Theoretische Informatik I

wWers,
\3{\ !(‘?}

Einheit 2.5) : Eﬁg

° - ‘Q"?
Grammatiken .

1. Arbeitsweise
2. Klassifizierung

3. Beziehung zu Automaten

BESCHREIBUNG DES AUFBAUS VON SPRACHEN I

e Mathematische Mengennotation
— Beschreibung durch Eigenschaften der Worte (Pradikate)

— Extrem flexibel, nicht notwendig “berechenbar”

THEORETISCHE INFORMATIK I §2: 1 GRAMMATIKEN

BESCHREIBUNG DES AUFBAUS VON SPRACHEN I

e Mathematische Mengennotation
— Beschreibung durch Eigenschaften der Worte (Priadikate)

— Extrem flexibel, nicht notwendig “berechenbar”

e Endliche Automaten
— Beschreibung der Verarbeitung von Sprachen

— Schwerpunkt ist Erkennen korrekter Worte

THEORETISCHE INFORMATIK I §2: 1 GRAMMATIKEN

BESCHREIBUNG DES AUFBAUS VON SPRACHEN I

e Mathematische Mengennotation
— Beschreibung durch Eigenschaften der Worte (Priadikate)

— Extrem flexibel, nicht notwendig “berechenbar”

e Endliche Automaten
— Beschreibung der Verarbeitung von Sprachen

— Schwerpunkt ist Erkennen korrekter Worte

e Regulare Ausdriucke
— Beschreibung der Struktur der Worte

THEORETISCHE INFORMATIK I §2: 1 GRAMMATIKEN

BESCHREIBUNG DES AUFBAUS VON SPRACHEN I

e Mathematische Mengennotation
— Beschreibung durch Eigenschaften der Worte (Priadikate)

— Extrem flexibel, nicht notwendig “berechenbar”

e Endliche Automaten
— Beschreibung der Verarbeitung von Sprachen

— Schwerpunkt ist Erkennen korrekter Worte

e Regulare Ausdricke
— Beschreibung der Struktur der Worte

e Grammatiken
— Beschreibung des Aufbaus von Sprachen durch Produktionsregeln
— Auch fur komplexere Strukturen

— Gangig fur die Beschreibung von Programmiersprachen

THEORETISCHE INFORMATIK I §2: 1 GRAMMATIKEN

PASCAL GRAMMATIK I

Programm Block 4)@_}
Block Noverun ,
> const } Bezeichner —)@—) Konstante
(e
-
(<
o/
var Bezeichner O Typ
(e
o/
®<— Block G
—)(procedure)—>‘ Bezeichner Parameter
—={ function }—={ Bezeichner Parameter —>®—>Typbezeichner -
—(begin) Anweisung ~(Lend)
Bezeichner Buchstabe

\r
Buchstabe]
L

Ziffer

THEORETISCHE INFORMATIK I §2: 2 GRAMMATIKEN

KOMPONENTEN VON (GRAMATIKEN I

e Alphabet der Sprache (Terminalsymbole)
— Symbole, aus denen die erzeugten Worte bestehen sollen

— Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

THEORETISCHE INFORMATIK I §2: 3 GRAMMATIKEN

KOMPONENTEN VON (GRAMATIKEN I

e Alphabet der Sprache (Terminalsymbole)
— Symbole, aus denen die erzeugten Worte bestehen sollen

— Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

e Hilfsalphabet (Variablen)

— Beschreiben die syntaktischen Kategorien der Sprache
— Bei PASCAL z.B. Programm, Block, Bezeichner, Anweisung, ...

— Andere Bezeichnung: Nichtterminale Symbole

THEORETISCHE INFORMATIK I §2: 3 GRAMMATIKEN

KOMPONENTEN VON (GRAMATIKEN I

e Alphabet der Sprache (Terminalsymbole)
— Symbole, aus denen die erzeugten Worte bestehen sollen

— Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

e Hilfsalphabet (Variablen)

— Beschreiben die syntaktischen Kategorien der Sprache
— Bei PASCAL z.B. Programm, Block, Bezeichner, Anweisung, ...

— Andere Bezeichnung: Nichtterminale Symbole

® Regeln zur Erzeugung von Worten (Produktionen)
— Erklaren wie syntaktischen Kategorien aufgebaut sind
— Erklaren Erzeugung von Worten der Sprache in den einzelnen Kategorien

— z.B. “Ein Programm besteht aus einem Block gefolgt vom Symbol .”

THEORETISCHE INFORMATIK I §2: 3 GRAMMATIKEN

KOMPONENTEN VON (GRAMATIKEN I

e Alphabet der Sprache (Terminalsymbole)
— Symbole, aus denen die erzeugten Worte bestehen sollen

— Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

e Hilfsalphabet (Variablen)

— Beschreiben die syntaktischen Kategorien der Sprache
— Bei PASCAL z.B. Programm, Block, Bezeichner, Anweisung, ...

