
Theoretische Informatik I

Einheit 2.5

Grammatiken

1. Arbeitsweise

2. Klassifizierung

3. Beziehung zu Automaten
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• Grammatiken

– Beschreibung des Aufbaus von Sprachen durch Produktionsregeln

– Auch für komplexere Strukturen

– Gängig für die Beschreibung von Programmiersprachen
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– Erklären wie syntaktischen Kategorien aufgebaut sind

– Erklären Erzeugung von Worten der Sprache in den einzelnen Kategorien

– z.B. “Ein Programm besteht aus einem Block gefolgt vom Symbol .”

• Startsymbol

– Erklärt welche syntaktische Kategorie beschrieben werden soll
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Grammatiken – mathematisch präzisiert
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Eine Grammatik ist ein 4-Tupel G = (V , T , P , S) mit

• T endliches Terminalalphabet

• V endliches Hilfsalphabet mit V ∩T = ∅

• P⊆Γ+×Γ∗ endliche Menge der Produktionen (wobei Γ = V ∪T )

Schreibweise für Produktionen: l→r ∈ P ≡ (l, r) ∈P

• S ∈V Startsymbol
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– w
∗−→ z ≡ ∃n ∈N. w

n
−→ z

– Grammatik durch optionalen Index G (
∗

−→ G) spezifizierbar

• Von G erzeugte Sprache

– Menge der Terminalworte, die aus S abgeleitet werden können

L(G) ≡ {w ∈T ∗ | S
∗

−→w}
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Mehr in zukünftigen Vorlesungen


