Theoretische Informatik I

wWers,
\3{\ !(‘?}

Einheit 2.5) : Eﬁg

° - ‘Q"?
Grammatiken .

1. Arbeitsweise
2. Klassifizierung

3. Beziehung zu Automaten

BESCHREIBUNG DES AUFBAUS VON SPRACHEN I

e Mathematische Mengennotation
— Beschreibung durch Eigenschaften der Worte (Pradikate)

— Extrem flexibel, nicht notwendig “berechenbar”

e Endliche Automaten
— Beschreibung der Verarbeitung von Sprachen

— Schwerpunkt ist Erkennen korrekter Worte

e Regulare Ausdrucke
— Beschreibung der Struktur der Worte

e Grammatiken
— Beschreibung des Aufbaus von Sprachen durch Produktionsregeln
— Auch fiur komplexere Strukturen

— Gangig fur die Beschreibung von Programmiersprachen

THEORETISCHE INFORMATIK I §2: 1 GRAMMATIKEN

PASCAL GRAMMATIK I

Programm
J Block —)O—>

' Konstante

> Co } Bezeichner

—(ype) Bezeichner Typ
var Bezeichner Typ

é@%@%

T

P

@(— Block
—={procedur e}—={ Bezeichner Parameter
—)(function)—) Bezeichner Parameter —>®—>Typbezeichner

—{(begn) Anweisung ~Cend)

!

Bezeichner

Buchstabg {

THEORETISCHE INFORMATIK I §2: 2 GRAMMATIKEN

KOMPONENTEN VON (GRAMATIKEN I

e Alphabet der Sprache (Terminalsymbole)
— Symbole, aus denen die erzeugten Worte bestehen sollen

— Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

e Hilfsalphabet (Variablen)

— Beschreiben die syntaktischen Kategorien der Sprache
— Bei PASCAL z.B. Programm, Block, Bezeichner, Anweisung, ...

— Andere Bezeichnung: Nichtterminale Symbole

® Regeln zur Erzeugung von Worten (Produktionen)
— Erklaren wie syntaktischen Kategorien aufgebaut sind
— Erklaren Erzeugung von Worten der Sprache in den einzelnen Kategorien

- z.B. “Ein Programm besteht aus einem Block gefolgt vom Symbol .”

e Startsymbol

— Erklart welche syntaktische Kategorie beschrieben werden soll

THEORETISCHE INFORMATIK I §2: 3 GRAMMATIKEN

GRAMMATIKEN — MATHEMATISCH PRAZISIERT I

| Programm I ,B|—| Y
(oo]
)
S
)
A\
—>(M—
O
)
A\
M)
—>(procedure)—>| Bezeichner |—>| Parameter I
—={(function)—>| Bezeichner |—>| Parameter |—>®—>|Typbezeichner |-
.
)

Eine Grammatik ist ein 4-Tupel G = (V, T, P, S) mit
e ' endliches Terminalalphabet
e I/ endliches Hilfsalphabet mit VNT = ()
o PcI™xI™ endliche Menge der Produktionen (wobei I' = VUT)

Schreibweise fiir Produktionen: l—r ¢ P = (I,r)eP

e S/ Startsymbol

THEORETISCHE INFORMATIK I §2: 4 GRAMMATIKEN

ARBEITSWEISE: PRODUKTION VON WORTEN DER ZIELSPRACHEI

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

Erzeugung von Worten:

S— €

S— S0— 0

S— S0— S10— S010— S0010— 0010

— Nur Worte tiber dem Terminalalphabet sind von Interesse

— ¢, 0, 0010 gehoren zur erzeugten Sprache
-5, 50, 510, 5010, S0010 sind nur “Zwischenschritte”

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—(C1, B—0, CC1—¢€}

Ableitungen:
S— B—0 vV
S— B— (1 Erfolglos, kein Wort der Zielsprache erreichbar

S—CA)0— CBBB)— CC1BB0— BBO— 0B0— 000 V/

THEORETISCHE INFORMATIK I §2:) GRAMMATIKEN

ARBEITSWEISE VON GRAMMATIKEN — PRAZISIERT I

e Ableitungsrelation —— CI't xI™*
—w—z = dr,yel™. dl—r e P.w=xly A z=x71Yy

Anwendung von Produktionen aut Worte

e Erweiterte Ableitungsrelation ot xrt

—w —z = W=z
n+1 L " n
—w—z = Juel™ w—u A u— 2
*k n
—w—z = dneN. w—z

— Grammatik durch optionalen Index G (——) spezifizierbar

e Von G erzeugte Sprache

— Menge der Terminalworte, die aus S abgeleitet werden konnen

L(G) = {weT*| S —w}

THEORETISCHE INFORMATIK I §2: 6 GRAMMATIKEN

GRAMMATIK FUR L = {0F1! | k<[} |

e G3 = ({S}, {0,1}, P, S) mit P = {§—S1, S—0S1, S—e¢}

e Zeige L(G3) = L per Induktion iiber Linge der Ableitung

— Ableitungen der Lange 0 liefern keine Terminalworte
~ Zeige: VI eN. Vw e {0, 1}*. S 25 w < (Ik<I. w = 0F1))

