Ubung zur Vorlesung

Automatisierte Logik und Programmierung

Prof. Chr. Kreitz
Universitidt Potsdam, Theoretische Informatik — Sommersemester 2004

Blatt 3 — Abgabetermin: —

Das dritte Ubungsblatt befaBt sich mit der Formalisierung von Problemstellungen, der Erstellung
formaler Spezifikationen. und der Synthese durch Transformationen, ohne daB dabei eine spezielle
Strategie betrachtet wird.

Aufgabe 3.1 (Formale Spezifikationen)

Geben Sie formale Spezifikationen fiir die folgenden Probleme an.

3.1-a Sortierung: Eine Liste L ganzer Zahlen ist geordnet, wenn alle ihre Elemente in auf-
steigender Reihenfolge angeordnet sind. Sie ist Sortierung einer anderen Liste L’ wenn
L einer Permutation der Liste L’ und geordnet ist.

1. Gesucht ist ein Programm, welches eine Liste L’ ohne doppelte Elemente sortiert.
2. Gesucht ist ein Programm, welches eine beliebige Liste L’ sortiert.

Hinweis: der Begriff der Permutation ist im zweiten Fall etwas komplexer als im ersten und
muf} formalisiert werden

3.1-b 8-Dame Problem: Gegeben ein Schachbrett mit 8x8 Feldern und 8 Dame Figuren. Eine
Dame kann alle Figuren schlagen, die sich auf derselben waagerechten oder senkrechten
Linie befinden sowie alle Figuren, die sich auf der von ihr ausgehenden Diagonale befin-
den.

Gesucht ist ein Programm, welches alle moglichen Plazierungen der 8 Damen auf dem
Schachbrett bestimmt, so dal keine Dame eine andere schlagen kann.

Stellen Sie eventuell notwendige Definitionen fiir neue Begriffe auf und beschreiben Sie die
Gesetze dieser neuen Konzepte.

Aufgabe 3.2

In der Vorlesung haben wir die formalen Grundbegriffe der Programmsynthese beschrieben.
Zur Vorbereitung eines formalen Schlielens iiber Programme und ihre Eigenschaften miissen
auch diese formalisiert werden. Geben Sie formale Definitionen fiir die folgenden Konzepte
an:

3.2-a Die Klasse aller Spezifikationen als ein Datentyp SPECIFICATIONS

3.2-b Die Klasse aller Programme als ein Datentyp PROGRAMS

3.2-c¢ Programmkorrektheit als ein “Préadikat” p ist korrekt (beachten Sie Terminierung!)
3.2—d Erfiillbarkeit von Spezifikationen als ein “Pradikat” spec ist erfiillbar

3.2-e Die Notation fiir Programme
FUNCTION f(x:D):R WHERE I(x) RETURNS y SUCH THAT 0(x,y) = body(x)

Vorlesung Automatisierte Logik und Programmierung 2 Ubung 3

Aufgabe 3.3 (Synthese durch Transformationen)

Gegeben sei die folgende Spezifikation des Sortierproblems

FUNCTION sort(L:Seq(Z)):Seq(Z) WHERE true
RETURNS S SUCH THAT rearranges(L,S) A ordered(S)

wobei das Priadikat ordered wie folgt definiert sei
ordered(S) = Vie{l..|SI-1}.S[11<S[i+1]

Synthetisieren Sie ein Sortierprogramm durch Anwendung von Transformationen.

Stellen Sie dazu eine Spezifikationsformel auf und transformieren Sie die Ausgabebedingung
durch Aquivalenzumformungen bis ein rekursives Sortierprogramm entsteht. Begriinden Sie,
warum das erzeugte Programm terminiert.

Hinweise: Je nach Art der Umformungen kénnen sehr unterschiedliche Algorithmen erzeugt werden.
Stellen Sie die notigen Lemmata, die nicht bereits im Appendix B des Skriptes zu finden sind, separat
auf, ohne sie formal zu beweisen.

