
Theoretische Informatik I

Einheit 2.5

Grammatiken

1. Arbeitsweise

2. Klassifizierung

3. Beziehung zu Automaten



Theoretische Informatik I §2: 1 Grammatiken

Beschreibung des Aufbaus von Sprachen

• Mathematische Mengennotation

– Beschreibung durch Eigenschaften der Worte (Prädikate)

– Extrem flexibel, nicht notwendig “berechenbar”



Theoretische Informatik I §2: 1 Grammatiken

Beschreibung des Aufbaus von Sprachen

• Mathematische Mengennotation

– Beschreibung durch Eigenschaften der Worte (Prädikate)

– Extrem flexibel, nicht notwendig “berechenbar”

• Endliche Automaten

– Beschreibung der Verarbeitung von Sprachen

– Schwerpunkt ist Erkennen korrekter Worte



Theoretische Informatik I §2: 1 Grammatiken

Beschreibung des Aufbaus von Sprachen

• Mathematische Mengennotation

– Beschreibung durch Eigenschaften der Worte (Prädikate)

– Extrem flexibel, nicht notwendig “berechenbar”

• Endliche Automaten

– Beschreibung der Verarbeitung von Sprachen

– Schwerpunkt ist Erkennen korrekter Worte

• Reguläre Ausdrücke

– Beschreibung der Struktur der Worte



Theoretische Informatik I §2: 1 Grammatiken

Beschreibung des Aufbaus von Sprachen

• Mathematische Mengennotation

– Beschreibung durch Eigenschaften der Worte (Prädikate)

– Extrem flexibel, nicht notwendig “berechenbar”

• Endliche Automaten

– Beschreibung der Verarbeitung von Sprachen

– Schwerpunkt ist Erkennen korrekter Worte

• Reguläre Ausdrücke

– Beschreibung der Struktur der Worte

• Grammatiken

– Beschreibung des Aufbaus von Sprachen durch Produktionsregeln

– Auch für komplexere Strukturen

– Gängig für die Beschreibung von Programmiersprachen



Theoretische Informatik I §2: 2 Grammatiken

PASCAL Grammatik

Bezeichner

.

const

Programm

Block
Konstante

Typ

Typ

Parameter

Parameter

Anweisung

Typbezeichner

Block

type

var

begin

function

procedure

end

;

;

;

;

;

=

;

=

,

;

;

Buchstabe

Ziffer

Bezeichner

Bezeichner

Bezeichner

Bezeichner

Bezeichner

Block

Buchstabe



Theoretische Informatik I §2: 3 Grammatiken

Komponenten von Gramatiken

• Alphabet der Sprache (Terminalsymbole)

– Symbole, aus denen die erzeugten Worte bestehen sollen

– Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen



Theoretische Informatik I §2: 3 Grammatiken

Komponenten von Gramatiken

• Alphabet der Sprache (Terminalsymbole)

– Symbole, aus denen die erzeugten Worte bestehen sollen

– Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

• Hilfsalphabet (Variablen)

– Beschreiben die syntaktischen Kategorien der Sprache

– Bei PASCAL z.B. Programm, Block, Bezeichner, Anweisung, . . .

– Andere Bezeichnung: Nichtterminale Symbole



Theoretische Informatik I §2: 3 Grammatiken

Komponenten von Gramatiken

• Alphabet der Sprache (Terminalsymbole)

– Symbole, aus denen die erzeugten Worte bestehen sollen

– Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

• Hilfsalphabet (Variablen)

– Beschreiben die syntaktischen Kategorien der Sprache

– Bei PASCAL z.B. Programm, Block, Bezeichner, Anweisung, . . .

– Andere Bezeichnung: Nichtterminale Symbole

• Regeln zur Erzeugung von Worten (Produktionen)

– Erklären wie syntaktischen Kategorien aufgebaut sind

– Erklären Erzeugung von Worten der Sprache in den einzelnen Kategorien

– z.B. “Ein Programm besteht aus einem Block gefolgt vom Symbol .”



Theoretische Informatik I §2: 3 Grammatiken

Komponenten von Gramatiken

• Alphabet der Sprache (Terminalsymbole)

– Symbole, aus denen die erzeugten Worte bestehen sollen

– Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

• Hilfsalphabet (Variablen)

– Beschreiben die syntaktischen Kategorien der Sprache

– Bei PASCAL z.B. Programm, Block, Bezeichner, Anweisung, . . .

