
Theoretische Informatik I

Einheit 1

Mathematische Methodik

1. Formale Modelle

2. Beweistechniken

3. Wichtige Grundbegriffe
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– Formulierung des Problems im Modell: was genau ist zu tun?
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– Welches Gesamtergebnis ergibt sich aus den Einzelschritten?

– Wie beweist man die Korrektheit des Gesamtergebnisses?

• Lösung zusammenfassen

– Kurz und prägnant: Argumente auf das Wesentliche beschränken

– Umgangssprache durch mathematisch präzise Formulierungen ersetzen
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– 2 Zustände: aus, ein – 1 Startzustand: aus

– 1 Eingabesymbol: Drücken

– 1 Endzustand: ein — wird erreicht bei ungerader Anzahl von Drücken

• Grammatiken: Vorschriften für Spracherzeugung

– z.B.: S → Drücken | S → SDrückenDrücken

– Erzeigt nur ungerade Anzahl von Drücken-Symbolen

• Reguläre Ausdrücke: algebraische Strukturen

– z.B.: (DrückenDrücken)∗Drücken
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Theoretische Informatik I §1: 3 Mathematische Methodik

Formale Beweise in der Informatik

• Testen von Programmen ist unzureichend

– Nur hilfreich zur Entdeckung grober Fehler

– Viele kleine, aber gravierende Fehler fallen durch das Testraster

· Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), . . .

• Kritische Programme müssen “bewiesen” werden

– Erfolgreicher Beweis zeigt genau, wie das Programm arbeitet

– Erfolgloser Beweisversuch deutet auf mögliche Fehler im Programm
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– Deduktive Beweise für sequentielle Verarbeitung

– Induktionsbeweise für Rekursion / Schleifen

– Widerlegungsbeweise und Gegenbeispiele für Unmöglichkeitsaussagen

Viele Informatiker wissen nicht, wie man stichhaltige Beweise führt
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– Hypothesen sind zuweilen implizit oder ergeben sich aus dem Kontext

– z.B. “sin2θ + cos2θ =1” hat implizite Hypothese “θ ist ein Winkel”

• Genau dann, wenn Aussagen

– Zwei Aussagen A und B sind äquivalent (A⇔B, A≡B, A iff B (engl.))

– z.B. “x2 = 1 genau dann, wenn x = 1”

– Gleichwertig mit A ⇒ B und B ⇒ B
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Beispiel eines deduktiven Beweises

Wenn x die Summe der Quadrate von vier

positiven ganzen Zahlen ist, dann gilt 2x≥x2

• Informaler Beweis
– Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen

– Das Quadrat jeder positiven ganzen Zahl ist mindestens 1

– Aus der Annahme folgt damit, daß x≥4 sein muß

– Wir benutzen den Satz “Wenn x≥4, dann 2x≥x2” HMU Satz 1.3, Folie ??

und schließen daraus, daß 2x≥x2 gilt

• Formaler Beweis

Aussage Begründung

1. x = a2 + b2 + c2 + d2 Gegeben

2. a≥1, b≥1, c≥1, d≥1 Gegeben

3. a2≥1, b2≥1, c2≥1, d2≥1 (2) und Gesetze der Arithmetik

4. x≥4 (1), (3) und Gesetze der Arithmetik

5. 2x≥x2 (4) und HMU Satz 1.3, Folie ??
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Logische Beweisschritte von Annahme zur Konklusion



Theoretische Informatik I §1: 6 Mathematische Methodik

Deduktive Beweisführung
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Logische Beweisschritte von Annahme zur Konklusion

• Beweis =̂ Folge von Zwischenaussagen

– Beginne mit (Menge der) Annahmen

– Jede Zwischenaussage folgt schlüssig aus (allen) vorhergehenden Aussagen

– Konklusion ergibt sich als letzter Beweisschritt

• Zulässige Argumente in Beweisschritten

– Logischer Schluß: Sind A und A⇒B bekannt, kann B gefolgert werden

– Bekannte mathematische Grundgesetze (z.B. Arithmetik)



Theoretische Informatik I §1: 6 Mathematische Methodik

Deduktive Beweisführung
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Beispiel für Auflösung von Definitionen

