Theoretische Informatik I

\5{\'1"'“31}«&}
Einheit 1 . !ﬁ!
Mathematische Methodik b e

1. Formale Modelle
2. Beweistechniken

3. Wichtige Grundbegriffe

METHODIK DES PROBLEMLOSENS I

e Klarung der Voraussetzungen
— Welche Begriffe sind zum Verstandnis des Problems erforderlich?
— Erstellung eines prazisen Modells: abstrahiere von tiberfliissigen Details

— Formulierung des Problems im Modell: was genau ist zu tun?

THEORETISCHE INFORMATIK I §1: 1 MATHEMATISCHE METHODIK

METHODIK DES PROBLEMLOSENS I

e Klarung der Voraussetzungen
— Welche Begriffe sind zum Verstandnis des Problems erforderlich?
— Erstellung eines prazisen Modells: abstrahiere von tiberfliissigen Details

— Formulierung des Problems im Modell: was genau ist zu tun?

e Losungsweg konkretisieren
— Welche Einzelschritte benotigt man, um das Problem zu losen?
— Welches Gesamtergebnis ergibt sich aus den Einzelschritten?

— Wie beweist man die Korrektheit des Gesamtergebnisses?

THEORETISCHE INFORMATIK I §1: 1 MATHEMATISCHE METHODIK

METHODIK DES PROBLEMLOSENS I

e Klarung der Voraussetzungen
— Welche Begriffe sind zum Verstandnis des Problems erforderlich?
— Erstellung eines prazisen Modells: abstrahiere von tiberfliissigen Details

— Formulierung des Problems im Modell: was genau ist zu tun?

e Losungsweg konkretisieren
— Welche Einzelschritte benotigt man, um das Problem zu losen?
— Welches Gesamtergebnis ergibt sich aus den Einzelschritten?

— Wie beweist man die Korrektheit des Gesamtergebnisses?

e Losung zusammenfassen
— Kurz und pragnant: Argumente auf das Wesentliche beschranken

— Umgangssprache durch mathematisch prazise Formulierungen ersetzen

THEORETISCHE INFORMATIK I §1: 1 MATHEMATISCHE METHODIK

MODELLE FUR BERECHNUNG UND SPRACHEN I

e Automaten: Abarbeitung von Eingaben

THEORETISCHE INFORMATIK I §1: 2 MATHEMATISCHE METHODIK

MODELLE FUR BERECHNUNG UND SPRACHEN I

e Automaten: Abarbeitung von Eingaben
— z.B. Wechselschalter: Verarbeitung von “Driick”-Eingaben

— 2 Zustande: aus, ein

THEORETISCHE INFORMATIK I §1: 2 MATHEMATISCHE METHODIK

MODELLE FUR BERECHNUNG UND SPRACHEN I

e Automaten: Abarbeitung von Eingaben
— z.B. Wechselschalter: Verarbeitung von “Driick”-Eingaben

=

— 2 Zustande: aus, ein — 1 Startzustand: aus

THEORETISCHE INFORMATIK I §1: 2 MATHEMATISCHE METHODIK

MODELLE FUR BERECHNUNG UND SPRACHEN I

e Automaten: Abarbeitung von Eingaben
— z.B. Wechselschalter: Verarbeitung von “Driick”-Eingaben

Drucken
Start >
aus ein

— 2 Zustande: aus, ein — 1 Startzustand: aus

— 1 Eingabesymbol: Driicken

THEORETISCHE INFORMATIK I §1: 2 MATHEMATISCHE METHODIK

MODELLE FUR BERECHNUNG UND SPRACHEN I

e Automaten: Abarbeitung von Eingaben
— z.B. Wechselschalter: Verarbeitung von “Driick”-Eingaben

Drucken
Start >
@>A <@

Drucken

— 2 Zustande: aus, ein — 1 Startzustand: aus

— 1 Eingabesymbol: Driicken

THEORETISCHE INFORMATIK I §1: 2 MATHEMATISCHE METHODIK

MODELLE FUR BERECHNUNG UND SPRACHEN I

e Automaten: Abarbeitung von Eingaben
— z.B. Wechselschalter: Verarbeitung von “Driick”-Eingaben

Drucken
Start .

Drucken

— 2 Zustande: aus, ein — 1 Startzustand: aus
— 1 Eingabesymbol: Driicken

— 1 Endzustand: ein — wird erreicht bei ungerader Anzahl von Driicken

THEORETISCHE INFORMATIK I §1: 2 MATHEMATISCHE METHODIK

MODELLE FUR BERECHNUNG UND SPRACHEN I

e Automaten: Abarbeitung von Eingaben
— z.B. Wechselschalter: Verarbeitung von “Driick”-Eingaben

Drucken
Start .
%>‘ <@

Drucken

— 2 Zustande: aus, ein — 1 Startzustand: aus
— 1 Eingabesymbol: Driicken

— 1 Endzustand: ein — wird erreicht bei ungerader Anzahl von Driicken

e Grammatiken: Vorschriften fur Spracherzeugung
- 2.B.. § — Driticken | § — SDrtickenDriicken

— Erzeigt nur ungerade Anzahl von Driicken-Symbolen

THEORETISCHE INFORMATIK I §1: 2 MATHEMATISCHE METHODIK

MODELLE FUR BERECHNUNG UND SPRACHEN I

e Automaten: Abarbeitung von Eingaben
— z.B. Wechselschalter: Verarbeitung von “Driick”-Eingaben

Drucken
Start .
%>A <En>

Drucken

— 2 Zustande: aus, ein — 1 Startzustand: aus
— 1 Eingabesymbol: Driicken

— 1 Endzustand: ein — wird erreicht bei ungerader Anzahl von Driicken

e Grammatiken: Vorschriften fur Spracherzeugung
- 2.B.. § — Driticken | § — SDrtickenDriicken

— Erzeigt nur ungerade Anzahl von Driicken-Symbolen

e Regulare Ausdricke: algebraische Strukturen
— z.B.: (DriickenDriicken)*Driicken

THEORETISCHE INFORMATIK I §1: 2 MATHEMATISCHE METHODIK

FORMALE BEWEISE IN DER INFORMATIK I

e Testen von Programmen ist unzureichend
— Nur hilfreich zur Entdeckung grober Fehler

— Viele kleine, aber gravierende Fehler fallen durch das Testraster
- Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), . ..

