Theoretische Informatik I

Wers,
\3{\ !(q,’;

Einheit 2.4 ; @ﬁ!

Regulare Ausdrucke "

1. Anwendungen
2. Syntax und Semantik
3. Vereinfachungsregeln

4. Beziehung zu endlichen Automaten

EINE ALGEBRAISCHE BESCHREIBUNG FUR SPRACHEN I

e Automaten beschreiben Abarbeitung von Sprachen
— Operationale Semantik: Symbole fithren zu Zustandsanderungen
— Bestimme Worte bzw. Symbolketten werden durch Zustande akzeptiert

— Fir Automaten ist Sprache = Menge der akzeptierten Worte

THEORETISCHE INFORMATIK I §2: 1 REGULARE AUSDRUCKE

EINE ALGEBRAISCHE BESCHREIBUNG FUR SPRACHEN I

e Automaten beschreiben Abarbeitung von Sprachen
— Operationale Semantik: Symbole fithren zu Zustandsanderungen
— Bestimme Worte bzw. Symbolketten werden durch Zustande akzeptiert

— Fir Automaten ist Sprache = Menge der akzeptierten Worte

e Wie beschreibt man Eigenschaften von Worten?
— Deklarative Semantik: auflere Form von Zeichenreihen einer Sprache

z.B. Worte haben eine fiihrende Null, dann beliebig viele Einsen

— Anwendungen brauchen prazise Beschreibungssprache fiir Worte

- Grundeinheiten von Programmiersprachen, Suchmuster fiir Browser, . ..

THEORETISCHE INFORMATIK I §2: 1 REGULARE AUSDRUCKE

EINE ALGEBRAISCHE BESCHREIBUNG FUR SPRACHEN I

e Automaten beschreiben Abarbeitung von Sprachen
— Operationale Semantik: Symbole fithren zu Zustandsanderungen
— Bestimme Worte bzw. Symbolketten werden durch Zustande akzeptiert

— Fir Automaten ist Sprache = Menge der akzeptierten Worte

e Wie beschreibt man Eigenschaften von Worten?
— Deklarative Semantik: auflere Form von Zeichenreihen einer Sprache

z.B. Worte haben eine fiihrende Null, dann beliebig viele Einsen

— Anwendungen brauchen prazise Beschreibungssprache fiir Worte

- Grundeinheiten von Programmiersprachen, Suchmuster fiir Browser, .

e Regulare Ausdricke als formale Syntax
— Kurze, pragnante Beschreibung des Aufbaus der Worte einer Sprache

z.B. 01%: “Zuerst eine Null, dann beliebig viele Einsen”

THEORETISCHE INFORMATIK I §2: 1 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE BESCHREIBEN SPRACHEN I

e Ausdriicke fiir einfache Grundmengen
— Leere Menge
— Sprache, die nur das leere Wort enthalt
— Sprache, die nur das Symbol a € enthalt

THEORETISCHE INFORMATIK I §2: 2 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE BESCHREIBEN SPRACHEN I

e Ausdriicke fiir einfache Grundmengen
— Leere Menge
— Sprache, die nur das leere Wort enthalt
— Sprache, die nur das Symbol a € enthalt

e Ausdriucke fiir Komposition von Mengen
— Vereinigung LUM von Sprachen

THEORETISCHE INFORMATIK I §2: 2 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE BESCHREIBEN SPRACHEN I

e Ausdriicke fiir einfache Grundmengen
— Leere Menge
— Sprache, die nur das leere Wort enthalt
— Sprache, die nur das Symbol a € enthalt

e Ausdriucke fiir Komposition von Mengen
— Vereinigung LUM von Sprachen

— Verkettung LoM von Sprachen
LoM = {weX*|Juel. veM. w = uv}

THEORETISCHE INFORMATIK I §2: 2 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE BESCHREIBEN SPRACHEN I

e Ausdriicke fiir einfache Grundmengen
— Leere Menge
— Sprache, die nur das leere Wort enthalt
— Sprache, die nur das Symbol a € enthalt

e Ausdriucke fiir Komposition von Mengen
— Vereinigung LUM von Sprachen

— Verkettung LoM von Sprachen
LoM = {weX*|Juel. veM. w = uv}

— (Kleene’sche) Hiille L* von Sprachen
L™ ={weX* | Ju,..,u,cL. w=u.u} (necN) (L= {e})
L* = >0 L" ={weX*|IneN. Ju, ..,u e L. w=u u}

THEORETISCHE INFORMATIK I §2: 2 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE BESCHREIBEN SPRACHEN I

e Ausdriicke fiir einfache Grundmengen
— Leere Menge
— Sprache, die nur das leere Wort enthalt
— Sprache, die nur das Symbol a € enthalt

e Ausdriucke fiir Komposition von Mengen
— Vereinigung LUM von Sprachen

— Verkettung LoM von Sprachen
LoM = {weX*|Juel. veM. w = uv}

— (Kleene’sche) Hiille L* von Sprachen
L™ ={weX* | Ju,..,u,cL. w=u.u} (necN) (L= {e})
L* = >0 L" ={weX*|IneN. Ju, ..,u e L. w=u u}

® Regulare Ausdriucke sind nicht selbst Mengen
— Nur eine syntaktische Beschreibungsform, die ein Computer versteht

THEORETISCHE INFORMATIK I §2: 2 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix I

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix I

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.

— A bracket expression is a list of characters enclosed by [and]. It matches any single
character in that list. For example, [0123456789] matches any single digit.

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.

— A bracket expression is a list of characters enclosed by [and]. It matches any single
character in that list. For example, [0123456789] matches any single digit.

— Within a bracket expression, a range expression consists of two characters separated by
a hyphen. It matches any single character that sorts between the two characters.
For example, in the default C locale, [a-d] is equivalent to [abcd].

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.

— A bracket expression is a list of characters enclosed by [and]. It matches any single
character in that list. For example, [0123456789] matches any single digit.

— Within a bracket expression, a range expression consists of two characters separated by
a hyphen. It matches any single character that sorts between the two characters.
For example, in the default C locale, [a-d] is equivalent to [abcd].

— Certain named classes of characters are predefined within bracket expressions.
They are [:alnum:], [:alpha:], [:cntrl:], [:digit:], ...

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.

— A bracket expression is a list of characters enclosed by [and]. It matches any single
character in that list. For example, [0123456789] matches any single digit.

— Within a bracket expression, a range expression consists of two characters separated by
a hyphen. It matches any single character that sorts between the two characters.
For example, in the default C locale, [a-d] is equivalent to [abcd].

— Certain named classes of characters are predefined within bracket expressions.
They are [:alnum:], [:alpha:], [:cntrl:], [:digit:], ...

— The period . matches any single character.

— The caret = and the dollar sign $ are metacharacters that match the empty string . ..

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.
— A bracket expression is a list of characters enclosed by [and]. It matches any single
character in that list. For example, [0123456789] matches any single digit.
— Within a bracket expression, a range expression consists of two characters separated by
a hyphen. It matches any single character that sorts between the two characters.
For example, in the default C locale, [a-d] is equivalent to [abcd].
— Certain named classes of characters are predefined within bracket expressions.
They are [:alnum:], [:alpha:], [:cntrl:], [:digit:], ...
— The period . matches any single character.
— The caret = and the dollar sign $ are metacharacters that match the empty string . ..
— A regular expression may be followed by one of several repetition operators:
7: The preceding item is optional and matched at most once.
*: The preceding item will be matched zero or more times.
+ The preceding item will be matched one or more times.

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.
— A bracket expression is a list of characters enclosed by [and]. It matches any single
character in that list. For example, [0123456789] matches any single digit.
— Within a bracket expression, a range expression consists of two characters separated by
a hyphen. It matches any single character that sorts between the two characters.
For example, in the default C locale, [a-d] is equivalent to [abcd].
— Certain named classes of characters are predefined within bracket expressions.
They are [:alnum:], [:alpha:], [:cntrl:], [:digit:], ...
— The period . matches any single character.
— The caret = and the dollar sign $ are metacharacters that match the empty string . ..
— A regular expression may be followed by one of several repetition operators:
7: The preceding item is optional and matched at most once.
*: The preceding item will be matched zero or more times.
+ The preceding item will be matched one or more times.
— Two regular expressions may be concatenated; the resulting regular expression matches
any string concatenating two substrings that match the subexpressions.

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.
— A bracket expression is a list of characters enclosed by [and]. It matches any single
character in that list. For example, [0123456789] matches any single digit.
— Within a bracket expression, a range expression consists of two characters separated by
a hyphen. It matches any single character that sorts between the two characters.
For example, in the default C locale, [a-d] is equivalent to [abcd].
— Certain named classes of characters are predefined within bracket expressions.
They are [:alnum:], [:alpha:], [:cntrl:], [:digit:], ...
— The period . matches any single character.
— The caret = and the dollar sign $ are metacharacters that match the empty string . ..
— A regular expression may be followed by one of several repetition operators:
7: The preceding item is optional and matched at most once.
*: The preceding item will be matched zero or more times.
+ The preceding item will be matched one or more times.
— Two regular expressions may be concatenated; the resulting regular expression matches
any string concatenating two substrings that match the subexpressions.
— Two regular expressions may be joined by the infix operator |
The resulting regular expression matches any string matching either subexpression.