Aufgabe 3.4 (Korrektheit von Algorithmenerzeugungsregeln)

Die Programme f, f" und g seien bereits als korrekt bekannt und P sei ein beliebiges Pradikat.

FUNCTION f(x:D):R WHERE I(x) RETURNS y SUCH THAT 0(x,y) = body;(x)
FUNCTION f’(x:D):R WHERE I’(x) RETURNS y SUCH THAT 0’(x,y) = body (x)
FUNCTION g(x,y:R):R’ WHERE J(x,y) RETURNS z SUCH THAT 0’(x,y,z) = body,(x,y)

Zeigen Sie (semiformal), daf dann auch die folgenden Programme korrekt sind.

3.4—a FUNCTION Fj(x:D):R WHERE I(x)vI’(x)
RETURNS y SUCH THAT 0(x,y) v0’ (x,y)
= if I(x) then body;(x) else bodys (x)

3.4-b FUNCTION F(x:D):R WHERE I(x) AP(x,bodyj(x))
RETURNS y SUCH THAT 0(x,y) AP(x,y)
= bodys(x)

3.4-¢ FUNCTION Fj(x:D):R’ WHERE I(x) A J(x,body;(x))
RETURNS z SUCH THAT Jy:R.0(x,y) A0’ (x,7,2)
= body, (x,bodyy (x))

Vorlesung Automatisierte Logik und Programmierung 1 Ubung 3

Losung 3.0 Die Loesungen sind z.T. von alten Musterloesungen uebernommen. Ich habe
ein paar kleinere Korrekturen vorgenommen aber nicht jedes kleine Detail tiberpriift.

Losung 3.1 Ziel dieser Aufgabe ist es, die Formalisierung von Problemspezifikationen
einzuiiben und dabei eventuell fehlende Begriffe zu formalisieren, sofern dies fiir die Problem-
stellung sinnvoller ist als die Verwendung der entsprechenden komplexeren Ausdriicke.

3.1-a Das Problem ist leicht zu beschreiben, wenn man die Begriffe “geordnet” und “Permu-
tation” formalisiert. Eine Liste L ist geordnet, wenn ihre Elemente in aufsteigender
Reihenfolge angeordnet sind. Dies legt z.B. die folgende Definition nahe.

ordered(L) = Vie{l..|L|-1}.L[i]1<L[i+1]

1. Bei der Sortierung von Listen ohne doppelte Elemente kann man auf die bekannte
Definition der Permutationen einer Menge S zuriickgreifen, denn eine Permuta-
tion der Elemente einer Liste L’ ist in diesem Fall eine Permutation der Menge
range (L'). Dies fiihrt zu folgender Formalisierung des Sortierproblems

FUNCTION sort(L’:Seq(Z)):Seq(Z) WHERE nodups(L’)
RETURNS L SUCH THAT perm(L, range(L’)) A ordered(L)

2. Enthélt die Liste L’ doppelte Vorkommen von Elementen, so ist obige Beschreibung
unbrauchbar. Wir miissen nun eine echte Umordnung von Listen definieren, wofiir
wir ein Pradikat rearranges(L’,L) neu definieren. Die naheliegendste Definition
hierfiir besagt, dafl L aus L’ durch eine Permutation der Indizes entsteht, also sich
beschreiben 148t als [L’ [k] | keI], wobei I Permutation von domain(L’) ist.

rearranges(L’,L) = dI:Seq(Z).perm(I,domain(L’)) AL=[L’[k] | keI]
Dies fithrt dann zu folgender Problemspezifikation, die natiirlich die erste umfaft.

