Theoretische Informatik I

Einheit 2.6

Eigenschaften regularer Sprachen

1. Abschlufleigenschaften
2. Prufen von Eigenschaften

3. Wann sind Sprachen nicht regular?

Werg,
\3{\ !(q,’;

L ]
.0 i@ !
‘E-P -!!-

L] q?f

mn



ABSCHLUSSEIGENSCHAFTEN, WOZU? I

Zeige, dafl bestimmte Operationen auf regularen

Sprachen wieder zu regularen Sprachen fiihren
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ABSCHLUSSEIGENSCHAFTEN, WOZU? I

Zeige, dafl bestimmte Operationen auf regularen

Sprachen wieder zu regularen Sprachen fiihren

e Wiederverwendung von “Sprachmodulen”
— Schematische Komposition von
- Grammatiken zur Erzeugung von Sprachen
- Automaten zur Erkennung von Sprachen
- Regularen Ausdriicken
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ABSCHLUSSEIGENSCHAFTEN, WOZU? I

Zeige, dafl bestimmte Operationen auf regularen

Sprachen wieder zu regularen Sprachen fiihren

e Wiederverwendung von “Sprachmodulen”
— Schematische Komposition von
- Grammatiken zur Erzeugung von Sprachen
- Automaten zur Erkennung von Sprachen
- Regularen Ausdriicken

e Schematische Konstruktion ist effektiver
— Fehlerfreier Aufbau sehr komplexer Grammatiken / Automaten
+ Schematische Optimierung / Minimierung

4

— Konstruktion “von Hand” oft fehleranfallig
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ABSCHLUSSEIGENSCHAFTEN, WOZU? I

Zeige, dafl bestimmte Operationen auf regularen

Sprachen wieder zu regularen Sprachen fiihren

e Wiederverwendung von “Sprachmodulen”
— Schematische Komposition von
- Grammatiken zur Erzeugung von Sprachen
- Automaten zur Erkennung von Sprachen
- Regularen Ausdriicken

e Schematische Konstruktion ist effektiver
— Fehlerfreier Aufbau sehr komplexer Grammatiken / Automaten
+ Schematische Optimierung / Minimierung

4

— Konstruktion “von Hand” oft fehleranfallig

e Beispiel: Literale einer Programmiersprache
— Bilde Automaten fiir Tokenklassen: Zahlen, Bezeichner, Schliisselworte, ...
— Konstruktion liefert Automaten fiir alle Arten von Literalen
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ABSCHLUSSEIGENSCHAFTEN, PRAZISIERT |

Zeige: L1, Lo regular = Ly op Lo regular
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ABSCHLUSSEIGENSCHAFTEN, PRAZISIERT |

Zeige: Ly, Lo regular = Ly op Lo regular

e Es gilt Abgeschlossenheit unter 9 Operationen

— Die Vereinigung zweier regularer Sprachen ist regular L, U Ly
— Das Komplement einer regularen Sprache ist regular L
— Der Durchschnitt zweier regularer Sprachen ist regular L, N Ly
— Die Differenz zweier regularer Sprachen ist regular Lq- Lo
— Die Spiegelung einer regularen Sprache ist regular L%
— Die Hiille einer regularen Sprache ist regular L~
— Die Verkettung zweier regularer Sprachen ist regular L.oL,
— Jeder Homomorphismus einer regularen Sprache ist regular h(L)

— Jeder inverse Homomorphismus einer reguliren Sprache ist regular h~!(L)
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ABSCHLUSSEIGENSCHAFTEN, PRAZISIERT |

Zeige: Ly, Lo regular = Ly op Lo regular

e Es gilt Abgeschlossenheit unter 9 Operationen

— Die Vereinigung zweier regularer Sprachen ist regular L, U Ly
— Das Komplement einer regularen Sprache ist regular L
— Der Durchschnitt zweier regularer Sprachen ist regular LN Ly
— Die Differenz zweier regularer Sprachen ist regular Lq- Lo
— Die Spiegelung einer regularen Sprache ist regular L~
— Die Hiille einer regularen Sprache ist regular L*
— Die Verkettung zweier regularer Sprachen ist regular L.oL,
— Jeder Homomorphismus einer regularen Sprache ist regular h(L)

— Jeder inverse Homomorphismus einer regularen Sprache ist regular h~!(L)

e Nachweis durch Verwendung aller Modelle
— DEA, NEA, eNEA, regulare Ausdriicke, Typ-3 Grammatiken

— Modelle sind ineinander umwandelbar — wahle das passendste
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ABSCHLUSS UNTER VEREINIGUNG, VERKETTUNG UND HULLTEl

Beweisfuhrung mit regularen Ausdricken

e L1, Ly regular = Lq U Lo regular
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ABSCHLUSS UNTER VEREINIGUNG, VERKETTUNG UND HULLTEl

Beweisfuhrung mit regularen Ausdricken

e L1, Ly regular = Lq U Lo regular
Lq, L, regular
= Es gibt regulare Ausdriicke Fy, By mit Ly = L(Ey), Ly = L(E»)
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ABSCHLUSS UNTER VEREINIGUNG, VERKETTUNG UND HULLTEl