Wenn S endliche Teilmenge einer Menge U ist und das

Komplement von S (bezüglich U) endlich ist, dann ist U endlich

• Definitionen
S endlich ≡ Es gibt eine ganze Zahl n mit ||S|| = n

T Komplement von S ≡ T∪S = U und T∩S = ∅

• Beweis
Aussage Begründung

1. S endlich Gegeben

2. T Komplement von S Gegeben

3. T endlich Gegeben

4. ||S|| = n für ein n ∈N Auflösen der Definition in (1)

5. ||T || = m für ein m ∈N Auflösen der Definition in (3)

6. T∪S = U Auflösen der Definition in (2)

7. T∩S = ∅ Auflösen der Definition in (2)

8. ||U || = m + n für n,m ∈N (4),(5),(6), (7) und Gesetze der Kardinalität

9. U endlich Einsetzen der Definition in (8)
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Für beliebige Mengen R und S gilt R∪S = S∪R

• Definitionen

x ∈R∪S ≡ x ∈R oder x ∈S

• Zu zeigen:
– R∪S = S∪R also

– R∪S ⊆ S∪R und S∪R ⊆ R∪S also

– Wenn x ∈R∪S dann x ∈S∪R und wenn x ∈S∪R dann x ∈R∪S



Theoretische Informatik I §1: 8 Mathematische Methodik

Beweis einer Mengenäquivalenz
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Beweis der zweiten Implikation genauso
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daß Sie nichts mehr falsch machen können

... es reicht nicht, daß Sie es einmal richtig gemacht haben

• Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben.

Bei Präsentation für andere zentrale Gedanken aus Lösung extrahieren

• Test: verstehen Ihre Kommilitonen Ihre Lösung und warum sie funktioniert?
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– A gilt nicht, wenn aus der Annahme von A ein Widerspruch folgt

– z.B. Wenn S endliche Teilmenge einer unendlichen Menge U ist,

dann ist das Komplement von S (bezüglich U) unendlich

– Beweis
Aussage Begründung

1. S endlich Gegeben

2. T Komplement von S Gegeben

3. U unendlich Gegeben

4. T endlich Annahme

5. U endlich (1), (4) mit Satz auf Folie ??

6. Widerspruch (3),(5)

7. T unendlich Annahme (4) muß falsch sein
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Aussagenlogisch äquivalent zu wenn H dann K

– z.B. Wenn für eine natürliche Zahl x2>1 ist, dann ist x≥2

– Beweis: Sei x2>1. Wenn x≥2 nicht gilt, dann ist x=1 oder x=0.

Wegen 12=1 und 02=0 ist x2>1 in beiden Fällen falsch.



Theoretische Informatik I §1: 11 Mathematische Methodik

Widerlegungsbeweise II

• Beweis durch Gegenbeispiel
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– z.B. Wenn für eine natürliche Zahl x2>1 ist, dann ist x≥2
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Wegen 12=1 und 02=0 ist x2>1 in beiden Fällen falsch.

Also muß x≥2 sein
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• Terminierung von Programmen ist “unentscheidbar”

Es gibt kein Programm, das testen kann, ob eine beliebiges Programm

bei einer bestimmten Eingabe überhaupt anhält

• Beweis stützt sich auf wenige Grundannahmen

1. Programme und ihre Daten sind als Zahlen codierbar

2. Computer sind universelle Maschinen

· Bei Eingabe von Programm und Daten berechnen sie das Ergebnis

· Schreibweise: pi(j) =̂ Anwendung des i-ten Programms auf die Zahl j

3. Man kann Programme beliebig zu neuen Programmen zusammensetzen

... und die Nummer des neuen Programms berechnen
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• Konstruiere ein neues Programm

Unsinn wie folgt:

Unsinn(i) =

{

0 wenn Term(i,i)=0

⊥ sonst



Theoretische Informatik I §1: 13 Mathematische Methodik

Terminierung von Programmen ist unentscheidbar

• Annahme: es gibt ein Programm zum Test auf Terminierung

– Term(i,j)=1 falls pi(j) hält (sonst 0)
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Theoretische Informatik I §1: 13 Mathematische Methodik