e Basisfall

—S;ww@(S—yw)eP(:)fw:e(:)HkgO.w:OklO vV

e Induktionsschritt
— Es gelte Vwe{0,1}*. S Hlwe (Fk<l. w = 01
[+2

— S —wv

& S—>Sll+—1>v Y S—>031l+—1>v

& Jwe{0, 1}, S L (v=wlvy =0wl)

& Jwef{0,1}.3k<l. w=0"" A (v=wlve = 0wl) (Annahme)
& Fk<l. v = 0"y p = i
& <[+1). v=0" Y/

THEORETISCHE INFORMATIK I §2: 7 GRAMMATIKEN

KLASSIFIZIERUNG VON GRAMMATIKEN I

e allgemein (Typ O): keine Einschrankung an die Produktionen

e kontextsensitiv (Typ 1)
— nur Regeln der Form x Ay—x 2y oder S—e (z,y,zel* AeV, z#¢€)

(S—e€ nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

® expansiv
— nur Regeln der Form z—z mit |z|<|z|, oder S—e (zel T, ze(l—{S}H*)

e kontextfrei (Typ 2)

— nur Regeln der Form A—z (zel*, AeV)
e linear
— nur Regeln der Form A—¢e oder A—u B v (A, BeV,u,veT")

e rechtslinear (Typ 3)
— nur Regeln der Form A—e oder A—v B (A, BeV,veT)

e linkslinear
— nur Regeln der Form A—¢e oder A—Bwv (A, BeV,veT)

THEORETISCHE INFORMATIK I §2: 8 GRAMMATIKEN

BEISPIELE FUR GRAMMATIKKLASSEN I

e kontextsensitiv: Regeln v Ay—x 2y oder S—e

e expansiv: Regeln x—z mit |z|<|z|, oder S—e
e kontextfrei: Regeln A—z

e linear: Regeln A—¢€ oder A—u Bv

e rechtslinear: Regeln A—e¢ oder A—v B

e linkslinear: Regeln A—¢ oder A—Bwv

oG, = ({S}, {0,1}, P, S) mit P = {§—S51, S—S50, S—e¢}

— linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

oG, = ({S,A,B,C}, {0,1}, P, S) mit
P={S—B, S—CA0, A—-BBB, B—(C1, B—0, CC1—¢€}

— allgemein (keine anderen Bedingungen erfiillt)

e Gs = ({S}, {0,1}, P, S) mit P = {S—S1, S—0S1, S—e}

— kontextirei, nicht expansiv, nicht kontextsensitiv

THEORETISCHE INFORMATIK I §2: 9 GRAMMATIKEN

ZUSAMMENHANG ZWISCHEN GRAMMATIKEN UND AUTOMATEN I

e Automaten verarbeiten Eingabeworte
— Jedes Symbol wird in einem Schritt abgearbeitet
— Symbol bestimmt, ob Automat im Zustand bleibt oder wechselt

e Grammatiken erzeugen Worte
— Hilfssymbole werden im Endeffekt in Terminalworte umgewandelt
— Nichtlineare Grammatiken erzeugen mehrere Symbole gleichzeitig

— Ableitungen in rechts-/linkslinearen Grammatiken erzeugen pro Schritt

ein Terminalsymbol und verwenden jeweils nur ein Hilfssymbol

e Kann man umwandeln?
— Gibt es zu jedem DEA eine aquivalente rechtslineare Grammatik?

— Gibt es zu jeder rechtslinearen Grammatik einen aquivalenten DEA?

