
Theoretische Informatik I

Einheit 2.4

Reguläre Ausdrücke

1. Anwendungen

2. Syntax und Semantik

3. Vereinfachungsregeln

4. Beziehung zu endlichen Automaten

Theoretische Informatik I §2: 1 Reguläre Ausdrücke

Eine algebraische Beschreibung für Sprachen

• Automaten beschreiben Abarbeitung von Sprachen

– Operationale Semantik: Symbole führen zu Zustandsänderungen

– Bestimme Worte bzw. Symbolketten werden durch Zustände akzeptiert

– Für Automaten ist Sprache =̂ Menge der akzeptierten Worte

• Wie beschreibt man Eigenschaften von Worten?

– Deklarative Semantik: äußere Form von Zeichenreihen einer Sprache

z.B. Worte haben eine führende Null, dann beliebig viele Einsen

– Anwendungen brauchen präzise Beschreibungssprache für Worte

· Grundeinheiten von Programmiersprachen, Suchmuster für Browser, . . .

• Reguläre Ausdrücke als formale Syntax

– Kurze, prägnante Beschreibung des Aufbaus der Worte einer Sprache

z.B. 01∗: “Zuerst eine Null, dann beliebig viele Einsen”

Theoretische Informatik I §2: 2 Reguläre Ausdrücke

Reguläre Ausdrücke beschreiben Sprachen

• Ausdrücke für einfache Grundmengen
– Leere Menge

– Sprache, die nur das leere Wort enthält

– Sprache, die nur das Symbol a ∈Σ enthält

• Ausdrücke für Komposition von Mengen

– Vereinigung L∪M von Sprachen

– Verkettung L◦M von Sprachen

L◦M = {w ∈Σ∗ | ∃u ∈L. ∃v ∈M. w = uv}

– (Kleene’sche) Hülle L∗ von Sprachen

Ln = {w ∈Σ∗ | ∃u1, .., un
∈L. w = u1..un} (n ∈N) (L0 = {ε})

L∗ =
⋃

n≥0 Ln = {w ∈Σ∗ | ∃n ∈N. ∃u1, .., un
∈L. w = u1..un}

• Reguläre Ausdrücke sind nicht selbst Mengen
– Nur eine syntaktische Beschreibungsform, die ein Computer versteht

Theoretische Informatik I §2: 3 Reguläre Ausdrücke

Anwendung: Suchmuster in Unix

grep searches files for lines containing a match to a given pattern

– A regular expression is a pattern that describes a set of strings. Regular expressions are

constructed by using various operators to combine smaller expressions.

– Fundamental building blocks are expressions that match a single character.

– A bracket expression is a list of characters enclosed by [and]. It matches any single

character in that list. For example, [0123456789] matches any single digit.

– Within a bracket expression, a range expression consists of two characters separated by

a hyphen. It matches any single character that sorts between the two characters.

For example, in the default C locale, [a-d] is equivalent to [abcd].

– Certain named classes of characters are predefined within bracket expressions.

They are [:alnum:], [:alpha:], [:cntrl:], [:digit:], . . .

– The period . matches any single character.

– The caret ^ and the dollar sign $ are metacharacters that match the empty string . . .

– A regular expression may be followed by one of several repetition operators:

?: The preceding item is optional and matched at most once.

*: The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

– Two regular expressions may be concatenated; the resulting regular expression matches

any string concatenating two substrings that match the subexpressions.

– Two regular expressions may be joined by the infix operator |

The resulting regular expression matches any string matching either subexpression.

Theoretische Informatik I §2: 4 Reguläre Ausdrücke

Anwendung: Lexikalische Analyse

Wichtigster Grundbestandteil von Compilern

• Reguläre Ausdrücke beschreiben Token

– Logische Grundeinheiten von Programmiersprachen

– z.B. Schlüsselwörter, Bezeichner, Dezimalzahlen, . . .

