
Übung zur Vorlesung

Automatisierte Logik und Programmierung
Prof. Chr. Kreitz

Universität Potsdam, Theoretische Informatik — Sommersemester 2004

Blatt 4 — Abgabetermin: —

Aufgabe 4.1 (Entwurfsentscheidungen bei Divide & Conquer)

Gegeben sei die bekannte Spezifikation des Sortierproblems

FUNCTION sort(L:Seq(Z)):Seq(Z) RETURNS S SUCH THAT rearranges(L,S) ∧ ordered(S)

Bei der Synthese des Mergesort-Algorithmus haben wir mit der Wahl der binären Dekom-
positionsfunktion ListSplit mit OD(L, (L1,L2)) =̂ L=L1

◦L2 begonnen und hierzu passend die
Kompositionsfunktion generiert. Leiten Sie informal andere Sortieralgorithmen ab, indem Sie

4.1–a als Dekompositionsfunktion die Zerlegung FirstRest mit OD(L, (a,L’)) =̂ L=a.L’

wählen und hierzu passend eine Kompositionsfunktion generieren.

4.1–b als Kompositionsfunktion die Listenerzeugungsfunktion cons mit OC((a’,S’), S) =̂
S=a’.S’ wählen und hierzu passend eine Dekompositionsfunktion generieren.

4.1–c als Kompositionsfunktion die Listenerzeugungsfunktion append mit OC((S1,S2), S) =̂
S=S1
◦S2 wählen und hierzu passend eine Dekompositionsfunktion generieren.

Erklären Sie die entstehenden Anforderungen an die Komponenten des Divide & Conquer
Algorithmus, und geben Sie dann die entsprechenden Komponenten und den Sortieralgorithmus
an. Geben Sie eine kurze Begründung für die Korrektheit Ihrer Wahl. Eine formale Herleitung
ist nicht erforderlich.

Aufgabe 4.2 (Synthese von Divide & Conquer Algorithmen )

Erzeugen Sie mithilfe der formalen Synthesestrategie für Divide & Conquer Algorithmen den
Quicksort-Algorithmus für das Sortieren von Listen ganzer Zahlen. Welche Lemmata benötigt
die Strategie, um die Komponenten herzuleiten?

Hinweise: Wie im Falle des Mergesort-Algorithmus der Vorlesung muß man in zwei Phasen vorgehen,
da der Quicksort-Algorithmus eine nichttriviale Dekomposition besitzt. Berücksichtigen Sie auch,
daß Quicksort in einem gewissem Sinne invers zu Mergesort arbeitet, also die Dekomposition invers
zur Komposition von Mergesort operiert, während die Komposition (invers zur Dekomposition von
Mergesort) verhältnismäßig einfach ist und als Ausgangspunkt genommen werden sollte.

Aufgabe 4.3 (Lokalsuche)

Synthetisieren Sie informal den Simplex Algorithmus als Lokalsuch–Algorithmus

FUNCTION Simplex(A:Matrix[n,m], b: Vector[m], c:Vector[n]):Vector[n]
RETURNS x SUCH THAT A * x ≤ b ∧ ∀y:Vector[n]. (A*y ≤ b ⇒ c*y≤c*x)

Wie könnten die Nachbarschaftsstruktur und geeignete Filter aussehen?