THEORETISCHE INFORMATIK I §1: 3 MATHEMATISCHE METHODIK

FORMALE BEWEISE IN DER INFORMATIK I

e Testen von Programmen ist unzureichend
— Nur hilfreich zur Entdeckung grober Fehler

— Viele kleine, aber gravierende Fehler fallen durch das Testraster
- Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), . ..

e Kritische Programme miissen “bewiesen” werden
— Erfolgreicher Beweis zeigt genau, wie das Programm arbeitet
— Erfolgloser Beweisversuch deutet auf mogliche Fehler im Programm

— Jeder Informatiker sollte die eigenen Programme beweisen

THEORETISCHE INFORMATIK I §1: 3 MATHEMATISCHE METHODIK

FORMALE BEWEISE IN DER INFORMATIK I

e Testen von Programmen ist unzureichend
— Nur hilfreich zur Entdeckung grober Fehler

— Viele kleine, aber gravierende Fehler fallen durch das Testraster
- Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), . ..

e Kritische Programme miissen “bewiesen” werden
— Erfolgreicher Beweis zeigt genau, wie das Programm arbeitet
— Erfolgloser Beweisversuch deutet auf mogliche Fehler im Programm

— Jeder Informatiker sollte die eigenen Programme beweisen

e Jeder Informatiker mufl Beweise verstehen
— Deduktive Beweise fiir sequentielle Verarbeitung
— Induktionsbeweise fiir Rekursion / Schleifen

— Widerlegungsbeweise und Gegenbeispiele tiir Unmoglichkeitsaussagen

THEORETISCHE INFORMATIK I §1: 3 MATHEMATISCHE METHODIK

FORMALE BEWEISE IN DER INFORMATIK I

e Testen von Programmen ist unzureichend
— Nur hilfreich zur Entdeckung grober Fehler

— Viele kleine, aber gravierende Fehler fallen durch das Testraster
- Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), . ..

e Kritische Programme miissen “bewiesen” werden
— Erfolgreicher Beweis zeigt genau, wie das Programm arbeitet
— Erfolgloser Beweisversuch deutet auf mogliche Fehler im Programm

— Jeder Informatiker sollte die eigenen Programme beweisen

e Jeder Informatiker mufl Beweise verstehen
— Deduktive Beweise fiir sequentielle Verarbeitung
— Induktionsbeweise fiir Rekursion / Schleifen

— Widerlegungsbeweise und Gegenbeispiele tiir Unmoglichkeitsaussagen

Viele Informatiker wissen nicht, wie man stichhaltige Beweise fiihrt

THEORETISCHE INFORMATIK I §1: 3 MATHEMATISCHE METHODIK

BEHAUPTUNGEN: AUSGANGSPUNKT JEDER BEWEISFUHRUNG

e Wenn—Dann Aussagen:

— Fine Konklusion folgt aus aus einer oder mehreren Hypothesen (Annahmen)
—2.B. “Wenn x>4, dann 2°>x*"
— Auch: H impliziert K, aus H folgt K, K wenn H, H= K

— Achtung: wenn K gilt, mul H nicht gelten (H muf nicht der Grund sein)

THEORETISCHE INFORMATIK I §1: 4 MATHEMATISCHE METHODIK

BEHAUPTUNGEN: AUSGANGSPUNKT JEDER BEWEISFUHRUNG

e Wenn—Dann Aussagen:
— Fine Konklusion folgt aus aus einer oder mehreren Hypothesen (Annahmen)
—2.B. “Wenn x>4, dann 2°>x*"
— Auch: H wmpliziert K, aus H folgt K, K wenn H, H= K

— Achtung: wenn K gilt, mul H nicht gelten (H muf nicht der Grund sein)

Fast alle Behauptungen sind Wenn—Dann Aussagen
— Hypothesen sind zuweilen implizit oder ergeben sich aus dem Kontext

—2.B. “sin*0 + cos’0 =1" hat implizite Hypothese “0 ist ein Winkel’

THEORETISCHE INFORMATIK I §1: 4 MATHEMATISCHE METHODIK

BEHAUPTUNGEN: AUSGANGSPUNKT JEDER BEWEISFUHRUNG

e Wenn—Dann Aussagen:
— Fine Konklusion folgt aus aus einer oder mehreren Hypothesen (Annahmen)
—2.B. “Wenn x>4, dann 2°>x*"
— Auch: H wmpliziert K, aus H folgt K, K wenn H, H= K

— Achtung: wenn K gilt, mul H nicht gelten (H muf nicht der Grund sein)

Fast alle Behauptungen sind Wenn—Dann Aussagen
— Hypothesen sind zuweilen implizit oder ergeben sich aus dem Kontext

—2.B. “sin*0 + cos’0 =1" hat implizite Hypothese “0 ist ein Winkel’

e Genau dann, wenn Aussagen
— Zwei Aussagen A und B sind dquivalent (A< B, A= B, A iff B (engl.))
~z.B. “22 =1 genau dann, wenn v =17
— Gleichwertigmit A = B und B = B

THEORETISCHE INFORMATIK I §1: 4 MATHEMATISCHE METHODIK

BEISPIEL EINES DEDUKTIVEN BEWEISES I

Wenn x die Summe der Quadrate von vier

positiven ganzen Zahlen ist, dann gilt 2% >x?

THEORETISCHE INFORMATIK I §1: 5 MATHEMATISCHE METHODIK

BEISPIEL EINES DEDUKTIVEN BEWEISES I

Wenn x die Summe der Quadrate von vier

positiven ganzen Zahlen ist, dann gilt 2% >x?

e Informaler Beweis
— Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen

THEORETISCHE INFORMATIK I §1: 5 MATHEMATISCHE METHODIK

BEISPIEL EINES DEDUKTIVEN BEWEISES I

Wenn x die Summe der Quadrate von vier

positiven ganzen Zahlen ist, dann gilt 2% >x?

e Informaler Beweis
— Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
— Das Quadrat jeder positiven ganzen Zahl ist mindestens 1

THEORETISCHE INFORMATIK I §1: 5 MATHEMATISCHE METHODIK

BEISPIEL EINES DEDUKTIVEN BEWEISES I

Wenn x die Summe der Quadrate von vier

positiven ganzen Zahlen ist, dann gilt 2% >x?

e Informaler Beweis
— Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
— Das Quadrat jeder positiven ganzen Zahl ist mindestens 1
— Aus der Annahme folgt damit, daf§i >4 sein muf3

THEORETISCHE INFORMATIK I §1: 5 MATHEMATISCHE METHODIK

BEISPIEL EINES DEDUKTIVEN BEWEISES I

Wenn x die Summe der Quadrate von vier

positiven ganzen Zahlen ist, dann gilt 2% >x?

e Informaler Beweis
— Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
— Das Quadrat jeder positiven ganzen Zahl ist mindestens 1
— Aus der Annahme folgt damit, daf§i >4 sein muf3
— Wir benutzen den Satz “Wenn x>4, dann 2*>x*" [HMU Satz 1.3, Folie 77

THEORETISCHE INFORMATIK I §1: 5 MATHEMATISCHE METHODIK

BEISPIEL EINES DEDUKTIVEN BEWEISES I

Wenn x die Summe der Quadrate von vier

positiven ganzen Zahlen ist, dann gilt 2% >x?

e Informaler Beweis
— Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
— Das Quadrat jeder positiven ganzen Zahl ist mindestens 1
— Aus der Annahme folgt damit, daf§i >4 sein muf3
— Wir benutzen den Satz “Wenn x>4, dann 2*>x*" [HMU Satz 1.3, Folie 77
und schlieBen daraus, daff 2°>2° gilt

THEORETISCHE INFORMATIK I §1: 5 MATHEMATISCHE METHODIK

BEISPIEL EINES DEDUKTIVEN BEWEISES I

Wenn x die Summe der Quadrate von vier

positiven ganzen Zahlen ist, dann gilt 2% >x?

e Informaler Beweis
— Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
— Das Quadrat jeder positiven ganzen Zahl ist mindestens 1
— Aus der Annahme folgt damit, daf§i >4 sein muf3
— Wir benutzen den Satz “Wenn x>4, dann 2°>z?" [HMU Satz 1.3, Folie 77
und schlieBen daraus, daff 2°>2° gilt

e Formaler Bewels

Aussage Begriindung
1. 2 =a*+ 0> +c*+d> | Gegeben
2. a>1,b>1,c>1,d>1 Gegeben
3. a’>1,b*>1,¢*>1,d*>1|(2) und Gesetze der Arithmetik
4. >4 (1), (3) und Gesetze der Arithmetik
5. 2>z? (4) und [HMU Satz 1.3, Folie 77