Beweisfuhrung mit regularen Ausdricken

e L1, Ly regular = Lq U Lo regular
Lq, L, regular
= Es gibt regulare Ausdriicke Fy, By mit Ly = L(Ey), Ly = L(E»)
= L, U Ly = L(E,) U L(Fy) = L(E\+E5) regular
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Beweisfuhrung mit regularen Ausdricken
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e [y, L> regular = L10L> regular
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ABSCHLUSS UNTER VEREINIGUNG, VERKETTUNG UND HULLTEl

Beweisfuhrung mit regularen Ausdricken

e L1, Ly regular = Lq U Lo regular
Lq, L, regular
= Es gibt regulare Ausdriicke Fy, By mit Ly = L(Ey), Ly = L(E»)
= L, U Ly = L(E,) U L(Fy) = L(E\+E5) regular

e [y, L> regular = L10L> regular
Lq, L, regular
= Es gibt regulire Ausdriicke E1, Fs mit Ly = L(Fy), Ly = L(E5)
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ABSCHLUSS UNTER VEREINIGUNG, VERKETTUNG UND HULLTEl

Beweisfuhrung mit regularen Ausdricken

e L1, Ly regular = Lq U Lo regular
Lq, L, regular
= Es gibt regulare Ausdriicke Fy, By mit Ly = L(Ey), Ly = L(E»)
= L, U Ly = L(E,) U L(Fy) = L(E\+E5) regular

e [y, L> regular = L10L> regular
Lq, L, regular
= Es gibt regulire Ausdriicke E1, Fs mit Ly = L(Fy), Ly = L(E5)
= L,0L, = L(Ey)oL(Es) = L(E°F,) regular
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Beweisfuhrung mit regularen Ausdricken
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= L, U Ly = L(E,) U L(Fy) = L(E\+E5) regular

e [y, L> regular = L10L> regular
Lq, L, regular
= Es gibt regulire Ausdriicke E1, Fs mit Ly = L(Fy), Ly = L(E5)
= L,0L, = L(Ey)oL(Es) = L(E°F,) regular
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ABSCHLUSS UNTER VEREINIGUNG, VERKETTUNG UND HULLTEl

Beweisfuhrung mit regularen Ausdricken

e L1, Ly regular = L U L9 regular
Lq, L, regular
= Es gibt regulare Ausdriicke Fy, By mit Ly = L(Ey), Ly = L(E»)
= L, U Ly = L(E,) U L(Fy) = L(E\+E5) regular

e [y, L> regular = L10L> regular
Lq, L, regular
= Es gibt regulire Ausdriicke E1, Fs mit Ly = L(Fy), Ly = L(E5)
= L,0L, = L(Ey)oL(Es) = L(E°F,) regular

e L regular = L™ regular
L regular

= Fs gibt einen reguldren Ausdruck £ mit L = L(F)
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ABSCHLUSS UNTER VEREINIGUNG, VERKETTUNG UND HULLTEl

Beweisfuhrung mit regularen Ausdricken

e L1, Ly regular = L U L9 regular
Lq, L, regular
= Es gibt regulare Ausdriicke Fy, By mit Ly = L(Ey), Ly = L(E»)
= L, U Ly = L(E,) U L(Fy) = L(E\+E5) regular

e [y, L> regular = L10L> regular
Lq, L, regular
= Es gibt regulire Ausdriicke E1, Fs mit Ly = L(Fy), Ly = L(E5)
= L,0L, = L(Ey)oL(Es) = L(E°F,) regular

e L regular = L™ regular
L regular
= Fs gibt einen reguldren Ausdruck £ mit L = L(F)
= L* = (L(F))* = L(E*) regular
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ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

e L regular = L regular

Komplementiere akzeptierende Zustande des erkennenden Automaten
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ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

e L regular = L regular
Komplementiere akzeptierende Zustande des erkennenden Automaten

L regular
= Es gibt einen DEA A = (Q, X, 6, qo, F') mit L = L(A)
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ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

e L regular = L regular
Komplementiere akzeptierende Zustande des erkennenden Automaten
L regular
= Es gibt einen DEA A = (Q, X, 6, qo, F') mit L = L(A)
= L =L(A) = {weX* | 0(qo,w) ¢ F} = {weS* | §(qo, w) cQ—F}
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ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

e L regular = L regular

Komplementiere akzeptierende Zustande des erkennenden Automaten

L regular

= Es gibt einen DEA A = (Q, X, 6, qo, F') mit L = L(A)

= L =L(A) = {weX* | 0(qo,w) ¢ F} = {weS* | §(qo, w) cQ—F}
= L(Q, X, 9, qv, Q—F) regular

