
Theoretische Informatik I

Einheit 2.5

Grammatiken

1. Arbeitsweise

2. Klassifizierung

3. Beziehung zu Automaten

Theoretische Informatik I §2: 1 Grammatiken

Beschreibung des Aufbaus von Sprachen

• Mathematische Mengennotation

– Beschreibung durch Eigenschaften der Worte (Prädikate)

– Extrem flexibel, nicht notwendig “berechenbar”

• Endliche Automaten

– Beschreibung der Verarbeitung von Sprachen

– Schwerpunkt ist Erkennen korrekter Worte

• Reguläre Ausdrücke

– Beschreibung der Struktur der Worte

• Grammatiken

– Beschreibung des Aufbaus von Sprachen durch Produktionsregeln

– Auch für komplexere Strukturen

– Gängig für die Beschreibung von Programmiersprachen

Theoretische Informatik I §2: 2 Grammatiken

PASCAL Grammatik

Bezeichner

.

const

Programm

Block
Konstante

Typ

Typ

Parameter

Parameter

Anweisung

Typbezeichner

Block

type

var

begin

function

procedure

end

;

;

;

;

;

=

;

=

,

;

;

Buchstabe

Ziffer

Bezeichner

Bezeichner

Bezeichner

Bezeichner

Bezeichner

Block

Buchstabe

Theoretische Informatik I §2: 3 Grammatiken

Komponenten von Gramatiken

• Alphabet der Sprache (Terminalsymbole)

– Symbole, aus denen die erzeugten Worte bestehen sollen

– Bei Programmiersprachen meist ASCII-Symbole ohne Kontrollzeichen

• Hilfsalphabet (Variablen)

– Beschreiben die syntaktischen Kategorien der Sprache

– Bei PASCAL z.B. Programm, Block, Bezeichner, Anweisung, . . .

– Andere Bezeichnung: Nichtterminale Symbole

• Regeln zur Erzeugung von Worten (Produktionen)

– Erklären wie syntaktischen Kategorien aufgebaut sind

– Erklären Erzeugung von Worten der Sprache in den einzelnen Kategorien

– z.B. “Ein Programm besteht aus einem Block gefolgt vom Symbol .”

• Startsymbol

– Erklärt welche syntaktische Kategorie beschrieben werden soll

Theoretische Informatik I §2: 4 Grammatiken

Grammatiken – mathematisch präzisiert

Bezeichner

.

const

Programm

Block
Konstante

Typ

Typ

Parameter

Parameter

Anweisung

Typbezeichner

Block

type

var

begin

function

procedure

end

;

;

;

;

;

=

;

=

,

;

;

Buchstabe

Ziffer

Bezeichner

Bezeichner

Bezeichner

Bezeichner

Bezeichner

Block

Buchstabe

Eine Grammatik ist ein 4-Tupel G = (V , T , P , S) mit

• T endliches Terminalalphabet

• V endliches Hilfsalphabet mit V ∩T = ∅

• P⊆Γ+×Γ∗ endliche Menge der Produktionen (wobei Γ = V ∪T)

Schreibweise für Produktionen: l→r ∈ P ≡ (l, r) ∈P

• S ∈V Startsymbol

Theoretische Informatik I §2: 5 Grammatiken

Arbeitsweise: Produktion von Worten der Zielsprache

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}

Erzeugung von Worten:

S→ ε

S→ S0→ 0

S→ S0→ S10→ S010→ S0010→ 0010

– Nur Worte über dem Terminalalphabet sind von Interesse

– ε, 0, 0010 gehören zur erzeugten Sprache

– S, S0, S10, S010, S0010 sind nur “Zwischenschritte”

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}

Ableitungen:

S −→B −→0 √

S −→B −→C1 Erfolglos, kein Wort der Zielsprache erreichbar

S −→CA0−→CBBB0−→CC1BB0−→BB0−→ 0B0−→000 √

Theoretische Informatik I §2: 6 Grammatiken

Arbeitsweise von Grammatiken – präzisiert

• Ableitungsrelation −→ ⊆Γ+×Γ∗

– w −→ z ≡ ∃x, y ∈Γ∗. ∃l→r ∈ P . w=x l y ∧ z=x r y

Anwendung von Produktionen auf Worte

• Erweiterte Ableitungsrelation
∗−→ ⊆Γ+×Γ∗

– w
0−→ z ≡ w=z

– w
n+1−→ z ≡ ∃u ∈Γ∗. w−→ u ∧ u

n
−→ z

– w
∗−→ z ≡ ∃n ∈N. w

n
−→ z

– Grammatik durch optionalen Index G (
∗

−→ G) spezifizierbar

• Von G erzeugte Sprache

– Menge der Terminalworte, die aus S abgeleitet werden können

L(G) ≡ {w ∈T ∗ | S
∗

−→w}

Theoretische Informatik I §2: 7 Grammatiken

Grammatik für L = {0k1l | k≤l}

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}

• Zeige L(G3) = L per Induktion über Länge der Ableitung

– Ableitungen der Länge 0 liefern keine Terminalworte

– Zeige: ∀l ∈ N. ∀w ∈{0, 1}∗. S
l+1−→ w ⇔ (∃k≤l. w = 0k1l)

• Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ ∃k≤0. w = 0k10 √

• Induktionsschritt

– Es gelte ∀w ∈{0, 1}∗. S
l+1
−→w⇔ (∃k≤l. w = 0k1l)

– S
l+2
−→ v

⇔ S→S1
l+1
−→ v ∨ S→0S1

l+1
−→ v

⇔ ∃w ∈{0, 1}∗. S
l+1
−→w ∧ (v = w1 ∨v = 0w1)

⇔ ∃w ∈{0, 1}∗.∃k≤l. w = 0k1l
∧ (v = w1 ∨v = 0w1) (Annahme)

⇔ ∃k≤l. v = 0k1l+1
∨ v = 0k+11l+1

⇔ ∃k≤(l + 1). v = 0k1l+1 √

Theoretische Informatik I §2: 8 Grammatiken

Klassifizierung von Grammatiken

• allgemein (Typ 0): keine Einschränkung an die Produktionen

• kontextsensitiv (Typ 1)
– nur Regeln der Form x A y→x z y oder S→ε (x, y, z ∈Γ∗, A ∈V, z 6=ε)

(S→ε nur erlaubt, wenn S nicht rechts in einer anderen Regel auftaucht)

• expansiv
– nur Regeln der Form x→z mit |x|≤|z|, oder S→ε (x ∈Γ+, z ∈ (Γ−{S})+)

• kontextfrei (Typ 2)
– nur Regeln der Form A→z (z ∈Γ∗, A ∈V)

• linear
– nur Regeln der Form A→ε oder A→uB v (A, B ∈V, u, v ∈T ∗)

• rechtslinear (Typ 3)
– nur Regeln der Form A→ε oder A→v B (A, B ∈V, v ∈T)

• linkslinear
– nur Regeln der Form A→ε oder A→B v (A, B ∈V, v ∈T)

Theoretische Informatik I §2: 9 Grammatiken

Beispiele für Grammatikklassen

• kontextsensitiv: Regeln x A y→x z y oder S→ε

• expansiv: Regeln x→z mit |x|≤|z|, oder S→ε

• kontextfrei: Regeln A→z

• linear: Regeln A→ε oder A→u B v

• rechtslinear: Regeln A→ε oder A→v B

• linkslinear: Regeln A→ε oder A→B v

• G1 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→S0, S→ε}
– linkslinear, kontextfrei, nicht expansiv, nicht kontextsensitiv

• G2 = ({S, A, B, C}, {0, 1}, P, S) mit

P = {S→B, S→CA0, A→BBB, B→C1, B→0, CC1→ε}
– allgemein (keine anderen Bedingungen erfüllt)

• G3 = ({S}, {0, 1}, P, S) mit P = {S→S1, S→0S1, S→ε}
– kontextfrei, nicht expansiv, nicht kontextsensitiv

Theoretische Informatik I §2: 10 Grammatiken

Zusammenhang zwischen Grammatiken und Automaten

• Automaten verarbeiten Eingabeworte

– Jedes Symbol wird in einem Schritt abgearbeitet

– Symbol bestimmt, ob Automat im Zustand bleibt oder wechselt

• Grammatiken erzeugen Worte

– Hilfssymbole werden im Endeffekt in Terminalworte umgewandelt

– Nichtlineare Grammatiken erzeugen mehrere Symbole gleichzeitig

– Ableitungen in rechts-/linkslinearen Grammatiken erzeugen pro Schritt

ein Terminalsymbol und verwenden jeweils nur ein Hilfssymbol

• Kann man umwandeln?

– Gibt es zu jedem DEA eine äquivalente rechtslineare Grammatik?

– Gibt es zu jeder rechtslinearen Grammatik einen äquivalenten DEA?

