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– Ein w könnte der Anfang von web sein

– Ein e könnte der Anfang von ebay sein

– Aber vor den Worten könnte noch etwas anderes stehen

Nichtdeterministische Modelle verfolgen alle Möglichkeiten simultan
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Nichtdeterministische Automaten – präzisiert
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Ein Nichtdeterministischer Endlicher Automat (NEA)

ist ein 5-Tupel A = (Q, Σ, δ, q0, F ) mit

• Q nichtleere endliche Zustandsmenge

• Σ Eingabealphabet

• δ:Q×Σ → P(Q) Zustandsüberführungsfunktion

– δ(q′, a) ist (möglicherweise leere) Menge von Zuständen

– (P(Q) = {S |S⊆Q} Potenzmenge von Q)

• q0
∈Q Startzustand

• F⊆Q Menge von akzeptierenden (finalen) Zuständen
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Ein Abarbeitungsweg führt zu einem akzeptierenden Zustand
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L(A) = {w ∈ {0, 1}∗ | w endet mit 01}

• Zeige durch simultane Induktion für alle w ∈ {0, 1}∗

a) q0 ∈ δ̂(q0, w)
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– Man muß sich nicht auf eine genaue Verarbeitungsfolge festlegen

• DEAs sind genauso ausdruckstark wie NEAs

– Man kann Mengen von NEA-Zuständen als DEA Zustände codieren

– Man kann mengenwertige Zustandsüberführungsfunktionen codieren

• (Potenzmengen- oder) Teilmengenkonstruktion

– Sei AN = (QN , Σ, δN , q0, FN) ein nichtdeterministischer Automat

– Konstruiere äquivalenten DEA AD = (QD, Σ, δD, {q0}, FD) mit

· QD = P(QN)

· FD = {S ∈QD |S∩FN 6=∅}

· δD(S, a) =
⋃

q ∈S δN(q, a)

– Dann gilt L(AD) = L(AN)

– Konstruktion benötigt 2|QN | Zustände (Optimierung möglich)
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Konstruierter deterministischer Automat

0 1

∅ ∅ ∅

→ {q0} {q0,q1} {q0}

{q1} ∅ {q2}

* {q2} ∅ ∅

{q0,q1} {q0,q1} {q0,q2}

* {q0,q2} {q0,q1} {q0}

* {q1,q2} ∅ {q2}

* {q0,q1,q2} {q0,q1} {q0,q2}

Viele überflüssige Zustände (nur 3 von {q0} erreichbar)
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• NEAs und DEAs akzeptieren dieselben Sprachen
– Jeder DEA ist als “eindeutiger” NEA beschreibbar
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Analyse der optimierten Teilmengenkonstruktion

• AD kann so klein sein wie AN

– Nur wenige Teilmengen von QN werden wirklich erreicht

• AD kann exponentiell größer werden

– L(AN) = {w ∈{0, 1}∗ | das n-te Zeichen vor dem Ende ist eine 1}

– Jeder DEA A für L(AN) benötigt mindestens 2n Zustände

– Beweis: Es gibt 2n Worte der Länge n in {0, 1}∗

Hat A weniger als 2n Zustände, so gibt es w = a1..an und v = b1..bn

mit w 6=v und δ̂A(q0, w) = δ̂A(q0, v) (Schubfachprinzip)

Sei ai 6=bi. Für q = δA(q0, w0i−1) = δA(q0, v0i−1) folgt q ∈F und q 6∈F