FUNCTION sort(L’:Seq(Z)):Seq(Z) WHERE true
RETURNS L SUCH THAT rearranges(L’,L) A ordered(L)

3.1-b Die Bedingung dafiir, dafl die 8 Damen einander nicht schlagen konnen ist, dafl in je-
der waagerechten, senkrechten, aufwérts- und abwérts-diagonalen Reihe hochstens eine
Dame steht. Da es nur 8 waagerechte und senkrechte Reihen gibt, mufl jede Dame in
genau einer dieser Reihen stehen. Damit geniigt es, anstelle einer Repréasentation des ge-
samten Schachbretts die waagerechten Positionen der Damen in jeder senkrechten Reihe
darzustellen, also eine Folge L von 8 Zahlen zwischen 1 und 8 zu verwalten. Da in je-
der waagerechten Zeilee nur eine Dame stehen kann, darf diese Folge keine doppelten
Vorkommen enthalten, mufl also eine Permutation der Zahlen {1..8} sein.

Zusétzlich miissen die aufwérts- und abwiérts-diagonalen Reihen sicher sein: steht in
Reihe i an Position L[i] eine Dame, so darf die Position L[j] der Dame in Reihe j
nicht genau L[i]+(j-1i) oder L[i]-(j-1i) sein. Dies beschreiben wir durch zwei neue
Einzelbegriffe, die wir insgesamt mit dem Begriff safe (L) zusammenfassen.
free_ up_diagonal(L) = Viedomain(L).Vjedomain(L).i#j = L[i]1+(j-1)#L[j]
free_down_diagonal(L) = Viedomain(L).Vjedomain(L).i#j = L[i]l-(j-1)#L[j]
safe(L) = free_up.diagonal(L) A free_down diagonal(L)

Die Spezifikation, die sich leicht auf beliebig grofle Schachbretter verallgemeinern laf3t
und ein beliebtes Synthesebeispiel ist, lautet nun

FUNCTION cqueens() :Set(Seq(Z)) WHERE true

Vorlesung Automatisierte Logik und Programmierung 2 Ubung 3

RETURNS {nq | perm(ng,{1..8}) A safe(nq)}

Losung 3.2 Ziel dieser Aufgabe ist es, die Grundbegriffe der Programmsynthese so zu
formalisieren, dafl man spdter formale Beweise tber die Synthetisierbarkeit von Programmen
fiihren und die entsprechenden Theoreme innerhalb eines Syntheseprozesses verwenden kann.

3.2-a Die Klasse aller Spezifikationen ist die Klasse aller 4-Tupel spec = (D,R,I,0), wobei
D und R Datentypen (also Elemente von TYPES = Uj, I ein Pradikat tiber D und 0 ein
Pradikat iiber DxR ist.

Diese Klasse lafit sich als ein Datentyp SPECIFICATIONS beschreiben, der allerdings von
einer hoheren Ordnung ist (d.h. zu Uy gehort).
SPECIFICATIONS = D:TYPES x R:TYPES x D—B x DxR—B
3.2-b Die Klasse aller Programme ergulibt sich aus derjenigen der Spezifikationen durch Hin-

zunahme eines Programmkérpers body:D/AR. Um dies beschreiben zu kénnen, geben
wir Selektoren D (spec) und R(spec) fiir den Domain und Range einer Spezifikation an

D(spec) = let (D,R,I,0)= spec in D
R(spec) = let (D,R,I,0)= spec in R
PROGRAMS = spec:SPEC x D(spec)-4~R(spec)

3.2—c¢ Die Formalisierung von Programmkorrektheit ergibt sich unmittelbar, da Terminierung
durch das dom-Préadikat der rekursiven Funktionstypen beschrieben werden kann.
dom(body) (x)
let ((D,R,I,0),body) = p in
Vx:D.I(x) = body hdlt auf x A 0(x,body(x))

body halt auf =
p ist korrekt

3.2-d Erfiillbarkeit von Spezifikationen folgt ebenfalls unmittelbar

spec ist erfiillbar = let((D,R,I,0),body) = p in
Jbody:DAR. (spec,body) ist korrekt

3.2-e Die syntaktisch aufbereitete Notation fiir Programme 148t sich relativ leicht auf die
Tupelschreibweise abbilden

FUNCTION f(x:D):R WHERE I, RETURNS y SUCH THAT O,, = bodys,

(D, R, Xe. I, A,y.Oyy, letrec f(x)= bodyys,)

Dabei soll I, einen beliebiger Ausdruck kennzeichnen, in dem x frei vorkommen darf.

