] | k ∈I]
Dies führt dann zu folgender Problemspezifikation, die natürlich die erste umfaßt.

FUNCTION sort(L’:Seq(Z)):Seq(Z) WHERE true
RETURNS L SUCH THAT rearranges(L’,L) ∧ ordered(L)

3.1–b Die Bedingung dafür, daß die 8 Damen einander nicht schlagen können ist, daß in je-
der waagerechten, senkrechten, aufwärts- und abwärts-diagonalen Reihe höchstens eine
Dame steht. Da es nur 8 waagerechte und senkrechte Reihen gibt, muß jede Dame in
genau einer dieser Reihen stehen. Damit genügt es, anstelle einer Repräsentation des ge-
samten Schachbretts die waagerechten Positionen der Damen in jeder senkrechten Reihe
darzustellen, also eine Folge L von 8 Zahlen zwischen 1 und 8 zu verwalten. Da in je-
der waagerechten Zeilee nur eine Dame stehen kann, darf diese Folge keine doppelten
Vorkommen enthalten, muß also eine Permutation der Zahlen {1..8} sein.

Zusätzlich müssen die aufwärts- und abwärts-diagonalen Reihen sicher sein: steht in
Reihe i an Position L[i] eine Dame, so darf die Position L[j] der Dame in Reihe j

nicht genau L[i]+(j-i) oder L[i]-(j-i) sein. Dies beschreiben wir durch zwei neue
Einzelbegriffe, die wir insgesamt mit dem Begriff safe(L) zusammenfassen.

free up diagonal(L) ≡ ∀i ∈domain(L).∀j ∈domain(L). i6=j ⇒ L[i]+(j-i)6=L[j]
free down diagonal(L) ≡ ∀i ∈domain(L).∀j ∈domain(L). i6=j ⇒ L[i]-(j-i)6=L[j]
safe(L) ≡ free up diagonal(L) ∧ free down diagonal(L)

Die Spezifikation, die sich leicht auf beliebig große Schachbretter verallgemeinern läßt
und ein beliebtes Synthesebeispiel ist, lautet nun

FUNCTION queens():Set(Seq(Z)) WHERE true

Vorlesung Automatisierte Logik und Programmierung 2 Übung 3

RETURNS {nq | perm(nq,{1..8}) ∧ safe(nq)}

Lösung 3.2 Ziel dieser Aufgabe ist es, die Grundbegriffe der Programmsynthese so zu
formalisieren, daß man später formale Beweise über die Synthetisierbarkeit von Programmen
führen und die entsprechenden Theoreme innerhalb eines Syntheseprozesses verwenden kann.

3.2–a Die Klasse aller Spezifikationen ist die Klasse aller 4-Tupel spec = (D,R,I,O), wobei
D und R Datentypen (also Elemente von TYPES ≡ U1, I ein Prädikat über D und O ein
Prädikat über D×R ist.

Diese Klasse läßt sich als ein Datentyp SPECIFICATIONS beschreiben, der allerdings von
einer höheren Ordnung ist (d.h. zu U2 gehört).

SPECIFICATIONS ≡ D:TYPES × R:TYPES × D→B × D×R→B
3.2–b Die Klasse aller Programme ergu]ibt sich aus derjenigen der Spezifikationen durch Hin-

zunahme eines Programmkörpers body:D6→R. Um dies beschreiben zu können, geben
wir Selektoren D(spec) und R(spec) für den Domain und Range einer Spezifikation an

D(spec) ≡ let (D,R,I,O)= spec in D
R(spec) ≡ let (D,R,I,O)= spec in R
PROGRAMS ≡ spec:SPEC × D(spec)6→R(spec)

3.2–c Die Formalisierung von Programmkorrektheit ergibt sich unmittelbar, da Terminierung
durch das dom-Prädikat der rekursiven Funktionstypen beschrieben werden kann.

body hält auf x ≡ dom(body)(x)
p ist korrekt ≡ let ((D,R,I,O), body) = p in

∀x:D. I(x) ⇒ body hält auf x ∧ O(x,body(x))