THEORETISCHE INFORMATIK I §1: 5 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen

— Beginne mit (Menge der) Annahmen

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen

— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen
— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

— Konklusion ergibt sich als letzter Beweisschritt

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen
— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

— Konklusion ergibt sich als letzter Beweisschritt

e Zulassige Argumente in Beweisschritten

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen
— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

— Konklusion ergibt sich als letzter Beweisschritt

e Zulassige Argumente in Beweisschritten
— Logischer Schlufl: Sind A und A= B bekannt, kann B gefolgert werden

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen
— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

— Konklusion ergibt sich als letzter Beweisschritt

e Zulassige Argumente in Beweisschritten
— Logischer Schlufl: Sind A und A= B bekannt, kann B gefolgert werden
— Bekannte mathematische Grundgesetze (z.B. Arithmetik)

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen
— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

— Konklusion ergibt sich als letzter Beweisschritt

e Zulassige Argumente in Beweisschritten
— Logischer Schlufl: Sind A und A= B bekannt, kann B gefolgert werden
— Bekannte mathematische Grundgesetze (z.B. Arithmetik)

— Bereits bewiesene Satze

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen
— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

— Konklusion ergibt sich als letzter Beweisschritt

e Zulassige Argumente in Beweisschritten
— Logischer Schlufl: Sind A und A= B bekannt, kann B gefolgert werden
— Bekannte mathematische Grundgesetze (z.B. Arithmetik)
— Bereits bewiesene Satze

— Auflosung von Definitionen

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen
— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

— Konklusion ergibt sich als letzter Beweisschritt

e Zulassige Argumente in Beweisschritten
— Logischer Schlufl: Sind A und A= B bekannt, kann B gefolgert werden
— Bekannte mathematische Grundgesetze (z.B. Arithmetik)
— Bereits bewiesene Satze
— Auflosung von Definitionen
— Extensionalitat von Mengen: M=M" genau dann wenn McM' A McM'’
McM'" genau dann wenn (Vx)xe M = xe M’

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

DEDUKTIVE BEWEISFUHRUNG I

Logische Beweisschritte von Annahme zur Konklusion

e Beweis = Folge von Zwischenaussagen
— Beginne mit (Menge der) Annahmen
— Jede Zwischenaussage folgt schliissig aus (allen) vorhergehenden Aussagen

— Konklusion ergibt sich als letzter Beweisschritt

e Zulassige Argumente in Beweisschritten
— Logischer Schlufl: Sind A und A= B bekannt, kann B gefolgert werden
— Bekannte mathematische Grundgesetze (z.B. Arithmetik)
— Bereits bewiesene Satze
— Auflosung von Definitionen
— Extensionalitat von Mengen: M=M" genau dann wenn McM' A McM'’
McM'" genau dann wenn (Vx)xe M = xe M’

— (Gleichheit von Zahlen: r=1y genau dann wenn weder x<y noch x>y

THEORETISCHE INFORMATIK I §1: 6 MATHEMATISCHE METHODIK

BEISPIEL FUR AUFLOSUNG VON DEFINITIONEN

Wenn S endliche Teilmenge einer Menge U ist und das
Komplement von S (beziiglich U) endlich ist, dann ist U endlich

THEORETISCHE INFORMATIK I §1: 7 MATHEMATISCHE METHODIK

BEISPIEL FUR AUFLOSUNG VON DEFINITIONEN I

Wenn S endliche Teilmenge einer Menge U ist und das

Komplement von S (beziiglich U) endlich ist, dann ist U endlich

e Definitionen
S endlich

T" Komplement von S

Es gibt eine ganze Zahl n mit ||S|| = n
TUS =U und TNS =10

THEORETISCHE INFORMATIK I §1: 7 MATHEMATISCHE METHODIK

BEISPIEL FUR AUFLOSUNG VON DEFINITIONEN I

Wenn S endliche Teilmenge einer Menge U ist und das

Komplement von S (beziiglich U) endlich ist, dann ist U endlich

e Definitionen
S endlich

T Komplement von S

Es gibt eine ganze Zahl n mit ||S|| = n
TUS =U und TNS =10

e Beweis
Aussage Begriindung

1. S endlich Gegeben

2. T Komplement von S Gegeben

3. T endlich Gegeben

4. ||S]| = n fir ein neN Auflosen der Definition in (1)
5. ||T|| = m fir ein meN | Auflésen der Definition in (3)
6. TUS =U Auflosen der Definition in (2)
7. TNS =10 Aufldsen der Definition in (2)
8. [|U|| =m+n fir n,meN|(4),(5),(6), (7) und Gesetze der Kardinalitat
9. U endlich Einsetzen der Definition in (8)

THEORETISCHE INFORMATIK I §1: 7 MATHEMATISCHE METHODIK

BEWEIS EINER MENGENAQUIVALENZ I

Fiir beliebige Mengen R und S gilt RUS = SUR

THEORETISCHE INFORMATIK I §1: 8 MATHEMATISCHE METHODIK

BEWEIS EINER MENGENAQUIVALENZ I

Fiir beliebige Mengen R und S gilt RUS = SUR

e Definitionen
reRUS = xzeRoder xe8

THEORETISCHE INFORMATIK I §1: 8 MATHEMATISCHE METHODIK

BEWEIS EINER MENGENAQUIVALENZ I

Fiir beliebige Mengen R und S gilt RUS = SUR

e Definitionen
reRUS = xzeRoder xe8

e Zu zeigen:
- RUS = SUR also

THEORETISCHE INFORMATIK I §1: 8 MATHEMATISCHE METHODIK

BEWEIS EINER MENGENAQUIVALENZ I

Fiir beliebige Mengen R und S gilt RUS = SUR

e Definitionen
reRUS = xzeRoder xe8

e Zu zeigen:
— RUS = SUR also
— RUS ¢ SUR und SUR < RUS also

THEORETISCHE INFORMATIK I §1: 8 MATHEMATISCHE METHODIK

BEWEIS EINER MENGENAQUIVALENZ I

Fiir beliebige Mengen R und S gilt RUS = SUR

e Definitionen
reRUS = xzeRoder xe8

e Zu zeigen:
— RUS = SUR also
-~ RUS ¢ SUR und SUR ¢ RUS also
— Wenn e RUS dann xe< SUR und wenn x € SUR dann x € RUS

THEORETISCHE INFORMATIK I §1: 8 MATHEMATISCHE METHODIK

BEWEIS EINER MENGENAQUIVALENZ I

Fiir beliebige Mengen R und S gilt RUS = SUR

e Definitionen
reRUS = xzeRoder xe8

e Zu zeigen:
— RUS = SUR also
-~ RUS ¢ SUR und SUR ¢ RUS also
— Wenn e RUS dann xe< SUR und wenn x € SUR dann x € RUS

e Beweis der ersten Implikation

Aussage Begriindung

xreRUS Gegeben

re R oder x €S | Auflésen der Definition in (1)
xeS oder x e R | Logische Umstellung von (2)
reSUR Einsetzen der Definition in (3)