• “Lexer” transformieren reguläre Ausdrücke

in Analyseprogramme

– Analyse kann die Token der Programmiersprache identifizieren

– Zugrundeliegende Technik: Umwandlung regulärer Ausdrücke in DEAs

Theoretische Informatik I §2: 5 Reguläre Ausdrücke

Reguläre Ausdrücke präzisiert

• Syntax: Terme über Σ ∪ {∅,ε,+,◦,∗,(,)}
– ∅, ε, und a (für alle a ∈Σ) sind reguläre Ausdrücke

– Sind E und F reguläre Ausdrücke, dann auch E+F , E◦F , E∗ und (E)

• Semantik: Sprachen über Σ

– L(E): Sprache des regulären Ausdrucks E, induktiv definiert

– L(∅) = ∅, L(ε) = {ε}, L(a) = {a} (für alle a ∈Σ)

– L(E+F) = L(E)∪L(F), L(E◦F) = L(E)◦L(F), L(E∗) = (L(E))∗,

L((E)) = L(E)

• Konventionen

– E◦F wird üblicherweise als EF abgekürzt

– Definitorische Abkürzungen: E+ ≡ EE∗, [a1...an] ≡ a1+...+an

– Prioritätsregelungen ermöglichen es, überflüssige Klammern wegzulassen

· ∗ (“Sternoperator”) bindet stärker als ◦, und dies stärker als +

· Verkettung ◦ und Vereinigung + sind assoziativ

Theoretische Informatik I §2: 6 Reguläre Ausdrücke

Sprachen vs. Ausdrücke

• Sprachen sind Mengen

– Abstraktes Semantisches Konzept: Ungeordnete Kollektion von Worten

– Beschreibung von Mengen (auf Folie, Tafel, ...) benötigt textuelle Notation

– Notation benutzt Kurzschreibweisen wie ∪, ◦, ∗ für Mengenoperationen

... aber ist selbst nur ein Hilfsmittel zur Kommunikation

• Reguläre Ausdrücke sind Terme

– Syntaktisches Konstrukt: Struktur, die ein Computer versteht

– Reguläre Ausdrücke werden zur Beschreibung von Sprachen benutzt

und sind ähnlich zur Standardnotation von Mengen

• Reguläre Ausdrücke sind selbst keine Mengen

– Unterscheide Ausdruck E von Sprache des Ausdrucks L(E)

– Man verzichtet auf den Unterschied wenn der Kontext eindeutig ist

Theoretische Informatik I §2: 7 Reguläre Ausdrücke

Entwicklung regulärer Ausdrücke

Beschreibe Menge aller Worte, in denen 0 und 1 abwechseln

1. Regulärer Ausdruck für die Sprache {01}
– 0 repräsentiert {0}, 1 repräsentiert {1}

– Also ist L(01) = L(0)◦L(1) = {0}◦{1} = {01}

2. Erzeuge {01, 0101, 010101, . . .} durch Sternbildung

– L((01)∗) = L(01)∗ = {01}∗ = {01, 0101, 010101, . . .}

3. Manche Worte nicht erfaßt

– Start mit Eins statt Null: (10)∗

– Start und Ende mit Null: (01)∗0

– Start und Ende mit Eins: (10)∗1

Vollständiger Ausdruck: (01)∗ + (10)∗ + (01)∗0 + (10)∗1

4. Es geht auch kürzer

– Optional 1 am Anfang oder 0 am Ende: (ε+1)(01)∗(ε+0)

Theoretische Informatik I §2: 8 Reguläre Ausdrücke

Algebraische Gesetze für regulärer Ausdrücke

Hilfsmittel zur Vereinfachung regulärer Ausdrücke

• Äquivalenz von Ausdrücken

– E ∼= F , falls L(E) = L(F) “E äquivalent zu F”

– Was beweist (01)∗ + (10)∗ + (01)∗0 + (10)∗1 ∼= (ε+1)(01)∗(ε+0) ?