3.2–d Erfüllbarkeit von Spezifikationen folgt ebenfalls unmittelbar

spec ist erfüllbar ≡ let((D,R,I,O), body) = p in
∃body:D 6→R. (spec,body) ist korrekt

3.2–e Die syntaktisch aufbereitete Notation für Programme läßt sich relativ leicht auf die
Tupelschreibweise abbilden

FUNCTION f(x:D):R WHERE Ix RETURNS y SUCH THAT Ox,y = bodyf,x
≡
(D, R, λx.Ix, λx,y.Ox,y, letrec f(x)= bodyf,x)

Dabei soll Ix einen beliebiger Ausdruck kennzeichnen, in dem x frei vorkommen darf.

Lösung 3.3 Diese Aufgabe hat mehrere Ziele. Zum einen soll sie zeigen, daß Lösungen, die
durch Nachdenken erzeugt wurden, sich tatsächlich mit Hilfe von Äquivalenztransformationen
ableiten (und damit verifizieren) läßt. Zum anderen macht sie relativ schnell deutlich, daß die
Anwendung von Äquivalenztransformationen zur Lösung eines Programmierproblems ohne eine
Strategie nicht zum Ziele führt.
In diesem Übungsblatt steht die Korrektheit einer Ableitung im Vordergrund und nicht die
Methode, wie diese gefunden wird. Der Algorithmus soll als logische Formel beschrieben werden
und es ist zu zeigen, mit welchen Äquivalenztransformationen man zu diesem Algorithmus
kommen kann. Im Laufe dieses Prozesses lohnt es, sich Gedanken über Systematik zu machen.

Entsprechend der Denkweise der Synthese durch Transformationen führen wir als erstes ein
neues Prädikat SORT ein, das durch die folgende Äquivalenz definiert ist:

Vorlesung Automatisierte Logik und Programmierung 3 Übung 3

∀L,S:Seq(Z). true ⇒ SORT(L,S) ⇔ rearranges(L,S) ∧ ordered(S)

Da Sortierverfahren notwendigerweise rekursiv sind, muß das Ziel der Transformationen eine
rekursive Formel sein, in der auf der rechten Seite außer SORT nur Ausdrücke vorkommen, die
sich leicht in Algorithmen umwandeln lassen. Wir wollen 4 Algorithmen ableiten.

Selection Sort:
sort(L) = if L=[] then [] else let y=min(L) in y.sort(L-y)

Insertion Sort:
sort(L) = if L=[] then [] else let x=first(L) and L’=rest(L)

in insert(x, sort(L’))
Quicksort:
sort(L) = if L=[] then [] else let x=first(L) and L’=rest(L)

in sort(L’<x) ◦ x.sort(L’≥x)
Mergesort:
sort(L) = if L=[] then [] else let x=first(L) and L’=rest(L) and k=|L’|÷2

in insert(x, merge(sort(L’[1..k]), sort(L’[k+1..|L’|])))

Diese Algorithmen entsprechen den folgenen logischen Formeln.

∀L,S:Seq(Z). true ⇒
SSORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃S’:Seq(Z). a ∈L ∧ ∀x ∈L.x≥a ∧ SSORT(L-a,S’) ∧ S=a.S’

∀L,S:Seq(Z). true ⇒
ISORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’,S’:Seq(Z). L=a.L’ ∧ ISORT(L’,S’) ∧ S = S’<a ◦ x.S’≥a
∀L,S:Seq(Z). true ⇒

QSORT(L,S) ⇔ L=[] ∧ S=[]
∨ ∃a:Z.∃L’,S1,S2:Seq(Z). L=a.L’
∧ QSORT(L’<a,S1) ∧ QSORT(L’≥a,S2) ∧ S = S1◦ a.S2

∀L,S:Seq(Z). true ⇒
MSORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a,k:Z.∃L’,S’,S1,S2:Seq(Z). L=a.L’ ∧ k=|L’|÷2
∧ MSORT(L’[1..k],S1) ∧ MSORT(L’[k+1..|L’|],S2)
∧ S’=merge(S1,S2) ∧ S = S’<a ◦ a.S’≥a