Losung 3.3 Diese Aufgabe hat mehrere Ziele. Zum einen soll sie zeigen, daf$ Lésungen, die
durch Nachdenken erzeugt wurden, sich tatsichlich mit Hilfe von Aquivalenztransformationen
ableiten (und damit verifizieren) lafst. Zum anderen macht sie relativ schnell deutlich, daf$ die
Anwendung von Aquivalenztransformationen zur Lisung eines Programmierproblems ohne eine
Strategie nicht zum Ziele fiihrt.

In diesem Ubungsblatt steht die Korrektheit einer Ableitung im Vordergrund und nicht die
Methode, wie diese gefunden wird. Der Algorithmus soll als logische Formel beschrieben werden
und es ist zu zeigen, mit welchen Aquivalenztransformationen man zu diesem Algorithmus
kommen kann. Im Laufe dieses Prozesses lohnt es, sich Gedanken tiber Systematik zu machen.

Entsprechend der Denkweise der Synthese durch Transformationen fiithren wir als erstes ein
neues Pradikat SORT ein. das durch die foleende Aquivalenz definiert ist:

Vorlesung Automatisierte Logik und Programmierung 3 Ubung 3

VL,S:Seq(Z). true = SORT(L,S) < rearranges(L,S) A ordered(S)

Da Sortierverfahren notwendigerweise rekursiv sind, mufl das Ziel der Transformationen eine
rekursive Formel sein, in der auf der rechten Seite auffer SORT nur Ausdriicke vorkommen, die
sich leicht in Algorithmen umwandeln lassen. Wir wollen 4 Algorithmen ableiten.

Selection Sort:
sort(L) = if L=[] then [] else let y=min(L) in y.sort(L-y)

Insertion Sort:
sort(L) = if L=[] +then [] else let x=first(L) and L’=rest(L)
in insert(x, sort(L’))
Quicksort:
sort(L) = if L=[] then [] else let x=first(L) and L’=rest(L)
in sort(L’.;) o x.sort(L’>;)
Mergesort :
sort(L) = if L=[] then [] else let x=first(L) and L’=rest(L) and k=|L’|-+2
in insert(x, merge(sort(L’y. x1),s0ort (L’ k+1..(2711)))

Diese Algorithmen entsprechen den folgenen logischen Formeln.

VL,3:Seq(Z). true =
SSORT(L,S) <« L=[1 A S=I[]
v Ja:7Z.dS°:Seq(Z). ael A VxeL.x>a A SSORT(L-a,S’) A S=a.S’
VL,S:8eq(Z). true =
ISORT(L,S) <« L=[1 A S=[]
v Ja:Z.3dL’,S’:Seq(Z). L=a.L’ A ISORT(L’,8’) A S=S’,,0%x.8’>,
VL,S:8eq(Z). true =
QSORT(L,S) < L=[1 A S=[]
v Ja:7.dL’,S8,,8,:Seq(Z). L=a.L’
A QSORT(L’4,S,) A QSORT(L’>4,S,) A S=S,0a.S,
VL,S:8eq(Z). true =
MSORT(L,S) < L=[1 A s=[]
v Jda,k:7Z.3L°,S’,8,,8,:8eq(Z). L=a.L’ A k=|L’|+2
A MSORT(L’[l._k],Sl) A MSORT(L’[k+1..|L>|],SQ)
A S’=merge(S,,S,) A S=S’_4,0a.S87>,

Dabei sei definiert
insert(z,S) = Sczo0x.S55,
merge(S,,S,) = if S=[] then S, else if S,=[] then S,
else let x.5,°=5, and y.S5,’=S, in
if x<y then x.merge(S,’,S,) else y.merge(S,,S,’)