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: LEXIKALISCHE ANALYSE I

Wichtigster Grundbestandteil von Compilern

e Regulare Ausdricke beschreiben Token
— Logische Grundeinheiten von Programmiersprachen

— 7.B. Schlusselworter, Bezeichner, Dezimalzahlen, ...

THEORETISCHE INFORMATIK I §2: 4 REGULARE AUSDRUCKE

ANWENDUNG: LEXIKALISCHE ANALYSE I

Wichtigster Grundbestandteil von Compilern

e Regulare Ausdricke beschreiben Token
— Logische Grundeinheiten von Programmiersprachen

— 7.B. Schlusselworter, Bezeichner, Dezimalzahlen, ...

e “Lexer” transformieren regulare Ausdriicke
in Analyseprogramme

— Analyse kann die Token der Programmiersprache identifizieren

THEORETISCHE INFORMATIK I §2: 4 REGULARE AUSDRUCKE

ANWENDUNG: LEXIKALISCHE ANALYSE I

Wichtigster Grundbestandteil von Compilern

e Regulare Ausdricke beschreiben Token
— Logische Grundeinheiten von Programmiersprachen

— 7.B. Schlusselworter, Bezeichner, Dezimalzahlen, ...

e “Lexer” transformieren regulare Ausdriicke
in Analyseprogramme

— Analyse kann die Token der Programmiersprache identifizieren

— Zugrundeliegende Technik: Umwandlung regularer Ausdriicke in DEAs

THEORETISCHE INFORMATIK I §2: 4 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme tiber > U {0,e,+,0,%,(,)}

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme tiber > U {0,e,+,0,*,(,)}
—), €, und a (fiir alle a €¥) sind reguldre Ausdriicke
— Sind £ und F' regulare Ausdricke, dann auch E+F', EoF' E* und (E)

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme iiber > U {(),e,+,0,*,(,)}
—), €, und a (fiir alle a €¥) sind reguldre Ausdriicke
— Sind £ und F' regulare Ausdricke, dann auch E+F', EoF' E* und (E)

e Semantik: Sprachen uber X
— L(E): Sprache des reguldren Ausdrucks F, induktiv definiert

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme iiber > U {(),e,+,0,*,(,)}
—), €, und a (fiir alle a €¥) sind reguldre Ausdriicke
— Sind £ und F' regulare Ausdricke, dann auch E+F', EoF' E* und (E)

e Semantik: Sprachen uber X
— L(FE): Sprache des reguldren Ausdrucks £, induktiv definiert
~L(0) =0, L(e) ={e}, L(a)={a} (fiir alle aeX)

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme iiber > U {(),e,+,0,*,(,)}
—), €, und a (fiir alle a €¥) sind reguldre Ausdriicke
— Sind £ und F' regulare Ausdricke, dann auch E+F', EoF' E* und (E)

e Semantik: Sprachen uber X
— L(FE): Sprache des reguldren Ausdrucks £, induktiv definiert
~L(0) =0, L(e) ={e}, L(a)={a} (fiir alle aeX)
- L(E+F) = L(B)UL(F), L(EoF) = LEYL(F), L(E*) = (L(E))",
L((E)) = L(E)

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme iiber > U {(),e,+,0,*,(,)}
—), €, und a (fiir alle a €¥) sind reguldre Ausdriicke
— Sind £ und F' regulare Ausdricke, dann auch E+F', EoF' E* und (E)

e Semantik: Sprachen uber X
— L(FE): Sprache des reguldren Ausdrucks £, induktiv definiert
~L(0) =0, L(e) ={e}, L(a)={a} (fiir alle aeX)
- L(E+F) = L(B)UL(F), L(EoF) = LEYL(F), L(E*) = (L(E))",
L((E)) = L(E)

e Konventionen
— EoF wird ublicherweise als EF' abgekiirzt

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme iiber > U {(),e,+,0,*,(,)}
—), €, und a (fiir alle a €¥) sind reguldre Ausdriicke
— Sind £ und F' regulare Ausdricke, dann auch E+F', EoF' E* und (E)

e Semantik: Sprachen uber X
— L(FE): Sprache des reguldren Ausdrucks £, induktiv definiert
~L(0) =0, L(e) ={e}, L(a)={a} (fiir alle aeX)
- L(E+F) = L(B)UL(F), L(EoF) = LEYL(F), L(E*) = (L(E))",
L((E)) = L(E)

e Konventionen
— EoF wird ublicherweise als EF' abgekiirzt
— Definitorische Abkiirzungen: ET = EE*, [aj...a,] = a+...+a,

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme iiber > U {0,¢e,+,0,",(,)}
—), €, und a (fiir alle a €¥) sind reguldre Ausdriicke
— Sind £ und F' regulare Ausdricke, dann auch E+F', EoF' E* und (E)

e Semantik: Sprachen uber X
— L(FE): Sprache des reguldren Ausdrucks £, induktiv definiert
~L(0) =0, L(e) ={e}, L(a)={a} (fiir alle aeX)
- L(E+F) = L(B)UL(F), L(EoF) = LEYL(F), L(E*) = (L(E))",
L((E)) = L(E)

e Konventionen
— EoF wird ublicherweise als EF' abgekiirzt
— Definitorische Abkiirzungen: ET = EE*, [aj...a,] = a+...+a,
— Prioritatsregelungen ermoglichen es, iiberfliisssige Klammern wegzulassen
. * (“Sternoperator”) bindet starker als o, und dies starker als +

- Verkettung © und Vereinigung + sind assoziativ

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

SPRACHEN VS. AUSDRUCKE I

e Sprachen sind Mengen
— Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten

THEORETISCHE INFORMATIK I §2: 6 REGULARE AUSDRUCKE

SPRACHEN VS. AUSDRUCKE I

e Sprachen sind Mengen
— Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten
— Beschreibung von Mengen (auf Folie, Tafel, ...) benotigt textuelle Notation

— Notation benutzt Kurzschreibweisen wie U, ©, * fiir Mengenoperationen

THEORETISCHE INFORMATIK I §2: 6 REGULARE AUSDRUCKE

SPRACHEN VS. AUSDRUCKE I

e Sprachen sind Mengen
— Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten
— Beschreibung von Mengen (auf Folie, Tafel, ...) benotigt textuelle Notation
— Notation benutzt Kurzschreibweisen wie U, ©, * fiir Mengenoperationen

... aber ist selbst nur ein Hilfsmittel zur Kommunikation

THEORETISCHE INFORMATIK I §2: 6 REGULARE AUSDRUCKE

SPRACHEN VS. AUSDRUCKE I

e Sprachen sind Mengen
— Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten
— Beschreibung von Mengen (auf Folie, Tafel, ...) benotigt textuelle Notation
— Notation benutzt Kurzschreibweisen wie U, o, * fiir Mengenoperationen

... aber ist selbst nur ein Hilfsmittel zur Kommunikation

® Regulare Ausdricke sind Terme
— Syntaktisches Konstrukt: Struktur, die ein Computer versteht

THEORETISCHE INFORMATIK I §2: 6 REGULARE AUSDRUCKE

SPRACHEN VS. AUSDRUCKE I

e Sprachen sind Mengen
— Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten
— Beschreibung von Mengen (auf Folie, Tafel, ...) benotigt textuelle Notation
— Notation benutzt Kurzschreibweisen wie U, o, * fiir Mengenoperationen

... aber ist selbst nur ein Hilfsmittel zur Kommunikation

® Regulare Ausdricke sind Terme
— Syntaktisches Konstrukt: Struktur, die ein Computer versteht
— Regulare Ausdriicke werden zur Beschreibung von Sprachen benutzt

und sind ahnlich zur Standardnotation von Mengen

THEORETISCHE INFORMATIK I §2: 6 REGULARE AUSDRUCKE

SPRACHEN VS. AUSDRUCKE I

e Sprachen sind Mengen
— Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten
— Beschreibung von Mengen (auf Folie, Tafel, ...) benotigt textuelle Notation
— Notation benutzt Kurzschreibweisen wie U, ©, * fiir Mengenoperationen

... aber ist selbst nur ein Hilfsmittel zur Kommunikation

® Regulare Ausdricke sind Terme
— Syntaktisches Konstrukt: Struktur, die ein Computer versteht
— Regulare Ausdriicke werden zur Beschreibung von Sprachen benutzt

und sind ahnlich zur Standardnotation von Mengen

@ Regulare Ausdriucke sind selbst keine Mengen
— Unterscheide Ausdruck £ von Sprache des Ausdrucks L(F)

THEORETISCHE INFORMATIK I §2: 6 REGULARE AUSDRUCKE

SPRACHEN VS. AUSDRUCKE I

e Sprachen sind Mengen
— Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten
— Beschreibung von Mengen (auf Folie, Tafel, ...) benotigt textuelle Notation
— Notation benutzt Kurzschreibweisen wie U, o, * fiir Mengenoperationen

... aber ist selbst nur ein Hilfsmittel zur Kommunikation

® Regulare Ausdricke sind Terme
— Syntaktisches Konstrukt: Struktur, die ein Computer versteht
— Regulare Ausdriicke werden zur Beschreibung von Sprachen benutzt

und sind ahnlich zur Standardnotation von Mengen

@ Regulare Ausdriucke sind selbst keine Mengen
— Unterscheide Ausdruck £ von Sprache des Ausdrucks L(F)