EIGENSCHAFTEN REGULARER SPRACHEN
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ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

o L reguliar = L regulir
Komplementiere akzeptierende Zustande des erkennenden Automaten
L regular
= Es gibt einen DEA A = (Q, X, 6, qo, F') mit L = L(A)
= L =L(A) = {weX* | 0(qo,w) ¢ F} = {weS* | §(qo, w) cQ—F}
= L(Q, X, 9, qv, Q—F) regular

e Beispiel: Komplementierung von (0+1)*01
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ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

o L reguliar = L regulir

Komplementiere akzeptierende Zustande des erkennenden Automaten

L regular

= Es gibt einen DEA A = (Q, X, 6, qo, F') mit L = L(A)

= L =LA) = {weX* | 0(qo,w) ¢ F} = {weX* | §(qo, w) cQ—F}
= L(Q, X, 9, qv, Q—F) regular

e Beispiel: Komplementierung von (0+1)*01
— Zugehoriger DEA 1 0

{a, O\j{/\(1 1@

| @I 0

Start

EIGENSCHAFTEN REGULARER SPRACHEN
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ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

o L reguliar = L regulir
Komplementiere akzeptierende Zustande des erkennenden Automaten
L regular
= Es gibt einen DEA A = (Q, X, 6, qo, F') mit L = L(A)
= L =LA) = {weX* | 0(qo,w) ¢ F} = {weX* | §(qo, w) cQ—F}
= L(Q, X, 9, qv, Q—F) regular

e Beispiel: Komplementierung von (0+1)*01
— Zugehoriger DEA 1 0

o
— {ay {apa}); @
o 1 \\_-/ 0
— Komplementautomat erkennt

Worte die nicht mit 01 enden
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ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

o L reguliar = L regulir

Komplementiere akzeptierende Zustande des erkennenden Automaten

L regular

= Es gibt einen DEA A = (Q, X, 6, qo, F') mit L = L(A)

= L =L(A) = {weX* | 0(qo,w) ¢ F} = {weS* | §(qo, w) cQ—F}
= L(Q, X, 9, qv, Q—F) regular

e Beispiel: Komplementierung von (0+1)*01
— Zugehoriger DEA 1 0

o
— {ay {apa}); @
o 1 \\_-/ 0
— Komplementautomat erkennt

Worte die nicht mit 01 enden

— Regularer Ausdruck durch Zustandseliminationsverfahren erzeugbar

EIGENSCHAFTEN REGULARER SPRACHEN
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ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise

THEORETISCHE INFORMATIK I §2: ) FEIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise

Lq, L, regular

THEORETISCHE INFORMATIK I §2: ) FEIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise
Ly, Ly regulir = L;NLy = LUL, regulir
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e Einfache mathematische Beweise
Ly, Ly regulir = L;NLy = LUL, regulir
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ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise

Ly, Ly regulir = L;NLy = LUL, regulir

Lq, L, regulir = L;—Ls = LiNL, regular

e Produktkonstruktion auf endlichen Automaten

Simultane Abarbeitung von Worten in beiden Automaten

Start

FEingabe

A,

/\

A,

>@—>akzeptieren
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ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise
Ly, Ly regulir = L;NLy = LUL, regulir

Lq, L, regulir = L;—Ls = LiNL, regular

e Produktkonstruktion auf endlichen Automaten

Simultane Abarbeitung von Worten in beiden Automaten

Lq, L, regular

= Es gibt DEAs Ay = (@1, X, 0, q,,, I1)
und Ay = (@2, X, 9,, Qo2 12)
mit Ly = L(Ay), Ly = L(Ay)
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ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise
Ly, Ly regulir = L;NLy = LUL, regulir

Lq, L, regulir = L;—Ls = LiNL, regular

e Produktkonstruktion auf endlichen Automaten

Simultane Abarbeitung von Worten in beiden Automaten
FEingabe

Lq, L, regular

= Es gibt DEAs Ay = (@1, X, 0, q,,, I1) = A
und A2 — (Q% 27 527 Qo F2) Start\ W >@—>akzeptieren
2

mit Ll — L(Al), L2 — L(Ag)
= L1 N Ly ={weX*| 51(q071,w)€F1 A 52((]0’2,10)6172}
— {’UJEZ* ‘ (51(Q()’17w>7 52(Q0’27w>) EF’1><F’2}
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ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise
Ly, Ly regulir = L;NLy = LUL, regulir

Lq, L, regulir = L;—Ls = LiNL, regular

e Produktkonstruktion auf endlichen Automaten

Simultane Abarbeitung von Worten in beiden Automaten

L., L, regular Bingabe

= Es gibt DEAs Ay = (@1, X, 0, q,,, I1) = A
und A2 — (Q% 27 527 Qo F2) Start\ W >@—>akzeptieren

2

mit Ll — L(Al), L2 — L(Ag)

= Ly N Ly = {weX* | 61(q,,, w) e Fy A (g, w) e o}
— {w e’ ‘ (51(%)’17 ’UJ), 52(Q0727 ’UJ)) EF’1><F’2}
Konstruiere A = (Q1xXQ2, X, 0, (¢y,,9,,), F1xFY)
mit §((p, q),a) = (0,(p,a),d q,a)) fir peQi, Qs ac¥
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ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise
Ly, Ly regulir = L;NLy = LUL, regulir