– Algebraische Gesetze erlauben Umschreiben in äquivalente Ausdrücke

• Assoziativität von ◦ und +

(E◦F)◦G ∼= E◦(F◦G):

– L((E◦F)◦G) = L(E◦F)◦L(G) = L(E)◦L(F)◦L(G) = L(E)◦L(F◦G) = L(E◦(F◦G))

(E+F)+G ∼= E+(F+G):

– L((E+F)+G) = L(E+F)∪L(G) = L(E)∪L(F)∪L(G) = . . . = L(E+(F+G))

• Kommutativität von +

– E+F ∼= F+E: L(E+F) = = L(E)∪L(F) = L(F)∪L(E) = L(F+E)

– Kommutativität von ◦ gilt nicht: = L(01) = {01} 6= {10} = L(10)

Theoretische Informatik I §2: 9 Reguläre Ausdrücke

Algebraische Gesetze II

• Einheiten und Annihilatoren

– ∅+E ∼= E ∼= E+∅, ε◦E ∼= E ∼= E◦ε, ∅◦E ∼= ∅ ∼= E◦∅

• Distributivgesetze

– (E+F)◦G ∼= E◦G+F◦G:

L((E+F)◦G) = (L(E)∪L(F))◦L(G)

= {w ∈Σ∗ | ∃u ∈L(E)∪L(F).∃v ∈L(G).w = uv}

= {w ∈Σ∗ | ∃u ∈L(E).∃v ∈L(G).w = uv ∨∃u ∈L(F).∃v ∈L(G).w = uv}

= {w ∈Σ∗ | ∃u ∈L(E).∃v ∈L(G).w = uv} ∪ {w ∈Σ∗ | ∃u ∈L(F).∃v ∈L(G).w = uv}

= L(E)◦L(G)∪L(F)◦L(G) = L(E◦G+F◦G)

– G◦(E+F) ∼= G◦E + G◦F

• Idempotenz von +

– E+E ∼= E

• Hüllengesetze

– (E∗)∗ ∼= E∗, ∅∗ ∼= ε, ε∗ ∼= ε

– E+ ∼= E◦E∗ ∼= E∗◦E, E∗ ∼= ε + E+

Theoretische Informatik I §2: 10 Reguläre Ausdrücke

Beweismethodik für algebraische Gesetze

• Beispiel: Nachweis von (E+F)∗ ∼= (E∗F ∗)∗

– Sei w ∈L((E+F)∗)

– Dann w = w1..wk mit wi ∈L(E) oder wi ∈L(F) für alle i

– Dann w = w1..wk mit wi ∈L(E∗F ∗) für alle i

– Also w ∈L((E∗F ∗)∗)

• Beweis benötigt keine Information über E und F

– Man könnte genausogut konkrete Symbole verwenden

(E+F)∗ ∼= (E∗F ∗)∗ gilt weil (a+b)∗ ∼= (a∗b∗)∗ gilt

• Allgemeines Beweisprinzip

– E regulärer Ausdruck mit Metavariablen F1,..,Fm (für Sprachen L1,..,Lm)

C entsprechender Ausdruck mit Symbolen a1,..am statt der Fi

w ∈L(E) ist zerlegbar in w = w1..wk mit wi ∈Lji g.d.w. v=aj1..ajk
∈L(C)

Beweis durch strukturelle Induktion über Aufbau regulärer Ausdrücke

– Prüfverfahren für E ∼= F ersetzt alle Metavariablen durch Symbole a ∈Σ

und testet dann Gleichheit der konkreten Ausdrücke 7→ später

Theoretische Informatik I §2: 11 Reguläre Ausdrücke

Umwandlung regulärer Ausdrücke in Automaten

Sprachen regulärer Ausdrücke sind endlich erkennbar

Für jeden regulären Ausdruck E gibt es einen ε-NEA A mit

– A hat genau einen akzeptierenden Zustand qf

– Der Startzustand von A ist in keinem δA(q, a) enthalten

– Für alle a ∈Σ ist δA(qf , a) = ∅

– L(E) = L(A)