— Man verzichtet auf den Unterschied wenn der Kontext eindeutig ist

THEORETISCHE INFORMATIK I §2: 6 REGULARE AUSDRUCKE

ENTWICKLUNG REGULARER AUSDRUCKE I

Beschreibe Menge aller Worte, in denen 0 und 1 abwechseln

1. Regularer Ausdruck fiir die Sprache {01}
— 0 représentiert {0}, 1 reprasentiert {1}
— Alsoist L(01) = L(0)oL(1) = {0}o{1} = {01}

THEORETISCHE INFORMATIK I §2: 7 REGULARE AUSDRUCKE

ENTWICKLUNG REGULARER AUSDRUCKE I

Beschreibe Menge aller Worte, in denen 0 und 1 abwechseln

1. Regularer Ausdruck fiir die Sprache {01}
— 0 représentiert {0}, 1 représentiert {1}
— Also ist L(01) = L(0)oL(1) = {0}o{1} = {01}

2. Erzeuge {01,0101,010101,...} durch Sternbildung
~ L((01)*) = L(01)* = {01}* = {01,0101,010101,...}

THEORETISCHE INFORMATIK I §2: 7 REGULARE AUSDRUCKE

ENTWICKLUNG REGULARER AUSDRUCKE I

Beschreibe Menge aller Worte, in denen 0 und 1 abwechseln

1. Regularer Ausdruck fiir die Sprache {01}
— 0 représentiert {0}, 1 représentiert {1}
— Also ist L(01) = L(0)oL(1) = {0}o{1} = {01}

2. Erzeuge {01,0101,010101,...} durch Sternbildung
~ L((01)*) = L(01)* = {01}* = {01,0101,010101,...}

3. Mlanche Worte nicht erfaflt

— Start mit Eins statt Null: (10)*
— Start und Ende mit Null: (01)70
— Start und Ende mit Eins: (10)*1

Vollstandiger Ausdruck: (01)*+ (10)*+ (01)*0+ (10)*1

THEORETISCHE INFORMATIK I §2: 7 REGULARE AUSDRUCKE

ENTWICKLUNG REGULARER AUSDRUCKE I

Beschreibe Menge aller Worte, in denen 0 und 1 abwechseln

1. Regularer Ausdruck fiir die Sprache {01}
— 0 représentiert {0}, 1 représentiert {1}
— Also ist L(01) = L(0)oL(1) = {0}o{1} = {01}

2. Erzeuge {01,0101,010101,...} durch Sternbildung
—- L((01)*) = L(01)* = {01}* = {01,0101,010101, ...}

3. Mlanche Worte nicht erfaflt

— Start mit Eins statt Null: (10)*
— Start und Ende mit Null: (01)*0
— Start und Ende mit Eins: (10)*1
Vollstandiger Ausdruck: (01)*+ (10)*+ (01)*0+ (10)*1

4. Es geht auch kirzer
— Optional 1 am Anfang oder 0 am Ende: (e+1) (01) *(e+0)

THEORETISCHE INFORMATIK I §2: 7 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F aquivalent zu F”

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F aquivalent zu F”

— Was beweist (01)*+ (10)"+ (01)"0+ (10)*1 = (e+1) (01)*(e+0) ?

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F dquivalent zu F”

— Was beweist (01)*+ (10)"+ (01)*0+ (10)*1 = (e+1) (01)*(e+0) ?

— Algebraische Gesetze erlauben Umschreiben in aquivalente Ausdriicke

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F dquivalent zu F”

— Was beweist (01)*+ (10)"+ (01)*0+ (10)*1 = (e+1) (01)*(e+0) ?

— Algebraische Gesetze erlauben Umschreiben in aquivalente Ausdriicke

e Assoziativitat von © und +
(EoF)oG = Eo(FoG):

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F dquivalent zu F”
— Was beweist (01)*+ (10)*+ (01)*0+ (10) "1 = (e+1) (01)*(e+0) 7

— Algebraische Gesetze erlauben Umschreiben in aquivalente Ausdriicke

® Assoziativitat von © und +
(EoF)oG = Eo(FoG):
— L((EoF)oG) = L(EoF)oL(G) = L(E)oL(F)oL(G) = L(E)oL(FoG) = L(Eo(Fo@))

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F dquivalent zu F”
— Was beweist (01)*+ (10)*+ (01)*0+ (10) "1 = (e+1) (01)*(e+0) 7

— Algebraische Gesetze erlauben Umschreiben in aquivalente Ausdriicke

e Assoziativitat von © und +
(EoF)oG = Eo(FoG):
— L((EoF)oG) = L(EoF)oL(G) = L(E)oL(F)oL(G) = L(E)oL(FoG) = L(Eo(Fo@))
(E4+F)+G = E+(F+G):

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F dquivalent zu F”
— Was beweist (01)*+ (10)*+ (01)*0+ (10) "1 = (e+1) (01)*(e+0) 7

— Algebraische Gesetze erlauben Umschreiben in aquivalente Ausdriicke

e Assoziativitat von © und +
(EoF)oG = Eo(FoG):
— L((EoF)oG) = L(EoF)oL(G) = L(E)oL(F)oL(G) = L(E)oL(FoG) = L(Eo(FoQ))
(E+F)4+G = E+(F+G):
— L(E+F)+G) = L(E+F)UL(G) = L(E)UL(F)UL(G) = ... = L(E4+(F+G))

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F dquivalent zu F”
— Was beweist (01)*+ (10)*+ (01)*0+ (10) "1 = (e+1) (01)*(e+0) 7

— Algebraische Gesetze erlauben Umschreiben in aquivalente Ausdriicke

e Assoziativitat von © und +
(EoF)oG = Eo(FoG):
— L((EoF)oG) = L(EoF)oL(G) = L(E)oL(F)oL(G) = L(E)oL(FoG) = L(Eo(FoQ))
(E+F)4+G = E+(F+G):
— L(E+F)+G) = L(E+F)UL(G) = L(E)UL(F)UL(G) = ... = L(E4+(F+G))

e Kommutativitat von +
- E+F = F+FE: L(E+F) == L(E)UL(F) = L(F)UL(E) = L(F+E)

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriucken
- FE = F falls L(F) = L(F) “F dquivalent zu F”
— Was beweist (01)*+ (10)*+ (01)*0+ (10) "1 = (e+1) (01)*(e+0) 7

— Algebraische Gesetze erlauben Umschreiben in aquivalente Ausdriicke

e Assoziativitat von © und +
(EoF)oG = Eo(FoG):
— L((EoF)oG) = L(EoF)oL(G) = L(E)oL(F)oL(G) = L(E)oL(FoG) = L(Eo(FoQ))
(E+F)4+G = E+(F+G):
— L(E+F)+G) = L(E+F)UL(G) = L(E)UL(F)UL(G) = ... = L(E4+(F+G))

e Kommutativitat von +
- E+F = F+FE: L(E+F) == L(E)UL(F) = L(F)UL(E) = L(F+E)
— Kommutativitat von o gilt nicht: = L(01) = {01} # {10} = L(10)

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE II I

e Einheiten und Annihilatoren
~Q)+E=EZE=ZE+)D, eocE=E = Eoe, (oE =0 = Eof

THEORETISCHE INFORMATIK I §2: 9 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE II I

e Einheiten und Annihilatoren
~Q)+E=EZE=ZE+)D, eocE=E = Eoe, (oE =0 = Eof

e Distributivgesetze
~ (E+F)oG = EoG+FoG:

THEORETISCHE INFORMATIK I §2: 9 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE II I

e Einheiten und Annihilatoren
~Q)+E=EZE=ZE+)D, eocE=E = Eoe, (oE =0 = Eof

e Distributivgesetze
~ (E+F)oG = EoG+FoG:
L((E+F)oG) = (L(E)UL(F))oL(G)
={weX*|Jue L(E)UL(F).3ve L(G).w = uv}
={weX*|Fuel(F).Jvel(G)w =uwwvIueL(F).JveL(G).w = uv}
={we¥X*|FueL(F).Fve L(G)w =uv} U{weX* | Juec L(F).Jve L(G).w = uv}
= L(E)oL(G)UL(F)oL(G) = L(EcG+FoG)

THEORETISCHE INFORMATIK I §2: 9 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE II I

e Einheiten und Annihilatoren
~Q)+E=EZE=ZE+)D, eocE=E = Eoe, (oE =0 = Eof

e Distributivgesetze

~ (E+F)oG = EoG+FoG:
L((E+F)oG) = (L(E)UL(F))oL(G)
={weX*|Jue L(E)UL(F).3ve L(G).w = uv}
={weX*|Fuel(F).Jvel(G)w =uwwvIueL(F).JveL(G).w = uv}
={we¥X*|FueL(F).Fve L(G)w =uv} U{weX* | Juec L(F).Jve L(G).w = uv}
= L(E)oL(G)UL(F)oL(G) = L(EcG+FoG)

— GOo(E+F) = GoE + GoF

THEORETISCHE INFORMATIK I §2: 9 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE II I

e Einheiten und Annihilatoren
~)+EEE=ZE+L), eocE=E = Eoe, (oE =)= Eof

e Distributivgesetze

~ (E+F)oG = EoG+FoG:
L((E+F)oG) = (L(E)UL(F))oL(G)
={weX*|Jue L(E)UL(F).3ve L(G).w = uv}
={weX*|Fuel(F).Jvel(G)w =uwwvIueL(F).JveL(G).w = uv}
={we¥X*|FueL(F).Fve L(G)w =uv} U{weX* | Juec L(F).Jve L(G).w = uv}
= L(E)oL(G)UL(F)oL(G) = L(EcG+FoG)