Terminierung von Programmen ist unentscheidbar

• Annahme: es gibt ein Programm zum Test auf Terminierung

– Term(i,j)=1 falls pi(j) hält (sonst 0)
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• Konstruiere ein neues Programm

Unsinn wie folgt:

Unsinn(i) =

{

0 wenn Term(i,i)=0

⊥ sonst

• Unsinn ist ein Programm

Also muß Unsinn eine Nummer k haben

• Was macht pk=Unsinn auf seiner eigenen Nummer?
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• Konstruiere ein neues Programm

Unsinn wie folgt:

Unsinn(i) =

{

0 wenn Term(i,i)=0

⊥ sonst

• Unsinn ist ein Programm

Also muß Unsinn eine Nummer k haben

• Was macht pk=Unsinn auf seiner eigenen Nummer?
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– Gilt A für i und folgt A für n+1, wenn A für n gilt dann gilt A für alle n≥i

– z.B. Wenn x≥4, dann 2x≥x2

Induktionsanfang x=4: Es ist 2x = 16 ≥ 16 = x2

Induktionsschritt: Es gelte 2n≥n2 für ein beliebiges n≥4

Dann ist 2n+1 = 2∗2n ≥ 2n2 aufgrund der Induktionsannahme

und (n+1)2 = n2+2n+1 = n(n+2+1/n) ≤ n(n+n) = 2n2 wegen n≥4

also gilt 2n+1 ≥ (n+1)2

• Vollständige Induktion

– Folgt A für n, wenn A für alle j<n mit j≥i gilt dann gilt A für alle n≥i

– Mächtiger, da man nicht den unmittelbaren Vorgänger benutzen muß



Theoretische Informatik I §1: 15 Mathematische Methodik

Strukturelle Induktion

Zeige A für alle Elemente einer rekursiven Datenstruktur

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element,

wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente
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– z.B. Die Summe einer Liste L von positiven ganzen Zahlen ist

mindestens so groß wie ihre Länge

Induktionsanfang L ist leer: Die Summe und die Länge von L ist 0

Induktionsschritt: Es gelte sum(L)≥|L|

Betrachte die Liste L◦x, die durch Anhängen von x and L entsteht

Dann gilt sum(L◦x) = sum(L) + x ≥ sum(L) + 1 ≥ |L| + 1 = |L|
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Strukturelle Induktion

Zeige A für alle Elemente einer rekursiven Datenstruktur

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element,

wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

– z.B. Die Summe einer Liste L von positiven ganzen Zahlen ist

mindestens so groß wie ihre Länge

Induktionsanfang L ist leer: Die Summe und die Länge von L ist 0

Induktionsschritt: Es gelte sum(L)≥|L|

Betrachte die Liste L◦x, die durch Anhängen von x and L entsteht

Dann gilt sum(L◦x) = sum(L) + x ≥ sum(L) + 1 ≥ |L| + 1 = |L|

Häufig eingesetzt für Analyse von

· Baumstrukturen (Suchen, Sortieren, . . . )

· Syntaktische Strukturen (Formeln, Programmiersprachen, . . . )
...



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
aus ein



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start -

Drücken
aus ein



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
�

Drücken

-

Drücken
aus ein



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
�

Drücken

-

Drücken
aus ein



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
�

Drücken

-

Drücken
aus ein

Zeige: Automat ist ein Wechselschalter



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
�

Drücken

-

Drücken
aus ein

Zeige: Automat ist ein Wechselschalter

– S1(n): Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

– S2(n): Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
�

Drücken

-

Drücken
aus ein

Zeige: Automat ist ein Wechselschalter

– S1(n): Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

– S2(n): Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt S2(0)

der Automat ist ausgeschaltet, also gilt S1(0)



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
�

Drücken

-

Drücken
aus ein

Zeige: Automat ist ein Wechselschalter

– S1(n): Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

– S2(n): Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt S2(0)

der Automat ist ausgeschaltet, also gilt S1(0)

Induktionsschritt: Es gelte S1(n) und S2(n). Betrachte n+1



Theoretische Informatik I §1: 16 Mathematische Methodik

Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
�

Drücken

-

Drücken
aus ein

Zeige: Automat ist ein Wechselschalter

– S1(n): Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

– S2(n): Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt S2(0)
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Induktionsschritt: Es gelte S1(n) und S2(n). Betrachte n+1

– Falls n+1 ungerade, dann gilt S1(n+1) und n ist gerade.