= W o=

THEORETISCHE INFORMATIK I §1: 8 MATHEMATISCHE METHODIK

BEWEIS EINER MENGENAQUIVALENZ I

Fiir beliebige Mengen R und S gilt RUS = SUR

e Definitionen
reRUS = xzeRoder xe8

e Zu zeigen:
— RUS = SUR also
-~ RUS ¢ SUR und SUR ¢ RUS also
— Wenn e RUS dann xe< SUR und wenn x € SUR dann x € RUS

e Beweis der ersten Implikation

Aussage Begriindung

xreRUS Gegeben

re R oder x €S | Auflésen der Definition in (1)
xeS oder x e R | Logische Umstellung von (2)
reSUR Einsetzen der Definition in (3)

= W o=

Beweis der zweiten Implikation genauso

THEORETISCHE INFORMATIK I §1: 8 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

e Prazise genug. um Details rekonstruieren zu konnen

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

e Prazise genug. um Details rekonstruieren zu konnen

e Knapp genug, um ubersichtlich und merkbar zu sein

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

e Prazise genug. um Details rekonstruieren zu konnen
e Knapp genug, um ubersichtlich und merkbar zu sein

e /wischenschritte mussen mit “ublichen” Vorkenntnissen erklarbar sein

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

e Prazise genug. um Details rekonstruieren zu konnen
e Knapp genug, um ubersichtlich und merkbar zu sein
e /wischenschritte missen mit “liblichen” Vorkenntnissen erklarbar sein

e Also nicht notwendig formal oder mit allen Details

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

e Prazise genug. um Details rekonstruieren zu konnen

e Knapp genug, um ubersichtlich und merkbar zu sein

e /wischenschritte mussen mit “liblichen”™ Vorkenntnissen erklarbar sein
e Also nicht notwendig formal oder mit allen Details

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daB Sie nichts mehr falsch machen konnen

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

e Prazise genug. um Details rekonstruieren zu konnen

e Knapp genug, um ubersichtlich und merkbar zu sein

e /wischenschritte mussen mit “liblichen”™ Vorkenntnissen erklarbar sein
e Also nicht notwendig formal oder mit allen Details

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daB Sie nichts mehr falsch machen konnen
... es reicht nicht, daB Sie es einmal richtig gemacht haben

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

e Prazise genug. um Details rekonstruieren zu konnen

e Knapp genug, um ubersichtlich und merkbar zu sein

e /wischenschritte mussen mit “liblichen”™ Vorkenntnissen erklarbar sein
e Also nicht notwendig formal oder mit allen Details

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daB Sie nichts mehr falsch machen konnen
... es reicht nicht, daB Sie es einmal richtig gemacht haben

e Tip: ausfiihrliche Losungen entwickeln, bis Sie genug Erfahrung haben.

Bei Prasentation fiir andere zentrale Gedanken aus Losung extrahieren

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIE GENAU/FORMAL MUSS EIN BEWEIS SEIN? |

Ein Beweis ist ein Argument, das den Leser uberzeugt

e Prazise genug. um Details rekonstruieren zu konnen

e Knapp genug, um ubersichtlich und merkbar zu sein

e /wischenschritte mussen mit “liblichen”™ Vorkenntnissen erklarbar sein
e Also nicht notwendig formal oder mit allen Details

e Gedankenspriinge sind erlaubt, wenn Sie die Materie gut genug verstehen,

daB Sie nichts mehr falsch machen konnen
... es reicht nicht, daB Sie es einmal richtig gemacht haben

e Tip: ausfiihrliche Losungen entwickeln, bis Sie genug Erfahrung haben.

Bei Prasentation fiir andere zentrale Gedanken aus Losung extrahieren

e Test: verstehen lhre Kommilitonen lhre Losung und warum sie funktioniert?

THEORETISCHE INFORMATIK I §1: 9 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE | I

Zeige, dafl eine Aussage A nicht gilt

e Beweis durch Widerspruch

THEORETISCHE INFORMATIK I §1: 10 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE | I

Zeige, dafl eine Aussage A nicht gilt

e Beweis durch Widerspruch

— A gilt nicht, wenn aus der Annahme von A ein Widerspruch folgt

THEORETISCHE INFORMATIK I §1: 10 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE | I

Zeige, dafl eine Aussage A nicht gilt

e Beweis durch Widerspruch
— A gilt nicht, wenn aus der Annahme von A ein Widerspruch folgt

—z.B. Wenn S endliche Teilmenge einer unendlichen Menge U 1st,
dann ist das Komplement von S (beziiglich U) unendlich

THEORETISCHE INFORMATIK I §1: 10 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE | I

Zeige, dafl eine Aussage A nicht gilt

e Beweis durch Widerspruch
— A gilt nicht, wenn aus der Annahme von A ein Widerspruch folgt

—z.B. Wenn S endliche Teilmenge einer unendlichen Menge U 1st,
dann ist das Komplement von S (beziiglich U) unendlich

— Beweis
Aussage Begriindung

1. S endlich Gegeben

2. T Komplement von S'| Gegeben

3. U unendlich Gegeben

4. T endlich Annahme

5. U endlich (1), (4) mit Satz auf Folie 77
6. Widerspruch (3),(5)

7. T unendlich Annahme (4) muB falsch sein

THEORETISCHE INFORMATIK I §1: 10 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch (Gegenbeispiel

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel

— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel
— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt

—z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel
— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt
—z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

— Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel
— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt
—z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

— Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

e Beweis durch Kontraposition
— Statt wenn H dann K zeige wenn nicht K dann nicht H

— Behauptungen sind aussagenlogisch aquivalent

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel
— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt
—z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

— Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

e Beweis durch Kontraposition
— Statt wenn H dann K zeige wenn nicht K dann nicht H

— Behauptungen sind aussagenlogisch aquivalent

e Spezielle Anwendung: Indirekte Beweisfitlhrung
— Zeige, dafl aus H und nicht K ein Widerspruch folgt

Aussagenlogisch aquivalent zu wenn H dann K

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel
— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt
—z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

— Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

e Beweis durch Kontraposition
— Statt wenn H dann K zeige wenn nicht K dann nicht H

— Behauptungen sind aussagenlogisch aquivalent

e Spezielle Anwendung: Indirekte Beweisfitlhrung
— Zeige, dafl aus H und nicht K ein Widerspruch folgt

Aussagenlogisch aquivalent zu wenn H dann K

—z.B. Wenn fiir eine natirliche Zahl x*>1 ist, dann ist >2

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel
— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt
—z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

— Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

e Beweis durch Kontraposition
— Statt wenn H dann K zeige wenn nicht K dann nicht H

— Behauptungen sind aussagenlogisch aquivalent

e Spezielle Anwendung: Indirekte Beweisfitlhrung
— Zeige, dafl aus H und nicht K ein Widerspruch folgt
Aussagenlogisch aquivalent zu wenn H dann K
—z.B. Wenn fiir eine natirliche Zahl x*>1 ist, dann ist >2

— Beweis: Sei z°>1. Wenn x>2 nicht gilt, dann ist x=1 oder x=0.

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel
— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt
—z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

— Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

e Beweis durch Kontraposition
— Statt wenn H dann K zeige wenn nicht K dann nicht H

— Behauptungen sind aussagenlogisch aquivalent

e Spezielle Anwendung: Indirekte Beweisfitlhrung
— Zeige, dafl aus H und nicht K ein Widerspruch folgt
Aussagenlogisch aquivalent zu wenn H dann K
—z.B. Wenn fiir eine natirliche Zahl x*>1 ist, dann ist >2

— Beweis: Sei z°>1. Wenn x>2 nicht gilt, dann ist x=1 oder x=0.
Wegen 1°=1 und 0*=0 ist 2°>1 in beiden Fdllen falsch.