— Andere Bezeichnung: Nichtterminale Symbole

® Regeln zur Erzeugung von Worten (Produktionen)
— Erklaren wie syntaktischen Kategorien aufgebaut sind
— Erklaren Erzeugung von Worten der Sprache in den einzelnen Kategorien

— z.B. “Ein Programm besteht aus einem Block gefolgt vom Symbol .”

e Startsymbol

— Erklart welche syntaktische Kategorie beschrieben werden soll

THEORETISCHE INFORMATIK I §2: 3 GRAMMATIKEN

GRAMMATIKEN — MATHEMATISCH PRAZISIERT I

| Programm | =

| Block I
{const Bezeichner

lcolelo

O
.

—>(procedure)—>| Bezeichner |—>| Parameter I
——((function }—={Bezeichner |-={ Parameter |=()-={Typbezeichner

O ¢

PO

begin Anweisung EE-
(M
o

Eine Grammatik ist ein 4-Tupel G = (V, T, P, S) mit
e 7' endliches Terminalalphabet
e I/ endliches Hilfsalphabet mit VNT = ()
o PcI'"xI™ endliche Menge der Produktionen (wobei I' = VUT)

Schreibweise fiir Produktionen: l—r ¢ P = (I,r)eP

e S/ Startsymbol

THEORETISCHE INFORMATIK I §2: 4 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

e G, = ({S}, {0,1}, P, S) mit P = {S—S1, §—S0, S—e}

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

S

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

S — S0

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:
S — €
S—50—0

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:
S — €

S—50—0

S

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:
S — €

S—50—0

S — S0

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:
S — €

S—50—0

S — S0 — 510

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:
S — €

S—50—0

S — 50— 510 — S010

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

S—50—0

S — 50— 510 — S010 — S0010

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

S—50—0

S — 50— S10 — 5010 — S0010 — 0010

THEORETISCHE INFORMATIK I §2: 5 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

S—50—0

S — 50— S10 — 5010 — S0010 — 0010

— Nur Worte tiber dem Terminalalphabet sind von Interesse

THEORETISCHE INFORMATIK I §2:) GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €
S—50—0
S — 50— S10 — S010 — S0010 — 0010

— Nur Worte tiber dem Terminalalphabet sind von Interesse

— ¢, 0, 0010 gehoren zur erzeugten Sprache
- 5,50, 510, 5010, S0010 sind nur “Zwischenschritte”

THEORETISCHE INFORMATIK I §2:) GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €
S—50—0
S — 50— S10 — S010 — S0010 — 0010

— Nur Worte tiber dem Terminalalphabet sind von Interesse

— ¢, 0, 0010 gehoren zur erzeugten Sprache
- 5,50, 510, 5010, S0010 sind nur “Zwischenschritte”

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—(C1, B—0, CC1—¢€}

THEORETISCHE INFORMATIK I §2:) GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

S—50—-0

S — 50— 510 — 5010 — S0010 — 0010

— Nur Worte tiber dem Terminalalphabet sind von Interesse

— ¢, 0, 0010 gehoren zur erzeugten Sprache
-5, 50, 510, 5010, S0010 sind nur “Zwischenschritte”

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—(C1, B—0, CC1—¢€}

Ableitungen:
S— B—0 vV

THEORETISCHE INFORMATIK I §2:) GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

S—50—-0

S — 50— 510 — 5010 — S0010 — 0010

— Nur Worte tiber dem Terminalalphabet sind von Interesse

— ¢, 0, 0010 gehoren zur erzeugten Sprache
-5, 50, 510, 5010, S0010 sind nur “Zwischenschritte”

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—(C1, B—0, CC1—¢€}

Ableitungen:
S— B—0 V
S— B— (1 Erfolglos, kein Wort der Zielsprache erreichbar

THEORETISCHE INFORMATIK I §2:) GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S — €

S—50—-0

S — 50— 510 — 5010 — S0010 — 0010

— Nur Worte tiber dem Terminalalphabet sind von Interesse

— ¢, 0, 0010 gehoren zur erzeugten Sprache
-5, 50, 510, 5010, S0010 sind nur “Zwischenschritte”