– Andere Bezeichnung: Nichtterminale Symbole

• Regeln zur Erzeugung von Worten (Produktionen)

– Erklären wie syntaktischen Kategorien aufgebaut sind

– Erklären Erzeugung von Worten der Sprache in den einzelnen Kategorien

– z.B. “Ein Programm besteht aus einem Block gefolgt vom Symbol .”

• Startsymbol

– Erklärt welche syntaktische Kategorie beschrieben werden soll



Theoretische Informatik I §2: 4 Grammatiken

Grammatiken – mathematisch präzisiert

Bezeichner

.

const

Programm

Block
Konstante

Typ

Typ

Parameter

Parameter

Anweisung

Typbezeichner

Block

type

var

begin

function

procedure

end

;

;

;

;

;

=

;

=

,

;

;

Buchstabe

Ziffer

Bezeichner

Bezeichner

Bezeichner

Bezeichner

Bezeichner

Block

Buchstabe

Eine Grammatik ist ein 4-Tupel G = (V , T , P , S) mit

• T endliches Terminalalphabet

• V endliches Hilfsalphabet mit V ∩T = ∅

• P⊆Γ+×Γ∗ endliche Menge der Produktionen (wobei Γ = V ∪T )

Schreibweise für Produktionen: l→r ∈ P ≡ (l, r) ∈P

• S ∈V Startsymbol



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010 → S0010



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010 → S0010 → 0010



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010 → S0010 → 0010

– Nur Worte über dem Terminalalphabet sind von Interesse



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010 → S0010 → 0010

– Nur Worte über dem Terminalalphabet sind von Interesse

– ε, 0, 0010 gehören zur erzeugten Sprache

– S, S0, S10, S010, S0010 sind nur “Zwischenschritte”



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010 → S0010 → 0010

– Nur Worte über dem Terminalalphabet sind von Interesse

– ε, 0, 0010 gehören zur erzeugten Sprache

– S, S0, S10, S010, S0010 sind nur “Zwischenschritte”

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010 → S0010 → 0010

– Nur Worte über dem Terminalalphabet sind von Interesse

– ε, 0, 0010 gehören zur erzeugten Sprache

– S, S0, S10, S010, S0010 sind nur “Zwischenschritte”

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}

Ableitungen:

S −→B −→0 √



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010 → S0010 → 0010

– Nur Worte über dem Terminalalphabet sind von Interesse

– ε, 0, 0010 gehören zur erzeugten Sprache

– S, S0, S10, S010, S0010 sind nur “Zwischenschritte”

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}

Ableitungen:

S −→B −→0 √

S −→B −→C1 Erfolglos, kein Wort der Zielsprache erreichbar



Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S → ε

S → S0 → 0

S → S0 → S10 → S010 → S0010 → 0010

– Nur Worte über dem Terminalalphabet sind von Interesse

– ε, 0, 0010 gehören zur erzeugten Sprache

– S, S0, S10, S010, S0010 sind nur “Zwischenschritte”

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}

Ableitungen:

S −→B −→0 √

S −→B −→C1 Erfolglos, kein Wort der Zielsprache erreichbar

S −→CA0−→CBBB0−→CC1BB0−→BB0−→ 0B0−→000 √



Theoretische Informatik I §2: 6 Grammatiken

Arbeitsweise von Grammatiken – präzisiert

• Ableitungsrelation −→ ⊆Γ+×Γ∗

– w −→ z ≡ ∃x, y ∈Γ∗. ∃l→r ∈ P . w=x l y ∧ z=x r y

Anwendung von Produktionen auf Worte



Theoretische Informatik I §2: 6 Grammatiken

Arbeitsweise von Grammatiken – präzisiert

• Ableitungsrelation −→ ⊆Γ+×Γ∗

– w −→ z ≡ ∃x, y ∈Γ∗. ∃l→r ∈ P . w=x l y ∧ z=x r y

Anwendung von Produktionen auf Worte

• Erweiterte Ableitungsrelation
∗−→ ⊆Γ+×Γ∗

– w
0−→ z ≡ w=z



Theoretische Informatik I §2: 6 Grammatiken

Arbeitsweise von Grammatiken – präzisiert

• Ableitungsrelation −→ ⊆Γ+×Γ∗

– w −→ z ≡ ∃x, y ∈Γ∗. ∃l→r ∈ P . w=x l y ∧ z=x r y

Anwendung von Produktionen auf Worte

• Erweiterte Ableitungsrelation
∗−→ ⊆Γ+×Γ∗

– w
0−→ z ≡ w=z

– w
n+1−→ z ≡ ∃u ∈Γ∗. w−→ u ∧ u

n
−→ z



Theoretische Informatik I §2: 6 Grammatiken

Arbeitsweise von Grammatiken – präzisiert

• Ableitungsrelation −→ ⊆Γ+×Γ∗

– w −→ z ≡ ∃x, y ∈Γ∗. ∃l→r ∈ P . w=x l y ∧ z=x r y

Anwendung von Produktionen auf Worte

• Erweiterte Ableitungsrelation
∗−→ ⊆Γ+×Γ∗

– w
0−→ z ≡ w=z

– w
n+1−→ z ≡ ∃u ∈Γ∗. w−→ u ∧ u

n
−→ z

– w
∗−→ z ≡ ∃n ∈N. w

n
−→ z



Theoretische Informatik I §2: 6 Grammatiken

Arbeitsweise von Grammatiken – präzisiert

• Ableitungsrelation −→ ⊆Γ+×Γ∗

– w −→ z ≡ ∃x, y ∈Γ∗. ∃l→r ∈ P . w=x l y ∧ z=x r y

Anwendung von Produktionen auf Worte

• Erweiterte Ableitungsrelation
∗−→ ⊆Γ+×Γ∗

– w
0−→ z ≡ w=z

– w
n+1−→ z ≡ ∃u ∈Γ∗. w−→ u ∧ u

n
−→ z

– w
∗−→ z ≡ ∃n ∈N. w

n
−→ z

– Grammatik durch optionalen Index G (
∗

−→ G) spezifizierbar



Theoretische Informatik I §2: 6 Grammatiken

Arbeitsweise von Grammatiken – präzisiert

• Ableitungsrelation −→ ⊆Γ+×Γ∗

– w −→ z ≡ ∃x, y ∈Γ∗. ∃l→r ∈ P . w=x l y ∧ z=x r y

Anwendung von Produktionen auf Worte

• Erweiterte Ableitungsrelation
∗−→ ⊆Γ+×Γ∗

– w
0−→ z ≡ w=z

– w
n+1−→ z ≡ ∃u ∈Γ∗. w−→ u ∧ u

n
−→ z

– w
∗−→ z ≡ ∃n ∈N. w

n
−→ z

– Grammatik durch optionalen Index G (
∗

−→ G) spezifizierbar

• Von G erzeugte Sprache

– Menge der Terminalworte, die aus S abgeleitet werden können



Theoretische Informatik I §2: 6 Grammatiken

Arbeitsweise von Grammatiken – präzisiert

• Ableitungsrelation −→ ⊆Γ+×Γ∗

– w −→ z ≡ ∃x, y ∈Γ∗. ∃l→r ∈ P . w=x l y ∧ z=x r y

Anwendung von Produktionen auf Worte

• Erweiterte Ableitungsrelation
∗−→ ⊆Γ+×Γ∗

– w
0−→ z ≡ w=z

– w
n+1−→ z ≡ ∃u ∈Γ∗. w−→ u ∧ u

n
−→ z

– w
∗−→ z ≡ ∃n ∈N. w

n
−→ z

– Grammatik durch optionalen Index G (
∗

−→ G) spezifizierbar

• Von G erzeugte Sprache

– Menge der Terminalworte, die aus S abgeleitet werden können

L(G) ≡ {w ∈T ∗ | S
∗

−→w}



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P =



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √

• Induktionsschritt

– Es gelte ∀w ∈{0, 1}∗. S
l+1
−→w⇔ (∃k≤l. w = 0k1l)



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √

• Induktionsschritt

– Es gelte ∀w ∈{0, 1}∗. S
l+1
−→w⇔ (∃k≤l. w = 0k1l)

– S
l+2
−→ v



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √

• Induktionsschritt

– Es gelte ∀w ∈{0, 1}∗. S
l+1
−→w⇔ (∃k≤l. w = 0k1l)

– S
l+2
−→ v

⇔ S→S1
l+1
−→ v ∨ S→0S1

l+1
−→ v



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √

• Induktionsschritt

– Es gelte ∀w ∈{0, 1}∗. S
l+1
−→w⇔ (∃k≤l. w = 0k1l)

– S
l+2
−→ v

⇔ S→S1
l+1
−→ v ∨ S→0S1

l+1
−→ v

⇔ ∃w ∈{0, 1}∗. S
l+1
−→w ∧ (v = w1 ∨v = 0w1)