Beweis durch strukturelle Induktion über Aufbau der regulären Ausdrücke

• Induktionsanfänge

– Für E = ε wähle A = -Start -ε

– Für E = ∅ wähle A = -Start

– Für E = a wähle A = -Start -a

– Korrektheit offensichtlich, da jeweils maximal ein Zustandsübergang

Theoretische Informatik I §2: 12 Reguläre Ausdrücke

Umwandlung regulärer Ausdrücke in Automaten

• Induktionsannahme: seien A1 und A2 ε-NEAs für E1 und E2

• Induktionsschritt

– Für E = E1+E2 wähle A =

Automat A2

Automat A1

-Start
ε

ε

*

j

ε

ε

j
*

– Für E = E1◦E2 wähle

A = Automat A1 Automat A2
-ε-Start

– Für E = E∗
1 wähle A = Automat A1

Y

ε

-Start -ε

ε

3

-ε

– Für E = (E1) wähle A = A1

Theoretische Informatik I §2: 13 Reguläre Ausdrücke

Korrektheit der Umwandlungen

• Klammern ändern nichts

– Es ist L((E1)) = L(E1) = L(A1) = L(A)

• Verkettung ist Verschaltung von Automaten

-Start
Automat A1

-ε
Automat A2

– Es gilt w ∈L(E1◦E2)

⇒ w ∈L(E1)◦L(E2) = L(A1)◦L(A2)

⇒ ∃u ∈L(A1).∃v ∈L(A2).w = uv

⇒ ∃u, v ∈Σ∗.w = uv ∧qf,1 ∈ δ̂1(q0,1, u) ∧qf,2 ∈ δ̂2(q0,2, v)

⇒ ∃u, v ∈Σ∗.w = uv ∧q0,2 ∈ δ̂(q0,1, u) ∧qf,2 ∈ δ̂(q0,2, v) (q0,2 ∈ε-Hülle(qf,1))

⇒ qf,2 ∈ δ̂(q0,1, w) (Definition δ̂)

⇒ w ∈L(A)

– Argument ist umkehrbar, also w ∈L(A) ⇒ w ∈L(E1◦E2)

Sternbildung und Vereinigung in Übungen?

Theoretische Informatik I §2: 14 Reguläre Ausdrücke

Umwandlung regulärer Ausdrücke am Beispiel

Konstruiere endlichen Automaten für (0+1)∗1(0+1)

• Teilautomat für (0+1)
1-

0-
ε

ε

�

R

ε

ε

R

�

• Teilautomat für (0+1)∗
1-

0-
ε

ε

�

R

ε

ε

R

�

-ε -ε
3

ε

� ε

• Automat für (0+1)∗1(0+1)

1-

0-
ε

ε

�

R

ε

ε

R

�

-ε -ε
3

ε

� ε -ε 1- -ε

1-

0-
ε

ε

�

R

ε

ε

R

�

-Start

• Elimination von ε-Übergängen

-1 0,1-

Theoretische Informatik I §2: 15 Reguläre Ausdrücke

Umwandlung von Automaten in Reguläre Ausdrücke

• Gegeben A = ({q1, ..., qn}, Σ, δ, q1, {qf1
, .., qfm

})

• Definiere Ausdrücke für Pfade durch A

– R
(k)
ij : Regulärer Ausdruck für Menge der Worte w mit δ̂(qi, w) = qj

so daß für alle ε 6=vvw (v 6=w) gilt: δ̂(qi, v)=qn ⇒ n≤k

(Abarbeitung von w berührt keinen Zustand größer als k)

• Setze die R
(k)
ij zu Ausdruck für L(A) zusammen

– Per Definition ist R
(n)
ij ein Ausdruck für Worte w mit δ̂(qi, w) = qj

– Setze R = R
(n)
1f1

+ ... + R
(n)
1fm

– Dann gilt L(R)

=
⋃m

j=1{w ∈Σ∗ | δ̂(q1, w) = qfj
}

= {w ∈Σ∗ | ∃q ∈{qf1, .., qfm}. δ̂(q1, w) = q}

= L(A)

Theoretische Informatik I §2: 16 Reguläre Ausdrücke

Iterative Bestimmung der Ausdrücke R
(k)
ij

• Basisfall R0
ij: Pfad darf zwischendurch keine Zustände berühren

– Pfadlänge 0 (nur für i=j): ε ∈ L(R0
ii)