— GOo(E+F) = GoE + GoF

e Idempotenz von +
~-F+E=F

THEORETISCHE INFORMATIK I §2: 9 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE II I

e Einheiten und Annihilatoren
~Q)+E=EZE=ZE+)D, eocE=E = Eoe, (oE =0 = Eof

e Distributivgesetze
~ (E+F)oG = EoG+FoG:
L((E+F)oG) = (L(E)UL(F))oL(G)
={weX*|Jue L(E)UL(F).3ve L(G).w = uv}

={weX*|Fuel(F).Jvel(G)w =uwwvIueL(F).JveL(G).w = uv}
={we¥X*|FueL(F).Fve L(G)w =uv} U{weX* | Juec L(F).Jve L(G).w = uv}
= L(E)oL(G)UL(F)oL(G) = L(EcG+FoG)

—~ GOo(E+F) = GoFE + GoF
e Idempotenz von +
~-F+E=F
e Hullengesetze
_(E*)*gE*7 0*26, e ™ ¢
~-Et 2 EoE*= E*oFE, E*= e+ ET

THEORETISCHE INFORMATIK I §2: 9 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
—Sei we L((E+F)™)

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
—~Sei we L((E+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fir alle ¢

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
~ Sei we L((E+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fir alle ¢
— Dann w = wy..wy mit w; € L(E*F*) fur alle 4

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
~ Sei we L((E+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fir alle ¢
— Dann w = wy..wy mit w; € L(E*F*) fur alle 4
— Also we L((E*F*)*)

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
~ Sei we L((E+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fiir alle ¢
— Dann w = wy..wy mit w; € L(E*F*) fur alle 4
— Also we L((E*F*)*)

e Beweis benotigt keine Information uber £ und F

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
~ Sei we L((B+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fiir alle ¢
— Dann w = wy..wy mit w; € L(E*F*) fur alle 4
— Also we L((E*F*)*)
e Beweis benotigt keine Information uber £ und F

— Man konnte genausogut konkrete Symbole verwenden
(E+F)* = (E*F*)* gilt weil (a+b)* = (a*b*)* gilt

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
~ Sei we L((B+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fiir alle ¢
— Dann w = wy..wy mit w; € L(E*F*) fur alle 4
— Also we L((E*F*)*)
e Beweis benotigt keine Information uber £ und F

— Man konnte genausogut konkrete Symbole verwenden
(E+F)* = (E*F*)* gilt weil (a+b)* = (a*b*)* gilt
e Allgemeines Beweisprinzip

— F regularer Ausdruck mit Metavariablen Fi,...F,, (fiir Sprachen Lq,..,L,,)
C' entsprechender Ausdruck mit Symbolen a,..a statt der F;
w e L(E) ist zerlegbar in w = w;..wy, mit w; € L; g.d.w. v=a;,..a;, € L(C)

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
~ Sei we L((B+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fiir alle ¢
— Dann w = wy..wy mit w; € L(E*F*) fur alle 4
— Also we L((E*F*)*)
e Beweis benotigt keine Information uber £ und F

— Man konnte genausogut konkrete Symbole verwenden
(E+F)* = (E*F*)* gilt weil (a+b)* = (a*b*)* gilt
e Allgemeines Beweisprinzip

— F regularer Ausdruck mit Metavariablen Fi,...F,, (fiir Sprachen Lq,..,L,,)
C' entsprechender Ausdruck mit Symbolen a,..a statt der F;
w e L(E) ist zerlegbar in w = w;..wy, mit w; € L; g.d.w. v=a;,..a;, € L(C)

Beweis durch strukturelle Induktion tiber Aufbau regularer Ausdriicke

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
~ Sei we L((B+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fiir alle ¢
— Dann w = wy..wy mit w; € L(E*F*) fur alle 4
— Also we L((E*F*)*)
e Beweis benotigt keine Information uber £ und F

— Man konnte genausogut konkrete Symbole verwenden
(E+F)* = (E*F*)* gilt weil (a+b)* = (a*b*)* gilt

e Allgemeines Beweisprinzip

— F regularer Ausdruck mit Metavariablen Fi,...F,, (fiir Sprachen Lq,..,L,,)
C' entsprechender Ausdruck mit Symbolen a,..a statt der F;
w e L(E) ist zerlegbar in w = w;..wy, mit w; € L; g.d.w. v=a;,..a;, € L(C)
Beweis durch strukturelle Induktion tiber Aufbau regularer Ausdriicke

— Prufverfahren fiir £ = F' ersetzt alle Metavariablen durch Symbole a €3
und testet dann Gleichheit der konkreten Ausdricke — spiter

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdriicke sind endlich erkennbar

THEORETISCHE INFORMATIK I §2: 11 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdriicke sind endlich erkennbar

Fiir jeden regularen Ausdruck FE gibt es einen e-NEA A mit
— A hat genau einen akzeptierenden Zustand gy

— Der Startzustand von A ist in keinem d4(q, a) enthalten

~ Fiir alle ae ¥ ist 04(qr,a) =10

- L(E) = L(A)

REGULARE AUSDRUCKE

THEORETISCHE INFORMATIK I §2: 11

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdriicke sind endlich erkennbar

Fiir jeden regularen Ausdruck FE gibt es einen e-NEA A mit
— A hat genau einen akzeptierenden Zustand gy

— Der Startzustand von A ist in keinem d4(q, a) enthalten

~ Fiir alle ae ¥ ist 04(qr,a) =10

— L(E) = L(A)

Beweis durch strukturelle Induktion tiber Autbau der regularen Ausdriicke

REGULARE AUSDRUCKE

THEORETISCHE INFORMATIK T §2: 11

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdriicke sind endlich erkennbar

Fiir jeden regularen Ausdruck FE gibt es einen e-NEA A mit
— A hat genau einen akzeptierenden Zustand gy

— Der Startzustand von A ist in keinem d4(q, a) enthalten

~ Fiir alle ae ¥ ist 04(qr,a) =10

— L(E) = L(A)

Beweis durch strukturelle Induktion tiber Autbau der regularen Ausdriicke

e Induktionsanfange

REGULARE AUSDRUCKE

THEORETISCHE INFORMATIK T §2: 11

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdriicke sind endlich erkennbar

Fiir jeden regularen Ausdruck FE gibt es einen e-NEA A mit
— A hat genau einen akzeptierenden Zustand gy

— Der Startzustand von A ist in keinem d4(q, a) enthalten

~ Fiir alle ae ¥ ist 04(qr,a) =10

- L(E) = L(A)

Beweis durch strukturelle Induktion tiber Autbau der regularen Ausdriicke

e Induktionsanfange

— Fir £ = e wiahle A = Stm»@ < @

THEORETISCHE INFORMATIK I §2: 11 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdriicke sind endlich erkennbar

Fiir jeden regularen Ausdruck FE gibt es einen e-NEA A mit
— A hat genau einen akzeptierenden Zustand gy

— Der Startzustand von A ist in keinem d4(q, a) enthalten

~ Fiir alle ae ¥ ist 04(qr,a) =10

- L(E) = L(A)

Beweis durch strukturelle Induktion tiber Autbau der regularen Ausdriicke

e Induktionsanfange

— Fir £ = e wiahle A = Stm»@ < @
~Fiir E = () wihle A = 2 () @

THEORETISCHE INFORMATIK I §2: 11 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdriicke sind endlich erkennbar

Fiir jeden regularen Ausdruck FE gibt es einen e-NEA A mit
— A hat genau einen akzeptierenden Zustand gy

— Der Startzustand von A ist in keinem d4(q, a) enthalten

~ Fiir alle ae ¥ ist 04(qr,a) =10

- L(E) = L(A)

Beweis durch strukturelle Induktion tiber Autbau der regularen Ausdriicke

e Induktionsanfange

— Fir £ = e wiahle A = Stm»@ < @
~Fiir E = () wihle A = 2 () @

~Fir E=awihle A= ™) 2 @

THEORETISCHE INFORMATIK I §2: 11 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdriicke sind endlich erkennbar

Fiir jeden regularen Ausdruck FE gibt es einen e-NEA A mit
— A hat genau einen akzeptierenden Zustand gy

— Der Startzustand von A ist in keinem d4(q, a) enthalten

~ Fiir alle ae ¥ ist 04(qr,a) =10

- L(E) = L(A)

Beweis durch strukturelle Induktion tiber Autbau der regularen Ausdriicke

e Induktionsanfange

— Fir £ = e wiahle A = Stm»@ < @
~Fiir E = () wihle A = 2 () @

~Fir E=awihle A= ™) 2 @

— Korrektheit offensichtlich, da jeweils maximal ein Zustandsibergang

THEORETISCHE INFORMATIK I §2: 11 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