(Genau besehen wird merge als rekursive Funktion letrec merge(S,,S,) ... definiert)

Wie man sieht haben alle Formeln eine first/rest-Zerlegung gemeinsam, die entweder auf der
Ausgabevariablen S oder auf der Eingabe L stattfindet. Diese Zerlegung wird in allen Féllen auf
die gleiche Art begonnen werden. Die letzten beiden Formeln nehmen zusétzlich einen Split der
Eingaben vor, bevor sortiert wird. Es ist daher zu erwarten, dafl ihre Ableitung sich zu einem
Teil aus der des Insertion-Sort Algorithmus ergibt, zu dem nun Argumente iiber Splitting und
zusammenmischen hinzukommen werden. Alle Ableitungen werden Lemmata iiber ordered

Vorlesung Automatisierte Logik und Programmierung 4 Ubung 3

bendétigen, die wir zum Schlufl ergédnzen miissen.

Wir beginnen mit der Herleitung der first /rest-Zerlegung und der Losung fiir den Basisfall. Der
Einfachheit unterdriicken wir ab sofort die Zeile VL,S:Seq(Z). true =

VL,S:Seq(Z). true = SORT(L,S) < rearranges(L,S) A ordered(S)
’ B.2.3.1 mit Z und L + Zerlegung‘

SORT(L,S) < L=[] A rearranges(L,S) A ordered(S)
v Ja:Z.dL’:Seq(Z).L=a.L A rearranges(L,S) A ordered(S)

Substitution

SORT(L,S) < L=[] A rearranges([],S) A ordered(S)
v Jda:Z.dL’:Seq(Z).L=a.L’ A rearranges(a.L’,S) A ordered(S)

B.2.26.1/2
SORT(L,S) < L=[] A S=[] A ordered(S)

v Jda:Z.dL’:8eq(Z).L=a.L’ A a€S A rearranges(L’,S-a) A ordered(S)

Substitution

SORT(L,S) < L=[]1 A S=[] A ordered([])
v Ja:Z.dL’:Seq(Z).L=a.L’ A a€S A rearranges(L’,S-a) A ordered(S)

ordered. 1

SORT(L,S) < L=[]1 A sS=[]
v Jda:Z.dL’:8eq(Z).L=a.L’ A a€S A rearranges(L’,S-a) A ordered(S) m

Selection Sort

Da rearranges kommutativ ist, gilt | 1| auch fiir S anstelle von L und umgekehrt.

SORT(L,S) < L=[] A s=[]
v Jda:Z.dS’:8eq(Z).S=a.S’> A a€cl A rearranges(L-a,S’) A ordered(S)

ordered.2
SORT(L,S) < L=[1 A S=[]

v Ja:7Z.dS°:Seq(Z).S8=a.3’ A a€l A rearranges(L-a,S’)
A ordered(S’) A VxeS’.a<x
B.2.26.12/3

SORT(L,S) < L=[1 A s=II]
v Ja:Z.dS’:Seq(Z).S8=a.3’ A acl A rearranges(L-a,S’)
A ordered(S’) A Vxel-a.a<x

’ Definition von SDRT‘

SORT(L,S) < L=[1 A S=[]
v Ja:7Z.dS’:Seq(Z).S8=a.3’ A acL A SORT(L-a,3’) A Vxel-a.a<x
’ Arithmetik-Ergdnzung‘

SORT(L,S) < L=[] A S=[]
v Ja:7Z.dS’:8eq(Z).S=a.S’ A aeL A SORT(L-a,S’) A Vxel-a.a<x A a<a
’ B.1.11.6 (zmalog)‘

SORT(L,S) < L=[] A S=[]
v Ja:7Z.3S’:Seq(Z).S=a.S’> A acLl A SORT(L-a,S’) A VxeL.a<x

’ Umsortieren, der Lesbarkeit wegen‘

SORT(L,S) < L=[1 A S=[]
v Ja:7Z.dS’:Seq(Z).acl A VxeL.a<x A SORT(L-a,S’) A S=a.$’