– Pfadlänge 1: {a ∈Σ | δ(qi, a) = qj} ⊆ L(R0
ij)

– Ergebnis: R0
ii = ε + a1+ .. + ak

, R0
ij = ∅ + a1+ .. + ak

(i6=j)

wobei {a1, .., ak} = {a ∈Σ | δ(qi, a)=qj}

• Schrittfall Rk
ij (0<k≤n)

– Worte w ∈L(Rk
ij), deren Pfad qk nicht enthält: L(Rk−1

ij)⊆L(Rk
ij)

– Worte w ∈L(Rk
ij), deren Pfad qk enthält:

Zerlege w in uz1..zpv mit δ̂(qi, u)=qk ∧ ∀l≤p.δ̂(qk, zl)=qk ∧ δ̂(qk, v)=qj

– Ergebnis: Rk
ij = Rk−1

ij +Rk−1
ik

◦(Rk−1
kk)∗◦Rk−1

kj

Theoretische Informatik I §2: 17 Reguläre Ausdrücke

Umwandlung von Automaten am Beispiel

-
Start

q1
R

1

-
0

q2
R

0,1

• Basisfall
R0

11 = ε + 1

R0
12 = 0

R0
21 = ∅

R0
22 = ε + 0 + 1

• Stufe 1
R1

11 = R0
11 +R0

11(R
0
11)

∗R0
11 = ε + 1 + (ε + 1)(ε + 1)∗(ε + 1) 7→ 1∗

R1
12 = R0

12 +R0
11(R

0
11)

∗R0
12 = 0 + (ε + 1)(ε + 1)∗0 7→ 1∗0

R1
21 = R0

21 +R0
21(R

0
11)

∗R0
11 = ∅ + ∅(ε + 1)∗(ε + 1) 7→ ∅

R1
22 = R0

22 +R0
21(R

0
11)

∗R0
12 = ε + 0 + 1 + ∅(ε + 1)∗0 7→ ε + 0 + 1

• Stufe 2
R2

11 = R1
11 +R1

12(R
1
22)

∗R1
21 = 1∗ + 1∗0(ε+0+1)∗∅ 7→ 1∗

R2
12 = R1

12 +R1
12(R

1
22)

∗R1
22 = 1∗0 + 1∗0(ε+0+1)∗(ε+0+1) 7→ 1∗0(0+1)∗

R2
21 = R1

21 +R1
22(R

1
22)

∗R1
21 = ∅ + (ε+0+1)(ε+0+1)∗∅ 7→ ∅

R2
22 = R1

22 +R1
22(R

1
22)