Dabei sei definiert

insert(x,S) ≡ S<x ◦ x.S≥x
merge(S1,S2) ≡ if S1=[] then S2 else if S2=[] then S1

else let x.S1’=S1 and y.S2’=S2 in
if x<y then x.merge(S1’,S2) else y.merge(S1,S2’)

(Genau besehen wird merge als rekursive Funktion letrec merge(S1,S2)... definiert)

Wie man sieht haben alle Formeln eine first/rest-Zerlegung gemeinsam, die entweder auf der
Ausgabevariablen S oder auf der Eingabe L stattfindet. Diese Zerlegung wird in allen Fällen auf
die gleiche Art begonnen werden. Die letzten beiden Formeln nehmen zusätzlich einen Split der
Eingaben vor, bevor sortiert wird. Es ist daher zu erwarten, daß ihre Ableitung sich zu einem
Teil aus der des Insertion-Sort Algorithmus ergibt, zu dem nun Argumente über Splitting und
zusammenmischen hinzukommen werden. Alle Ableitungen werden Lemmata über ordered

Vorlesung Automatisierte Logik und Programmierung 4 Übung 3

benötigen, die wir zum Schluß ergänzen müssen.

Wir beginnen mit der Herleitung der first/rest-Zerlegung und der Lösung für den Basisfall. Der
Einfachheit unterdrücken wir ab sofort die Zeile ∀L,S:Seq(Z). true ⇒

∀L,S:Seq(Z). true ⇒ SORT(L,S) ⇔ rearranges(L,S) ∧ ordered(S)
B.2.3.1 mit Z und L + Zerlegung

SORT(L,S) ⇔ L=[] ∧ rearranges(L,S) ∧ ordered(S)
∨ ∃a:Z.∃L’:Seq(Z). L=a.L ∧ rearranges(L,S) ∧ ordered(S)

Substitution
SORT(L,S) ⇔ L=[] ∧ rearranges([],S) ∧ ordered(S)

∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ rearranges(a.L’,S) ∧ ordered(S)
B.2.26.1/2

SORT(L,S) ⇔ L=[] ∧ S=[] ∧ ordered(S)
∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S-a) ∧ ordered(S)

Substitution
SORT(L,S) ⇔ L=[] ∧ S=[] ∧ ordered([])

∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S-a) ∧ ordered(S)
ordered.1

SORT(L,S) ⇔ L=[] ∧ S=[]
∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S-a) ∧ ordered(S) 1

Selection Sort

Da rearranges kommutativ ist, gilt 1 auch für S anstelle von L und umgekehrt.

SORT(L,S) ⇔ L=[] ∧ S=[]
∨ ∃a:Z.∃S’:Seq(Z). S=a.S’ ∧ a ∈L ∧ rearranges(L-a,S’) ∧ ordered(S)

ordered.2
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃S’:Seq(Z). S=a.S’ ∧ a ∈L ∧ rearranges(L-a,S’)
∧ ordered(S’) ∧ ∀x ∈S’.a≤x

B.2.26.12/3
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃S’:Seq(Z). S=a.S’ ∧ a ∈L ∧ rearranges(L-a,S’)
∧ ordered(S’) ∧ ∀x ∈L-a.a≤x

Definition von SORT
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃S’:Seq(Z). S=a.S’ ∧ a ∈L ∧ SORT(L-a,S’) ∧ ∀x ∈L-a.a≤x
Arithmetik-Ergänzung

SORT(L,S) ⇔ L=[] ∧ S=[]
∨ ∃a:Z.∃S’:Seq(Z). S=a.S’ ∧ a ∈L ∧ SORT(L-a,S’) ∧ ∀x ∈L-a.a≤x ∧ a≤a

B.1.11.6 (analog)
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃S’:Seq(Z). S=a.S’ ∧ a ∈L ∧ SORT(L-a,S’) ∧ ∀x ∈L.a≤x
Umsortieren, der Lesbarkeit wegen

