Theoretische Informatik I

Wers,
\3{\ !(q,’;

Einheit 2.4 ; @ﬁ!

Regulare Ausdrucke "

1. Anwendungen
2. Syntax und Semantik
3. Vereinfachungsregeln

4. Beziehung zu endlichen Automaten

EINE ALGEBRAISCHE BESCHREIBUNG FUR SPRACHEN I

e Automaten beschreiben Abarbeitung von Sprachen
— Operationale Semantik: Symbole fithren zu Zustandsanderungen
— Bestimme Worte bzw. Symbolketten werden durch Zustande akzeptiert

— Fir Automaten ist Sprache = Menge der akzeptierten Worte

e Wie beschreibt man Eigenschaften von Worten?
— Deklarative Semantik: auflere Form von Zeichenreihen einer Sprache

z.B. Worte haben eine fiihrende Null, dann beliebig viele Einsen

— Anwendungen brauchen prazise Beschreibungssprache fiir Worte

- Grundeinheiten von Programmiersprachen, Suchmuster fiir Browser, .

e Regulare Ausdricke als formale Syntax
— Kurze, pragnante Beschreibung des Aufbaus der Worte einer Sprache

z.B. 01%: “Zuerst eine Null, dann beliebig viele Einsen”

THEORETISCHE INFORMATIK I §2: 1 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE BESCHREIBEN SPRACHEN I

e Ausdriicke fiir einfache Grundmengen
— Leere Menge
— Sprache, die nur das leere Wort enthalt
— Sprache, die nur das Symbol a € enthalt

e Ausdriicke fiir Komposition von Mengen
— Vereinigung LUM von Sprachen
— Verkettung LoM von Sprachen
LoM ={we¥*|Fuel. veM. w=uv}
— (Kleene’sche) Hiille L* von Sprachen
L™ ={weX*|Ju,..,ucl. w=u..u, (necN) (L= {e})
L* =5 L" ={weX*|IneN. Ju, .., ucL. w=wu, u}

® Regulare Ausdriucke sind nicht selbst Mengen
— Nur eine syntaktische Beschreibungsform, die ein Computer versteht

THEORETISCHE INFORMATIK I §2: 2 REGULARE AUSDRUCKE

ANWENDUNG: SUCHMUSTER IN Unix

grep searches files for lines containing a match to a given pattern

— A regular expression is a pattern that describes a set of strings. Regular expressions are
constructed by using various operators to combine smaller expressions.

— Fundamental building blocks are expressions that match a single character.
— A bracket expression is a list of characters enclosed by [and]. It matches any single
character in that list. For example, [0123456789] matches any single digit.
— Within a bracket expression, a range expression consists of two characters separated by
a hyphen. It matches any single character that sorts between the two characters.
For example, in the default C locale, [a-d] is equivalent to [abcd].
— Certain named classes of characters are predefined within bracket expressions.
They are [:alnum:], [:alpha:], [:cntrl:], [:digit:], ...
— The period . matches any single character.
— The caret ~ and the dollar sign $ are metacharacters that match the empty string . ..
— A regular expression may be followed by one of several repetition operators:
7: The preceding item is optional and matched at most once.
*: The preceding item will be matched zero or more times.
+ The preceding item will be matched one or more times.
— Two regular expressions may be concatenated; the resulting regular expression matches
any string concatenating two substrings that match the subexpressions.
— Two regular expressions may be joined by the infix operator |
The resulting regular expression matches any string matching either subexpression.

THEORETISCHE INFORMATIK I §2: 3 REGULARE AUSDRUCKE

ANWENDUNG: LEXIKALISCHE ANALYSE I

Wichtigster Grundbestandteil von Compilern

e Regulare Ausdricke beschreiben Token
— Logische Grundeinheiten von Programmiersprachen

— z.B. Schlisselworter, Bezeichner, Dezimalzahlen, . ..