O Automat Ay O
O Automat As O

— Fur £ = E+E> wahle A=

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

/O Automat Ay O
Fiir E = E\+F, wihle A= S O<€
€ \O Automat As O

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

— Fur F = E1+E2 wahle A = St (>< : @
¢ €

\O Automat Ay O/

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

— Fur F = E1+E2 wahle A = St (>< : @
¢ €

\O Automat Ay O/

— Fur £ = F,oFE5 wahle

A = O Automat Ay O O Automat A O

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

— Fur F = E1+E2 wahle A = St (>< : @
¢ €

\O Automat Ay O/

— Fur £ = F,oFE5 wahle

A = O Automat Aq O € :O Automat As O

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

— Fur F = E1+E2 wahle A = St (>< : @
¢ €

\O Automat Ay O/

— Fur £ = F,oFE5 wahle

A = Smrt—»@ Automat Aq O € :O Automat As O

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

— Fur F = E1+E2 wahle A = St (>< : @
¢ €

\O Automat Ay O/

— Fur £ = F,oFE5 wahle

A = Smrt—»@ Automat Aq O € :O Automat As @

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

— Fur F = E1+E2 wahle A = St (>< : @
¢ €

\O Automat Ay O/

— Fur £ = F,oFE5 wahle

A = Smrt—»@ Automat Aq O € :O Automat As @

— Fir E = EY wahle A = O Automat A, O

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

~Fiir E = B,+E, withle A = SLO< >@
€ €

\O Automat Ay O/

— Fur £ = F,oFE5 wahle

A = Smrt—»@ Automat Aq O € :O Automat As @

— Fir F = E} wahle A= CD\Automat A p
€

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

~Fiir E = B,+E, withle A = SLO< >@
€ €

\O Automat Ay O/

— Fur £ = F,oFE5 wahle

A = Smrt—»@ Automat Aq O € :O Automat As @

— Fir B = B} wahle A=

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

~Fiir E = B,+E, withle A = SLO< >@
€ €

\O Automat Ay O/

— Fur £ = F,oFE5 wahle

A = Smrt—»@ Automat Aq O € :O Automat As @

- Fiir E = E; wihle A= M(}E»Q\Automat A (O :

€

€

— FUT E = (E1> Wahle A = Al

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)
= W EL(El)OL(EQ) = L(Al)OL(AQ)

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)
= W EL(El)OL(EQ) = L(Al)OL(AQ)
= Juel(A;).JveL(A).w = uv

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)
= weL(F)oL(FEy) = L(A)oL(Ay)
= Juel(A;).JveL(A).w = uv
= Ju,veX . w=uvaqs e Sl(qojl, U) AGf2 652<QQ’2, V)

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)
= weL(F)oL(FEy) = L(A)oL(Ay)
= Juel(A;).JveL(A).w = uv
= Ju,veX . w=uvaqs e Sl(qojl, U) AGf2 652<QQ’2, V)

= Ju,vel .w = uv g2 eg(qo,l, U)AQf2€ 5(6]0,2, v) (qo2e<e-Hiille(gs))

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)
= weL(F)oL(FEy) = L(A)oL(Ay)
= Juel(A;).JveL(A).w = uv
= Ju,veX . w=uvaqs e Sl(qojl, U) AGf2 652<QQ’2, V)

= Ju,veX W = UV A2 € S(qoyl, u) NG f2 € 5(%,2, V) <QO,2 S e—HiiHe(qu))
— df2€ S(QO,l, w) (Deﬁnition 5)

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)
w EL(El)OL(EQ) = L(Al)OL(AQ)
JueL(Ay).FveL(Ay).w = uv

Ju, veX*w =uvnrqs € Sl(qojl, U) AGf2 652<QQ’2, V)

4

Ju, veX*w = uv Aqo2€d(qo1,u) Aqr2€0(qoa,v) (goceiille(gry))
df2€ 5(610,1, w) (Definition 5)
weL(A)

R

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)
w EL(El)OL(EQ) = L(Al)OL(AQ)
JueL(Ay).FveL(Ay).w = uv

4

Ju, veX*w =uvnrqs € Sl(qojl, U) AGf2 652<QQ’2, V)

df2€ 5(610,1, w) (Definition 9)
weL(A)
— Argument ist umkehrbar, also we L(A) = we L(E0F))

=

=

= Ju,veX W = UV A2 € 5(610,1, U)AQf2€ 5(6]0,2, v) (qo2ece-Hille(gs1))
N !
=

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt»@ Automat Aq O € =O Automat A, @

— Es gilt we L(E°F)
= W EL(El)OL(EQ) = L(Al)OL(AQ)
JueL(Ay).FveL(Ay).w = uv

Ju, veX*w =uvnrqs € Sl(qojl, U) AGf2 652<QQ’2, V)

Ju,veX*w =uvnrqyac 5((]0,1, U)AQf2€ S(qo,g, v) (qo2ece-Hiille(gr))
qr2<0(qo1,w) (Definition o)
weL(A)

rgument ist umkehrbar, also we L(A) = we L(FE10FE5)

R

>

Sternbildung und Vereinigung in Ubungen?

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1) Q€< \
€ 1

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1) Q€< \
€ 1

€ €
e Teilautomat fiir (0+1)* ©< 1
€

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

€ oo
e Elimination von e-Ubergangen

Start :) € ~ 1‘ :Oj].@
0,1e€ ~

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)

€ oo
e Elimination von e-Ubergangen

0,1
Start 1 Ojl

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN IN REGULARE AUSDRUCKE I

e Gegeben A = ({q1,.--,qn}, X, 9, q1, {97,545, })

THEORETISCHE INFORMATIK I §2: 15 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN IN REGULARE AUSDRUCKE I

e Gegeben A = ({q1,.--yqn}, X, 9, q1, {Qflv °°9Qfm})

® Definiere Ausdrucke fur Pfade durch A

— Rg-c): Regularer Ausdruck fiir Menge der Worte w mit 0 (¢i, w) = g,
so daB fiir alle efvtw (v£w) gilt: 0(qi, v)=q, = n<k

(Abarbeitung von w beriihrt keinen Zustand grofier als k)

THEORETISCHE INFORMATIK I §2: 15 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN IN REGULARE AUSDRUCKE

e Gegeben A = ({q1,.--yqn}, X, 9, q1, {Qfla °°9qu})

® Definiere Ausdrucke fur Pfade durch A

— Rg-c): Regularer Ausdruck fiir Menge der Worte w mit 0 (¢i, w) = g,
so daB fiir alle efvtw (v£w) gilt: 0(qi, v)=q, = n<k

(Abarbeitung von w beriihrt keinen Zustand grofier als k)

e Setze die R§ j) zu Ausdruck fiir L(A) zusammen
— Per Definition ist RZ(;L) ein Ausdruck fiir Worte w mit 6(q;, w) = q;

THEORETISCHE INFORMATIK I §2: 15 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN IN REGULARE AUSDRUCKE

e Gegeben A = ({q1,.--yqn}, X, 9, q1, {Qfla °°9qu})

® Definiere Ausdrucke fur Pfade durch A

— Rg-c): Regularer Ausdruck fiir Menge der Worte w mit 0 (¢i, w) = g,
so daB fiir alle efvtw (v£w) gilt: 0(qi, v)=q, = n<k

(Abarbeitung von w beriihrt keinen Zustand grofier als k)

e Setze die R§ j) zu Ausdruck fiir L(A) zusammen
— Per Definition ist RZ(;L) ein Ausdruck fiir Worte w mit 6(q;, w) = q;
~Setze R= R} + ... + R\}

THEORETISCHE INFORMATIK I §2: 15 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN IN REGULARE AUSDRUCKE

e Gegeben A = ({q1,.--yqn}, X, 9, q1, {Qfla °°9qu})

® Definiere Ausdrucke fur Pfade durch A

— Rg-c): Regularer Ausdruck fiir Menge der Worte w mit 0 (¢i, w) = g,
so daB fiir alle efvtw (v£w) gilt: 0(qi, v)=q, = n<k

(Abarbeitung von w beriihrt keinen Zustand grofier als k)

e Setze die Rg?) zu Ausdruck fiir L(A) zusammen
— Per Definition ist RZ(;L) ein Ausdruck fiir Worte w mit 6(q;, w) = q;
~Setze R= R} + ... + R\}

— Dann gilt L(R)
= U7 {wes | 0(q,w) = q5,}

THEORETISCHE INFORMATIK I §2: 15 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN IN REGULARE AUSDRUCKE

e Gegeben A = ({q1,.--yqn}, X, 9, q1, {Qfla °°9qu})

® Definiere Ausdrucke fur Pfade durch A

— Rg): Regularer Ausdruck fiir Menge der Worte w mit 0 (¢i, w) = g,
so daB fiir alle efvtw (v£w) gilt: 0(qi, v)=q, = n<k

(Abarbeitung von w beriihrt keinen Zustand grofier als k)

e Setze die Rg?) zu Ausdruck fiir L(A) zusammen
— Per Definition ist RZ(;L) ein Ausdruck fiir Worte w mit 8 (gi, w) = q;
~Setze R= R} + ... + R\}

— Dann gilt L(R)
= Ul {weX* [0(q,w) = ar;}
= {weX*|3q<{qy, -, q1,} @, w) = q}

THEORETISCHE INFORMATIK I §2: 15 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN IN REGULARE AUSDRUCKE

e Gegeben A = ({q1,.--yqn}, X, 9, q1, {Qfla °°9qu})

® Definiere Ausdrucke fur Pfade durch A

— Rg-c): Regularer Ausdruck fiir Menge der Worte w mit 0 (¢i, w) = g,
so daB fiir alle efvtw (v£w) gilt: 0(qi, v)=q, = n<k

(Abarbeitung von w beriihrt keinen Zustand grofier als k)

e Setze die Rg?) zu Ausdruck fiir L(A) zusammen
— Per Definition ist RZ(;L) ein Ausdruck fiir Worte w mit 6(q;, w) = q;
~Setze R= R} + ... + R\}