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—(C1, B—0, CC1—¢€}

Ableitungen:
S— B—0 V
S— B— (1 Erfolglos, kein Wort der Zielsprache erreichbar

S—CA)0—CBBB)— CC1BB0— BBO— 0B0— 000 vV

THEORETISCHE INFORMATIK I §2:) GRAMMATIKEN

ARBEITSWEISE VON GRAMMATIKEN — PRAZISIERT I

e Ableitungsrelation —— CI't xI™*
—w—z = dr,yel™. dl—re P.w=xly n z=x1Yy

Anwendung von Produktionen aut Worte

THEORETISCHE INFORMATIK I §2: 6 GRAMMATIKEN

ARBEITSWEISE VON GRAMMATIKEN — PRAZISIERT I

e Ableitungsrelation —— CI't xI™*
—w—z = dr,yel™. dl—re P.w=xly n z=x1Yy
Anwendung von Produktionen aut Worte

e Erweiterte Ableitungsrelation BNl e O

0
—WwW — 2 = W==<

THEORETISCHE INFORMATIK I §2: 6 GRAMMATIKEN

ARBEITSWEISE VON GRAMMATIKEN — PRAZISIERT I

e Ableitungsrelation —— CI't xI™*
—w—z = dr,yel™. dl—re P.w=xly n z=x1Yy
Anwendung von Produktionen aut Worte

e Erweiterte Ableitungsrelation BNl e O

0
—w —Zz

n+1
-—w —z

W=z

n
Juel™ w—u A u— 2

THEORETISCHE INFORMATIK I §2: 6 GRAMMATIKEN

ARBEITSWEISE VON GRAMMATIKEN — PRAZISIERT I

e Ableitungsrelation —— CI't xI™*
—w—z = dr,yel™. dl—re P.w=xly n z=x1Yy

Anwendung von Produktionen aut Worte

. . . *
e Erweiterte Ableitungsrelation —— CI'" xI™
0
—Ww — zZ = W=z
n+1 L « n
—w—z = Juel* . w—u A u—z=z

*k n
—w—z = dneN. w—z

THEORETISCHE INFORMATIK I §2: 6 GRAMMATIKEN

ARBEITSWEISE VON GRAMMATIKEN — PRAZISIERT I

e Ableitungsrelation —— CI't xI™*
—w—z = dr,yel™. dl—re P.w=xly n z=x1Yy

Anwendung von Produktionen aut Worte

. . . *
e Erweiterte Ableitungsrelation —— CI'" xI™

0

—Ww — zZ = W=z
1

w2 2 = Juel w—u A u-ls 2
%k n

—w—z = neN. w—2

— Grammatik durch optionalen Index G (——) spezifizierbar

THEORETISCHE INFORMATIK I §2: 6 GRAMMATIKEN

ARBEITSWEISE VON GRAMMATIKEN — PRAZISIERT I

e Ableitungsrelation —— CI't xI™*
—w—z = dr,yel™. dl—re P.w=xly n z=x1Yy

Anwendung von Produktionen aut Worte

. . . *
e Erweiterte Ableitungsrelation —— CI'" xI™

0

—Ww — zZ = W=z
1

w2 2 = Juel w—u A u-ls 2
%k n

—w—z = neN. w—2

— Grammatik durch optionalen Index G (——) spezifizierbar

e Von G erzeugte Sprache

— Menge der Terminalworte, die aus S abgeleitet werden konnen

THEORETISCHE INFORMATIK I §2: 6 GRAMMATIKEN

ARBEITSWEISE VON GRAMMATIKEN — PRAZISIERT I

e Ableitungsrelation —— CI't xI™*
—w—z = dr,yel™. dl—re P.w=xly n z=x1Yy

Anwendung von Produktionen aut Worte

. . . *
e Erweiterte Ableitungsrelation —— CI'" xI™

0

—Ww — zZ = W=z
1

w2 2 = Juel w—u A u-ls 2
%k n

—w—z = neN. w—2

— Grammatik durch optionalen Index G (——) spezifizierbar

e Von G erzeugte Sprache

— Menge der Terminalworte, die aus S abgeleitet werden konnen

L(G) = {weT*| S —w}

THEORETISCHE INFORMATIK I §2: 6 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3 = ({S}, {0,1}, P, S) mit P =

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G; = ({S}, {0,1}, P, S) mit P = {S—S1

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3 = ({S}, {0,1}, P, S) mit P = {§—S51, S—0S51

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3 = ({S}, {0,1}, P, S) mit P = {§—S1, S—0S1, S—e¢}

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: V1 eN. Vw € {0, 1}*. S 25 w < (3k<I. w = 0F1})

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: V1 eN. Vw € {0, 1}*. S 25 w < (3k<I. w = 0F1})

e Basisfall

1
- S —w

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: V1 eN. Vw € {0, 1}*. S 25 w < (3k<I. w = 0F1})

e Basisfall

S w & (S—w)eP

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: V1 eN. Vw € {0, 1}*. S 25 w < (3k<I. w = 0F1})

e Basisfall

S Sw s (S—w)eP < w=c¢

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: V1 eN. Vw € {0, 1}*. S 25 w < (3k<I. w = 0F1})

e Basisfall

—S;WLU@(S—YU})EP &S w=¢ & Jk<0.w= 01" vV

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: V1 eN. Vw € {0, 1}*. S 25 w < (3k<I. w = 0F1})

e Basisfall

—SLWLU@(S—VU})EP &S w=¢ & Jk<0.w= 01" vV

e Induktionsschritt
— Es gelte Ywe{0,1}*. S e (Fk<l. w = 0*1))