e “Lexer” transformieren regulare Ausdriicke
in Analyseprogramme

— Analyse kann die Token der Programmiersprache identifizieren

— Zugrundeliegende Technik: Umwandlung regularer Ausdriicke in DEAs

THEORETISCHE INFORMATIK I §2: 4 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE PRAZISIERT I

e Syntax: Terme iiber > U {0,¢e,+,0,",(,)}
—), €, und a (fiir alle a €¥) sind regulidre Ausdriicke
— Sind £ und F regulare Ausdriicke, dann auch E+F', EoF', E* und (E)

e Semantik: Sprachen uber X
— L(FE): Sprache des reguldren Ausdrucks E, induktiv definiert
~ L) =0, L(e) ={e}, L(a) = {a} (fir alle a eX)
- L(B+F) = LE)UL(F), L(EF) = L(E)L(F), L(E") = (L(B)),
L((E)) = L(E)

e Konventionen
— EoF wird ublicherweise als EF' abgekiirzt
— Definitorische Abkiirzungen: E* = EE*, [aj...a,] = aj+...+a,
— Prioritatsregelungen ermoglichen es, tiberfliisssige Klammern wegzulassen
- * (“Sternoperator”) bindet starker als o, und dies starker als +

- Verkettung © und Vereinigung + sind assoziativ

THEORETISCHE INFORMATIK I §2: 5 REGULARE AUSDRUCKE

SPRACHEN VS. AUSDRUCKE I

e Sprachen sind Mengen
— Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten
— Beschreibung von Mengen (auf Folie, Tafel, ...) bendtigt textuelle Notation
— Notation benutzt Kurzschreibweisen wie U, o, * fiir Mengenoperationen

... aber ist selbst nur ein Hilfsmittel zur Kommunikation

® Regulare Ausdricke sind Terme
— Syntaktisches Konstrukt: Struktur, die ein Computer versteht
— Regulare Ausdriicke werden zur Beschreibung von Sprachen benutzt

und sind ahnlich zur Standardnotation von Mengen

® Regulare Ausdriucke sind selbst keine Mengen
— Unterscheide Ausdruck £ von Sprache des Ausdrucks L(F)

— Man verzichtet auf den Unterschied wenn der Kontext eindeutig ist

THEORETISCHE INFORMATIK I §2: 6 REGULARE AUSDRUCKE

ENTWICKLUNG REGULARER AUSDRUCKE I

Beschreibe Menge aller Worte, in denen 0 und 1 abwechseln

1. Regularer Ausdruck fiir die Sprache {01}
— 0 reprasentiert {0}, 1 reprasentiert {1}
— Also ist L(01) = L(0)oL(1) = {0}o{1} = {01}

2. Erzeuge {01,0101,010101,...} durch Sternbildung
—- L((01)*) = L(01)* = {01}* = {01,0101,010101, ...}

3. Mlanche Worte nicht erfaf3t

— Start mit Eins statt Null: (10)*
— Start und Ende mit Null: (01)*0
— Start und Ende mit Eins: (10)*1
Vollstandiger Ausdruck: (01)*+ (10)*+ (01)*0+ (10)*1

4. Es geht auch kirzer
— Optional 1 am Anfang oder 0 am Ende: (e+1) (01) *(e+0)

THEORETISCHE INFORMATIK I §2: 7 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE FUR REGULARER AUSDRUCKE I

Hilfsmittel zur Vereinfachung regularer Ausdriicke

° Aquivalenz von Ausdriicken
- FE = F fals L(F) = L(F) “F dquivalent zu F”
— Was beweist (01)*+ (10)*+ (01)*0+ (10)*"1 = (e+1) (01)*(e+0) 7

— Algebraische Gesetze erlauben Umschreiben in aquivalente Ausdriicke

e Assoziativitat von © und +
(EoF)oG = Eo(FoG):
— L((EoF)o@) = L(EoF)oL(G) = L(E)oL(F)oL(G) = L(E)oL(Fo@G) = L(Eo(FoQ))
(E4+F)+G = E+(F+G):
— L(E+F)+G) = L(E+F)UL(G) = L(E)UL(F)UL(G) = ... = L(E4+(F+G))

e Kommutativitat von +
- E+F = F+FE: L(E+F) == L(E)UL(F) = L(F)UL(E) = L(F+E)
— Kommutativitat von o gilt nicht: = L(01) = {01} # {10} = L(10)

THEORETISCHE INFORMATIK I §2: 8 REGULARE AUSDRUCKE

ALGEBRAISCHE GESETZE II I

e Einheiten und Annihilatoren
~0+E=ZE=E+0, eoE = FE = Eoe, ()oFE = () = Eof

e Distributivgesetze
~ (E+F)oG = EoG+FoG:
L((E+F)oG) = (L(E)UL(F))oL(G)
={weX*|Jue L(F)UL(F).3ve L(G).w = uv}