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

WIDERLEGUNGSBEWEISE 11 I

e Beweis durch Gegenbeispiel
— A ist nicht allgemeingiiltig, wenn es ein einziges Gegenbeispiel gibt
—z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

— Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

e Beweis durch Kontraposition
— Statt wenn H dann K zeige wenn nicht K dann nicht H

— Behauptungen sind aussagenlogisch aquivalent

e Spezielle Anwendung: Indirekte Beweisfitlhrung
— Zeige, dafl aus H und nicht K ein Widerspruch folgt
Aussagenlogisch aquivalent zu wenn H dann K
—z.B. Wenn fiir eine natirliche Zahl x*>1 ist, dann ist >2
— Beweis: Sei z°>1. Wenn x>2 nicht gilt, dann ist x=1 oder x=0.
Wegen 1°=1 und 0*°=0 ist 2°>>1 in beiden Fdllen falsch.

Also mufs >2 sein

THEORETISCHE INFORMATIK I §1: 11 MATHEMATISCHE METHODIK

DIAGONALISIERUNGSBEWEISE I

Gegenbeispielkonstruktion fiur unendliche Objekte

THEORETISCHE INFORMATIK I §1: 12 MATHEMATISCHE METHODIK

DIAGONALISIERUNGSBEWEISE I

Gegenbeispielkonstruktion fur unendliche Objekte

e Terminierung von Programmen ist “unentscheidbar”
Es gibt kein Programm, das testen kann, ob eine beliebiges Programm

bei einer bestimmten Eingabe tuberhaupt anhalt

THEORETISCHE INFORMATIK I §1: 12 MATHEMATISCHE METHODIK

DIAGONALISIERUNGSBEWEISE I

Gegenbeispielkonstruktion fur unendliche Objekte

e Terminierung von Programmen ist “unentscheidbar”
Es gibt kein Programm, das testen kann, ob eine beliebiges Programm

bei einer bestimmten Eingabe tuberhaupt anhalt

e Beweis stutzt sich auf wenige Grundannahmen

THEORETISCHE INFORMATIK I §1: 12 MATHEMATISCHE METHODIK

DIAGONALISIERUNGSBEWEISE I

Gegenbeispielkonstruktion fur unendliche Objekte

e Terminierung von Programmen ist “unentscheidbar”
Es gibt kein Programm, das testen kann, ob eine beliebiges Programm

bei einer bestimmten Eingabe tuberhaupt anhalt

e Beweis stutzt sich auf wenige Grundannahmen

1. Programme und ihre Daten sind als Zahlen codierbar

THEORETISCHE INFORMATIK I §1: 12 MATHEMATISCHE METHODIK

DIAGONALISIERUNGSBEWEISE I

Gegenbeispielkonstruktion fur unendliche Objekte

e Terminierung von Programmen ist “unentscheidbar”
Es gibt kein Programm, das testen kann, ob eine beliebiges Programm

bei einer bestimmten Eingabe tuberhaupt anhalt

e Beweis stutzt sich auf wenige Grundannahmen
1. Programme und ihre Daten sind als Zahlen codierbar
2. Computer sind universelle Maschinen
- Bel Eingabe von Programm und Daten berechnen sie das Ergebnis

- Schreibweise: p;(7) = Anwendung des i-ten Programms auf die Zahl j

THEORETISCHE INFORMATIK I §1: 12 MATHEMATISCHE METHODIK

DIAGONALISIERUNGSBEWEISE I

Gegenbeispielkonstruktion fur unendliche Objekte

e Terminierung von Programmen ist “unentscheidbar”
Es gibt kein Programm, das testen kann, ob eine beliebiges Programm

bei einer bestimmten Eingabe tuberhaupt anhalt

e Beweis stutzt sich auf wenige Grundannahmen
1. Programme und ihre Daten sind als Zahlen codierbar
2. Computer sind universelle Maschinen
- Bel Eingabe von Programm und Daten berechnen sie das Ergebnis
- Schreibweise: p;(7) = Anwendung des i-ten Programms auf die Zahl j
3. Man kann Programme beliebig zu neuen Programmen zusammensetzen

... und die Nummer des neuen Programms berechnen

THEORETISCHE INFORMATIK I §1: 12 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR I

e Annahme: es gibt ein Programm zum Test auf Terminierung

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung
— Term(i,7)=1 falls p;(j) hélt (sonst 0)

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung
— Term(i,7)=1 falls p;(j) hélt (sonst 0)

O 1 2 3 4
Pol X X X L X
pi| L L X X X
p2l X X 1L X X ..
ps| L x L x L

X = Terminierung, L. = halt nicht

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung
— Term(i,7)=1 falls p;(j) hélt (sonst 0)

O 1 2 3 4
pol X X X L X
e Konstruiere ein neues Programm pl L 1L X X X
Unsinn wie folgt: pal X X L X x ..
o 0 wenn Term(¢,i)=0 ps) L x L Xx 1
Unsinn(i) = :
L sonst

X = Terminierung, L. = halt nicht

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung
— Term(i,7)=1 falls p;(j) hélt (sonst 0)

O 1 2 3 4
pol L X x L X
e Konstruiere ein neues Programm pl L 1L X X X
Unsinn wie folgt: pal X X L X x ..
o 0 wenn Term(¢,i)=0 ps) L x L Xx 1
Unsinn(i) = :
L sonst

X = Terminierung, L. = halt nicht

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung

— Term(z,j)=1 falls p;(j) hélt (sonst 0) 0 1 2 3 4
pol L X x L X
e Konstruiere ein neues Programm Pl L X X X X
Unsinn wie folgt: pal X X L X x ..
o 0 wenn Term(¢,i)=0 ps) L x L Xx 1
Unsinn(i) = :
L sonst

X = Terminierung, L. = halt nicht

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung

— Term(z,j)=1 falls p;(j) hélt (sonst 0) 0 1 2 3 4
pol L X x L X
e Konstruiere ein neues Programm Pl L X X X X
Unsinn wie folgt: P2l X X X X X ..
o 0 wenn Term(¢,i)=0 ps) L x L Xx 1
Unsinn(i) = :
L sonst

X = Terminierung, L. = halt nicht

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung

— Term(z,j)=1 falls p;(j) hélt (sonst 0) 0 1 2 3 4
pol L X x L X
e Konstruiere ein neues Programm Pl L X X X X
Unsinn wie folgt: P2l X X X X X ..
o 0 wenn Term(¢,i)=0 ps) L x L L 1
Unsinn(i) = :
L sonst

X = Terminierung, L. = halt nicht

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung

— Term(z,j)=1 falls p;(j) hélt (sonst 0) 0 1 2 3 4
pol L X x L X
e Konstruiere ein neues Programm Pl L X X X X
Unsinn wie folgt: P2l X X X X X ..
o 0 wenn Term(¢,i)=0 ps L X L 1 -
Unsinn(i) =
L sonst

. . . X = Terminierung, | = hélt nicht
e Unsinn ist ein Programm

Also mufl Unsinn eine Nummer k£ haben

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung

— Term(z,j)=1 falls p;(j) hélt (sonst 0) 0 1 2 3 4
pol L X x L X
e Konstruiere ein neues Programm Pl L X X X X
Unsinn wie folgt: P2l X X X X X ..
o 0 wenn Term(¢,i)=0 ps L X L 1 -
Unsinn(i) =
L sonst

. . . X = Terminierung, | = hélt nicht
e Unsinn ist ein Programm

Also mufl Unsinn eine Nummer k£ haben

e Was macht p;=Unsinn auf seiner eigenen Nummer?