∗R1
22 = (ε+0+1) + (ε+0+1)(ε+0+1)∗(ε+0+1) 7→ (0+1)∗

Regulärer Ausdruck des Automaten: 1∗0(0+1)∗

Theoretische Informatik I §2: 18 Reguläre Ausdrücke

Eine effizientere Umwandlungsmethode

• Direkte Umwandlung ist sehr aufwendig

– Es müssen n3 Ausdrücke Rk
ij erzeugt werden

– Ausdrücke Rk
ij können viermal so groß wie die Rk−1

ij werden

– Ohne Vereinfachung der Rk
ij sind bis zu n3 ∗ 4n Symbole zu erzeugen

– Optimierung des Verfahrens: vermeide Vielfachkopien der Rk−1
ij

• Effizienterer Zugang: Elimination von Zuständen

– Statt Pfade zu verlängern, lege Zustände des Automaten zusammen

– Ersetze Übergänge qi
a ∈Σ
−→ qj durch Übergänge mit regulären Ausdrücken

– Schrittweise Umwandlung erzeugt regulären Ausdruck des Automaten

• Technisches Hilfsmittel: RA-Automaten

– Überführungsfunktion δ arbeitet auf regulären Ausdrücken

– A akzeptiert w, wenn es einen Pfad w = v1..vm von q0 zu einem q ∈F gibt

und alle vi in der Sprache des entsprechenden regulären Ausdrucks liegen

– Konsistente Formalisierung mühsam und ohne Erkenntnisgewinn

Theoretische Informatik I §2: 19 Reguläre Ausdrücke

Zustandselimination in RA-Automaten

qk

q1

pm

p1

s
U
S

j
R1,1

*
Rk,m

R

Q1

R

Pm

�

R1,m

�

P1

�

Qk

K

Rk,1

qk

q1

pm

p1-
R1,1 +Q1S

∗P1

-

Rk,m +QkS
∗Pm

R

R1,m +Q1S
∗Pm

�

Rk,1 +QkS
∗P1Eliminiere Zustand s

mit Vorgängern q1, .., qk

und Nachfolgern p1, .., pn

– Eliminiere Pfad von q1 nach p1 über s: R1,1 +Q1S
∗P1...

– Eliminiere Pfad von q1 nach pm über s: R1,m +Q1S
∗Pm

– Eliminiere Pfad von qk nach p1 über s: Rk,1 +QkS
∗P1...

– Eliminiere Pfad von qk nach pm über s: Rk,m +QkS
∗Pm

Theoretische Informatik I §2: 20 Reguläre Ausdrücke

Umwandlung durch Zustandselimination

1. Transformiere Automaten in RA-Automaten

– Ersetze Beschriftungen mit Symbolen a ∈Σ durch reguläre Ausdrücke

2. Für q ∈ F eliminiere alle Zustände außer q0 und q

– Iterative Anwendung des Eliminationsverfahrens

3. Bilde regulären Ausdruck aus finalem Automaten

– q0 6=q: -
Start R

R

qi

S

T

R

U

(R +SU ∗T)∗SU ∗

– q0=q: -
Start R

R

R∗

4. Vereinige Ausdrücke aller Endzustände

– Bilde Summe aller entstandenen regulären Ausdrücke

Theoretische Informatik I §2: 21 Reguläre Ausdrücke

Umwandlung durch Zustandselimination am Beispiel

-
Start

q1
R

1

-
0

q2
R

0,1

• Transformiere in RA-Automaten

-
Start

q1
R

1

-
0

q2
R

0 + 1

• Keine Zustände zu eliminieren

• Bilde regulären Ausdruck aus finalem Automaten

– Extrahierter Ausdruck: (1 + 0(0+1)∗∅)∗0(0+1)∗

– Nach Vereinfachung: 1∗0(0+1)∗

Theoretische Informatik I §2: 22 Reguläre Ausdrücke

Umwandlung durch Zustandselimination am Beispiel

-
Start

A
R

0,1

-
1

B -
0,1

C -
0,1

D

• Transformiere in RA-Automaten

-
Start

A
R

0+1

-
1

B -
0+1

C -
0+1

D

• Elimination von Zustand B

-
Start

A
R

0+1

-
1(0+1)

C -
0+1

D

• Elimination von Zustand C für Endzustand D

-
Start

A
R

0+1

-
1(0+1)(0+1)

D
(0+1)∗1(0+1)(0+1)

• Elimination von Zustand D für Endzustand C

-
Start

A
R

0+1

-
1(0+1)

C
(0+1)∗1(0+1)

• Gesamter Ausdruck: (0+1)∗1(0+1) + (0+1)∗1(0+1)(0+1)

Theoretische Informatik I §2: 23 Reguläre Ausdrücke

Reguläre Ausdrücke – Zusammenfassung

• Algebraische Notation für Sprachen

– ε, ∅, Symbole des Alphabets, Vereinigung, Verkettung, Sternoperator

– Äquivalent zu endlichen Automaten

– Gut zum Nachweis algebraischer Gesetze von Sprachen

– Anwendung in Programmiersprachen und Suchmaschinen

• Transformation in endliche Automaten

– Iterative Konstruktion von ε-NEAs

– Nachträgliche Optimierung durch Elimination von ε-Übergängen

• Transformation von Automaten in Ausdrücke

– Konstruktion von Ausdrücken für Verarbeitungspfade im Automaten

– Konstruktion durch Elimination von Zuständen in RA Automaten

– Nachträgliche Optimierungen durch Anwendung algebraischer Gesetze