={weX*|Fuel(F).Jvel(G)w =uwvIueL(F).JveL(G).w = uv}
={we¥X*|FueL(F).Fve L(G)w =uv} U{weX* | Juec L(F).Jve L(G).w = uv}
= L(E)oL(G)UL(F)oL(G) = L(EcG+FoG)

-~ GOo(E+F) = GoFE + GoF
e Idempotenz von +
~-FEF+E=F
e Hullengesetze
_(E*)*gE*7 0*26, e ™ ¢
-~ Et 2 EoE*= E*oE, E*= e+ ET

THEORETISCHE INFORMATIK I §2: 9 REGULARE AUSDRUCKE

BEWEISMETHODIK FUR ALGEBRAISCHE GESETZE I

e Beispiel: Nachweis von (E+F)* = (E*F*)*
~ Sei we L((B+F)*)
— Dann w = wy..wy mit w; € L(E) oder w; € L(F) fir alle ¢
— Dann w = wy..wy, mit w; e L(E*F™) fiir alle ¢
— Also we L((E*F*)*)
e Beweis benotigt keine Information uber £ und F

— Man konnte genausogut konkrete Symbole verwenden
(E+F)* = (EF*)* gilt weil (a+b)* = (a*b*)* gilt

e Allgemeines Beweisprinzip

— F regularer Ausdruck mit Metavariablen Fi,...F,, (fiir Sprachen Lq,..,L,,)
C' entsprechender Ausdruck mit Symbolen a,..a, statt der F;
w e L(E) ist zerlegbar in w = w;..wy, mit w; € L; g.d.w. v=a;,..a;, € L(C)
Beweis durch strukturelle Induktion tiber Aufbau regularer Ausdriicke

— Prufverfahren fir £ = F' ersetzt alle Metavariablen durch Symbole a €3
und testet dann Gleichheit der konkreten Ausdricke — spéter

THEORETISCHE INFORMATIK I §2: 10 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

Sprachen regularer Ausdricke sind endlich erkennbar

Fir jeden regularen Ausdruck FE gibt es einen e-NEA A mit
— A hat genau einen akzeptierenden Zustand gy

— Der Startzustand von A ist in keinem 0 4(q, a) enthalten

~ Fiir alle ae ¥ ist 04(qr,a) =10

~ L(FE)=L(A)

Beweis durch strukturelle Induktion tiber Autbau der regularen Ausdriicke

e Induktionsanfange
— Fir E = e wahle A =

Start

—O

— Fiur E = () wahle A =

)
_/
Start ‘O

O
— Fiur F = a wihle A = Stm”@ . @

— Korrektheit offensichtlich, da jeweils maximal ein Zustandsiibergang

THEORETISCHE INFORMATIK I §2: 11 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE IN AUTOMATEN I

e Induktionsannahme: seien A; und A, e-NEAs fur F; und F,

e Induktionsschritt

€ /O Automat Ay O\ €

~Fiir E = B,+E, wihle A = SLO< >@
€ €

— Fur E = F0FE, wahle

A = Smrt—»@ Automat Ay O € :O Automat A @

- Fiir E = E; wihle A= M(}E»Q\Automat 4 (O :

€

€

— FUT E = (E1> Wahle A = Al

THEORETISCHE INFORMATIK I §2: 12 REGULARE AUSDRUCKE

KORREKTHEIT DER UMWANDLUNGEN I

e Klammern andern nichts
~Esist L((FE)) = L(Ey) = L(Ay) = L(A)

e Verkettung ist Verschaltung von Automaten

Smrt—»@ Automat A; O € :O Automat A, @

— Es gilt we L(EoF))
= W EL(E1>OL(E2) = L<A1>OL(A2>
JueL(A)).FveL(Ay).w = uv

Ju, veX*w =uv g € Sl(qojl, U) AGf2 ESQ(QQ’Q, V)

Ju,veX*w=uvnrqyoe 5(q0,1, U)AQf2€ 5<qQ72, v) (qo2ce-Hiille(gr))
qr2<0(qo1,w) (Definition o)
weL(A)

rgument ist umkehrbar, also we L(A) = we L(FE10FE5)

I R

>

Sternbildung und Vereinigung in Ubungen?