Insertion Sort

Wir beginnen wieder bei

Vorlesung Automatisierte Logik und Programmierung) Ubung 3

SORT(L,S) < L=[]1 A s=[]
v Jda:Z.dL’:8eq(Z).L=a.L’ A a€S A rearranges(L’,S-a) A ordered(S)

SORT(L,S) < L=[1 A s=[]
v Ja:Z.dL’:Seq(Z).L=a.L’ A a€S A rearranges(L’,S-a)
A ordered(S-a) A S=(S-a),0a.(8-a)>, E

’ Quantifizierung von S-a

SORT(L,S) < L=[]1 A s=[1]
v Jda:Z.dL’,8°:8eq(Z).L=a.L’ A a€S A rearranges(L’,S’)
A ordered(8’) A S=8’.,0a.(S’)>, A S’=S-a

’ S’=S-a st tberflissig nach 6., ac€S ist iberflissig nach B.2.9.11/2‘

SORT(L,S) < L=[1 A sS=[]
v Jda:Z.dL’,S’:8eq(Z).L=a.L’ A rearranges(L’,S’)

A ordered(8’) A S=8’,40a.8’>, E

Definition von SORT

SORT(L,S) < L=[1 A S=[]
v Ja:Z.dL’,8’:Seq(Z).L=a.L’ A SORT(L’,S’) A S=8S’40a.8%>,

Quicksort

Die Ableitung ist bis zum Punkt identisch mit Insertion Sort, mufl dann allerdings noch
ein zusétzliches Splitting der Ausgabe durchfiihren, die genau am Punkt a gespalten wird, der
bereits fiir das Einfiigen vorgesehen ist.

SORT(L,S) & L=[]1 A S=[]
v Ja:Z.dL’:Seq(Z).L=a.L’ A a€S A rearranges(L’,S-a)
A ordered(S-a) A S=(S-a)cgz0a.(S-a)>,
] B.2.26.12, B.2.26.16 mit p(x)=x<a p(x)=x>a

SORT(L,S) < L=[1 A S=I[]
v Jda:Z.dL’:8eq(Z).L=a.L’ A a€S A rearranges(L’,S-a)
A rearranges(L’ <4, (S-a)<,) A rearranges(L’>q, (S-a)>4)

A ordered(8-a) A S=(S-a)c,0a.(S-a)>,

dered 8
SORT(L,S) < L=[1 A S=I[]

v dJa:Z.dL’:Seq(Z).L=a.L’ A acS A rearranges(L’, (8-a),0(S-a)>,)
A rearranges(L’ <4, (S-a)<,) A rearranges(L’>,, (S-a)>q)
A ordered(S-a) A S=(S-a)cg0a.(8-a)>,

SORT(L,S) < L=[]1 A s=[]

v Ja:Z.3L’:Seq(Z).L=a.L’ A a€eS A rearranges(L’, (S-a),0(S-a)>,)
A rearranges(L’,,(S-a)<,) A rearranges(L’>g, (8-a)>,)
A ordered((S-a)«,) A ordered((S-a)>q) A S=(8-a),0a.(S-a)>,

‘ Quantifizierung von (S-a)<a, (8-a)>q

SORT(L,S) & L=[] A s=I[]
v da:Z.dL?,,8,,8,:8eq(Z) . L=a.L’ A aeS A rearranges(L’,S,0S,)
A rearranges(L’.,,S,) A rearranges(L’>,,S,)
A ordered(8,) A ordered(S,) A S=8,0a.5, A S=(8-a)«, A S=(S-a)>,
’ rearranges(L’,S,0S,) st uberflissig nach B.2.26. 7/14/13‘

’ S,=(8-a)<a A S,=(S-a)>, ist uberflissig nach B.2.26.3/B.2.12. ‘

’ aeS st uberflissig nach B,2,9.11/2‘

SORT(L,S) < L=[] A S=[I]
v Jda:Z.3L7,8,,S,:5eq(Z) . L=a.L’
A rearranges(L’.,,S)) A rearranges(L’>,,S,)

