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Warum ε-Übergänge?

• Erkennung von Dezimalzahlen

– Zwei Zeichenreihen von Ziffern getrennt durch Dezimalpunkt

– Eine der beiden Zeichenreihen darf leer sein, aber nicht beide

– Optionales Vorzeichen + oder -



Theoretische Informatik I §2: Endliche Automaten 1 Automaten mit ε-Übergängen
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Warum ε-Übergänge?

• Erkennung von Dezimalzahlen

– Zwei Zeichenreihen von Ziffern getrennt durch Dezimalpunkt

– Eine der beiden Zeichenreihen darf leer sein, aber nicht beide

– Optionales Vorzeichen + oder -

ε-Übergänge für Verarbeitung optionaler Symbole
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ε-Übergänge für automatische Zustandsänderungen

• 50c Kaffeeautomat

– Akzeptiert 10c, 20c, 50c Münzen

– Gibt kein Geld zurück

– Mit Reset-Taste

– Automatische Rücksetzung möglich
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ε-NEAs, präzisiert

Ein ε-NEA (nichtdeterministischer endlicher Automat mit

ε-Übergängen) ist ein 5-Tupel A = (Q, Σ, δ, q0, F ) mit

• Q nichtleere endliche Zustandsmenge

• Σ Eingabealphabet mit ε 6∈Σ

• δ:Q×(Σ∪{ε}) → P(Q) Zustandsüberführungsfunktion

• q0
∈Q Startzustand

• F⊆Q Menge von akzeptierenden (finalen) Zuständen
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ε-NEAs, präzisiert

Ein ε-NEA (nichtdeterministischer endlicher Automat mit

ε-Übergängen) ist ein 5-Tupel A = (Q, Σ, δ, q0, F ) mit

• Q nichtleere endliche Zustandsmenge

• Σ Eingabealphabet mit ε 6∈Σ

• δ:Q×(Σ∪{ε}) → P(Q) Zustandsüberführungsfunktion

• q0
∈Q Startzustand

• F⊆Q Menge von akzeptierenden (finalen) Zuständen

Alle formalen Details sehr ähnlich zu NEAs



Theoretische Informatik I §2: Endliche Automaten 4 Automaten mit ε-Übergängen
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Arbeitsweise von ε-NEAs

– Die Teilworte +, -, und ε führen nach q1

– Teilworte der Form v{0..9}+ führen nach q1 oder q4, wobei v ∈{+, -, ε}

– Teilworte der Form v{0..9}+
. führen nach q2 oder q3

– Teilworte der Form v{0..9}∗.{0..9}+ führen nach q3

– Worte die nach q3 führen, führen auch zum Endzustand q5

• Abarbeitung von 3.14159

q
0

-
ε

q
1

-

j

3
q

1

q4

-

-

.
q

2

q
3



Theoretische Informatik I §2: Endliche Automaten 4 Automaten mit ε-Übergängen
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Arbeitsweise von ε-NEAs – präzisiert

Ergänze NEA-Überführungsfunktion um ε-Übergänge

• ε-Hülle eines Zustands q

– Die von q mit ε-Übergängen (ohne Eingaben) erreichbaren Zustände
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einschließlich derjenigen, die ohne Eingabe erreicht werden
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δ̂(q, w) =
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
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⋃
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• Akzeptierte Sprache: L(A) = {w ∈Σ∗ | δ̂(q0, w)∩F 6=∅}
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– Nur 2 ε-Übergänge

– ε-Hülle(q0) = {q0, q1}

– ε-Hülle(q3) = {q3, q5}

– ε-Hülle(qi) = {qi} sonst



Theoretische Informatik I §2: Endliche Automaten 6 Automaten mit ε-Übergängen

ε-Hülle am Beispiel

• Dezimalautomat

– Nur 2 ε-Übergänge
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ε-Hülle am Beispiel

• Dezimalautomat

– Nur 2 ε-Übergänge

– ε-Hülle(q0) = {q0, q1}
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– δ̂(q0, 3.14) = ε-Hülle(q3) = {q3, q5}
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· δD(S, a) =
⋃

q ∈S δ̂E(q, a) (schließt ε-Hülle mit ein)

• Optimierung: QD =̂ erreichbare Zustände
– Iterative Konstruktion gleichzeitig mit δD

– Start: Q0 := {qD}

– Schritt: Qi+1 := Qi∪{δD(S, a) |S ∈Qi, a ∈Σ} (konstruiere dabei die δD(S, a))

– Abschluß: Wenn Qi+1 = Qi, dann halte an und setze QD := Qi



Theoretische Informatik I §2: Endliche Automaten 9 Automaten mit ε-Übergängen
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Q2 = { {q0, q1} {q1}, {q1, q4}, {q2}, ∅, {q3, q5}, {q2, q3, q5} }

– δD(∅, +) = δD({q2, q3, q5}, +) = δD({q3, q5}, +) = ∅, . . .