— Dann gilt L(R)
= U7 {wes | 0(q,w) = q5,}

= {weX*|3ge{qs, - a5} a1, w) = g}
— L(A)

THEORETISCHE INFORMATIK I §2: 15 REGULARE AUSDRUCKE

(k)

ITERATIVE BESTIMMUNG DER AUSDRUCKE RZ. ;

e Basisfall jo: Pfad darf zwischendurch keine Zustande berihren

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

(k)

ITERATIVE BESTIMMUNG DER AUSDRUCKE RZ. ;

e Basisfall jo: Ptad darf zwischendurch keine Zustande beruhren
— Pfadlange 0 (nur fiir i=5): € € L(RY)

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

(k)

ITERATIVE BESTIMMUNG DER AUSDRUCKE RZ. ;

e Basisfall jo: Ptad darf zwischendurch keine Zustande beruhren

— Pfadlange 0 (nur fiir i=5): € € L(RY)
— Pfadlénge 1: {aeX|d(q;,a)=q,} < L<R9j>

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

ITERATIVE BESTIMMUNG DER AUSDRUCKE Rl(f)
e Basisfall R?j: Pfad darf zwischendurch keine Zustande beriithren
— Pfadlange 0 (nur fiir i=5): € € L(RY)
— Pfadlange 1: {aeX|d(q,a)=q;} < L(jo)
— Ergebnis: R), = e+a+..+a, jo = 0+a,+..+a (i#))
wobel {a1, .., ar} = {aeX|(q;, a)=q;}

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

(k)

ITERATIVE BESTIMMUNG DER AUSDRUCKE RZ. ;

e Basisfall jo: Pfad darf zwischendurch keine Zustéande beriihren
— Pfadlange 0 (nur fiir i=5): € € L(RY)
— Pfadlénge 1: {aeX|d(q;,a)=q,} < L<jo>
— Ergebnis: R), = e+a+..+a, jo =0+a+..+a, (i#))
wobei {ay,..,a;p} = {aeX|d(q;,a)=q;}

e Schrittfall Rfj (0<k<n)

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

(k)

ITERATIVE BESTIMMUNG DER AUSDRUCKE Rz ;

e Basisfall jo: Pfad darf zwischendurch keine Zustéande beriihren
— Pfadlange 0 (nur fiir i=5): € € L(RY)
— Pfadlange 1: {aeX|d(q,a) =q,} < L<jo>
— Ergebnis: R), = e+a+..+a, jo =0+a+..+a, (i#))
wobei {ay,..,a;p} = {aeX|d(q;,a)=q;}

e Schrittfall Rfj (0<k<n)
~ Worte w e L(RY};), deren Pfad g, nicht enthlt: L(Rfj_l)gL(Rfj)

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

ITERATIVE BESTIMMUNG DER AUSDRUCKE Rg?)
e Basisfall jo: Pfad darf zwischendurch keine Zustande berithren
— Pfadlange 0 (nur fiir i=5): € € L(RY)
— Pfadlange 1: {aeX|d(q,a) =q,} < L<R9j>
— Ergebnis: R), = e+a+..+a, jo =0+a+..+a, (i#))
wobei {ay, .., ar} = {aeX|d(q;, a)=q;}

e Schrittfall Rfj (0<k<n)
~ Worte w e L(RY};), deren Pfad g, nicht enthlt: L(Rfj_l)gL(Rfj)
~ Worte w e L(R};), deren Pfad g4 enthalt:
Zerlege w in uz,..z,v mit 6(q;, u)=qr » YI<p.o(qr, z1)=qx » O(qk, v)=4q;

W AN NN
—~——t e

Null oder mehr Zeichen-
reihen in Hﬁ,‘”

k-1 k-1
In RV In qu-)

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

ITERATIVE BESTIMMUNG DER AUSDRUCKE Rg?)
e Basisfall jo: Pfad darf zwischendurch keine Zustande berithren
— Pfadlange 0 (nur fiir i=5): € € L(RY)
— Pfadlange 1: {aeX|d(q,a) =q,} < L<R9j>
— Ergebnis: R), = e+a+..+a, jo =0+a+..+a, (i#))
wobei {ay, .., ar} = {aeX|d(q;, a)=q;}

e Schrittfall Rfj (0<k<n)
~ Worte w e L(RY};), deren Pfad g, nicht enthlt: L(Rfj_l)gL(Rfj)
~ Worte w e L(R};), deren Pfad g4 enthalt:
Zerlege w in uz,..z,v mit 6(q;, u)=qr » YI<p.o(qr, z1)=qx » O(qk, v)=4q;

W AN NN
—~——t e

Null oder mehr Zeichen-
reihen in Hﬁ,‘”

k-1 k-1
In RV In qu-)

— Ergebnis: Rfj = Rfj_l + Rf,;lo(R’lzlzl)*oRZ;l

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

0 __
R12 - Startw O
{0 2

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

R(1)2 - Startw O
Ry, =0 "y &

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

0 _
R12 B O Start ; O
Ry, =0 "y &
R82 = € + O + 1

e Stufe 1
RL = R + RO (R, RY, = e+1+ (e+1) (e+1)*(e+1)

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

R(1)2 =0 Startw O
Ry, =0 "y &

R82:€+O+1

e Stufe 1
Rl = RO+ R% (RO)VRY, — e+ 1+ (e+1) (e+1)"(e+1)
Riy = Ry + R (R} Ry = 0+ (e+1) (e +1)70

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

0 __
R(1)2 - Startw O
Ry =1 "y &

R82:€+O+1

e Stufe 1
Bl = Ry B () = (e 1) (e D (v D)
Riy = R)y+ R} (RY}))" R}y = 0+ (e+ 1) (e+1)%0
Ry = Ry + Ry (RY))*R); = 0+0(e+1)*(e+1)

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
R =¢+1 1 0,1

R12 T : ;
Star O
Ry =10 ik al), %(C]Q))

RYy=¢+ 0+ 1

e Stufe 1

R, = R, +RY,(RY)* R, = e+ 1+ (e+1) (e+1)*(e+1)
R, = RV + RY,(RY)*RYy = 0+ (e+1) (e+1)*0
)
)’

RY = RY + Ry (RY,)*RY, = 0+ (0 (e+1)*(e+1)
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
R =¢+1 1 0,1

R12 T : ;
Star O
Ry =10 ik al), %(C]Q))

RYy=¢+ 0+ 1

e Stufe 1

R, = R, +RY,(RY)* R, = e+ 1+ (e+1) (e+1)*(e+1) — 1%
R, = RV + RY,(RY)*R)y = 0+ (e+1) (e+1)*0
)
)*

RY = RY + Ry (RY,)*RY, = 0+ (0 (e+1)*(e+1)
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
R =¢+1 1 0,1

R12 T : ;
Star O
Ry =10 ik al), %(C]Q))

RYy=¢+ 0+ 1
e Stufe 1

R, = R, +RY,(RY)* R, = e+ 1+ (e+1) (e+1)*(e+1) — 1%
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1%0
R, = RY, + RY,(RY,)*RY, = 0+0(c+1)*(e+1)
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
R =¢+1 1 0,1

R12 T : ;
Star O
Ry =10 ik al), %(C]Q))

RYy=¢+ 0+ 1
e Stufe 1

Ry = R+ R (RY)*RY, = e+ 1+ (e+1) (e+1)*(e+1) — 17
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1%0
Ry = Ry + Ryy (R Ry = 0+ 0(e+1)"(e+1) —
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
R =¢+1 1 0,1

R12 T : ;
Star O
Ry =10 ik al), %(C]Q))

RYy=¢+ 0+ 1
e Stufe 1

Ry = R+ R (RY)*RY, = e+ 1+ (e+1) (e+1)*(e+1) — 17
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1*0
Ry = Ry + Ryy (R Ry = 0+ 0(e+1)"(e+1) —
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0 — €+0+1

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
R =¢+1 1 0,1

R12 T : ;
Star O
Ry =10 ik al), %(C]Q»

RYy=¢+ 0+ 1
e Stufe 1

Ry = R+ R (RY)*RY, = e+ 1+ (e+1) (e+1)*(e+1) — 17
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1*0
Ry = Ry + Ryy (R Ry = 0+ 0(e+1)"(e+1) —
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0 — €+0+1

e Stufe 2
RYy = Riy+ Riy(R3p) Iy = 17+ 170 (e+0+1) ()

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢+ 1 1 0,1

R12 T : ;
Star O
Ry =10 ik al), %(%))

RYy=¢+ 0+ 1
e Stufe 1

Ry = R+ R (RY)*RY, = e+ 1+ (e+1) (e+1)*(e+1) — 17
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1*0
Ry = Ry + Ryy (R Ry = 0+ 0(e+1)"(e+1) —
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0 — €+0+1

e Stufe 2
RYy = Riy+ Riy(R3p) Iy = 17+ 170 (e+0+1) ()
R%, = Riy+ Riy(Ri,)* R, = 10+ 1*0(e+0+1) * (e+0+1)

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
R(l)l — € + 1

R(1)2:

Ry, =
RYy=¢+ 0+ 1
e Stufe 1

R}, = R}, + R}, (RY))
Riy, = R}y + R} (RY))" R,
Ry, = Ry + Ry, (RY,)
Ry, = R, + Ry (RY))
e Stufe 2
Ri; = R}, + Rip(Ryy)* Ry,
Riy = Riy+ Riy(R3y)* Ry,
R3) = Ry + Ryy(Riy)* Ry,