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: V1 eN. Vw € {0, 1}*. S 25 w < (3k<I. w = 0F1})

e Basisfall
—SLWLU@(S—VU})EP &S w=¢ & Jk<0.w= 01" vV

e Induktionsschritt
— Es gelte Ywe{0,1}*. S e (Fk<l. w = 0*1))

[+2
— S —=0

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: V1 eN. Vw € {0, 1}*. S 25 w < (3k<I. w = 0F1})

e Basisfall

—SLWLU@(S—VU})EP &S w=¢ & Jk<0.w= 01" vV

e Induktionsschritt
— Es gelte Ywe{0,1}*. S e (Fk<l. w = 0*1))

[+2
— S —wv
[+1

& S—S1 l+1>fv v S—051 —wv

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: VI eN. Vaw €{0,1}*. § 25 w < (3k<1. w = 0%1})

e Basisfall

—SLWLU@(S—VU})EP &S w=¢ & Jk<0.w= 01" vV

e Induktionsschritt
— Es gelte Ywe{0,1}*. S e (Fk<l. w = 0*1))

[+2
— S —wv
[+1

& S—S1 3y v §—051Hhy
& Jwed0, 1} S L w (v=wlvy = 0wl)

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: VI eN. Vaw €{0,1}*. § 25 w < (3k<1. w = 0%1})

e Basisfall

—SLWLU@(S—VU})EP &S w=¢ & Jk<0.w= 01" vV

e Induktionsschritt
— Es gelte Ywe{0,1}*. S e (Fk<l. w = 0*1))

[+2
— S —wv
[+1

& S—S1 3y v §—051Hhy
& Jwed0, 1} S L w (v=wlvy = 0wl)
& Jwef{0,1}.3k<l. w=0"! A (v=wlve = 0wl) (Annahme)

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: VI eN. Vaw €{0,1}*. § 25 w < (3k<1. w = 0%1})

e Basisfall

—SLWLU(:)(S—VLU)EP &S w=¢ & Jk<0.w= 01" vV

e Induktionsschritt
— Es gelte Ywe{0,1}*. S e (Fk<l. w = 0*1))

[+2
— S —wv
[+1

& S—S1 3y v §—051Hhy

< Jwe{0, 1} S L w (v =wlvv = 0wl)

& Jwef{0,1}.3k<l. w=0"! A (v=wlve = 0wl) (Annahme)
& Jk<l. v =011y v =R

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3; = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

e Zeige L(G3) = L per Induktion iiber Lange der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: VI eN. Vaw €{0,1}*. § 25 w < (3k<1. w = 0%1})

e Basisfall
—SLWLU(:)(S—VLU)EP &S w=¢ & Jk<0.w= 01" vV

e Induktionsschritt
— Es gelte Ywe{0,1}*. S e (Fk<l. w = 0*1))

[+2
— S —wv
[+1

& S—S1 3y v §—051Hhy
& Jwed0, 1} S L w (v=wlvy = 0wl)

& Jwef{0,1}.3k<l. w=0"! A (v=wlve = 0wl) (Annahme)
& Fk<l v = 01" v o = oFF
& k< +1). v =01 Y/

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

KLASSIFIZIERUNG VON GRAMMATIKEN I

e allgemein (Typ 0): keine Einschrinkung an die Produktionen

THEORETISCHE INFORMATIK I §2: 8 GRAMMATIKEN

KLASSIFIZIERUNG VON GRAMMATIKEN I

e allgemein (Typ O): keine Einschrankung an die Produktionen

e kontextsensitiv (Typ 1)
— nur Regeln der Form ©x Ay—x zy oder S—e (z,y,zel* AV, z#¢€)

(S—e€ nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

THEORETISCHE INFORMATIK I §2: 8 GRAMMATIKEN

KLASSIFIZIERUNG VON GRAMMATIKEN I

e allgemein (Typ O): keine Einschrankung an die Produktionen

e kontextsensitiv (Typ 1)
— nur Regeln der Form ©x Ay—x zy oder S—e (z,y,zel* AV, z#¢€)

(S—e€ nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

® expansiv
— nur Regeln der Form z—z mit |z|<|z|, oder S—e (zel*, ze(T—{SHT)

THEORETISCHE INFORMATIK I §2: 8 GRAMMATIKEN

KLASSIFIZIERUNG VON GRAMMATIKEN I

e allgemein (Typ O): keine Einschrankung an die Produktionen

e kontextsensitiv (Typ 1)
— nur Regeln der Form ©x Ay—x zy oder S—e (z,y,zel* AV, z#¢€)

