Theoretische Informatik I

Wers;,
\5{\ ;’9}

Einheit 3.2 ) ) Eﬁ!

Nichtdeterministische Automaten P

1. Arbeitsweise
2. Akzeptierte Sprache

3. Aquivalenz zu deterministischen Automaten



WARUM NICHTDETERMINISTISCHE ENDLICHE AUTOMATEN? I

e Elegante Form der Textsuche in Dokumenten
— Viele verschiedene Worte in grofien Textsammlungen (Internet)
— Leichte Beschreibung der Suchanfrage
— Mithsame Beschreibung eines deterministischen Erkennungsvertahrens

e Idee: Simultane Verarbeitung von Alternativen
— z.B. Suche nach den Worten web und ebay

— Ein w konnte der Anfang von web sein
— Ein e konnte der Anfang von ebay sein
— Aber vor den Worten konnte noch etwas anderes stehen

Nichtdeterministische Modelle verfolgen alle Moglichkeiten simultan

THEORETISCHE INFORMATIK I §3: ENDLICHE AUTOMATEN 1 NICHTDETERMINISTISCHE AUTOMATEN




NICHTDETERMINISTISCHE AUTOMATEN — PRAZISIERT I

Ein Nichtdeterministischer Endlicher Automat (NEA)
ist ein 5-Tupel A = (Q, X, 6, qo, F') mit

e () nichtleere endliche Zustandsmenge
e > Eingabealphabet
¢ :Q x> — P(Q) Zustandsiiberfithrungsfunktion

—0(q, a) ist (moglicherweise leere) Menge von Zustanden
- (P(Q)={S]S<Q} Potenzmenge von Q)
® g, c() Startzustand

e F'c() Menge von akzeptierenden (finalen) Zustanden
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ARBEITSWEISE VON NEAS I

Erkenne Strings, die mit 01 enden

0,1
F @@
OanO=n0.
Start

— Jedes Teilwort kann in q, bleiben

— Ein Teilwort mufl mit 0 enden, um nach q, zu fithren
— Ein Teilwort mufl mit 01 enden, um nach q, zu fithren
—In g, mufl das Wort abgearbeitet sein

o Abarbeitung von 00101

1 0 1

i: i:qo—’qoi:qo—’qo

% Sackgasse o \ %
e Sackgasse

Ein Abarbeitungsweg fiithrt zu einem akzeptierenden Zustand
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ARBEITSWEISE VON NEAS — MATHEMATISCH PRAZISIERT I

e Erweiterte ﬂberfﬁhrungsfunktion d: QX2 *—Q)

— Schrittweise Abarbeitung der Eingabe mit ¢ von links nach rechts
— Aufsammeln aller bei der Abarbeitung erreichbarer Zustande
— Induktive Definition

5 | {q} falls w=e,
q,Ww) =
Uq, € 5(q0) 0(q,a) falls w=va firveX* aeX

e Von A akzeptierte Sprache

~ Menge der Eingaben w fiir die 8 (qo, w) einen akzeptierender Zustand enthélt

L(A) = {weX* | §(gy, w)NFAD}
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ERWEITERTE UBERFUHRUNGSFUNKTION AM BEISPIEL

0,1
0 1
Start

e Abarbeitung von 00101
— 6(qo,€) = {ao}

— 0(g0,0) = 6(g0, 0) = {a0. a1}

— d(qo, 00) = 6(qo, 0)Us(q1,0) = {qo, ¢1 U0 = {q0. 11}

5(@10, 001) = (g0, 1)Ud(q1,1) = {q0tU{a2} = {90, @2}
— 0(gn, 0010) = (g, 0)Ud(g2, 0) = {qo, 1 }UB = {q0, a1}

— 0(qp, 00101) = (g, 1)U (g1, 1) = {qo}U{a2} = {q0, 3=}
0(go, 00101)NF = {q2}
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NACHWEIS DER ERKANNTEN SPRACHE I
0,1
0 1
Start

L(A) = {we{0,1}* | w endet mit 01}

e Zeige durch simultane Induktion fiir alle w € {0,1}*
a) qo E5((109 w)
b) g1 eg(qo, w) genau dann, wenn w mit 0 endet

c) qo cd (go, w) genau dann, wenn w mit 01 endet
Es folgt weL(A) < (qo, w)N{g:}#0 < w endet mit 01

e Induktionsanfang w = €
~ Per Definition ist 6(go, €) = {qo}. Also gilt Aussage a)

— w endet weder mit 0 noch mit 01. Aussagen b) und c) gelten trivialerweise
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NACHWEIS DER ERKANNTEN SPRACHE 11 I

0,1
tar

e Induktionsschritt: w = va fiir v€ {0,1}*, a €{0,1}
— Die Aussagen a), b), und c¢) seien fiir v giiltig
a) Wegen ¢ eg(qo, v) und qp€9d(qp, a) fir a{0,1} folgt qo eg(qo, w)
b) Sei ¢ eg(qo, w). Wegen ¢ €9(q, a) < qg=qo »a=0 mufl w mit 0 enden

Wenn umgekehrt w mit 0 endet, dann ist a=0.