SORT(L,S) ⇔ L=[] ∧ S=[]
∨ ∃a:Z.∃S’:Seq(Z). a ∈L ∧ ∀x ∈L.a≤x ∧ SORT(L-a,S’) ∧ S=a.S’

Insertion Sort

Wir beginnen wieder bei 1

Vorlesung Automatisierte Logik und Programmierung 5 Übung 3

SORT(L,S) ⇔ L=[] ∧ S=[]
∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S-a) ∧ ordered(S)

ordered 5
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S-a)
∧ ordered(S-a) ∧ S = (S-a)<a ◦ a.(S-a)≥a 2

Quantifizierung von S-a
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’,S’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S’)
∧ ordered(S’) ∧ S = S’<a ◦ a.(S’)≥a ∧ S’=S-a

S’=S-a ist überflüssig nach 6., a∈S ist überflüssig nach B.2.9.11/2
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’,S’:Seq(Z). L=a.L’ ∧ rearranges(L’,S’)
∧ ordered(S’) ∧ S = S’<a ◦ a.S’≥a 3

Definition von SORT
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’,S’:Seq(Z). L=a.L’ ∧ SORT(L’,S’) ∧ S = S’<a ◦ a.S’≥a

Quicksort

Die Ableitung ist bis zum Punkt 2 identisch mit Insertion Sort, muß dann allerdings noch
ein zusätzliches Splitting der Ausgabe durchführen, die genau am Punkt a gespalten wird, der
bereits für das Einfügen vorgesehen ist.

SORT(L,S) ⇔ L=[] ∧ S=[]
∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S-a)
∧ ordered(S-a) ∧ S = (S-a)<a ◦ a.(S-a)≥a

B.2.26.12, B.2.26.16 mit p(x)≡x<a p(x)≡x≥a
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S-a)
∧ rearranges(L’<a,(S-a)<a) ∧ rearranges(L’≥a,(S-a)≥a)
∧ ordered(S-a) ∧ S = (S-a)<a ◦ a.(S-a)≥a

ordered 8
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,(S-a)<a◦(S-a)≥a)
∧ rearranges(L’<a,(S-a)<a) ∧ rearranges(L’≥a,(S-a)≥a)
∧ ordered(S-a) ∧ S = (S-a)<a ◦ a.(S-a)≥a

ordered 7
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,(S-a)<a◦(S-a)≥a)
∧ rearranges(L’<a,(S-a)<a) ∧ rearranges(L’≥a,(S-a)≥a)
∧ ordered((S-a)<a) ∧ ordered((S-a)≥a) ∧ S = (S-a)<a ◦ a.(S-a)≥a

Quantifizierung von (S-a)<a, (S-a)≥a
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’,,S1,S2:Seq(Z). L=a.L’ ∧ a ∈S ∧ rearranges(L’,S1
◦S2)

∧ rearranges(L’<a,S1) ∧ rearranges(L’≥a,S2)
∧ ordered(S1) ∧ ordered(S2) ∧ S = S1◦ a.S2 ∧ S1=(S-a)<a ∧ S2=(S-a)≥a

rearranges(L’,S1◦S2) ist überflüssig nach B.2.26.7/14/13

S1=(S-a)<a ∧ S2=(S-a)≥a ist überflüssig nach B.2.26.3/B.2.12.

a∈S ist überflüssig nach B.2.9.11/2
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’,S1,S2:Seq(Z). L=a.L’
∧ rearranges(L’<a,S1) ∧ rearranges(L’≥a,S2)

Vorlesung Automatisierte Logik und Programmierung 6 Übung 3

∧ ordered(S1) ∧ ordered(S2) ∧ S = S1◦ a.S2

Definition von SORT
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a:Z.∃L’,S1,S2:Seq(Z). L=a.L’
∧ SORT(L’<a,S1) ∧ SORT(L’≥a,S2) ∧ S = S1◦ a.S2

Mergesort

Die Ableitung ist bis zum Punkt 3 identisch mit Insertion Sort, muß dann allerdings noch ein
zusätzliches Splitting der (restlichen) Eingabe durchführen.