Lq, L, regulir = L;—Ls = LiNL, regular

e Produktkonstruktion auf endlichen Automaten

Simultane Abarbeitung von Worten in beiden Automaten

L., L, regular Bingabe

= Es gibt DEAs Ay = (@1, X, 0, q,,, I1) = A
und A2 — (Q% 27 527 Qo F2) Start\ W >@—>akzeptieren

2

mit L1 = L(Ay), Ly = L(Ay)
= Ly N Ly = {weX* | 61(q,,, w) e Fy A (g, w) e o}
= {weX" | (01(qy,,w), 0a(gy, w)) € Fix Fy}
Konstruiere A = (Q1xXQ2, X, 0, (¢y,,9,,), F1xFY)
mit 6((p, q),a) = (0(p,a),0fq,a)) fir peQq, geQz, acl
= L N Ly = L(A) regular
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PRODUKTKONSTRUKTION AM BEISPIEL I

Start . 0 .’ 0,1

(@)

Start . 1 .{l1

(b)
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w;|wi..wn € L} regulir
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 67(¢q,a) = ¢’ g.d.w. §(¢,a) = q
- go wird zum akzeptierenden Zustand: F'f' = {qo}

- Neuer Startzustand ¢ff mit e-Ubergingen zu allen g € F
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 67(¢q,a) = ¢’ g.d.w. §(¢,a) = q
- go wird zum akzeptierenden Zustand: F'f' = {qo}

- Neuer Startzustand ¢ff mit e-Ubergéingen zu allen g € F

e Induktiver Beweis mit regularen Ausdriicken
Sei L = L(F) fiir einen regularen Ausdruck
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 67(¢q,a) = ¢’ g.d.w. §(¢,a) = q
- go wird zum akzeptierenden Zustand: F'f' = {qo}

- Neuer Startzustand ¢ff mit e-Ubergéingen zu allen g € F

e Induktiver Beweis mit regularen Ausdriicken

Sei L = L(F) fiir einen regularen Ausdruck
~Fir E € {0, ¢, a}ist L' = L = L(E) regular
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 67(¢q,a) = ¢’ g.d.w. §(¢,a) = q
- go wird zum akzeptierenden Zustand: F'f' = {qo}

- Neuer Startzustand ¢ff mit e-Ubergéingen zu allen g € F

e Induktiver Beweis mit regularen Ausdriicken
Sei L = L(F) fiir einen regularen Ausdruck
~Fir E € {0, ¢, a}ist L' = L = L(E) regular
~ Fiir E = Ey+B, ist L? = (L(E))UL(E»))® = L(E)BUL(E,)? reguliir
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 67(¢q,a) = ¢’ g.d.w. §(¢,a) = q
- go wird zum akzeptierenden Zustand: F'f' = {qo}

- Neuer Startzustand ¢ff mit e-Ubergéingen zu allen g € F

e Induktiver Beweis mit regularen Ausdriicken
Sei L = L(F) fiir einen regularen Ausdruck
~Fir E € {0, ¢, a}ist L' = L = L(E) regular
~ Fiir E = Ey+B, ist L? = (L(E))UL(E»))® = L(E)BUL(E,)? reguliir
~ Fiir B = B0, ist LT = (L(E;)oL(Ey))E = L(Ey)RoL(E))? regulir

EIGENSCHAFTEN REGULARER SPRACHEN
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 67(¢q,a) = ¢’ g.d.w. §(¢,a) = q
- go wird zum akzeptierenden Zustand: F'f' = {qo}

- Neuer Startzustand ¢ff mit e-Ubergéingen zu allen g € F

e Induktiver Beweis mit regularen Ausdriicken
Sei L = L(F) fiir einen regularen Ausdruck
~Fir E € {0, ¢, a}ist L' = L = L(E) regular
~Fiir E = Ey+Ey ist LT = (L(E)UL(E))E = L(E)PUL(Ey)E reguliir
~Fiir E = BB, ist LT = (L(E)oL(Ey)? = L(Ey)RoL(Ey)E reguliir
~TFir E = B} ist L = L(E})® = (L(E)M)* regular
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ABSCHLUSS UNTER SPIEGELUNG I

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 67(¢q,a) = ¢’ g.d.w. §(¢,a) = q
- go wird zum akzeptierenden Zustand: F'f' = {qo}

- Neuer Startzustand ¢ff mit e-Ubergéingen zu allen g € F

e Induktiver Beweis mit regularen Ausdriicken
Sei L = L(F) fiir einen regularen Ausdruck
~Fir E € {0, ¢, a}ist L' = L = L(E) regular
~Fiir E = Ey+Ey ist LT = (L(E)UL(E))E = L(E)PUL(Ey)E reguliir
~Fiir E = BB, ist LT = (L(E)oL(Ey)? = L(Ey)RoL(Ey)E reguliir
~TFir E = B} ist L = L(E})® = (L(E)M)* regular

e Beispiel: Spiegelung von L((0+1)0%)
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e Beweisfuhrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 67(¢q,a) = ¢’ g.d.w. §(¢,a) = q
- go wird zum akzeptierenden Zustand: F'f' = {qo}