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √

• Induktionsschritt

– Es gelte ∀w ∈{0, 1}∗. S
l+1
−→w⇔ (∃k≤l. w = 0k1l)

– S
l+2
−→ v

⇔ S→S1
l+1
−→ v ∨ S→0S1

l+1
−→ v

⇔ ∃w ∈{0, 1}∗. S
l+1
−→w ∧ (v = w1 ∨v = 0w1)

⇔ ∃w ∈{0, 1}∗.∃k≤l. w = 0k1l
∧ (v = w1 ∨v = 0w1) (Annahme)



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √

• Induktionsschritt

– Es gelte ∀w ∈{0, 1}∗. S
l+1
−→w⇔ (∃k≤l. w = 0k1l)

– S
l+2
−→ v

⇔ S→S1
l+1
−→ v ∨ S→0S1

l+1
−→ v

⇔ ∃w ∈{0, 1}∗. S
l+1
−→w ∧ (v = w1 ∨v = 0w1)

⇔ ∃w ∈{0, 1}∗.∃k≤l. w = 0k1l
∧ (v = w1 ∨v = 0w1) (Annahme)

⇔ ∃k≤l. v = 0k1l+1
∨ v = 0k+11l+1



Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √

• Induktionsschritt

– Es gelte ∀w ∈{0, 1}∗. S
l+1
−→w⇔ (∃k≤l. w = 0k1l)

– S
l+2
−→ v

⇔ S→S1
l+1
−→ v ∨ S→0S1

l+1
−→ v

⇔ ∃w ∈{0, 1}∗. S
l+1
−→w ∧ (v = w1 ∨v = 0w1)

⇔ ∃w ∈{0, 1}∗.∃k≤l. w = 0k1l
∧ (v = w1 ∨v = 0w1) (Annahme)

⇔ ∃k≤l. v = 0k1l+1
∨ v = 0k+11l+1

⇔ ∃k≤(l + 1). v = 0k1l+1 √



Theoretische Informatik I §2: 8 Grammatiken

Klassifizierung von Grammatiken

• allgemein (Typ 0): keine Einschränkung an die Produktionen



Theoretische Informatik I §2: 8 Grammatiken

Klassifizierung von Grammatiken

• allgemein (Typ 0): keine Einschränkung an die Produktionen

• kontextsensitiv (Typ 1)
– nur Regeln der Form xA y→x z y oder S→ε (x, y, z ∈Γ∗, A ∈V, z 6=ε)

(S→ε nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)



Theoretische Informatik I §2: 8 Grammatiken

Klassifizierung von Grammatiken

• allgemein (Typ 0): keine Einschränkung an die Produktionen

• kontextsensitiv (Typ 1)
– nur Regeln der Form xA y→x z y oder S→ε (x, y, z ∈Γ∗, A ∈V, z 6=ε)

(S→ε nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

• expansiv
– nur Regeln der Form x→z mit |x|≤|z|, oder S→ε (x ∈Γ+, z ∈ (Γ−{S})+)



Theoretische Informatik I §2: 8 Grammatiken

Klassifizierung von Grammatiken

• allgemein (Typ 0): keine Einschränkung an die Produktionen

• kontextsensitiv (Typ 1)
– nur Regeln der Form xA y→x z y oder S→ε (x, y, z ∈Γ∗, A ∈V, z 6=ε)

(S→ε nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

• expansiv
– nur Regeln der Form x→z mit |x|≤|z|, oder S→ε (x ∈Γ+, z ∈ (Γ−{S})+)

• kontextfrei (Typ 2)
– nur Regeln der Form A→z (z ∈Γ∗, A ∈V )



Theoretische Informatik I §2: 8 Grammatiken

Klassifizierung von Grammatiken

• allgemein (Typ 0): keine Einschränkung an die Produktionen

• kontextsensitiv (Typ 1)
– nur Regeln der Form xA y→x z y oder S→ε (x, y, z ∈Γ∗, A ∈V, z 6=ε)

(S→ε nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

• expansiv
– nur Regeln der Form x→z mit |x|≤|z|, oder S→ε (x ∈Γ+, z ∈ (Γ−{S})+)

• kontextfrei (Typ 2)
– nur Regeln der Form A→z (z ∈Γ∗, A ∈V )

• linear
– nur Regeln der Form A→ε oder A→u B v (A, B ∈V, u, v ∈T ∗)