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung

— Term(z,j)=1 falls p;(j) hélt (sonst 0) 0 1 2 3 4
po L X x L X
e Konstruiere ein neues Programm Pl L X X X X
Unsinn wie folgt: Pal X X X X X ..
o 0 wenn Term(¢,i)=0 ps L X L X _
Unsinn(i) =
L sonst

. . . X = Terminierung, | = hélt nicht
e Unsinn ist ein Programm

Also mufl Unsinn eine Nummer k£ haben

e Was macht p;=Unsinn auf seiner eigenen Nummer?
— Wenn py(k) hélt, dann Term(k,k)=1, also hilt Unsinn(k) nicht an 777

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung

— Term(z,j)=1 falls p;(j) hélt (sonst 0) 0 1 2 3 4
pol L X X L X
e Konstruiere ein neues Programm pl L X X X X .
Unsinn wie folgt: pPal X X X X X ..
o 0 wenn Term(¢,i)=0 ps L X L X _
Unsinn(i) =
L sonst

, . . X = Terminierung, L. = halt nicht
e Unsinn ist ein Programm

Also muf} Unsinn eine Nummer k£ haben

e Was macht p;=Unsinn auf seiner eigenen Nummer?
— Wenn py(k) hélt, dann Term(k,k)=1, also hilt Unsinn(k) nicht an 777
— Wenn py(k) nicht hélt, dann Term(k,k)=0, also hilt Unsinn(k) an 777

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

TERMINIERUNG VON PROGRAMMEN IST UNENTSCHEIDBAR

e Annahme: es gibt ein Programm zum Test auf Terminierung

— Term(z,j)=1 falls p;(j) hélt (sonst 0) 0 1 2 3 4
pol L X X L X
e Konstruiere ein neues Programm pl L X X X X .
Unsinn wie folgt: pPal X X X X X ..
o 0 wenn Term(¢,i)=0 ps L X L X _
Unsinn(i) =
L sonst

. . . X = Terminierung, | = halt nicht
e Unsinn ist ein Programm

Also mufl Unsinn eine Nummer k£ haben

e Was macht p;=Unsinn auf seiner eigenen Nummer?
— Wenn py(k) hélt, dann Term(k,k)=1, also hilt Unsinn(k) nicht an 777
— Wenn py(k) nicht hélt, dann Term(k,k)=0, also hilt Unsinn(k) an 777

e Dies ist ein Widerspruch,
Also kann es den Test auf Terminierung nicht geben

THEORETISCHE INFORMATIK I §1: 13 MATHEMATISCHE METHODIK

INDUKTIVE BEWEISE 1 I

Beweise eine Aussage A fiir alle naturlichen Zahlen

THEORETISCHE INFORMATIK I §1: 14 MATHEMATISCHE METHODIK

INDUKTIVE BEWEISE 1 I

Beweise eine Aussage A fiir alle naturlichen Zahlen

e Standardinduktion
— Gilt A fur i und folgt A fiir n+1, wenn A fiir n gilt dann gilt A fir alle n>1

THEORETISCHE INFORMATIK I §1: 14 MATHEMATISCHE METHODIK

INDUKTIVE BEWEISE 1 I

Beweise eine Aussage A fiir alle naturlichen Zahlen

e Standardinduktion
— Gilt A fur i und folgt A fiir n+1, wenn A fiir n gilt dann gilt A fir alle n>1

—7.B. Wenn >4, dann 2°>x?

THEORETISCHE INFORMATIK I §1: 14 MATHEMATISCHE METHODIK

INDUKTIVE BEWEISE 1 I

Beweise eine Aussage A fiir alle naturlichen Zahlen

e Standardinduktion
— Gilt A fur i und folgt A fiir n+1, wenn A fiir n gilt dann gilt A fir alle n>1

—7.B. Wenn >4, dann 2°>x?
Induktionsanfang x=4: Esist 2 = 16 > 16 = 2

THEORETISCHE INFORMATIK I §1: 14 MATHEMATISCHE METHODIK

INDUKTIVE BEWEISE 1 I

Beweise eine Aussage A fiir alle naturlichen Zahlen

e Standardinduktion
— Gilt A fur i und folgt A fiir n+1, wenn A fiir n gilt dann gilt A fir alle n>1

—7.B. Wenn >4, dann 2°>x?
Induktionsanfang x=4: Esist 2 = 16 > 16 = 2
Induktionsschritt: Es gelte 2">n? fiir ein beliebiges n>4

THEORETISCHE INFORMATIK I §1: 14 MATHEMATISCHE METHODIK

INDUKTIVE BEWEISE 1 I

Beweise eine Aussage A fiir alle naturlichen Zahlen

e Standardinduktion
— Gilt A fur i und folgt A fiir n+1, wenn A fiir n gilt dann gilt A fir alle n>1
—7.B. Wenn >4, dann 2°>x?
Induktionsanfang x=4: Esist 2 = 16 > 16 = 2
Induktionsschritt: Es gelte 2">n? fiir ein beliebiges n>4

Dann ist 27! = 2x2" > 2n? aufgrund der Induktionsannahme

und (n+1)% = n*+2n+1 = n(n+2+1/n) < n(n+n) = 2n* wegen n>4

THEORETISCHE INFORMATIK I §1: 14 MATHEMATISCHE METHODIK

INDUKTIVE BEWEISE 1 I

Beweise eine Aussage A fiir alle naturlichen Zahlen

e Standardinduktion
— Gilt A fur i und folgt A fiir n+1, wenn A fiir n gilt dann gilt A fir alle n>1

—7.B. Wenn >4, dann 2°>x?
Induktionsanfang x=4: Esist 2 = 16 > 16 = 2
Induktionsschritt: Es gelte 2">n? fiir ein beliebiges n>4
Dann ist 27! = 2x2" > 2n? aufgrund der Induktionsannahme
und (n+1)* = n*+2n+1 = n(n+2+1/n) < n(n+n) = 2n* wegen n>4
also gilt 2" > (n+1)?

THEORETISCHE INFORMATIK I §1: 14 MATHEMATISCHE METHODIK

INDUKTIVE BEWEISE 1 I

Beweise eine Aussage A fiir alle naturlichen Zahlen

e Standardinduktion
— Gilt A fur i und folgt A fiir n+1, wenn A fiir n gilt dann gilt A fir alle n>1

—7.B. Wenn >4, dann 2°>x?
Induktionsanfang x=4: Esist 2 = 16 > 16 = 2
Induktionsschritt: Es gelte 2">n? fiir ein beliebiges n>4
Dann ist 27! = 2x2" > 2n? aufgrund der Induktionsannahme
und (n+1)* = n*+2n+1 = n(n+2+1/n) < n(n+n) = 2n* wegen n>4
also gilt 2" > (n+1)?

e Vollstandige Induktion
— Folgt A fir n, wenn A fur alle j<n mit j>17 gilt dann gilt A fir alle n>1