- Neuer Startzustand ¢ff mit e-Ubergéingen zu allen g € F

e Induktiver Beweis mit regularen Ausdriicken
Sei L = L(F) fiir einen regularen Ausdruck
~Fir E € {0, ¢, a}ist L' = L = L(E) regular
~Fiir E = Ey+Ey ist LT = (L(E)UL(E))E = L(E)PUL(Ey)E reguliir
~Fiir E = BB, ist LT = (L(E)oL(Ey)? = L(Ey)RoL(Ey)E reguliir
~TFir E = B} ist L = L(E})® = (L(E)M)* regular

e Beispiel: Spiegelung von L((0+1)0%)
~ L = L0 0+1) %) = L(0)*(0F+1%)) = L(0*(0+1))
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ABSCHLUSS UNTER HOMOMORPHISMEN I

L regulir, h Homomorphismus =- h(L) regular
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ABSCHLUSS UNTER HOMOMORPHISMEN I

L regulir, h Homomorphismus =- h(L) regular

h:3—>) ist Homomorphismus, wenn h(vy..v,) = h(vy)..h(vy,)

— Homomorphismen sind mit endlichen (Fin-/Ausgabe) Automaten berechenbar
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ABSCHLUSS UNTER HOMOMORPHISMEN I

L regulir, h Homomorphismus =- h(L) regular

h:>—>)" ist Homomorphismus, wenn h(vi..v,) = h(vy)..h(vy,)
— Homomorphismen sind mit endlichen (Fin-/Ausgabe) Automaten berechenbar

h(L)={h(w)|weL} c ™ ist das Abbild der Worte von L unter h
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ABSCHLUSS UNTER HOMOMORPHISMEN I

L regulir, h Homomorphismus =- h(L) regular

h:3—> ist Homomorphismus, wenn h(vy..v,) = h(vy)..h(vy,)
— Homomorphismen sind mit endlichen (Fin-/Ausgabe) Automaten berechenbar

h(L)={h(w)|weL} c ™ ist das Abbild der Worte von L unter h

e Bewels mit Grammatiken

L regular
= FEs gibt eine Typ-3 Grammatik G = (V, 2, P, S) mit L = L(G)
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Fiir A—v B € P erzeuge Regeln A—a1 By, Bi—asBs, ... B,_1—a;.B,
wobei h(v) = ay..a;, und alle B; neue Hilfsvariablen
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Fiir A—v B € P erzeuge Regeln A—a1 By, Bi—asBs, ... B,_1—a;.B,
wobei h(v) = ay..a;, und alle B; neue Hilfsvariablen

Sei P, die Menge dieser Regeln und Vj, die Menge ihrer Hilfsvariablen
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ABSCHLUSS UNTER HOMOMORPHISMEN I
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— Homomorphismen sind mit endlichen (Fin-/Ausgabe) Automaten berechenbar
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e Beweis mit Grammatiken

L regular

Es gibt eine Typ-3 Grammatik G = (V, 2, P, S) mit L = L(G)
h(L) = hL(G)) = {h(vi)..h(v,) eX* | S =5 v1..0,}

Fiir A—v B € P erzeuge Regeln A—a1 By, Bi—asBs, ... B,_1—a;.B,

4

wobei h(v) = ay..a;, und alle B; neue Hilfsvariablen
Sei P, die Menge dieser Regeln und Vj, die Menge ihrer Hilfsvariablen
Fiir G, = (Vj,, &', Py, S) gilt A»vBeP & A—— h(v)B

und S —— gu1..v, & S —— g, h(v1)..h(v,)
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ABSCHLUSS UNTER HOMOMORPHISMEN I

L regulir, h Homomorphismus =- h(L) regular

h:>—>)" ist Homomorphismus, wenn h(vi..v,) = h(vy)..h(vy,)
— Homomorphismen sind mit endlichen (Fin-/Ausgabe) Automaten berechenbar

h(L)={h(w)|weL} c ™ ist das Abbild der Worte von L unter h

e Beweis mit Grammatiken
L regular
= FEs gibt eine Typ-3 Grammatik G = (V, 2, P, S) mit L = L(G)
= h(L) = h(L(G)) = {h(vi)..h(v,) eX* | S =S v1.0,}
Fiir A—v B € P erzeuge Regeln A—a1 By, Bi—asBs, ... B,_1—a;.B,
wobei h(v) = ay..a;, und alle B; neue Hilfsvariablen
Sei P, die Menge dieser Regeln und Vj, die Menge ihrer Hilfsvariablen
Fiir G, = (Vj,, &', Py, S) gilt A»vBeP & A—— h(v)B
und S —— gu1..v, & S —— g, h(v1)..h(v,)
= h(L) = {h(v1)..h(v,) eX* | S — g, h(v1)..h(v,)} =L(G},) regulir

Beweis mit regularen Ausdriicken in Hopcroft, Motwani, Ullman §4.2.3
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ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir
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ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir

h=Y(L)={weX* | h(w)e L} ist das
Urbild der Worte von L unter h

THEORETISCHE INFORMATIK I §2:

7%

S —h(L)

h

| ——— 1

Y—L

EIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir

h ST

h=Y(L)={weX* | h(w)e L} ist das —
Urbild der Worte von L unter h @
- z.B. Fir L = L((01+10) %), s “T(L)

h(a) = 01, h(b) = 10 ist h~1(L) = L((a+b)) =8
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ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir

h

h=Y(L)={weX*| h(w)e L} ist das Al YL
Urbild der Worte von L unter h @
- z.B. Fir L = L((01+10) %),

R UINP
h(a) = 01, h(b) = 10 ist h~1(L) = L((a+b))
e Beweis mit endlichen Automaten
Berechnung von A vor Abarbeitung der Worte im Automaten
FEingabe

l
h

Start_[ | sheptinn
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ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir

h ST

h=Y(L)={weX* | h(w)e L} ist das ' A
Urbild der Worte von L unter h W @
- z.B. Fir L = L((01+10) %), s “T(L)

| hl~
h(a) = 01, h(b) = 10 ist h~1(L) = L((a+b))
e Beweis mit endlichen Automaten
Berechnung von A vor Abarbeitung der Worte im Automaten
L regular E”ig“be
= FEs gibt einen DEA A = (Q, ¥, 6, qo, F) h
mit L = L<A) = {”LU Dy ‘ 5(6](), ’UJ) EF} Start A akzeptieren
T "~ ablehnen
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ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir

h='(L)={weX*| h(w)e L} ist das
Urbild der Worte von L unter A
- z.B. Fir L = L((01+10)%),
h(a) = 01, h(b) = 10 ist h~1(L) = L((a+b))

e Beweis mit endlichen Automaten

h

kS
S —h(L)

hl ~

Y—L

Berechnung von A vor Abarbeitung der Worte im Automaten

L regular
= FEs gibt einen DEA A = (Q, ¥, 6, qo, F)
mit L = L(A) = {weX™* | §(gy, w) e F}
= h Y(L) = {weZ* | §(qo, h(w)) e F}

EIGENSCHAFTEN REGULARER SPRACHEN
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ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir

h ST

h=Y(L)={weX* | h(w)e L} ist das ' A
Urbild der Worte von L unter h W @
- z.B. Fir L = L((01+10) %), s “T(L)

h(a) = 01, h(b) = 10 ist h~1(L) = L((a+b)) S

e Beweis mit endlichen Automaten

Berechnung von A vor Abarbeitung der Worte im Automaten

L regular E”ig“be
= FEs gibt einen DEA A = (Q, ¥, 6, qo, F) h

mit L = L(A) = {weX™ | S(QOa w)eF} Start [T 7], akseptieren
= h (L) = {weX* | §(qo, h(w)) e F} ebiehmen

Konstruiere A;, = (Q, X, 0y, q,F') mit 0n(q,a) = 0(q, h(a))
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ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir

h=Y(L)={weX*| h(w)e L} ist das i YL

Urbild der Worte von L unter h @
- Z.B. Ful“ L — L((01+10)*), 2*_h—1<L)

h(a) = 01, h(b) = 10 ist h~1(L) = L((a+b)) S

e Beweis mit endlichen Automaten

Berechnung von A vor Abarbeitung der Worte im Automaten

L regular E”ig“be
= FEs gibt einen DEA A = (Q, ¥, 6, qo, F) h

mit L = L(A) = {weX™ | S(QOa w)eF} Start [T 7], akseptieren
= h (L) = {weX* | §(qo, h(w)) e F} ebiehmen

Konstruiere A;, = (Q, X, 0y, q,F') mit 0n(q,a) = 0(q, h(a))
Dann gilt 0,(q, w) = (¢, h(w)) fiir alle ¢ €Q und w e X*
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ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN I

L regulir, h Homomorphismus = h~!(L) regulir

h ST

h=Y(L)={weX* | h(w)e L} ist das ' A
Urbild der Worte von L unter h W @
- z.B. Fir L = L((01+10) %), s “T(L)

h(a) = 01, h(b) = 10 ist h~1(L) = L((a+b)) S

e Beweis mit endlichen Automaten

Berechnung von A vor Abarbeitung der Worte im Automaten

L regular E”ﬁg“be
= FEs gibt einen DEA A = (Q, ¥, 6, qo, F) h

mit L = L(A) = {weX™ | S(QOa w)eF} Start [T 7], akseptieren
= h (L) = {weX* | §(qo, h(w)) e F} ebiehmen

Konstruiere A;, = (Q, X, 0y, q,F') mit 0n(q,a) = 0(q, h(a))
Dann gilt 0,(q, w) = (¢, h(w)) fiir alle ¢ €Q und w e X*
= h (L) = {weX* | 04(qo, h(w)) e F} = L(A}) regulir
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TESTS FUR EIGENSCHAFTEN REGULARER SPRACHEN I

e Welche Eigenschaften sind automatisch prufbar?
— Ist die Sprache eines Automaten leer?
— Zugehorigkeit: Ist ein Wort w Element der Sprache eines Automaten?