Theoretische Informatik I §2: 8 Grammatiken

Klassifizierung von Grammatiken

• allgemein (Typ 0): keine Einschränkung an die Produktionen

• kontextsensitiv (Typ 1)
– nur Regeln der Form xA y→x z y oder S→ε (x, y, z ∈Γ∗, A ∈V, z 6=ε)

(S→ε nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

• expansiv
– nur Regeln der Form x→z mit |x|≤|z|, oder S→ε (x ∈Γ+, z ∈ (Γ−{S})+)

• kontextfrei (Typ 2)
– nur Regeln der Form A→z (z ∈Γ∗, A ∈V )

• linear
– nur Regeln der Form A→ε oder A→u B v (A, B ∈V, u, v ∈T ∗)

• rechtslinear (Typ 3)
– nur Regeln der Form A→ε oder A→v B (A, B ∈V, v ∈T )



Theoretische Informatik I §2: 8 Grammatiken

Klassifizierung von Grammatiken

• allgemein (Typ 0): keine Einschränkung an die Produktionen

• kontextsensitiv (Typ 1)
– nur Regeln der Form xA y→x z y oder S→ε (x, y, z ∈Γ∗, A ∈V, z 6=ε)

(S→ε nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

• expansiv
– nur Regeln der Form x→z mit |x|≤|z|, oder S→ε (x ∈Γ+, z ∈ (Γ−{S})+)

• kontextfrei (Typ 2)
– nur Regeln der Form A→z (z ∈Γ∗, A ∈V )

• linear
– nur Regeln der Form A→ε oder A→u B v (A, B ∈V, u, v ∈T ∗)

• rechtslinear (Typ 3)
– nur Regeln der Form A→ε oder A→v B (A, B ∈V, v ∈T )

• linkslinear
– nur Regeln der Form A→ε oder A→B v (A, B ∈V, v ∈T )



Theoretische Informatik I §2: 9 Grammatiken

Beispiele für Grammatikklassen

• kontextsensitiv: Regeln x A y→x z y oder S→ε

• expansiv: Regeln x→z mit |x|≤|z|, oder S→ε

• kontextfrei: Regeln A→z

• linear: Regeln A→ε oder A→u B v

• rechtslinear: Regeln A→ε oder A→v B

• linkslinear: Regeln A→ε oder A→B v

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}



Theoretische Informatik I §2: 9 Grammatiken

Beispiele für Grammatikklassen

• kontextsensitiv: Regeln x A y→x z y oder S→ε

• expansiv: Regeln x→z mit |x|≤|z|, oder S→ε

• kontextfrei: Regeln A→z

• linear: Regeln A→ε oder A→u B v

• rechtslinear: Regeln A→ε oder A→v B

• linkslinear: Regeln A→ε oder A→B v

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}
– linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv



Theoretische Informatik I §2: 9 Grammatiken

Beispiele für Grammatikklassen

• kontextsensitiv: Regeln x A y→x z y oder S→ε

• expansiv: Regeln x→z mit |x|≤|z|, oder S→ε

• kontextfrei: Regeln A→z

• linear: Regeln A→ε oder A→u B v

• rechtslinear: Regeln A→ε oder A→v B

• linkslinear: Regeln A→ε oder A→B v

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}
– linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}



Theoretische Informatik I §2: 9 Grammatiken

Beispiele für Grammatikklassen

• kontextsensitiv: Regeln x A y→x z y oder S→ε

• expansiv: Regeln x→z mit |x|≤|z|, oder S→ε

• kontextfrei: Regeln A→z

• linear: Regeln A→ε oder A→u B v

• rechtslinear: Regeln A→ε oder A→v B

• linkslinear: Regeln A→ε oder A→B v

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}
– linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}
– allgemein (keine anderen Bedingungen erfüllt)



Theoretische Informatik I §2: 9 Grammatiken

Beispiele für Grammatikklassen

• kontextsensitiv: Regeln x A y→x z y oder S→ε

• expansiv: Regeln x→z mit |x|≤|z|, oder S→ε

• kontextfrei: Regeln A→z

• linear: Regeln A→ε oder A→u B v

• rechtslinear: Regeln A→ε oder A→v B

• linkslinear: Regeln A→ε oder A→B v

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}
– linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}
– allgemein (keine anderen Bedingungen erfüllt)

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}



Theoretische Informatik I §2: 9 Grammatiken

Beispiele für Grammatikklassen

• kontextsensitiv: Regeln x A y→x z y oder S→ε

• expansiv: Regeln x→z mit |x|≤|z|, oder S→ε

• kontextfrei: Regeln A→z

• linear: Regeln A→ε oder A→u B v

• rechtslinear: Regeln A→ε oder A→v B

• linkslinear: Regeln A→ε oder A→B v

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}
– linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}
– allgemein (keine anderen Bedingungen erfüllt)