SORT(L,S) ⇔ L=[] ∧ S=[]
∨ ∃a:Z.∃L’,S’:Seq(Z). L=a.L’ ∧ rearranges(L’,S’)
∧ ordered(S’) ∧ S = S’<a ◦ a.(S’)≥a

Splitting.1 mit k=|L’|÷2
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a,k:Z.∃L’,S’:Seq(Z). L=a.L’ ∧ k=|L’|÷2
∧ rearranges(L’[1..k]◦L’[k+1..|L’|],S’) ∧ ordered(S’) ∧ S = S’<a ◦ a.(S’)≥a

merge.3
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a,k:Z.∃L’,S’,S1,S2:Seq(Z). L=a.L’ ∧ k=|L’|÷2
∧ rearranges(L’[1..k],S1) ∧ rearranges(L’[k+1..|L’|],S2)
∧ ordered(S1) ∧ ordered(S2) ∧ S’=merge(S1,S2) ∧ S = S’<a ◦ a.(S’)≥a

Definition von SORT
SORT(L,S) ⇔ L=[] ∧ S=[]

∨ ∃a,k:Z.∃L’,S’,S1,S2:Seq(Z). L=a.L’ ∧ k=|L’|÷2
∧ SORT(L’[1..k],S1) ∧ SORT(L’[k+1..|L’|],S2) ∧ S’=merge(S1,S2)
∧ S = S’<a ◦ a.(S’)≥a

Lemmata

Die folgenden Lemmata sind im Verlaufe der Ableitungen erforderlich geworden.

ordered
1. ordered([])
2. ordered(a.S’) ⇔ ordered(S’) ∧ ∀x ∈S’.a≤x
3. ordered(S) ⇒ ∀i,k ∈domain(S). i≤k ⇒ ordered(S[i..k])
4. a ∈S ⇒ ordered(S) ⇒ ∃k ∈domain(S).S<a=S[1..k] ∧ S≥a=S[k+1..|S|]
5. a ∈S ⇒ ordered(S) ⇔ ordered(S-a) ∧ S = (S-a)<a ◦ a.(S-a)≥a abgeleitet aus 4 und B.2.25.4

6. a ∈S ∧ ordered(S) ⇒ S’=S-a ⇔ S = S’<a ◦ a.S’≥a abgeleitet aus 5 und B.2.25.4

7. a ∈S ⇒ ordered(S) ⇔ ordered(S<a) ∧ ordered(S≥a)
8. a ∈S ⇒ ordered(S) ⇒ S = S<a ◦ S≥a
splitting
1. ∀k ∈domain(L). L = L[1..k]◦L[k+1..|L|]

Vorlesung Automatisierte Logik und Programmierung 7 Übung 3

merge
1. rearranges(merge(S1,S2), S1

◦S2)
2. ordered(S1) ∧ ordered(S2) ⇒ ordered(merge(S1,S2))
3. ordered(S) ∧ rearranges(L1

◦L2,S) ⇔ ∃S1,S2:Seq(Z). ordered(S1) ∧ ordered(S2)
∧ rearranges(L1,S1) ∧ rearranges(L2,S2) ∧ S=merge(S1,S2)

S1/S2 entsteht durch Filterung. Aufwendiger Beweis

B.2.25 (neu!!)
3. a ∈L ⇔ ∃k ∈domain(L).L=L[1..k-1]◦a.L[k+1..|L|]
4. a ∈L ⇒ L’=L-a ⇔ ∃k ∈domain(L’).L=L’[1..k]◦a.L’[k+1..|L’|]
5. a ∈S ⇒ S<a = (S-a)<a ∧ S≥a = a. (S-a)≥a

Im Appendix B war ein TeX-Fehler, was L[k..j] betrifft. Die Indizes sind nicht zu sehen.

Lösung 3.4 Ziel dieser Aufgabe ist es, den Zusammenhang zwischen logischen Formeln und
den durch sie beschriebenen Algorithmen zu verstehen. Es geht dabei besonders um die Analyse
der syntaktischen Struktur der Ausgabebedingungen.