— Aquivalenz: Beschreiben zwei Automaten dieselbe Sprache?
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TESTS FUR EIGENSCHAFTEN REGULARER SPRACHEN I

e Welche Eigenschaften sind automatisch prufbar?
— Ist die Sprache eines Automaten leer?
— Zugehorigkeit: Ist ein Wort w Element der Sprache eines Automaten?
— Aquivalenz: Beschreiben zwei Automaten dieselbe Sprache?

Gleiche Fragestellung fir Grammatiken und regulare Ausdriicke
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e Welche Eigenschaften sind automatisch prufbar?
— Ist die Sprache eines Automaten leer?
— Zugehorigkeit: Ist ein Wort w Element der Sprache eines Automaten?
— Aquivalenz: Beschreiben zwei Automaten dieselbe Sprache?

Gleiche Fragestellung fir Grammatiken und regulare Ausdriicke

e Wechsel der Reprasentation ist effektiv
— NEA +— DEA: Teilmengenkonstruktion (exponentielle Aufbldhung moglich)
— e-NEA +— DEA: Hillenbildung 4 Teilmengenkonstruktion
— DEA — e NEA/NEA: Modifikation der Prasentation (Mengenklammern)
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— RA — e NEA: induktive Konstruktion von Automaten
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TESTS FUR EIGENSCHAFTEN REGULARER SPRACHEN I

e Welche Eigenschaften sind automatisch prufbar?
— Ist die Sprache eines Automaten leer?
— Zugehorigkeit: Ist ein Wort w Element der Sprache eines Automaten?
— Aquivalenz: Beschreiben zwei Automaten dieselbe Sprache?
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e Wechsel der Reprasentation ist effektiv
— NEA +— DEA: Teilmengenkonstruktion (exponentielle Aufbldhung moglich)
— e-NEA +— DEA: Hillenbildung 4 Teilmengenkonstruktion
— DEA — e NEA/NEA: Modifikation der Prasentation (Mengenklammern)
— DEA — RA: R@—Methode oder Zustandselimination
— RA — e NEA: induktive Konstruktion von Automaten
~ DEA +— Typ-3 Grammatik: Regeln fiir Uberfithrungsschritte einfithren
— Typ-3 Grammatik — NEA: Uberfithrungstabelle codiert Regeln
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TESTS FUR EIGENSCHAFTEN REGULARER SPRACHEN I

e Welche Eigenschaften sind automatisch prufbar?
— Ist die Sprache eines Automaten leer?
— Zugehorigkeit: Ist ein Wort w Element der Sprache eines Automaten?
— Aquivalenz: Beschreiben zwei Automaten dieselbe Sprache?

Gleiche Fragestellung fir Grammatiken und regulare Ausdriicke

e Wechsel der Reprasentation ist effektiv
— NEA +— DEA: Teilmengenkonstruktion (exponentielle Aufbldhung moglich)
— e-NEA +— DEA: Hillenbildung 4 Teilmengenkonstruktion
— DEA — e NEA/NEA: Modifikation der Prasentation (Mengenklammern)
— DEA — RA: R@—Methode oder Zustandselimination
— RA — e NEA: induktive Konstruktion von Automaten
~ DEA +— Typ-3 Grammatik: Regeln fiir Uberfithrungsschritte einfithren
— Typ-3 Grammatik — NEA: Uberfithrungstabelle codiert Regeln

Es reicht, Tests fiir ein Modell zu beschreiben
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PRUFE OB EINE REGULARE SPRACHE LEER IST I

e Nichttriviales Problem
— Automaten: Gibt es iberhaupt einen akzeptierenden Pfad?
— Regulare Ausdriicke: Wird mindestens ein einziges Wort charakterisiert?

— Grammatiken: Wird tiberhaupt ein Wort aus dem Startzustand erzeugt?
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PRUFE OB EINE REGULARE SPRACHE LEER IST I

e Nichttriviales Problem
— Automaten: Gibt es iberhaupt einen akzeptierenden Pfad?
— Regulare Ausdriicke: Wird mindestens ein einziges Wort charakterisiert?

— Grammatiken: Wird tiberhaupt ein Wort aus dem Startzustand erzeugt?

e Erreichbarkeitstest fiir DEA A = (Q, X, 6, qq, F)
~ Wegen 6 (qo, €) = qo ist qo in 0 Schritten erreichbar

— ¢ in k Schritten erreichbar, 6(q,a) = ¢’ = ¢' in k+1 Schritten erreichbar
-~ L(A)=0 < kein g€ F in |Q| Schritten erreichbar
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PRUFE OB EINE REGULARE SPRACHE LEER IST I

e Nichttriviales Problem
— Automaten: Gibt es iberhaupt einen akzeptierenden Pfad?
— Regulare Ausdriicke: Wird mindestens ein einziges Wort charakterisiert?