THEORETISCHE INFORMATIK I §2: 13 REGULARE AUSDRUCKE

UMWANDLUNG REGULARER AUSDRUCKE AM BEISPIEL I

Konstruiere endlichen Automaten fiur (0+1)*1(0+1)

e Teilautomat fur (0+1)

e Teilautomat fir (0+1)*

e Automat fur (0+1)*1(0+1)
0

€ oo
e Elimination von e-Ubergangen

1,01
—0=0

THEORETISCHE INFORMATIK I §2: 14 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN IN REGULARE AUSDRUCKE

e Gegeben A = ({q1,..-,qn}, X, 9, q1, {q7,5 -, 45, })

® Definiere Ausdrucke fur Pfade durch A

— Rg-c): Regularer Ausdruck fiir Menge der Worte w mit 0 (¢i, w) = ¢,
so daB fiir alle efvtw (v£w) gilt: 0(q, v)=¢, = n<k

(Abarbeitung von w beriihrt keinen Zustand grofier als k)

e Setze die Rg.c) zu Ausdruck fiir L(A) zusammen
— Per Definition ist RZ(?) ein Ausdruck fiir Worte w mit 6(q;, w) = ¢;
~Setze R= R} + ... + R\}

— Dann gilt L(R)
= UL {wes" [8(aq, w) = g5}

= {weX*|3ge{qy, - a1, }- Oq,w) = ¢}
— L(A)

THEORETISCHE INFORMATIK I §2: 15 REGULARE AUSDRUCKE

(k)
ij
e Basisfall R?j: Pfad darf zwischendurch keine Zustéande beriihren
— Pfadlange 0 (nur fiir i=5): € € L(RY)
— Pfadlange 1: {aeX|d(q,a) =q,} < L<R?j>
~ Ergebnis: R); = e+a+..+a, Ry =0+a+..+a (i#))
wobel {al, . ak} = {CLEZ \ 5(% CL>IQj}

e Schrittfall Rfj (0<k<n)
~ Worte w e L(R};), deren Pfad i nicht enthélt: L(RZ_I)QL(RZ)
~ Worte w e L(R};), deren Pfad ¢ enthalt:
Zerlege w in wz,..z,v mit 6(q;, u)=qr » YI<p.o(qr, z1)=qx » 0(qk, v)=4q;

WA MNP
—t e e

k-1
In RCT)

ITERATIVE BESTIMMUNG DER AUSDRUCKE R

(k-1)
Null oder mehr Zeichen- U ka

: ¢ (k-1)
reihen in kak

- Ergebnis: RE, = Ri + Ry o(Ryy) *oRy

THEORETISCHE INFORMATIK I §2: 16 REGULARE AUSDRUCKE

UMWANDLUNG VON AUTOMATEN AM BEISPIEL I

e Basisfall
Rly=¢+1 1 0,1

R12 T : ;
Star O
Ry =10 - 4 %(6]2))

Ry, =e¢+0+1
e Stufe 1

Ri, = RO, +RY,(RY)* R, = e+ 1+ (e+1) (e+1)*(e+1) — 1%

Ri, = RV, +RY,(RY)*R)y = 0+ (e+1) (e+1)*0 — 1%0

Ry = Ry + Ry (RY,)" Ry = 0+ 0 (e+1)"(e+1) —

Ry = R)y+ Ry, (RY,)*R)y = e+ 0+1+((e+1)*0 — e+0+1
e Stufe 2

R%, = Ri; + Riy(R,)* Ry, = 1* + 170 (e+0+1)*() — 17

R}, = R, + Ri,(R3,)*Ri, = 170+ 170 (e+0+1) * (e+0+1) — 1*0(0+1)*

(R
(R
R21 = R21 +R22(R%2)*R%1 = 0+ (e+0+1) (e+0+1)"() —
32(R39)" Ray = (e+0+1) + (e+0+1) (e+0+1) “(e+0+1) — (0+1)"

Regularer Ausdruck des Automaten: 1*0(0+1)*

THEORETISCHE INFORMATIK I §2: 17 REGULARE AUSDRUCKE

EINE EFFIZIENTERE UMWANDLUNGSMETHODE I

e Direkte Umwandlung ist sehr aufwendig
— Es miissen n® Ausdriicke Rfj erzeugt werden
— Ausdriicke Rfj konnen viermal so grof3 wie die Rfj_l werden
— Ohne Vereinfachung der Rfj sind bis zu n? * 4" Symbole zu erzeugen