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}
– kontextfrei, nicht expansiv, nicht kontextsensitiv



Theoretische Informatik I §2: 10 Grammatiken

Zusammenhang zwischen Grammatiken und Automaten

• Automaten verarbeiten Eingabeworte

– Jedes Symbol wird in einem Schritt abgearbeitet

– Symbol bestimmt, ob Automat im Zustand bleibt oder wechselt



Theoretische Informatik I §2: 10 Grammatiken

Zusammenhang zwischen Grammatiken und Automaten

• Automaten verarbeiten Eingabeworte

– Jedes Symbol wird in einem Schritt abgearbeitet

– Symbol bestimmt, ob Automat im Zustand bleibt oder wechselt

• Grammatiken erzeugen Worte

– Hilfssymbole werden im Endeffekt in Terminalworte umgewandelt

– Nichtlineare Grammatiken erzeugen mehrere Symbole gleichzeitig

– Ableitungen in rechts-/linkslinearen Grammatiken erzeugen pro Schritt

ein Terminalsymbol und verwenden jeweils nur ein Hilfssymbol



Theoretische Informatik I §2: 10 Grammatiken

Zusammenhang zwischen Grammatiken und Automaten

• Automaten verarbeiten Eingabeworte

– Jedes Symbol wird in einem Schritt abgearbeitet

– Symbol bestimmt, ob Automat im Zustand bleibt oder wechselt

• Grammatiken erzeugen Worte

– Hilfssymbole werden im Endeffekt in Terminalworte umgewandelt

– Nichtlineare Grammatiken erzeugen mehrere Symbole gleichzeitig

– Ableitungen in rechts-/linkslinearen Grammatiken erzeugen pro Schritt

ein Terminalsymbol und verwenden jeweils nur ein Hilfssymbol

• Kann man umwandeln?

– Gibt es zu jedem DEA eine äquivalente rechtslineare Grammatik?

– Gibt es zu jeder rechtslinearen Grammatik einen äquivalenten DEA?



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}

– G ist per Konstruktion rechtslinear, also vom Typ 3



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}

– G ist per Konstruktion rechtslinear, also vom Typ 3

• Zeige L(G) = L(A)

w ∈L(G)



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}

– G ist per Konstruktion rechtslinear, also vom Typ 3

• Zeige L(G) = L(A)

w ∈L(G)

⇔ S
∗

−→w = w1..wn



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}

– G ist per Konstruktion rechtslinear, also vom Typ 3

• Zeige L(G) = L(A)

w ∈L(G)

⇔ S
∗

−→w = w1..wn

⇔ ∃q1, .., qn ∈Q. q0 −→w1q1 −→w1w2q2 −→ ...w1..wnqn −→w1..wn



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}

– G ist per Konstruktion rechtslinear, also vom Typ 3

• Zeige L(G) = L(A)

w ∈L(G)

⇔ S
∗

−→w = w1..wn

⇔ ∃q1, .., qn ∈Q. q0 −→w1q1 −→w1w2q2 −→ ...w1..wnqn −→w1..wn

⇔ ∃q1, .., qn ∈Q. δ(q0, w1)=q1 ∧ δ(q1, w2)=q2 ∧ ... δ(qn−1, wn)=qn ∧ qn ∈F



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}

– G ist per Konstruktion rechtslinear, also vom Typ 3

• Zeige L(G) = L(A)

w ∈L(G)

⇔ S
∗

−→w = w1..wn

⇔ ∃q1, .., qn ∈Q. q0 −→w1q1 −→w1w2q2 −→ ...w1..wnqn −→w1..wn

⇔ ∃q1, .., qn ∈Q. δ(q0, w1)=q1 ∧ δ(q1, w2)=q2 ∧ ... δ(qn−1, wn)=qn ∧ qn ∈F

⇔ ∃qn ∈F . δ̂(q0, w) = qn



Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F )

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}

– G ist per Konstruktion rechtslinear, also vom Typ 3

• Zeige L(G) = L(A)

w ∈L(G)

⇔ S
∗

−→w = w1..wn

⇔ ∃q1, .., qn ∈Q. q0 −→w1q1 −→w1w2q2 −→ ...w1..wnqn −→w1..wn

⇔ ∃q1, .., qn ∈Q. δ(q0, w1)=q1 ∧ δ(q1, w2)=q2 ∧ ... δ(qn−1, wn)=qn ∧ qn ∈F

⇔ ∃qn ∈F . δ̂(q0, w) = qn

⇔ w ∈L(A) √



Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)



Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)

– Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um

– Setze A := (V , T , δ, S, F ) mit δ(X, a) = {X ′ |X→aX ′ ∈P}

und F = {X ∈V |X→ε ∈ P}



Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)

– Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um

– Setze A := (V , T , δ, S, F ) mit δ(X, a) = {X ′ |X→aX ′ ∈P}

und F = {X ∈V |X→ε ∈ P}

• Zeige L(A) = L(G)

w = w1..wn ∈L(A)



Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)

– Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um

– Setze A := (V , T , δ, S, F ) mit δ(X, a) = {X ′ |X→aX ′ ∈P}

und F = {X ∈V |X→ε ∈ P}

• Zeige L(A) = L(G)

w = w1..wn ∈L(A)

⇔ ∃Xn ∈F . Xn ∈ δ̂(S,w)



Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)

– Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um

– Setze A := (V , T , δ, S, F ) mit δ(X, a) = {X ′ |X→aX ′ ∈P}

und F = {X ∈V |X→ε ∈ P}

• Zeige L(A) = L(G)

w = w1..wn ∈L(A)

⇔ ∃Xn ∈F . Xn ∈ δ̂(S,w)

⇔ ∃X1, ..,Xn ∈V . X1 ∈δ(S,w1) ∧ ... Xn ∈δ(Xn−1, wn) ∧ Xn ∈F



Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)

– Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um

– Setze A := (V , T , δ, S, F ) mit δ(X, a) = {X ′ |X→aX ′ ∈P}

und F = {X ∈V |X→ε ∈ P}

• Zeige L(A) = L(G)

w = w1..wn ∈L(A)

⇔ ∃Xn ∈F . Xn ∈ δ̂(S,w)

⇔ ∃X1, ..,Xn ∈V . X1 ∈δ(S,w1) ∧ ... Xn ∈δ(Xn−1, wn) ∧ Xn ∈F

⇔ ∃X1, ..,Xn ∈V . S −→w1X1 −→w1w2X2 −→ ...w1..wnXn −→w1..wn



Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)

– Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um

– Setze A := (V , T , δ, S, F ) mit δ(X, a) = {X ′ |X→aX ′ ∈P}

und F = {X ∈V |X→ε ∈ P}

• Zeige L(A) = L(G)

w = w1..wn ∈L(A)

⇔ ∃Xn ∈F . Xn ∈ δ̂(S,w)

⇔ ∃X1, ..,Xn ∈V . X1 ∈δ(S,w1) ∧ ... Xn ∈δ(Xn−1, wn) ∧ Xn ∈F

⇔ ∃X1, ..,Xn ∈V . S −→w1X1 −→w1w2X2 −→ ...w1..wnXn −→w1..wn

⇔ S
∗

−→w



Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)

– Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um

– Setze A := (V , T , δ, S, F ) mit δ(X, a) = {X ′ |X→aX ′ ∈P}

und F = {X ∈V |X→ε ∈ P}

• Zeige L(A) = L(G)

w = w1..wn ∈L(A)

⇔ ∃Xn ∈F . Xn ∈ δ̂(S,w)

⇔ ∃X1, ..,Xn ∈V . X1 ∈δ(S,w1) ∧ ... Xn ∈δ(Xn−1, wn) ∧ Xn ∈F

⇔ ∃X1, ..,Xn ∈V . S −→w1X1 −→w1w2X2 −→ ...w1..wnXn −→w1..wn

⇔ S
∗

−→w

⇔ w ∈L(G) √



Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G



Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G

• Typ-1 Sprachen (kontextsensitive Sprachen)

– Sprachen der Form L = L(G) für eine kontextsensitive Grammatik G



Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G

• Typ-1 Sprachen (kontextsensitive Sprachen)

– Sprachen der Form L = L(G) für eine kontextsensitive Grammatik G

– L ist kontextsensitiv g.d.w. L = L(G) für eine expansive Grammatik G



Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G

• Typ-1 Sprachen (kontextsensitive Sprachen)

– Sprachen der Form L = L(G) für eine kontextsensitive Grammatik G

– L ist kontextsensitiv g.d.w. L = L(G) für eine expansive Grammatik G

• Typ-2 Sprachen (kontextfreie Sprachen)