– δD(∅, 0) = ∅, δD({q2, q3, q5}, 0) = δD({q3, q5}, 0) = {q3, q5}, . . .

– δD(∅, .) = δD({q2, q3, q5}, .) = δD({q3, q5}, .) = ∅
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– δD({q0, q1}, +) = {q1}, δD({q0, q1},−) = {q1}
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Q2 = { {q0, q1} {q1}, {q1, q4}, {q2}, ∅, {q3, q5}, {q2, q3, q5} }

– δD(∅, +) = δD({q2, q3, q5}, +) = δD({q3, q5}, +) = ∅, . . .

– δD(∅, 0) = ∅, δD({q2, q3, q5}, 0) = δD({q3, q5}, 0) = {q3, q5}, . . .

– δD(∅, .) = δD({q2, q3, q5}, .) = δD({q3, q5}, .) = ∅

Q3 = { {q0, q1} {q1}, {q1, q4}, {q2}, ∅, {q3, q5}, {q2, q3, q5} } = Q2 =: QD
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Erzeugung eines DEA für Dezimalzahlerkennung

Generierter DEA

Übergänge zum Zustand ∅ nicht gezeigt
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Zeige: δ̂D(qD, w) = δ̂E(q0, w) für alle w ∈Σ∗

Beweis durch strukturelle Induktion über den Aufbau der Worte aus Σ∗

– Basisfall: Sei w = ε:

δ̂D(qD, ε) = qD = ε-Hülle(q0) = δ̂E(q0, ε)

– Induktionsschritt: Sei w = va für ein v ∈Σ∗ und a ∈Σ:

– Induktionsannahme: Es gelte δ̂D(qD, v) = δ̂E(q0, v)

Dann gilt δ̂D(qD, w)

= δD(δ̂D(qD, v), a) (Definition δ̂D)

= δD(δ̂E(q0, v), a) (Induktionsannahme)

=
⋃

q′ ∈ δ̂E(q0,v) δ̂E(q′, a) (Konstruktion von δD)

=
⋃

q′ ∈ δ̂E(q0,v)

⋃

q′′ ∈ δE(q′,a) ε-Hülle(q′′) (Definition δ̂E)

= δ̂E(q0, w) (Definition δ̂E)

• ε-NEAs und DEAs akzeptieren dieselben Sprachen
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Endliche Automaten – Zusammenfassung

• Deterministische Endliche Automaten (DEA)

– Endliche Menge von Zuständen, endliche Menge von Eingabesymbolen

– Ein fester Startzustand, null oder mehr akzeptierende Zustände

– Überführungsfunktion bestimmt Änderung des Zustands bei

Abarbeitung der Eingabe

– Erkannte Sprache: Eingaben, deren Abarbeitung in

einem akzeptierenden Zustand endet
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Endliche Automaten – Zusammenfassung

• Deterministische Endliche Automaten (DEA)

– Endliche Menge von Zuständen, endliche Menge von Eingabesymbolen

– Ein fester Startzustand, null oder mehr akzeptierende Zustände

– Überführungsfunktion bestimmt Änderung des Zustands bei

Abarbeitung der Eingabe

– Erkannte Sprache: Eingaben, deren Abarbeitung in

einem akzeptierenden Zustand endet

• Nichtdeterministische Endliche Automaten (NEA)

– Wie DEA, aber mit mengenwertiger Überführungsfunktion

– Durch Teilmengenkonstruktion in äquivalenten DEA transformierbar



Theoretische Informatik I §2: Endliche Automaten 12 Automaten mit ε-Übergängen

Endliche Automaten – Zusammenfassung

• Deterministische Endliche Automaten (DEA)

– Endliche Menge von Zuständen, endliche Menge von Eingabesymbolen

– Ein fester Startzustand, null oder mehr akzeptierende Zustände

– Überführungsfunktion bestimmt Änderung des Zustands bei

Abarbeitung der Eingabe

– Erkannte Sprache: Eingaben, deren Abarbeitung in

einem akzeptierenden Zustand endet

• Nichtdeterministische Endliche Automaten (NEA)

– Wie DEA, aber mit mengenwertiger Überführungsfunktion

– Durch Teilmengenkonstruktion in äquivalenten DEA transformierbar

• NEAs mit ε-Übergängen (ε-NEA)

– Wie NEA, aber mit Zustandsüberführung bei leerer Eingabe

– Durch Teilmengenkonstruktion in äquivalenten DEA transformierbar