Vorlesung Automatisierte Logik und Programmierung 6 Ubung 3

A ordered(S,) A ordered(S,) A S=S o0a.S,

Definition von SORT

SORT(L,S) < L=[1 A S=[]
v Jda:Z.dL’,S,,8,:5eq(Z) . L=a.L’
A SORT(L’.4,S,) A SORT(L’>,4,S,) A S=S,0a.S,

Mergesort

Die Ableitung ist bis zum Punkt | 3|identisch mit Insertion Sort, mufl dann allerdings noch ein
zusétzliches Splitting der (restlichen) Eingabe durchfiihren.
SORT(L,S) < L=[] A sS=[]
v Jda:Z.dL’,S’:8eq(Z).L=a.L’ A rearranges(L’,S’)
A ordered(S’) A S=8’4,0a.(8%)>,

] Splitting. 1 mit k=|L’|+2‘
SORT(L,S) < L=[] A S=[]

v Jda,k:Z.dL’>,8’:8eq(Z).L=a.L’ A k=|L’|=+2
A rearranges(L’ri, x]°L’ [x+1..11017,5’) A ordered(S’) A S=S’_40a.(8’)>,

SORT(L,S) < L=[1 A S=[I

v Jda,k:Z.dL°,87,8,,8,:5eq(Z) . L=a.L’ A k=|L’|=+2
A rearranges(L’y, x],S,) A rearranges(L’(x+1..1071755,)
A ordered(S,) A ordered(S,) A S’=merge(S,,S,) A S=8’_,0a.(S’)>,
’ Definition von SORT‘

SORT(L,S) < L=[1 A S=[]
v da,k:Z.dL’,S’,8,,8,:5eq(Z) . L=a.L’ A k=|L’|=+2
A SORT(L’[1..x75S,) A SORT(L’g+1..1271715S,) A S’=merge(S,,S,)
A 8=8"40a.(87)>,

Lemmata

Die folgenden Lemmata sind im Verlaufe der Ableitungen erforderlich geworden.

ordered

1. ordered([])

2. ordered(a.S’) < ordered(S’) A VxeS’.a<x

3. ordered(S) = Vi,kedomain(S).i<k = ordered(Sr;..x])

4. acS = ordered(S) = Jkecdomain(8).S.,=Sr1..x] A S>4=S[k+1..Is]]

5. a€eS = ordered(S) < ordered(S-a) A S=(S-a).,0a.(S-a) Za’ abgeleitet aus 4 und B.2.25.4
6. a€S A ordered(S) = S8’=8-a & S=8’ <qgoa.s’ >a abgeleitet aus 5 und B.2.25.4
7. aeS = ordered(S) < ordered(S.,) A ordered(S>,)

8. aeS = ordered(S) = S=S.,08>,

splitting
1. Vkedomain(L). L = Ly, x3°L{k+1..|L1]

Vorlesung Automatisierte Logik und Programmierung 7 Ubung 3

merge
1. rearranges(merge(S,,S,), S,08,)
2. ordered(S,) A ordered(S,) = ordered(merge(S,,S,))
3. ordered(S) A rearranges(LCL,,S) < IS,,S,:8eq(Z). ordered(S,) A ordered(S,)
A rearranges(L,,S,) A rearranges(L,,S,) A S=merge(S,,S,)
S,/S, entsteht durch Filterung. Aufwendiger Beweis

B.2.25 (neu!!)

3. ael & dkedomain(L).L=Lpy x-17°@.Lik+1..|L]]

4. ael = L’=L-a & dJkedomain(L’).L=L’[1. x3°a.L’ [x+1..|L7(]
5. aeS = S=(8-a)cqy A S>q=a. (S-a)>,

Im Appendix B war ein TeX-Fehler, was L. 7 betrifft. Die Indizes sind nicht zu sehen.