3.4–a FUNCTION F1(x:D):R WHERE I(x) ∨I’(x) RETURNS y SUCH THAT O(x,y) ∨O’(x,y)
= if I(x) then bodyf(x) else bodyf ′(x)

Eine Disjunktion in der Ausgabebedingung entspricht somit einer Fallunterscheidung
im Algorithmus, wobei als Unterscheidungsbedingung die Eingabebedingung I(x) zu
wählen ist, welche die erste Ausgabebedingung O(x,y) erfüllbar macht. Da hier nur die
Korrektheit überprüft werden soll, können wir davon ausgehen, daß diese Informationen
bereits gefunden sind.

Zu zeigen ist: ∀x:D. I(x) ∨I’(x) ⇒ O(x,y) ∨O’(x,y),
wobei y = if I(x) then bodyf(x) else bodyf ′(x) ist.

Sei x ∈D. Wir unterscheiden die Fälle I(x) und ¬I(x) und müssen – nach Auswertung
von y – zwei Fälle untersuchen.

1. I(x) ∧(I(x) ∨I’(x)) ⇒ O(x,bodyf(x)) ∨O’(x,bodyf(x))
Nach Reduktion der Vorbedingung erhalten wir

I(x) ⇒ O(x,bodyf(x)) ∨O’(x,bodyf(x))
Dies folgt aus der Korrektheitsannahme für f : I(x) ⇒ O(x,bodyf(x))

2. ¬I(x) ∧(I(x) ∨I’(x)) ⇒ O(x,bodyf ′(x)) ∨O’(x,bodyf ′(x))
Nach Reduktion der Vorbedingung erhalten wir

¬I(x) ∧I’(x) ⇒ O(x,bodyf ′(x)) ∨O’(x,bodyf ′(x))
Dies folgt aus der Korrektheitsannahme für f ′: I’(x) ⇒ O’(x,bodyf ′(x))

P.S.: der Beweis könnte auch formal geführt werden.

3.4–b FUNCTION F2(x:D):R WHERE I(x) ∧P(x,bodyf(x)) RETURNS y SUCH THAT O(x,y) ∧P(x,y)
= bodyf(x)

Eine Konjunktion in der Ausgabebedingung entspricht somit einer Einschränkung le-
galer Eingaben unter Beibehaltung der Berechnungsmethode. Das Ziel ist nun, solche
Berechnungsmethoden zu wählen, daß die Einschrankung von allen Werten erfüllt wird.

Der Beweis für ∀x:D. I(x) ∧P(x,bodyf(x)) ⇒ O(x,bodyf(x)) ∧P(x,bodyf(x)) folgt
unmittelbar aus der Korrektheitsannahme für f .

Vorlesung Automatisierte Logik und Programmierung 8 Übung 3

3.4–c FUNCTION F3(x:D):R’ WHERE I(x) ∧ J(x,bodyf(x))
RETURNS z SUCH THAT ∃y:R. O(x,y) ∧O’(x,y,z)

= bodyg(x,bodyf(x))

Ein Existenzquantor in der Ausgabebedingung entspricht einer Generalisierung des Pro-
blems: zuerst wird ein Zwischenwert berechnet und dann allgemein gezeigt, wie man aus
Zwischenwerten eine Lösung baut.

Zu zeigen: ∀x:D. I(x) ∧ J(x,bodyf(x)) ⇒ ∃y:R. O(x,y) ∧O’(x,y,bodyg(x,bodyf(x)))
Es sei x ∈D und es gelte I(x) ∧ J(x,bodyf(x)). Aus der Korrektheitsannahme für f –
I(x) ⇒ O(x,bodyf(x)) – folgt O(x,bodyf(x)) und wir wählen y:=bodyf(x).

Zu zeigen bleibt O’(x,bodyf(x),bodyg(x,bodyf(x))), was direkt aus der Korrektheit-
sannahme für g – J(x,bodyf(x)) ⇒ O’(x,bodyf(x),bodyg(x,bodyf(x))) – folgt.