THEORETISCHE INFORMATIK T §2:

1 0,1
ar O
Start =;@ 5q2

—e+1+(e+1)(e+1)*(e+1) — 17
=0+ (e+1)(e+1)*0 — 170
=0+0(e+1)*(e+1) — ()
=e+0+1+0(e+1)*0 — €+0+1
= 1"+ 1*0 (e+0+1)*()

= 1"0+1"0(e+0+1) " (e+0+1)
— 0+ (e+0+1) (e+0+1)*0

17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

R(1)2 - Startw O
R, = {0 P

R82:€+O+1

e Stufe 1
R, = R, +RY,(RY)* R, = e+ 1+ (e+1) (e+1)*(e+1) — 1%
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1*0
Ry = Ry + Ryy (R Ry = 0+ 0(e+1)"(e+1) —
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0 — €+0+1

e Stufe 2
R? = RL, + RL(RY,)*RY, = 17+ 170 (e+0+1)*()
R%, = Riy+ Riy(Ri,)* R, = 10+ 1*0(e+0+1) * (e+0+1)
R3, = Ry + Ry (Ry) Ry = 0+ (e+0+1) (e+0+1) ()
R3, = R+ Ryy(R3y)* Ry = (e+0+1) + (e+0+1) (e+0+1)* (e+0+1)

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

R(1)2 - Startw O
R, = {0 P

R82:€+O+1

e Stufe 1
R, = R, +RY,(RY)* R, = e+ 1+ (e+1) (e+1)*(e+1) — 1%
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1*0
Ry = Ry + Ryy (R Ry = 0+ 0(e+1)"(e+1) —
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0 — €+0+1

e Stufe 2
R% = Rl + Ri,(RYL)*RY, = 1%+ 170 (e+0+1) *() — 1
R%, = Riy+ Riy(Ri,)* R, = 10+ 1*0(e+0+1) * (e+0+1)
R3; = Ryy + Ryp(Ryy)* Ry = 0+ (e+0+1) (e+0+1) ")
R3, = Ri,+ Ry, (RL,)*Riy = (e4+0+1) + (e+0+1) (e+0+1) *(e+0+1)

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

R(1)2 - Startw O
R, = {0 P

R82:€+O+1

e Stufe 1
R, = R, +RY,(RY)* R, = e+ 1+ (e+1) (e+1)*(e+1) — 1%
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1*0
Ry = Ry + Ryy (R Ry = 0+ 0(e+1)"(e+1) —
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0 — €+0+1

e Stufe 2
R}, = R}, + Rip(Ryy)* Ry = 1"+ 170 (e+0+1) ")) — 1
Riy = Riy+ Riy(R3y)*Ryy = 170+ 1*0(e+0+1) * (e+0+1) — 1*0(0+1)*
R3, = Ry + Ry (Ry) Ry = 0+ (e+0+1) (e+0+1)*()
R%Q — R%2+R%2(R 2)*R%2 — (e+0+1) + (e+0+1) (e+0+1) *(e+0+1)

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

0 __
R(1)2 - Startw O
Ry =1 "4y &

RYy=¢+ 0+ 1
e Stufe 1

Rj, = R)| + R} (R)))'RY; = e+ 1+ (e+1) (e+1)"(e+1) — 17
R, = RV + RY,(RY)*R)y = 0+ (e+1) (e+1)*0 — 170
Ry = RY + Ry, (RY)*RY, = 0+ 0(e+1)*(e+ 1) — ()
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0 — €+0+1
e Stufe 2

R% = Rl + Ri,(RYL)*RY, = 1%+ 170 (e+0+1) *() 1
R%, = Riy+ Riy(Ri,)* R, = 10+ 1*0(e+0+1) * (e+0+1) — 1*0(0+1)*
R3 = Ry + Ryy(R3y) Ry = 0+ (e+0+1) (e+0+1)*(— ()
R3, = Rjy+ Ryo(R3y)* Riy = (e+0+1) + (e+0+1) (e+0+1) * (e+0+1)

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Ry =¢€ + 1 1 0,1

R(1)2 - Startw O
Ry =0 "4y &

R82:€+O+1

e Stufe 1
R}, = R}, + R}, (R},
Rjy = R}y + R, (
Ry = Ry + Ry (RY,
Ry, = R, + Ry, (RY,

e Stufe 2
R}, = R}, + Ry,

JRY, = e+1+(e+1) (e+1)*(e+1) — 1
Ry, = 0+ (e+1) (e+1)*0 — 1%0
Ry, =0+0(e+1)*(e+1) — ()
*RY = e+0+1+(0(e+1)*0 — e+0+1

(R35)* Ry = 1%+ 10 (e+0+1)*() — 17
R%, = Riy+ Riy(Ri,)* R, = 10+ 1*0(e+0+1) * (e+0+1) — 1*0(0+1)*
R = Ry + Ryy(Ryy)* Ry = 0+ (e+0+1) (e+0+1)*() — ()
R%Q = R%2+R%2(R 2)*352 — (e+0+1) + (e+0+1) (e+0+1) *(e+0+1) — (0+1)*

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
R =¢+1 1 0,1

R12 T : ;
Star O
Ry =10 ik al), %(C]Q))

RYy=¢+ 0+ 1
e Stufe 1

R, = R, +RY,(RY)* R, = e+ 1+ (e+1) (e+1)*(e+1) — 1%
Ri, = R}, + R} (RY)*RY, = 0+ (e+1) (e+1)*0 — 1%0
Ry = Ry + Ryy (R Ry = 0+ 0(e+1)"(e+1) —
R, = Ry, + Ry (R})*RYy = e+0+1+(0(e+1)*0 — €+0+1
e Stufe 2
RYy = Riy+ Riy(R3p) Iy = 17+ 170 (e+0+1) () — 17
Ri, = R, + R, (R3,)* R, = 170+ 170 (e+0+1) * (e+0+1) — 1*0(0+1)*
R3; = Ryy + Ryp(Ryy)* Ry = 0+ (e+0+1) (e+0+1) ") —
R3, = R, + R, (R,)* Ry, = (e+0+1) + (e+0+1) (e+0+1) *(e+0+1) +— (0+1)*

Regularer Ausdruck des Automaten: 1*0(0+1)*

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

EINE EFFIZIENTERE UMWANDLUNGSMETHODE I

e Direkte Umwandlung ist sehr aufwendig
— Es miissen n® Ausdriicke Rf}- erzeugt werden
— Ausdriicke Rfj konnen viermal so grof3 wie die Rfj_l werden
— Ohne Vereinfachung der Rfj sind bis zu n? * 4" Symbole zu erzeugen

— Optimierung des Verfahrens: vermeide Vielfachkopien der Rfj_l

THEORETISCHE INFORMATIK I §2: 18 REGULARE AUSDRUCKE

EINE EFFIZIENTERE UMWANDLUNGSMETHODE I

e Direkte Umwandlung ist sehr aufwendig
— Es miissen n® Ausdriicke Rfj erzeugt werden
— Ausdriicke Rfj konnen viermal so grof3 wie die Rfj_l werden
— Ohne Vereinfachung der Rfj sind bis zu n? * 4" Symbole zu erzeugen

— Optimierung des Verfahrens: vermeide Vielfachkopien der Rfj_l

e Effizienterer Zugang: Elimination von Zustanden
— Statt Pfade zu verlangern, lege Zustande des Automaten zusammen
— Ersetze Uberginge ¢, €% q; durch Uberginge mit reguliren Ausdriicken

— Schrittweise Umwandlung erzeugt regularen Ausdruck des Automaten

THEORETISCHE INFORMATIK I §2: 18 REGULARE AUSDRUCKE

EINE EFFIZIENTERE UMWANDLUNGSMETHODE I

e Direkte Umwandlung ist sehr aufwendig
— Es miissen n® Ausdriicke Rfj erzeugt werden
— Ausdriicke Rfj konnen viermal so grof3 wie die Rfj_l werden
— Ohne Vereinfachung der Rfj sind bis zu n? * 4" Symbole zu erzeugen

— Optimierung des Verfahrens: vermeide Vielfachkopien der Rfj_l

e Effizienterer Zugang: Elimination von Zustanden
— Statt Pfade zu verlangern, lege Zustande des Automaten zusammen
— Ersetze Uberginge ¢, €% q; durch Uberginge mit reguliren Ausdriicken

— Schrittweise Umwandlung erzeugt regularen Ausdruck des Automaten

® Technisches Hilfsmittel: RA-Automaten

— Uberfiihrungsfunktion § arbeitet auf reguliren Ausdriicken

— A akzeptiert w, wenn es einen Pfad w = vy..v,, von ¢y zu einem ¢ € F’ gibt
und alle v; in der Sprache des entsprechenden regularen Ausdrucks liegen