Theoretische Informatik I §2: 11 Grammatiken

Umwandlung von DEAs in Typ-3 Grammatiken

Für jeden DEA A gibt es eine Typ-3 Grammatik G

mit L(G) = L(A)

• Gegeben DEA A = (Q, Σ, δ, q0, F)

– Wandle Abarbeitung von Symbolen in Erzeugung durch Grammatik um

– Setze G := (Q, Σ, P , q0) mit P = {q→aq′ | δ(q, a) = q′} ∪ {q→ε | q ∈F}

– G ist per Konstruktion rechtslinear, also vom Typ 3

• Zeige L(G) = L(A)

w ∈L(G)

⇔ S
∗

−→w = w1..wn

⇔ ∃q1, .., qn ∈Q. q0 −→w1q1 −→w1w2q2 −→ ...w1..wnqn −→w1..wn

⇔ ∃q1, .., qn ∈Q. δ(q0, w1)=q1 ∧ δ(q1, w2)=q2 ∧ ... δ(qn−1, wn)=qn ∧ qn ∈F

⇔ ∃qn ∈F . δ̂(q0, w) = qn

⇔ w ∈L(A) √

Theoretische Informatik I §2: 12 Grammatiken

Umwandlung von Typ-3 Grammatiken in NEAs

Für jede Typ-3 Grammatik G gibt es einen NEA A

mit L(A) = L(G)

• Gegeben Grammatik G = (V , T , P , S)

– Wandle Erzeugung von Symbolen in Abarbeitung durch Automaten um

– Setze A := (V , T , δ, S, F) mit δ(X, a) = {X ′ |X→aX ′ ∈P}

und F = {X ∈V |X→ε ∈ P}

• Zeige L(A) = L(G)

w = w1..wn ∈L(A)

⇔ ∃Xn ∈F . Xn ∈ δ̂(S,w)

⇔ ∃X1, ..,Xn ∈V . X1 ∈δ(S,w1) ∧ ... Xn ∈δ(Xn−1, wn) ∧ Xn ∈F

⇔ ∃X1, ..,Xn ∈V . S −→w1X1 −→w1w2X2 −→ ...w1..wnXn −→w1..wn

⇔ S
∗

−→w

⇔ w ∈L(G) √

Theoretische Informatik I §2: 13 Grammatiken

Sprachklassen

• Typ-0 Sprachen

– Sprachen der Form L = L(G) für eine beliebige Grammatik G

• Typ-1 Sprachen (kontextsensitive Sprachen)

– Sprachen der Form L = L(G) für eine kontextsensitive Grammatik G

– L ist kontextsensitiv g.d.w. L = L(G) für eine expansive Grammatik G

• Typ-2 Sprachen (kontextfreie Sprachen)

– Sprachen der Form L = L(G) für eine kontextfreie Grammatik G

• lineare Sprachen

– Sprachen der Form L = L(G) für eine lineare Grammatik G

• Typ-3 Sprachen (reguläre Sprachen)

– Sprachen der Form L = L(G) für eine rechtslineare Grammatik G

– L ist regulär g.d.w. L = L(G) für eine linkslineare Grammatik G

• Li ≡ { L | L ist Sprache vom Typ i}

Theoretische Informatik I §2: 14 Grammatiken

Die Chomsky Hierarchie

L3 ⊂ L2 ⊂ L1 ⊂ L0

• Wichtige Vertreter

– L2−L3: {0
n1n | n ∈N}

– L1−L2: {0
n1n2n | n ∈N}

– L0−L1: {wi ∈{0, 1}
∗ | Das Programm mit Codierung wi

hält bei Eingabe wi }

• Zugehörige Automatenmodelle

– L0: Turingmaschine

– L1: linear platzbeschränkte nichtdeterministische Turingmaschine

– L2: nichtdeterministischer endlicher Automat mit Kellerspeicher

– L3: endlicher Automat

Mehr in zukünftigen Vorlesungen

Theoretische Informatik I §2: 15 Grammatiken

Errata

In der Erstversion dieser Folien gab es leider viele Tippfehler

• Folie 7, drittletzte Zeile war k≥l statt k≤l

• Folie 8: Rechts-/Linkslineare Grammatiken
– Ursprünglich: Regeln der Form A→ε oder A→v B (A, B ∈V, v ∈T ∗)

Diese Definition ist zwar äquivalent zu der Bedingung v ∈T ,

(Ersetze die Regel A→v1..vk B durch A→v1B1, B1→v2B2, Bk−1→vkB, Bi neu)

ist aber komplizierter und wird in der Literatur nicht benutzt

• Folie 9, G1 und G3 ist nicht expansiv oder kontextsensitiv
Ich habe das falsch ausgedrückt. Jede kontextfreie Sprache ist auch Sprache
einer expansiven oder kontextsensitiven Grammatik, aber wegen der
Randbedingungen für S ist nicht jede kontextfreie Grammatik auch
kontextsensitiv oder expansiv

• Folie 11 und 12
– Anstatt δ̂ stand ursprünglich nur δ

• Folie 12
– Der Korrektheitsbeweis L(A) = L(G) war ziemlich verhunzt

– Ich hatte mit paste & copy einen Korrektheitsbeweis für einen DEA erzeugt, obwohl die

Grammatik in einen NEA umgewandelt wird.