Wegen gy <6(qo, v) und g1 €8(qo, a) folgt ¢ €d(qo, w)

c) Sei ¢y eg(qo, w). Wegen ¢2 €60(q, a) < q=q; ra=1 mufl w mit 1 enden
und ¢ €0 (qo, v) gelten. Wegen b) fiir v endet v mit 0, also w mit 01

Wenn umgekehrt w mit 01 endet, dann ist a=1 und v endet mit 0.

Wegen ¢ e5(q0, v) nach b) und ¢s €6(qq, a) folgt ¢o e5(q0, w)
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BEZIEHUNG ZU DETERMINISTISCHEN AUTOMATEN I

® Nichtdeterministische Automaten sind flexibler

— Man muf sich nicht auf eine genaue Verarbeitungsfolge festlegen

e DEASs sind genauso ausdruckstark wie NEASs
— Man kann Mengen von NEA-Zustanden als DEA Zustande codieren

— Man kann mengenwertige Zustandsiiberfithrungsfunktionen codieren

e (Potenzmengen- oder) Teilmengenkonstruktion
—Sei Ay = (Qn, X, 0N, qo, Fiv) ein nichtdeterministischer Automat
— Konstruiere dquivalenten DEA Ap = (Qp, X, 0p, {qo}, Fp) mit
- Qp =P(Qn)
- Fp={SeQp| SNFy#£0}
+0p(S,a) =U,es0n(q,a)
— Dann gilt L(Ap) = L(AnN)
~ Konstruktion bendtigt 2/9~ Zustinde (Optimierung moglich)
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TEILMENGENKONSTRUKTION AM BEISPIEL I
0,1
0 1
Start

Konstruierter deterministischer Automat

0 1
O 0 0
— {a [{a,a} {aJ
{q1} 0 {q2}
*a| 0 0

{aea,}t | {g,9,) {a,a.}
*{a,9. [ {a,a)  {a)
*{a,0) 0 {a}

*{9,9,9) | 19,90 {9,9,)

Viele uberflussige Zustande (nur 3 von {q} erreichbar)
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OPTIMIERTE TEILMENGENKONSTRUKTION HMU §Satz 2.11 / 2.12'

e Iterative Konstruktion ohne tiberflussige Zustande

— Start: Qo == {{q0}}

— Schritt: Q41 = Q;U{dp(S,a)|ScQ;,acX}

— Abschlufl: Wenn @Q);41 = @);, dann halte an und setze Qp = @Q);
e Korrektheit: L(Ap) = L(ApN)

— Zeige durch Induktion: 6p({go}, w) = dx(qo, w) fiir alle w e X*

~w=edp({q}, € = {a} = on(qo, w)

—w = va: Es gelte (SAD(A{Q()}, V) = 5;\7((]07 v) = {ph --;pk}
Dann gilt dp({qo}, w)

= 5D<5AD<{QQ}, V), a) (Definition (5AD)
— 6p(dn(qo, v), a) (Induktionsannahme)
= Uy ey g0 ON(d, ) (Konstruktion von dp)
= (g0, w) (Definition 5;\])

e NEAs und DEAs akzeptieren dieselben Sprachen
— Jeder DEA 1ist als “eindeutiger” NEA beschreibbar
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OPTIMIERTE TEILMENGENKONSTRUKTION AM BEISPIEL I
0,1
0 1
Start

e Konstruktion der Zustandsmengen

~ Qo = {{C]o}} 0 1

- Q1= {{aw} {g, a}} — {qy} [{a,a} {ag
- Q2= {{ao} {ay 2} {g5 0.3} W) 1) 19}
~ Q5 = Q) * {qO'qQ} {qo'q1} {qo}

e Reduzierte ﬁberfﬁhrungsfunktion

® Resultierender deterministischer Automat
1 0

Start {qo} ! m : 1@
| NG
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DETERMINISTISCHE AUTOMATEN FUR TEXTANALYSE
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ANALYSE DER OPTIMIERTEN TEILMENGENKONSTRUKTION I

e Ap kann so klein sein wie Ay
— Nur wenige Teilmengen von () werden wirklich erreicht
e Ap kann exponentiell grof3er werden

0,1

O 1 0, 1 0,1 0,1 0, 1
e O O e O

— L(Ayn) = {we{0,1}" | das n-te Zeichen vor dem Ende ist eine 1}
— Jeder DEA A fiir L(Ax) benotigt mindestens 2" Zustiande
— Beweis: Es gibt 2" Worte der Lange n in {0, 1}

Hat A weniger als 2" Zustande, so gibt es w = ay..a,, und v = b;..b,

mit w=v und 0 4(go, w) = d.4(qo, v) (Schubfachprinzip)
Sei a;#£b;. Fiir ¢ = d4(qo, w0 ') = d.4(qg, v0" 1) folgt ge F und q¢ F
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