(S—e€ nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

® expansiv
— nur Regeln der Form z—z mit |z|<|z|, oder S—e (zel*, ze(T—{SHT)

e kontextfrei (Typ 2)
— nur Regeln der Form A—z (zeT™, AeV)

THEORETISCHE INFORMATIK I §2: 8 GRAMMATIKEN

KLASSIFIZIERUNG VON GRAMMATIKEN I

e allgemein (Typ O): keine Einschrankung an die Produktionen

e kontextsensitiv (Typ 1)
— nur Regeln der Form ©# Ay—x zy oder S—e (z,y,zel* AV, z#¢€)

(S—e€ nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

® expansiv
— nur Regeln der Form x—z mit |z|<|z|, oder S—e (zel*, ze(T—{SHT)

e kontextfrei (Typ 2)

— nur Regeln der Form A—z (zel™* AeV)
e linear
— nur Regeln der Form A—¢ oder A—u B v (A, BeV,u,veT™)

THEORETISCHE INFORMATIK I §2: 8 GRAMMATIKEN

KLASSIFIZIERUNG VON GRAMMATIKEN I

e allgemein (Typ O): keine Einschrankung an die Produktionen

e kontextsensitiv (Typ 1)
— nur Regeln der Form x Ay—x 2y oder S—e (z,y,zel* AV, z#¢€)

(S—e€ nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

® expansiv
— nur Regeln der Form x—z mit |z|<|z|, oder S—e (zel*, ze(T—{SHT)

e kontextfrei (Typ 2)

— nur Regeln der Form A—z (zel™* AeV)
e linear
— nur Regeln der Form A—¢ oder A—u B v (A, BeV,u,veT™)

e rechtslinear (Typ 3)
— nur Regeln der Form A—e oder A—v B (A, BeV,veT)

THEORETISCHE INFORMATIK I §2: 8 GRAMMATIKEN

KLASSIFIZIERUNG VON GRAMMATIKEN I

e allgemein (Typ O): keine Einschrankung an die Produktionen

e kontextsensitiv (Typ 1)
— nur Regeln der Form x Ay—x 2y oder S—e (z,y,zel* AV, z#¢€)

(S—e€ nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

® expansiv
— nur Regeln der Form x—z mit |z|<|z|, oder S—e (zel*, ze(T—{SHT)

e kontextfrei (Typ 2)

— nur Regeln der Form A—z (zel™* AeV)
e linear
— nur Regeln der Form A—¢ oder A—u B v (A, BeV,u,veT™)

e rechtslinear (Typ 3)
— nur Regeln der Form A—e oder A—v B (A, BeV,veT)

e linkslinear
— nur Regeln der Form A—¢e oder A—Bwv (A, BeV,veT)

THEORETISCHE INFORMATIK I §2: 8 GRAMMATIKEN

BEISPIELE FUR GRAMMATIKKLASSEN I

e kontextsensitiv: Regeln x Ay—x zy oder S—e

e expansiv: Regeln x—2z mit |z|<|z|, oder S—e¢
e kontextfrei: Regeln A—2

e linear: Regeln A—¢€ oder A—u Bv

e rechtslinear: Regeln A—¢ oder A—v B

e linkslinear: Regeln A—e¢ oder A—Bwv

e G, = ({S}, {0,1}, P, S) mit P = {S—S1, §—S0, S—e}

THEORETISCHE INFORMATIK I §2: 9 GRAMMATIKEN

BEISPIELE FUR GRAMMATIKKLASSEN I

e kontextsensitiv: Regeln x Ay—x zy oder S—e

e expansiv: Regeln x—2z mit |z|<|z|, oder S—e¢
e kontextfrei: Regeln A—2

e linear: Regeln A—¢€ oder A—u Bv

e rechtslinear: Regeln A—¢ oder A—v B

e linkslinear: Regeln A—¢€ oder A—B v

e G, = ({S}, {0,1}, P, S) mit P = {S—S1, §—S0, S—e}

— linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

THEORETISCHE INFORMATIK I §2: 9 GRAMMATIKEN

BEISPIELE FUR GRAMMATIKKLASSEN I

e kontextsensitiv: Regeln x Ay—x zy oder S—e

e expansiv: Regeln x—2z mit |z|<|z|, oder S—e¢
e kontextfrei: Regeln A—2

e linear: Regeln A—¢€ oder A—u Bv

e rechtslinear: Regeln A—¢ oder A—v B

e linkslinear: Regeln A—¢€ oder A—B v

e G, = ({S}, {0,1}, P, S) mit P = {S—S1, §—S0, S—e}

— linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—C1, B—0, CC1—¢}

THEORETISCHE INFORMATIK I §2: 9 GRAMMATIKEN

BEISPIELE FUR GRAMMATIKKLASSEN I

e kontextsensitiv: Regeln x Ay—x zy oder S—e

e expansiv: Regeln x—2z mit |z|<|z|, oder S—e¢
e kontextfrei: Regeln A—2

e linear: Regeln A—¢€ oder A—u Bv

e rechtslinear: Regeln A—¢ oder A—v B

e linkslinear: Regeln A—¢€ oder A—B v

e G, = ({S}, {0,1}, P, S) mit P = {S—S1, §—S0, S—e}

— linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—C1, B—0, CC1—¢}

— allgemein (keine anderen Bedingungen erfiillt)