THEORETISCHE INFORMATIK I §2: 10 GRAMMATIKEN

UMWANDLUNG VON DEAS IN TyP-3 GRAMMATIKEN I

Fiir jeden DEA A gibt es eine Typ-3 Grammatik G
mit L(G) = L(A)

e Gegeben DEA A = (Q, X, 6, qq, F)
— Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um
~Setze G = (Q, X, P, qo) mit P = {g—aq'[d(q,a) = q'} U{q—¢€|qeF}

— (& ist per Konstruktion rechtslinear, also vom Typ 3

® Zeige L(G) = L(A)
weL(G)
s S w=w..w,
< dq1, ., ¢ €Q. qo — W1q1 — W1Waga — ... W1.. WGy — W1.. W,
& 3q1, ., 4 € Q- 0(qo, wi1)=q1 A 6(q1, w2)=q2 A ... 0(@u—1,Wn)=qn A gneF
& dg, ek S(qo,w) = q,
< wel(A) V/

THEORETISCHE INFORMATIK I §2: 11 GRAMMATIKEN

UMWANDLUNG VON TvYP-3 GRAMMATIKEN IN NEAS I

Fir jede Typ-3 Grammatik GG gibt es einen NEA A
mit L(A) = L(G)

e Gegeben Grammatik G = (V, T, P, S)
— Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um
—Setze A= (V,T,6,S, F)mit §(X,a) ={X'| X—aX eP}
und FF = {X eV | X—e € P}

® Zeige L(A) = L(G)
w = wy..wy € L(A)
& d4X, e F XnES(S,’U})
& 3Xq, ., X, eV X1e0(S,wy) A X ed(X1, wy) A XpeF
& dXq,..,. X, eV 5§ —w X — wwe X9 — . wy.w, X, — wy.wy,
s SSw
< wel(G) V/

THEORETISCHE INFORMATIK I §2: 12 GRAMMATIKEN

SPRACHKLASSEN I

e T'yp-0 Sprachen
— Sprachen der Form L = L(G) fiir eine beliebige Grammatik G

e T'yp-1 Sprachen (kontextsensitive Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextsensitive Grammatik G

— L ist kontextsensitiv g.d.w. L = L(G) fiir eine expansive Grammatik G

e Typ-2 Sprachen (kontextfreie Sprachen)
— Sprachen der Form L = L(G) fiir eine kontextfreie Grammatik G

e lineare Sprachen
— Sprachen der Form L = L(G) fiir eine lineare Grammatik G

e Typ-3 Sprachen (reguliare Sprachen)
— Sprachen der Form L = L(G) fiir eine rechtslineare Grammatik G
— L ist regular g.d.w. L = L(G) fiir eine linkslineare Grammatik G

oL, = { L | L ist Sprache vom Typ 2}

THEORETISCHE INFORMATIK I §2: 13 GRAMMATIKEN

DIE CHOMSKY HIERARCHIE I

L3 C Ly C LY CLy

e Wichtige Vertreter
— Lo—L3: {0"1" | neN}
— L1— Lo {0"1"2" | neN}
— Lo—L1: {w; €{0,1}* | Das Programm mit Codierung w;
hélt bei Eingabe w; }

e Zugehorige Automatenmodelle
— L: Turingmaschine
— L4: linear platzbeschrankte nichtdeterministische Turingmaschine

— L5 nichtdeterministischer endlicher Automat mit Kellerspeicher
— L5 endlicher Automat

Mehr in zukiinftigen Vorlesungen

THEORETISCHE INFORMATIK I §2: 14 GRAMMATIKEN

ERRATA I

In der Erstversion dieser Folien gab es leider viele Tippfehler

e Folie 7, drittletzte Zeile war k> statt k<[

e Folie 8: Rechts-/Linkslineare Grammatiken
— Urspriinglich: Regeln der Form A—¢e oder A—v B (A, BeV,veT™)
Diese Definition ist zwar aquivalent zu der Bedingung v €T,
(Ersetze die Regel A—wvy..v; B durch A—wv By, Bi—vyBs, By_1—v; B, B; neu)
ist aber komplizierter und wird in der Literatur nicht benutzt

e Folie 9, G; und (G5 ist nicht expansiv oder kontextsensitiv
Ich habe das falsch ausgedriickt. Jede kontextfreie Sprache ist auch Sprache
einer expansiven oder kontextsensitiven Grammatik, aber wegen der
Randbedingungen fiir S ist nicht jede kontextfreie Grammatik auch
kontextsensitiv oder expansiv

e Folie 11 und 12
— Anstatt ¢ stand urspriinglich nur

e Folie 12
— Der Korrektheitsbeweis (A) = L(G) war ziemlich verhunzt
— Ich hatte mit paste & copy einen Korrektheitsbeweis fiir einen DEA erzeugt, obwohl die
Grammatik in einen NEA umgewandelt wird.

THEORETISCHE INFORMATIK I §2: 15 GRAMMATIKEN