— Machtiger, da man nicht den unmittelbaren Vorganger benutzen muif

THEORETISCHE INFORMATIK I §1: 14 MATHEMATISCHE METHODIK

STRUKTURELLE INDUKTION I

Zeige A fir alle Elemente einer rekursiven Datenstruktur

Gilt A fiir das Basiselement und folgt A fiir ein zusammengesetztes Element,

wenn A fiir seine Unterelemente gilt, dann gilt A fiir alle Elemente

THEORETISCHE INFORMATIK I §1: 15 MATHEMATISCHE METHODIK

STRUKTURELLE INDUKTION I

Zeige A fir alle Elemente einer rekursiven Datenstruktur

Gilt A fiir das Basiselement und folgt A fiir ein zusammengesetztes Element,

wenn A fiir seine Unterelemente gilt, dann gilt A fiir alle Elemente

—72.B. Die Summe einer Liste L von positiven ganzen Zahlen ist
mindestens so grofl wie thre Lange

THEORETISCHE INFORMATIK I §1: 15 MATHEMATISCHE METHODIK

STRUKTURELLE INDUKTION I

Zeige A fir alle Elemente einer rekursiven Datenstruktur

Gilt A fiir das Basiselement und folgt A fiir ein zusammengesetztes Element,

wenn A fiir seine Unterelemente gilt, dann gilt A fiir alle Elemente

—72.B. Die Summe einer Liste L von positiven ganzen Zahlen ist
mindestens so grofl wie thre Lange

Induktionsanfang L ist leer: Die Summe und die Lange von L ist 0

THEORETISCHE INFORMATIK I §1: 15 MATHEMATISCHE METHODIK

STRUKTURELLE INDUKTION I

Zeige A fir alle Elemente einer rekursiven Datenstruktur

Gilt A fiir das Basiselement und folgt A fiir ein zusammengesetztes Element,

wenn A fiir seine Unterelemente gilt, dann gilt A fiir alle Elemente

—72.B. Die Summe einer Liste L von positiven ganzen Zahlen ist
mindestens so grofl wie thre Lange

Induktionsanfang L ist leer: Die Summe und die Lange von L ist 0
Induktionsschritt: Es gelte sum(L)>|L]|

THEORETISCHE INFORMATIK I §1: 15 MATHEMATISCHE METHODIK

STRUKTURELLE INDUKTION I

Zeige A fir alle Elemente einer rekursiven Datenstruktur

Gilt A fiir das Basiselement und folgt A fiir ein zusammengesetztes Element,

wenn A fiir seine Unterelemente gilt, dann gilt A fiir alle Elemente

—72.B. Die Summe einer Liste L von positiven ganzen Zahlen ist
mindestens so grofl wie thre Lange

Induktionsanfang L ist leer: Die Summe und die Lange von L ist 0
Induktionsschritt: Es gelte sum(L)>|L]|
Betrachte die Liste Lox, die durch Anhangen von x and L entsteht
Dann gilt sum(Lox) = sum(L) +x > sum(L)+1> |L|+1 = |L]

THEORETISCHE INFORMATIK I §1: 15 MATHEMATISCHE METHODIK

STRUKTURELLE INDUKTION I

Zeige A fir alle Elemente einer rekursiven Datenstruktur

Gilt A fiir das Basiselement und folgt A fiir ein zusammengesetztes Element,

wenn A fiir seine Unterelemente gilt, dann gilt A fiir alle Elemente

—72.B. Die Summe einer Liste L von positiven ganzen Zahlen ist
mindestens so grofl wie thre Lange
Induktionsanfang L ist leer: Die Summe und die Lange von L ist 0
Induktionsschritt: Es gelte sum(L)>|L]|
Betrachte die Liste Lox, die durch Anhangen von x and L entsteht

Dann gilt sum(Lox) = sum(L) +x > sum(L)+1> |L|+1 = |L]

Haufig eingesetzt fiir Analyse von
- Baumstrukturen (Suchen, Sortieren, ...)

- Syntaktische Strukturen (Formeln, Programmiersprachen, . ..)

MATHEMATISCHE METHODIK

THEORETISCHE INFORMATIK I §1: 15

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

=

THEORETISCHE INFORMATIK I §1: 16 MATHEMATISCHE METHODIK

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Drucken
Start >
aus elin

THEORETISCHE INFORMATIK I §1: 16 MATHEMATISCHE METHODIK

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Drucken
Start .

Drucken

THEORETISCHE INFORMATIK I §1: 16 MATHEMATISCHE METHODIK

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Drucken
Start .

Drucken

THEORETISCHE INFORMATIK I §1: 16 MATHEMATISCHE METHODIK

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Drucken
Start .

Drucken

Zeige: Automat ist ein Wechselschalter

THEORETISCHE INFORMATIK I §1: 16 MATHEMATISCHE METHODIK

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Drucken
Start .

Drucken

Zeige: Automat ist ein Wechselschalter
— S1(n): Ist n gerade, so ist der Automat nach n-fachem Driicken ausgeschaltet

— S5(n): Ist n ungerade, so ist der Automat nach n-fachem Driicken eingeschaltet

THEORETISCHE INFORMATIK I §1: 16 MATHEMATISCHE METHODIK

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Driicken
Start >
=
Driicken
Zeige: Automat ist ein Wechselschalter
— S1(n): Ist n gerade, so ist der Automat nach n-fachem Driicken ausgeschaltet

— S5(n): Ist n ungerade, so ist der Automat nach n-fachem Driicken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt S5(0)
der Automat ist ausgeschaltet, also gilt S1(0)

16 MATHEMATISCHE METHODIK

THEORETISCHE INFORMATIK I §1:

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Driicken
Start 7.
Driicken
Zeige: Automat ist ein Wechselschalter

— S1(n): Ist n gerade, so ist der Automat nach n-fachem Driicken ausgeschaltet

— S5(n): Ist n ungerade, so ist der Automat nach n-fachem Driicken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt S5(0)
der Automat ist ausgeschaltet, also gilt S1(0)

Induktionsschritt: Es gelte S1(n) und Ss(n). Betrachte n+1

MATHEMATISCHE METHODIK

THEORETISCHE INFORMATIK I §1: 16

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Driicken
Start .
Driicken
Zeige: Automat ist ein Wechselschalter

— S1(n): Ist n gerade, so ist der Automat nach n-fachem Driicken ausgeschaltet

— S5(n): Ist n ungerade, so ist der Automat nach n-fachem Driicken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt S5(0)
der Automat ist ausgeschaltet, also gilt S1(0)

Induktionsschritt: Es gelte S1(n) und Ss(n). Betrachte n+1
— Falls n+1 ungerade, dann gilt S;(n+1) und n ist gerade.

Wegen Si(n) war der Automat “aus” und wechselt auf “ein”. Es gilt Sy(n)

MATHEMATISCHE METHODIK

THEORETISCHE INFORMATIK I §1: 16

(AEGENSEITIGE INDUKTION I

Zeige mehrere zusammengehorige Aussagen simultan

Driicken
Start 7.
Driicken
Zeige: Automat ist ein Wechselschalter

— S1(n): Ist n gerade, so ist der Automat nach n-fachem Driicken ausgeschaltet

— S5(n): Ist n ungerade, so ist der Automat nach n-fachem Driicken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt S5(0)
der Automat ist ausgeschaltet, also gilt S1(0)

Induktionsschritt: Es gelte S1(n) und Ss(n). Betrachte n+1
— Falls n+1 ungerade, dann gilt S;(n+1) und n ist gerade.

Wegen Si(n) war der Automat “aus” und wechselt auf “ein”. Es gilt Sy(n)

— Falls n+1 gerade, dann gilt Sy(n+1) und n ist ungerade.