THEORETISCHE INFORMATIK I §2: 9 GRAMMATIKEN

BEISPIELE FUR GRAMMATIKKLASSEN I

e kontextsensitiv: Regeln x Ay—x zy oder S—e

e expansiv: Regeln x—2z mit |z|<|z|, oder S—e¢
e kontextfrei: Regeln A—2

e linear: Regeln A—¢€ oder A—u Bv

e rechtslinear: Regeln A—¢ oder A—v B

e linkslinear: Regeln A—¢€ oder A—B v

e G, = ({S}, {0,1}, P, S) mit P = {S—S1, §—S0, S—e}

— linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—C1, B—0, CC1—¢}

— allgemein (keine anderen Bedingungen erfiillt)

e G3 = ({S}, {0,1}, P, S) mit P = {§—S1, S—0S1, S—e¢}

THEORETISCHE INFORMATIK I §2: 9 GRAMMATIKEN

BEISPIELE FUR GRAMMATIKKLASSEN I

e kontextsensitiv: Regeln x Ay—x zy oder S—e

e expansiv: Regeln x—2z mit |z|<|z|, oder S—e¢
e kontextfrei: Regeln A—2

e linear: Regeln A—¢€ oder A—u Bv

e rechtslinear: Regeln A—¢ oder A—v B

e linkslinear: Regeln A—¢€ oder A—B v

e G, = ({S}, {0,1}, P, S) mit P = {S—S1, §—S0, S—e}

— linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—C1, B—0, CC1—¢}

— allgemein (keine anderen Bedingungen erfiillt)

e G3 = ({S}, {0,1}, P, S) mit P = {§—S1, S—0S1, S—e¢}

— kontextirei, nicht expansiv, nicht kontextsensitiv

THEORETISCHE INFORMATIK I §2: 9 GRAMMATIKEN

ZUSAMMENHANG ZWISCHEN GRAMMATIKEN UND AUTOMATEN

e Automaten verarbeiten Eingabeworte
— Jedes Symbol wird in einem Schritt abgearbeitet
— Symbol bestimmt, ob Automat im Zustand bleibt oder wechselt

THEORETISCHE INFORMATIK I §2: 10 GRAMMATIKEN

ZUSAMMENHANG ZWISCHEN GRAMMATIKEN UND AUTOMATEN I

e Automaten verarbeiten Eingabeworte
— Jedes Symbol wird in einem Schritt abgearbeitet
— Symbol bestimmt, ob Automat im Zustand bleibt oder wechselt

e Grammatiken erzeugen Worte
— Hilfssymbole werden im Endeftekt in Terminalworte umgewandelt
— Nichtlineare Grammatiken erzeugen mehrere Symbole gleichzeitig

— Ableitungen in rechts- /linkslinearen Grammatiken erzeugen pro Schritt

ein Terminalsymbol und verwenden jeweils nur ein Hiltssymbol

THEORETISCHE INFORMATIK I §2: 10 GRAMMATIKEN

ZUSAMMENHANG ZWISCHEN GRAMMATIKEN UND AUTOMATEN I

e Automaten verarbeiten Eingabeworte
— Jedes Symbol wird in einem Schritt abgearbeitet
— Symbol bestimmt, ob Automat im Zustand bleibt oder wechselt

e Grammatiken erzeugen Worte
— Hilfssymbole werden im Endeftekt in Terminalworte umgewandelt
— Nichtlineare Grammatiken erzeugen mehrere Symbole gleichzeitig

— Ableitungen in rechts- /linkslinearen Grammatiken erzeugen pro Schritt

ein Terminalsymbol und verwenden jeweils nur ein Hiltssymbol

e Kann man umwandeln?
— Gibt es zu jedem DEA eine aquivalente rechtslineare Grammatik?

— Gibt es zu jeder rechtslinearen Grammatik einen aquivalenten DEA?