Wegen S1(n) war der Automat “aus” und wechselt auf “ein”. Es gilt S2(n)
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Gegenseitige Induktion

Zeige mehrere zusammengehörige Aussagen simultan

-

Start
�

Drücken

-

Drücken
aus ein

Zeige: Automat ist ein Wechselschalter

– S1(n): Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

– S2(n): Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt S2(0)

der Automat ist ausgeschaltet, also gilt S1(0)

Induktionsschritt: Es gelte S1(n) und S2(n). Betrachte n+1

– Falls n+1 ungerade, dann gilt S1(n+1) und n ist gerade.

Wegen S1(n) war der Automat “aus” und wechselt auf “ein”. Es gilt S2(n)

– Falls n+1 gerade, dann gilt S2(n+1) und n ist ungerade.

Wegen S2(n) war der Automat “ein” und wechselt auf “aus”. Es gilt S1(n)
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Mathematisches Vokabular I: Worte und Sprachen

– Alphabet Σ: endliche Menge von Symbolen,

z.B. Σ = {0, 1}, Σ = {0, .., 9}, Σ = {A, .., Z, a, .., z, , ?, !, ..}

– Worte: endliche Folge w von Symbolen eines Alphabets

Auch Zeichenreihen oder Strings genannt
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– ε: Leeres Wort (ohne jedes Symbol)

– w v: Konkatenation (Aneinanderhängung) der Worte w und v

– ui: i-fache Konkatenation des Wortes (oder Symbols) u

– |w|: Länge des Wortes w (Anzahl der Symbole)

– vvw: v Präfix von w, wenn w = v u für ein Wort u
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– vvw: v Präfix von w, wenn w = v u für ein Wort u

– Σk: Menge der Worte der Länge k mit Symbolen aus Σ

– Σ∗: Menge aller Worte über Σ

– Σ+: Menge aller nichtleeren Worte über Σ



Theoretische Informatik I §1: 17 Mathematische Methodik

Mathematisches Vokabular I: Worte und Sprachen

– Alphabet Σ: endliche Menge von Symbolen,

z.B. Σ = {0, 1}, Σ = {0, .., 9}, Σ = {A, .., Z, a, .., z, , ?, !, ..}

– Worte: endliche Folge w von Symbolen eines Alphabets

Auch Zeichenreihen oder Strings genannt

– ε: Leeres Wort (ohne jedes Symbol)

– w v: Konkatenation (Aneinanderhängung) der Worte w und v

– ui: i-fache Konkatenation des Wortes (oder Symbols) u

– |w|: Länge des Wortes w (Anzahl der Symbole)

– vvw: v Präfix von w, wenn w = v u für ein Wort u

– Σk: Menge der Worte der Länge k mit Symbolen aus Σ

– Σ∗: Menge aller Worte über Σ

– Σ+: Menge aller nichtleeren Worte über Σ

– Sprache L: Beliebige Menge von Worten über einem Alphabet Σ

Üblicherweise in abstrakter Mengennotation gegeben

z.B. {w ∈{0, 1}∗ | |w| ist gerade} {0n1n | n ∈N}

– Problem P : Menge von Worten über einem Alphabet Σ

Das “Problem” ist, Zugehörigkeit zur Menge P zu testen
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Mathematisches Vokabular II: Funktionen

– Funktion f : S→S′: Abbildung zwischen den Grundmengen S und S ′

nicht unbedingt auf allen Elementen von S definiert

– Domain von f : domain(f) = {x ∈S | f(x) definiert} (Definitionsbereich)

– Range von f : range(f) = {y ∈S ′ | ∃x ∈S f(x) = y} (Wertebereich)

– f total: domain(f) = S (andernfalls ist f partiell)
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– Urbild f−1(L): Die Menge {x ∈S | f(x) ∈L}
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– Charakteristische Funktion χ
L

von L⊆S: χ
L
(w) =

{

1 falls w ∈L,

0 sonst

– Partiell-charakteristische Funktion ψ
L
: ψ

L
(w) =

{

1 falls w ∈L,

⊥ sonst
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Mehr Vokabular wird bei Bedarf vorgestellt