— Optimierung des Verfahrens: vermeide Vielfachkopien der Rfj_l

e Effizienterer Zugang: Elimination von Zustanden
— Statt Pfade zu verlangern, lege Zustande des Automaten zusammen
— Ersetze Uberginge ¢, €% q; durch Ubergénge mit reguliren Ausdriicken

— Schrittweise Umwandlung erzeugt regularen Ausdruck des Automaten

® Technisches Hilfsmittel: RA-Automaten

— Uberfiihrungsfunktion § arbeitet auf reguliren Ausdriicken

— A akzeptiert w, wenn es einen Pfad w = vy..v,, von ¢y zu einem ¢ € F’ gibt
und alle v; in der Sprache des entsprechenden regularen Ausdrucks liegen

— Konsistente Formalisierung muhsam und ohne Erkenntnisgewinn

THEORETISCHE INFORMATIK I §2: 18 REGULARE AUSDRUCKE

ZUSTANDSELIMINATION IN RA-AUTOMATEN I

R+ Q15" Py
Rl,m + QlS*Pm

Rp1+QrS™ P

Eliminiere Zustand s
mit Vorgangern qi, .., qi
und Nachfolgern pq, .., p,

Rk:,m + QkS*Pm

— Eliminiere Pfad von ¢ nach p; tber s: Ry 1+ Q15" P

~ Eliminiere Pfad von q1 nach p,, iber s: Ry, + Q15 F,,
— Eliminiere Pfad von ¢; nach p; iiber s: Ry 1+ QrpS™ P

~ Eliminiere Pfad von qr. nach p,, uber s: Ry, + QpS™F,

THEORETISCHE INFORMATIK I §2: 19 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION

. Transformiere Automaten in RA-Automaten

— Ersetze Beschriftungen mit Symbolen a € durch regulare Ausdriicke

. Fur g € F' eliminiere alle Zustande aufler gg und q

— Iterative Anwendung des Eliminationsverfahrens

. Bilde regularen Ausdruck aus finalem Automaten

R U
T
R

— qo=¢: Start 5 R*

. Vereinige Ausdriucke aller Endzustande

— Bilde Summe aller entstandenen regularen Ausdriicke

THEORETISCHE INFORMATIK I §2: 20 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL I

1 0,1

S tartw O
{0 2

e Transformiere in RA-Automaten
1 0+1

S tartw O
{0 2

e Keine Zustande zu eliminieren

e Bilde regularen Ausdruck aus finalem Automaten
— Extrahierter Ausdruck: (1 + 0(0+1)*0)*0(0+1)*
— Nach Vereinfachung: [1*0(0+1)"

THEORETISCHE INFORMATIK I §2: 21 REGULARE AUSDRUCKE

UMWANDLUNG DURCH ZUSTANDSELIMINATION AM BEISPIEL I

0,1
ar 1 1 1

e Transformiere in RA-Automaten
0+1

ar + +
M1=® & O 5

e Elimination von Zustand B
0+1

Star 1(0"‘1) O+1
e 100G, g,

e Elimination von Zustand C fur Endzustand D
0+1

sm@ 1(0+1) (o+1)=@ (0+1)*1 (0+1) (0+1)

e Elimination von Zustand D fur Endzustand C
0+1

Ml(mi)@ (0+1)*1(0+1)

® Gesamter Ausdruck: (0+1)*1(0+1) + (0+1)*1(0+1) (0+1)

THEORETISCHE INFORMATIK I §2: 22 REGULARE AUSDRUCKE

REGULARE AUSDRUCKE — ZUSAMMENFASSUNG

e Algebraische Notation fiir Sprachen
— ¢, (0, Symbole des Alphabets, Vereinigung, Verkettung, Sternoperator
— Aquivalent zu endlichen Automaten
— Gut zum Nachweis algebraischer Gesetze von Sprachen

— Anwendung in Programmiersprachen und Suchmaschinen

e Transformation in endliche Automaten
— Iterative Konstruktion von e-NEAs

~ Nachtriigliche Optimierung durch Elimination von e-Ubergingen

e Transformation von Automaten in Ausdrucke
— Konstruktion von Ausdriicken fiir Verarbeitungspfade im Automaten
— Konstruktion durch Elimination von Zustanden in RA Automaten

— Nachtragliche Optimierungen durch Anwendung algebraischer Gesetze

THEORETISCHE INFORMATIK I §2: 23 REGULARE AUSDRUCKE