THEORETISCHE INFORMATIK I §2: 10 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)

— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
~Setze G = (Q, X, P, qo) mit P = {g—aq'[d(q,a) = q'} U{q—e€|qeF}

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)

— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
~Setze G = (Q, X, P, qo) mit P = {g—aq'[d(q,a) = q'} U{q—e€|qeF}

— (G ist per Konstruktion rechtslinear, also vom Typ 3

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)

— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
~Setze G = (Q, X, P, qo) mit P = {g—aq'[d(q,a) = q'} U{q—e€|qeF}
— (G ist per Konstruktion rechtslinear, also vom Typ 3
® Zeige L(G) = L(A)
we L(G)

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)

— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
~Setze G = (Q, X, P, qo) mit P = {g—aq'[d(q,a) = q'} U{q—e€|qeF}
— (G ist per Konstruktion rechtslinear, also vom Typ 3
® Zeige L(G) = L(A)
we L(G)

k
S S —w=w.w,

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)

— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
~Setze G = (Q, X, P, qo) mit P ={g—aq'|d(q,a) =q'} U{g—e[qel’}

— (G ist per Konstruktion rechtslinear, also vom Typ 3
® Zeige L(G) = L(A)
we L(G)
s S w=w..w,

& dq1, ., ¢ €Q. o — WG — W1Waga — ... W1 WGy — W1.. Wy,

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)

— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
— Setze G .= (Q, 3, P, qo) mit P = {q—aq' |§(q,a) =q¢'} U {g—€|qeF}
— (G ist per Konstruktion rechtslinear, also vom Typ 3
® Zeige L(G) = L(A)
we L(G)
s S w=w..w,
< dqp, .., Q. Qo — Wi1qE — Wi WGy — ... W1 .. WGy — W1.. Wy,

< dqi, .., ¢, Q. 5(610,101)2611 A 5(6]1,102):% Ao 5(Qn—1awn)ZQn A Qp el

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)
— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
~Setze G = (Q, X, P, qo) mit P = {g—aq'[d(q,a) = q'} U{q—e€|qeF}

— (G ist per Konstruktion rechtslinear, also vom Typ 3

® Zeige L(G) = L(A)
we L(G)
s S w=w..w,
S dqr, .., ¢, Q. Qo — W1q — Wi W@ — .. W . WG — W1 W),
< 3q1, -, @€ Q. 0(qo, w1)=q1 A 0(q, w2)=q2 A ... (Gn—1,Wn)=qn A GueF
& 3gueF. 5(qo,w) = qn

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)
— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
~Setze G = (Q, X, P, qo) mit P = {g—aq'[d(q,a) = q'} U{q—e€|qeF}

— (G ist per Konstruktion rechtslinear, also vom Typ 3

® Zeige L(G) = L(A)
we L(G)
s S w=w..w,
& dqi, ., qn Q. Qo — WiqE — W Wrq2 — ... W1.. WGy — W1.. W),
S 31, ., ¢n Q. d(qo, wi)=q1 A O(q1, w2)=q2 A ... 6(qn—1,Wn)=qn A qneF
& dg, ek S(qo,w) = q,
< wel(A) vV

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fiir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fiir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)
— Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um
—Setze A= (V,T,6,S, F)mit §(X,a) ={X'| X—aX' e P}
und FF = {X eV | X—e € P}

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fiir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)
— Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um
—Setze A= (V,T,6,S, F)mit §(X,a) ={X'| X—aX' e P}
und F'={X eV | X—e e P}
® Zeige L(A) = L(G)
w = wy..w, € L(A)

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fiir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)
— Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um
—Setze A= (V,T,6,S, F)mit §(X,a) ={X'| X—aX' e P}
und FF = {X eV | X—e € P}

® Zeige L(A) = L(G)
w = wy..w, € L(A)
& dX,eF. X, 65(3 w)

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fiir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)
— Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um
—Setze A= (V,T,6,S, F)mit §(X,a) ={X'| X—aX' e P}
und FF = {X eV | X—e € P}

® Zeige L(A) = L(G)
w = wy..w, € L(A)
& X, eF. Xneg(S,w)
< 34Xy, ., X, eV Xqe0(S,wy) A Xped(X, wy) A Xy eF

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fiir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)
— Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um
—Setze A= (V,T,6,S, F)mit §(X,a) ={X'| X—aX' e P}
und FF = {X eV | X—e € P}

® Zeige L(A) = L(G)
w = wi..wy € L(A)
& 4X, e F XnES(S,’U})
< 34Xy, ., X, eV Xqe0(S,wy) A Xped(X, wy) A Xy eF

= E|X1, ..,Xn cV. 5 —wu X| —ww Xy — ..wy..w, X, — wi..w,

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fiir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)
— Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um
—Setze A= (V,T,6,S, F)mit §(X,a) ={X'| X—aX' e P}
und FF = {X eV | X—e € P}

® Zeige L(A) = L(G)
w = wi..wy € L(A)
& 4X, e F XnES(S,’U})
< 34Xy, ., X, eV Xqe0(S,wy) A Xped(X, wy) A Xy eF
& dXq,..,. X, eV §—w Xy — wwe X9 — . wy.w, X, — wy.wy,

= S w

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fiir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)
— Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um
—Setze A= (V,T,6,S, F)mit §(X,a) ={X'| X—aX' e P}
und FF = {X eV | X—e € P}