— Konsistente Formalisierung muhsam und ohne Erkenntnisgewinn

THEORETISCHE INFORMATIK I §2: 18 REGULARE AUSDRUCKE

ZUSTANDSELIMINATION IN RA-AUTOMATEN

Eliminiere Zustand s
mit Vorgangern qi, .., qi
und Nachfolgern pq, .., p,

THEORETISCHE INFORMATIK I §2: 19 REGULARE AUSDRUCKE

ZUSTANDSELIMINATION IN RA-AUTOMATEN I

Eliminiere Zustand s
mit Vorgangern qi, .., qi
und Nachfolgern pq, .., p,

— Eliminiere Pfad von ¢ nach p; tiber s: Ry 1+ Q15" P

THEORETISCHE INFORMATIK I §2: 19 REGULARE AUSDRUCKE

ZUSTANDSELIMINATION IN RA-AUTOMATEN I

Eliminiere Zustand s
mit Vorgangern qi, .., qi
und Nachfolgern pq, .., p,

— Eliminiere Pfad von ¢ nach p; iber s: Ry 1+ Q15" P
~ Eliminiere Pfad von q1 nach p,, iber s: Ry, + Q15" P,

THEORETISCHE INFORMATIK I §2: 19 REGULARE AUSDRUCKE

ZUSTANDSELIMINATION IN RA-AUTOMATEN

Eliminiere Zustand s
mit Vorgangern qi, .., qi
und Nachfolgern pq, .., p,

— Eliminiere Pfad von ¢ nach p; iber s: Ry 1+ Q15" P

~ Eliminiere Pfad von q1 nach p,, iber s: Ry, + Q15" P,
— Eliminiere Pfad von ¢ nach p; iber s: Ry 1+ QrS™ P

THEORETISCHE INFORMATIK I §2: 19 REGULARE AUSDRUCKE

ZUSTANDSELIMINATION IN RA-AUTOMATEN

R+ 015" P

Eliminiere Zustand s
mit Vorgangern qi, .., qi e B+ QS™ Py
und Nachfolgern pq, .., pn

— Eliminiere Pfad von ¢ nach p; iber s: Ry 1+ Q15" P

~ Eliminiere Pfad von q1 nach p,, iber s: Ry, + Q15" P,
— Eliminiere Pfad von ¢ nach p; iber s: Ry 1+ QrS™ P

~ Eliminiere Pfad von qr nach p,, iber s: Ry, + QpS™F,

THEORETISCHE INFORMATIK I §2: 19 REGULARE AUSDRUCKE

ZUSTANDSELIMINATION IN RA-AUTOMATEN I

R+ 015" P
Rl,m"'QlS*Pm

Ry1+QrS™ Py

Eliminiere Zustand s
mit Vorgangern qi, .., qi
und Nachfolgern pq, .., p,

Rk,m + QkS*Pm

— Eliminiere Pfad von ¢ nach p; iber s: Ry 1+ Q15" P

~ Eliminiere Pfad von q1 nach p,, iber s: Ry, + Q15" P,
— Eliminiere Pfad von ¢ nach p; iber s: Ry 1+ QrS™ P

~ Eliminiere Pfad von qr nach p,, iber s: Ry, + QpS™F,

THEORETISCHE INFORMATIK I §2: 19 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION I

1. Transformiere Automaten in RA-Automaten

— Ersetze Beschriftungen mit Symbolen a € durch regulare Ausdriicke

THEORETISCHE INFORMATIK I §2: 20 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION I

1. Transformiere Automaten in RA-Automaten

— Ersetze Beschriftungen mit Symbolen a € > durch regulare Ausdriicke

2. Fur g € F' eliminiere alle Zustande aufler gg und gq

— Iterative Anwendung des Eliminationsverfahrens

THEORETISCHE INFORMATIK I §2: 20 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION I

1. Transformiere Automaten in RA-Automaten

— Ersetze Beschriftungen mit Symbolen a € > durch regulare Ausdriicke

2. Fur g € F' eliminiere alle Zustande aufler gg und gq

— Iterative Anwendung des Eliminationsverfahrens

3. Bilde regularen Ausdruck aus finalem Automaten

R U
~ Q7 M (R+SUT)*SU*
T
R

— qo=¢: Start 5 R*

THEORETISCHE INFORMATIK I §2: 20 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION

. Transformiere Automaten in RA-Automaten

— Ersetze Beschriftungen mit Symbolen a € > durch regulare Ausdriicke

. Fur g € F' eliminiere alle Zustande aufler gg und g

— Iterative Anwendung des Eliminationsverfahrens

. Bilde regularen Ausdruck aus finalem Automaten

R U
~ Q7 M (R+SUT)*SU*
T
R

— qo=¢: Start 5 R*

. Vereinige Ausdriucke aller Endzustande

— Bilde Summe aller entstandenen regularen Ausdriicke

THEORETISCHE INFORMATIK I §2: 20 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL

THEORETISCHE INFORMATIK I §2: 21 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL I

1 0,1
ar O
Start =;\y 5%

q
e Transformiere in RA-Automaten
1 0+1

Start O
{q) 2

THEORETISCHE INFORMATIK I §2: 21 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL

1 0,1

S tartw O
{4 2

e Transformiere in RA-Automaten
1 0+1

S tartw O
{q) 2

e Kelne Zustande zu eliminieren

THEORETISCHE INFORMATIK T §2: 21

REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL I

1 0,1

S tartw O
{0 2

e Transformiere in RA-Automaten
1 0+1

S tartw O
{q) 2

e Kelne Zustande zu eliminieren

e Bilde regularen Ausdruck aus finalem Automaten
— Extrahierter Ausdruck: (1 + 0(0+1)*0)*0(0+1)*
— Nach Vereinfachung: [1*0(0+1)*

THEORETISCHE INFORMATIK I §2: 21 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL

THEORETISCHE INFORMATIK I §2: 22 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL

0.1
Start 1 0.1 0.1
e S
e Transformiere in RA-Automaten
0+1
Start 1 0+1 0+1
e SR

THEORETISCHE INFORMATIK I §2: 22 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL I

0.1
Start 1 0.1 0.1
e S
e Transformiere in RA-Automaten
0+1
Start 1 0+1 0+1
e SR

e Elimination von Zustand B
0+1

Star 1(0"‘1) O+1
N LG, g

THEORETISCHE INFORMATIK I §2: 22 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL

0.1
Start 1 071 071
e (D
e Transformiere in RA-Automaten
0+1
Start 1 O+1 O+1
e Ve

e Elimination von Zustand B
0+1

Star 1(0"’1) O+1
N LG, g

e Elimination von Zustand C fur Endzustand D
0+1

M 1(0+1) (0+1) 5, (0+1)*1(0+1) (0+1)

THEORETISCHE INFORMATIK I §2: 22 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL I

0.1
Start 1 071 071
e (D
e Transformiere in RA-Automaten
0+1
Start 1 O+1 O+1
e Ve

e Elimination von Zustand B
0+1

Star 1(0"’1) O+1
0G0 g

e Elimination von Zustand C fur Endzustand D
0+1

M 1(0+1) (0+1) 5, (0+1)*1(0+1) (0+1)

e Elimination von Zustand D fur Endzustand C
0+1

Mﬂou)@ (0+1)*1(0+1)

THEORETISCHE INFORMATIK I §2: 22 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL I

0.1
Start 1 071 071
e (D
e Transformiere in RA-Automaten
0+1
Start 1 O+1 O+1
e Ve

e Elimination von Zustand B
0+1

Star 1(0"’1) O+1
0G0 g

e Elimination von Zustand C fur Endzustand D
0+1

M 1(0+1) (0+1) 5, (0+1)*1(0+1) (0+1)

e Elimination von Zustand D fur Endzustand C

0+1
Mﬂou)@ (0+1)*1(0+1)
e Gesamter Ausdruck: (0+1)*1(0+1) + (0O+1)*1(0+1) (0O+1)

THEORETISCHE INFORMATIK I §2: 22 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE — ZUSAMMENFASSUNG I

e Algebraische Notation fur Sprachen
— ¢, (), Symbole des Alphabets, Vereinigung, Verkettung, Sternoperator
— Aquivalent zu endlichen Automaten
— Gut zum Nachweis algebraischer Gesetze von Sprachen

— Anwendung in Programmiersprachen und Suchmaschinen

THEORETISCHE INFORMATIK I §2: 23 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE — ZUSAMMENFASSUNG I

e Algebraische Notation fur Sprachen
— ¢, (0, Symbole des Alphabets, Vereinigung, Verkettung, Sternoperator
— Aquivalent zu endlichen Automaten
— Gut zum Nachweis algebraischer Gesetze von Sprachen

— Anwendung in Programmiersprachen und Suchmaschinen

e Transformation in endliche Automaten
— Tterative Konstruktion von e-NEAs

— Nachtrigliche Optimierung durch Elimination von e-Ubergingen

THEORETISCHE INFORMATIK I §2: 23 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE — ZUSAMMENFASSUNG

e Algebraische Notation fur Sprachen
— ¢, (0, Symbole des Alphabets, Vereinigung, Verkettung, Sternoperator
— Aquivalent zu endlichen Automaten
— Gut zum Nachweis algebraischer Gesetze von Sprachen

— Anwendung in Programmiersprachen und Suchmaschinen

e Transformation in endliche Automaten
— Tterative Konstruktion von e-NEAs

— Nachtrigliche Optimierung durch Elimination von e-Ubergingen

e Transformation von Automaten in Ausdricke
— Konstruktion von Ausdriicken fiir Verarbeitungspfade im Automaten
— Konstruktion durch Elimination von Zustanden in RA Automaten

— Nachtragliche Optimierungen durch Anwendung algebraischer Gesetze

THEORETISCHE INFORMATIK I §2: 23 REGULARE AUSDRUCKE