Losung 3.4 Ziel dieser Aufgabe ist es, den Zusammenhang zwischen logischen Formeln und
den durch sie beschriebenen Algorithmen zu verstehen. Es geht dabei besonders um die Analyse
der syntaktischen Struktur der Ausgabebedingungen.

3.4-a FUNCTION Fj(x:D):R WHERE I(x)vI’(x) RETURNS y SUCH THAT 0(x,y) v0’(x,y)
= if I(x) then bodys(x) else body (x)

Eine Disjunktion in der Ausgabebedingung entspricht somit einer Fallunterscheidung
im Algorithmus, wobei als Unterscheidungsbedingung die Eingabebedingung I(x) zu
wiahlen ist, welche die erste Ausgabebedingung 0(x,y) erfiillbar macht. Da hier nur die
Korrektheit iiberpriift werden soll, konnen wir davon ausgehen, dafl diese Informationen
bereits gefunden sind.
Zu zeigen ist: Vx:D. I(x)vI’(x) = 0(x,y)v0’(x,y),
wobei y = if I(x) then body;(x) else body (x) ist.
Sei x eD. Wir unterscheiden die Fille I(x) und —I(x) und miissen — nach Auswertung
von y — zwei Fille untersuchen.
1. I A(IEx)vI’(x)) = 0(x,bodys(x)) v0’ (x,bodys(x))
Nach Reduktion der Vorbedingung erhalten wir
I(x) = 0(x,bodys(x))v0’ (x,bodys(x))
Dies folgt aus der Korrektheitsannahme fiir f: I(x) = 0(x,bodys(x))
2. I AT vI’(x)) = 0(x,bodys (x)) v0’ (x,bodys (x))
Nach Reduktion der Vorbedingung erhalten wir
—I(x)AI’(x) = 0(x,bodyp (x)) v0’(x,bodys (x))
Dies folgt aus der Korrektheitsannahme fiir f': I°(x) = 0’ (x,bodys (x))
P.S.: der Beweis konnte auch formal gefiithrt werden.

3.4-b FUNCTION Fp(x:D):R WHERE I(x) AP(x,bodyf(x)) RETURNS y SUCH THAT 0(x,y) AP(x,y)
= body(x)
Eine Konjunktion in der Ausgabebedingung entspricht somit einer Einschriankung le-
galer Eingaben unter Beibehaltung der Berechnungsmethode. Das Ziel ist nun, solche
Berechnungsmethoden zu wihlen, daf die Einschrankung von allen Werten erfiillt wird.

Der Beweis fiir Vx:D. I(x) AP(x,bodys(x)) = 0(x,body;(x)) AP(x,body;(x)) folgt
unmittelbar aus der Korrektheitsannahme fiir f.

Vorlesung Automatisierte Logik und Programmierung 8 Ubung 3

3.4—c FUNCTION F3(x:D):R’ WHERE I(x) A J(X,bodyf(x))
RETURNS z SUCH THAT Jy:R.0(x,y) A0’ (x,y,2)
= body, (x,body(x))

Ein Existenzquantor in der Ausgabebedingung entspricht einer Generalisierung des Pro-
blems: zuerst wird ein Zwischenwert berechnet und dann allgemein gezeigt, wie man aus
Zwischenwerten eine Losung baut.

Zu zeigen: Vx:D. I(x) A J(x,body;(x)) = dy:R.0(x,y) A0’ (x,y,body,(x,body(x)))

Es sei xeD und es gelte I(x) A J(x,body;(x)). Aus der Korrektheitsannahme fiir f —
I(x) = 0(x,body;(x)) — folgt 0(x,body;(x)) und wir wihlen y:=body(x).

Zu zeigen bleibt 0’ (x,body (x) ,body, (x,body;(x))), was direkt aus der Korrektheit-
sannahme fiir g — J(x,body;(x)) = 0’ (x,body(x) ,body, (x,body;(x))) — folgt.