– Sprachen der Form L = L(G) für eine kontextfreie Grammatik G



Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G

• Typ-1 Sprachen (kontextsensitive Sprachen)

– Sprachen der Form L = L(G) für eine kontextsensitive Grammatik G

– L ist kontextsensitiv g.d.w. L = L(G) für eine expansive Grammatik G

• Typ-2 Sprachen (kontextfreie Sprachen)

– Sprachen der Form L = L(G) für eine kontextfreie Grammatik G

• lineare Sprachen

– Sprachen der Form L = L(G) für eine lineare Grammatik G



Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G

• Typ-1 Sprachen (kontextsensitive Sprachen)

– Sprachen der Form L = L(G) für eine kontextsensitive Grammatik G

– L ist kontextsensitiv g.d.w. L = L(G) für eine expansive Grammatik G

• Typ-2 Sprachen (kontextfreie Sprachen)

– Sprachen der Form L = L(G) für eine kontextfreie Grammatik G

• lineare Sprachen

– Sprachen der Form L = L(G) für eine lineare Grammatik G

• Typ-3 Sprachen (reguläre Sprachen)

– Sprachen der Form L = L(G) für eine rechtslineare Grammatik G



Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G

• Typ-1 Sprachen (kontextsensitive Sprachen)

– Sprachen der Form L = L(G) für eine kontextsensitive Grammatik G

– L ist kontextsensitiv g.d.w. L = L(G) für eine expansive Grammatik G

• Typ-2 Sprachen (kontextfreie Sprachen)

– Sprachen der Form L = L(G) für eine kontextfreie Grammatik G

• lineare Sprachen

– Sprachen der Form L = L(G) für eine lineare Grammatik G

• Typ-3 Sprachen (reguläre Sprachen)

– Sprachen der Form L = L(G) für eine rechtslineare Grammatik G

– L ist regulär g.d.w. L = L(G) für eine linkslineare Grammatik G



Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G

• Typ-1 Sprachen (kontextsensitive Sprachen)

– Sprachen der Form L = L(G) für eine kontextsensitive Grammatik G

– L ist kontextsensitiv g.d.w. L = L(G) für eine expansive Grammatik G

• Typ-2 Sprachen (kontextfreie Sprachen)

– Sprachen der Form L = L(G) für eine kontextfreie Grammatik G

• lineare Sprachen

– Sprachen der Form L = L(G) für eine lineare Grammatik G

• Typ-3 Sprachen (reguläre Sprachen)

– Sprachen der Form L = L(G) für eine rechtslineare Grammatik G

– L ist regulär g.d.w. L = L(G) für eine linkslineare Grammatik G

• Li ≡ { L | L ist Sprache vom Typ i}



Theoretische Informatik I §2: 14 Grammatiken

Die Chomsky Hierarchie

L3 ⊂ L2 ⊂ L1 ⊂ L0

• Wichtige Vertreter

– L2−L3: {0
n1n | n ∈N}

– L1−L2: {0
n1n2n | n ∈N}

– L0−L1: {wi ∈{0, 1}
∗ | Das Programm mit Codierung wi

hält bei Eingabe wi }



Theoretische Informatik I §2: 14 Grammatiken

Die Chomsky Hierarchie

L3 ⊂ L2 ⊂ L1 ⊂ L0

• Wichtige Vertreter

– L2−L3: {0
n1n | n ∈N}

– L1−L2: {0
n1n2n | n ∈N}

– L0−L1: {wi ∈{0, 1}
∗ | Das Programm mit Codierung wi

hält bei Eingabe wi }

• Zugehörige Automatenmodelle

– L0: Turingmaschine

– L1: linear platzbeschränkte nichtdeterministische Turingmaschine

– L2: nichtdeterministischer endlicher Automat mit Kellerspeicher

– L3: endlicher Automat



Theoretische Informatik I §2: 14 Grammatiken

Die Chomsky Hierarchie

L3 ⊂ L2 ⊂ L1 ⊂ L0

• Wichtige Vertreter

– L2−L3: {0
n1n | n ∈N}

– L1−L2: {0
n1n2n | n ∈N}

– L0−L1: {wi ∈{0, 1}
∗ | Das Programm mit Codierung wi

hält bei Eingabe wi }

• Zugehörige Automatenmodelle

– L0: Turingmaschine

– L1: linear platzbeschränkte nichtdeterministische Turingmaschine

– L2: nichtdeterministischer endlicher Automat mit Kellerspeicher

– L3: endlicher Automat

Mehr in zukünftigen Vorlesungen