® Zeige L(A) = L(G)
w = wi..wy € L(A)
& 4X, e F XnES(S,’U})
< 34Xy, ., X, eV Xqe0(S,wy) A Xped(X, wy) A Xy eF
& dXq,..,. X, eV §—w Xy — wwe X9 — . wy.w, X, — wy.wy,
s SSw
< wel(G) V/

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

e Typ-1 Sprachen (kontextsensitive Sprachen)

— Sprachen der Form L = L(G) fiir eine kontextsensitive Grammatik G

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

e Typ-1 Sprachen (kontextsensitive Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextsensitive Grammatik G

— L ist kontextsensitiv g.d.w. L = L(G) fiir eine expansive Grammatik G

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

e Typ-1 Sprachen (kontextsensitive Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextsensitive Grammatik G

— L ist kontextsensitiv g.d.w. L = L(G) fiir eine expansive Grammatik G

e Typ-2 Sprachen (kontextfreie Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextfreie Grammatik G

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

e Typ-1 Sprachen (kontextsensitive Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextsensitive Grammatik G

— L ist kontextsensitiv g.d.w. L = L(G) fiir eine expansive Grammatik G

e Typ-2 Sprachen (kontextfreie Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextfreie Grammatik G

e lineare Sprachen
— Sprachen der Form L = L(G) fiir eine lineare Grammatik G

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

e Typ-1 Sprachen (kontextsensitive Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextsensitive Grammatik G

— L ist kontextsensitiv g.d.w. L = L(G) fiir eine expansive Grammatik G

e Typ-2 Sprachen (kontextfreie Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextfreie Grammatik G

e lineare Sprachen
— Sprachen der Form L = L(G) fiir eine lineare Grammatik G

e Typ-3 Sprachen (reguliare Sprachen)
— Sprachen der Form L = L(G) fiir eine rechtslineare Grammatik G

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

e Typ-1 Sprachen (kontextsensitive Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextsensitive Grammatik G

— L ist kontextsensitiv g.d.w. L = L(G) fiir eine expansive Grammatik G

e Typ-2 Sprachen (kontextfreie Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextfreie Grammatik G

e lineare Sprachen
— Sprachen der Form L = L(G) fiir eine lineare Grammatik G

e Typ-3 Sprachen (reguliare Sprachen)
— Sprachen der Form L = L(G) fiir eine rechtslineare Grammatik G
— L ist regular g.d.w. L = L(G) fiir eine linkslineare Grammatik G

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

e Typ-1 Sprachen (kontextsensitive Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextsensitive Grammatik G

— L ist kontextsensitiv g.d.w. L = L(G) fiir eine expansive Grammatik G

e Typ-2 Sprachen (kontextfreie Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextfreie Grammatik G

e lineare Sprachen
— Sprachen der Form L = L(G) fiir eine lineare Grammatik G

e Typ-3 Sprachen (reguliare Sprachen)
— Sprachen der Form L = L(G) fiir eine rechtslineare Grammatik G
— L ist regular g.d.w. L = L(G) fiir eine linkslineare Grammatik G

oL, = { L | L ist Sprache vom Typ i}

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

DIE CHOMSKY HIERARCHIE I

L3 C L C LY CLY

e Wichtige Vertreter
— Lo—L3:{0"1" | neN}
L1~ Lo {0"1727 | neN}
— Lo—L1: {w; €{0,1}* | Das Programm mit Codierung w;
hilt bei Eingabe w; }

THEORETISCHE INFORMATIK I §2: 14 GRAMMATIKEN

DIE CHOMSKY HIERARCHIE I

L3 C L C LY CLY

e Wichtige Vertreter
— Lo—L3:{0"1" | neN}
— L1—Lo:{0"1"2" | neN}
— Lo—L1: {w; €{0,1}* | Das Programm mit Codierung w;
hilt bei Eingabe w; }

e Zugehorige Automatenmodelle
— Ly: Turingmaschine
— L: linear platzbeschrankte nichtdeterministische Turingmaschine

— L5: nichtdeterministischer endlicher Automat mit Kellerspeicher
— L5 endlicher Automat

THEORETISCHE INFORMATIK I §2: 14 GRAMMATIKEN

DIE CHOMSKY HIERARCHIE I

L3 C L C LY CLY

e Wichtige Vertreter
— Lo—L3:{0"1" | neN}
— L1—Lo:{0"1"2" | neN}
— Lo— L1 {w; €{0,1}* | Das Programm mit Codierung w;
hilt bei Eingabe w; }

e Zugehorige Automatenmodelle
— L: Turingmaschine
— L: linear platzbeschrankte nichtdeterministische Turingmaschine

— L5: nichtdeterministischer endlicher Automat mit Kellerspeicher
— L5 endlicher Automat

Mehr in zukunftigen Vorlesungen

THEORETISCHE INFORMATIK I §2: 14 GRAMMATIKEN