Wegen Ss(n) war der Automat “ein” und wechselt auf “aus”. Es gilt Si(n)

MATHEMATISCHE METHODIK

THEORETISCHE INFORMATIK I §1: 16

MATHEMATISCHES VOKABULAR I: WORTE UND SPRACHEN I

— Alphabet X2: endliche Menge von Symbolen,
zB. X ={0,1}, ¥ ={0,..,9}, ¥ ={A, ... Z,a,...,z, ,7,!,..}

— Worte: endliche Folge w von Symbolen eines Alphabets
Auch Zeichenreihen oder Strings genannt

THEORETISCHE INFORMATIK I §1: 17 MATHEMATISCHE METHODIK

MATHEMATISCHES VOKABULAR I: WORTE UND SPRACHEN I

— Alphabet X2: endliche Menge von Symbolen,

zB. X ={0,1}, ¥ ={0,..,9}, ¥ ={A, ... Z,a,...,z, ,7,!,..}
— Worte: endliche Folge w von Symbolen eines Alphabets

Auch Zeichenreihen oder Strings genannt

— €: Leeres Wort (ohne jedes Symbol)

—w v: Konkatenation (Aneinanderhédngung) der Worte w und v
— ' i-fache Konkatenation des Wortes (oder Symbols) u

— |w|: Liange des Wortes w (Anzahl der Symbole)

— vCw: v Prafix von w, wenn w = v u fur ein Wort u

THEORETISCHE INFORMATIK I §1: 17 MATHEMATISCHE METHODIK

MATHEMATISCHES VOKABULAR I: WORTE UND SPRACHEN I

— Alphabet >i: endliche Menge von Symbolen,

zB. X ={0,1}, ¥ ={0,..,9}, ¥ ={A, ... Z,a,...,z, ,7,!,..}
— Worte: endliche Folge w von Symbolen eines Alphabets

Auch Zeichenreihen oder Strings genannt

— €: Leeres Wort (ohne jedes Symbol)

—w v: Konkatenation (Aneinanderhéngung) der Worte w und v
— u': i-fache Konkatenation des Wortes (oder Symbols) u

— |w|: Lange des Wortes w (Anzahl der Symbole)

— vCw: v Prafix von w, wenn w = v u fir ein Wort u

— 3% Menge der Worte der Lange k mit Symbolen aus X

— 27 Menge aller Worte tiber
— 37 Menge aller nichtleeren Worte tiber ¥

THEORETISCHE INFORMATIK I §1: 17 MATHEMATISCHE METHODIK

MATHEMATISCHES VOKABULAR I: WORTE UND SPRACHEN I

— Alphabet >i: endliche Menge von Symbolen,

zB. X ={0,1}, ¥ ={0,..,9}, ¥ ={A, ... Z,a,...,z, ,7,!,..}
— Worte: endliche Folge w von Symbolen eines Alphabets

Auch Zeichenreihen oder Strings genannt

— €: Leeres Wort (ohne jedes Symbol)

—w v: Konkatenation (Aneinanderhéngung) der Worte w und v
— u': i-fache Konkatenation des Wortes (oder Symbols) u

— |w|: Lange des Wortes w (Anzahl der Symbole)

— vCw: v Prafix von w, wenn w = v u fir ein Wort u

— 3% Menge der Worte der Lange k mit Symbolen aus X

— 27 Menge aller Worte tiber
— 37 Menge aller nichtleeren Worte tiber ¥

— Sprache L: Beliebige Menge von Worten iiber einem Alphabet X
Ublicherweise in abstrakter Mengennotation gegeben
z.B. {we{0, 1} | |w| ist gerade} {0"1" | neN}

— Problem P: Menge von Worten iiber einem Alphabet X
Das “Problem” ist, Zugehorigkeit zur Menge P zu testen

THEORETISCHE INFORMATIK I §1: 17 MATHEMATISCHE METHODIK

MATHEMATISCHES VOKABULAR II: FUNKTIONEN I

— Funktion f : S—S’: Abbildung zwischen den Grundmengen S und S’
nicht unbedingt auf allen Elementen von S definiert

— Domain von f: domain(f) = {x €S| f(x) definiert} (Definitionsbereich)
— Range von f: range(f) ={yeS'|dxeS f(zx) =y} (Wertebereich)
— f total: domain(f) = S (andernfalls ist f partiell)

THEORETISCHE INFORMATIK I §1: 18 MATHEMATISCHE METHODIK

MATHEMATISCHES VOKABULAR II: FUNKTIONEN I

— Funktion f : S—S’: Abbildung zwischen den Grundmengen S und S’
nicht unbedingt auf allen Elementen von S definiert

— Domain von f: domain(f) = {x €S| f(x) definiert} (Definitionsbereich)
— Range von f: range(f) = {yeS'|dxeS f(x) =y} (Wertebereich)
— f total: domain(f) = S (andernfalls ist f partiell)

- f injektiv: ay = F(2)£F (1)

— f surjektiv: range(f) = 5’

— f bijektiv: f injektiv und surjektiv

— Umkehrfunktion f~1:8'—S: fYy) =2 & f(z)=y (f injektiv!)
— Urbild f~*(L): Die Menge {z eS| f(x)eL}

THEORETISCHE INFORMATIK I §1: 18 MATHEMATISCHE METHODIK

MATHEMATISCHES VOKABULAR II: FUNKTIONEN I

— Funktion f : S—S’: Abbildung zwischen den Grundmengen S und S’
nicht unbedingt auf allen Elementen von S definiert

— Domain von f: domain(f) = {x €S| f(x) definiert} (Definitionsbereich)
— Range von f: range(f) = {yeS'|dxeS f(x) =y} (Wertebereich)
— f total: domain(f) = S (andernfalls ist f partiell)

- f injektiv: ay = F(2)£F (1)

— f surjektiv: range(f) = 5’

— f bijektiv: f injektiv und surjektiv

— Umkehrfunktion f~1:8'—S: fYy) =2 & f(z)=y (f injektiv!)
— Urbild f~*(L): Die Menge {z eS| f(x)eL}

(1 falls w elL,
\ 0 sonst

(1 falls w el,

\ 1 sonst

— Charakteristische Funktion x, von LCS: x,(w) = <

— Partiell-charakteristische Funktion v,: ¢, (w) = <

THEORETISCHE INFORMATIK I §1: 18 MATHEMATISCHE METHODIK

MATHEMATISCHES VOKABULAR II: FUNKTIONEN I

— Funktion f : S—S’: Abbildung zwischen den Grundmengen S und S’
nicht unbedingt auf allen Elementen von S definiert

— Domain von f: domain(f) = {x €S| f(x) definiert} (Definitionsbereich)
— Range von f: range(f) ={yeS'|dxeS f(zx) =y} (Wertebereich)
— f total: domain(f) = S (andernfalls ist f partiell)

- f injektiv: ay = F(2)£F (1)

— f surjektiv: range(f) = 5’

— f bijektiv: f injektiv und surjektiv

— Umkehrfunktion f~1:8'—S: fYy) =2 & f(z)=y (f injektiv!)
— Urbild f~*(L): Die Menge {z eS| f(x)eL}

(1 falls w elL,
\ 0 sonst

(1 falls w el,

\ 1 sonst

— Charakteristische Funktion x, von LCS: x,(w) = <

— Partiell-charakteristische Funktion v,: ¢, (w) = <

Mehr Vokabular wird bei Bedarf vorgestellt

THEORETISCHE INFORMATIK I §1: 18 MATHEMATISCHE METHODIK