— Grammatiken: Wird tiberhaupt ein Wort aus dem Startzustand erzeugt?

e Erreichbarkeitstest fiir DEA A = (Q, X, 6, qq, F)
~ Wegen 6 (qo, €) = qo ist qo in 0 Schritten erreichbar

— ¢ in k Schritten erreichbar, 6(q,a) = ¢’ = ¢' in k+1 Schritten erreichbar
-~ L(A)=0 < kein g€ F in |Q| Schritten erreichbar

e Induktive Analyse fur regulare Ausdrucke

— L(0)=0, L(e)#0, L(a)#0

- L( (E) )Z@ <~ L(E):@ keine Anderung
~ L(E+F)=0 < L(E)=0 A L(F)=0 Vereinigung von Elementen
— L(EoF)=0) < L(E)=0 v L(F)=0 Elemente beider Sprachen notig
— L(E*)#0, e gehort immer zu L(E™)
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TEST AUF ZUGEHORIGKEIT I

e Unterschiedlich schwierig je nach Reprasentation

— Automaten: Gibt es einen akzeptierenden Pfad fir w?
— Regulare Ausdriicke: Wird das Wort w von der Charakterisierung erfasst?

— Grammatiken: Kann w aus dem Startzustand erzeugt werden?
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TEST AUF ZUGEHORIGKEIT I

e Unterschiedlich schwierig je nach Reprasentation

— Automaten: Gibt es einen akzeptierenden Pfad fir w?
— Regulare Ausdriicke: Wird das Wort w von der Charakterisierung erfasst?

— Grammatiken: Kann w aus dem Startzustand erzeugt werden?

e Abarbeitung durch DEA A = (Q, X, ¢, qq, F)

— Bestimme ¢ := 5((]0, w) und teste g € F

— Maximal |w| 4+ |F| Arbeitsschritte
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TEST AUF ZUGEHORIGKEIT I

e Unterschiedlich schwierig je nach Reprasentation

— Automaten: Gibt es einen akzeptierenden Pfad fir w?
— Regulare Ausdriicke: Wird das Wort w von der Charakterisierung erfasst?

— Grammatiken: Kann w aus dem Startzustand erzeugt werden?

e Abarbeitung durch DEA A = (Q, X, ¢, qq, F)

— Bestimme ¢ := 5((]0, w) und teste g € F

— Maximal |w| 4+ |F| Arbeitsschritte

Test fur andere Reprasentationen durch
Umwandlung in DEA
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TEST AUF AQUIVALENZ VON SPRACHEN |

e Wann sind zwei regulare Sprachen gleich?
— Nichttrivial, da Beschreibungsformen sehr verschieden sein konnen

- Verschiedene Automaten, Grammatiken, Ausdriicke, Mischformen, ...
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e Wann sind zwei regulare Sprachen gleich?
— Nichttrivial, da Beschreibungsformen sehr verschieden sein konnen

- Verschiedene Automaten, Grammatiken, Ausdriicke, Mischformen, ...

e (Gibt es eine “kanonische” Reprasentation?
— z.B. - Transformiere alles in deterministische endliche Automaten
- Erzeuge Standardversion mit kleinstmoglicher Anzahl von Zustanden

— Aquivalenztest priift dann, ob der gleiche Standardautomat erzeugt wird
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TEST AUF AQUIVALENZ VON SPRACHEN |

e Wann sind zwei regulare Sprachen gleich?
— Nichttrivial, da Beschreibungsformen sehr verschieden sein konnen

- Verschiedene Automaten, Grammatiken, Ausdriicke, Mischformen, ...

e (Gibt es eine “kanonische” Reprasentation?
— z.B. - Transformiere alles in deterministische endliche Automaten
- Erzeuge Standardversion mit kleinstmoglicher Anzahl von Zustanden

— Aquivalenztest priift dann, ob der gleiche Standardautomat erzeugt wird

e Wie standardisiert man Automaten?
— Entferne Zustande, die vom Startzustand unerreichbar sind
— Fasse Zustande zusammen, die fur alle Worte “aquivalent” sind
- Es fithren exakt dieselben Worte zu akzeptierenden Zustanden

— Ergibt minimalen aquivalenten Automaten
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AQUIVALENZTEST FUR ZUSTANDE |

e Aquivalenz der Zustinde p und g (p = q)
— Fiir alle Worte w e X* gilt §(p, w) e F < 0(q,w)eF

— Die Worte miissen nicht zum gleichen Zustand fithren
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AQUIVALENZTEST FUR ZUSTANDE |

e Aquivalenz der Zustinde p und g (p = q)
— Fiir alle Worte w e X* gilt §(p, w) e F < 0(q,w)eF

— Die Worte miissen nicht zum gleichen Zustand fiithren

e Positives Prufverfahren schwierig
— Man muf3 alle Worte uiberpriifen, die von einem Zustand ausgehen
— Man kann sich auf Worte der maximalen Lénge |@Q)| beschrénken

— Besser: Nichtaquivalente (unterscheidbare) Zustdnde identifizieren
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AQUIVALENZTEST FUR ZUSTANDE |

e Aquivalenz der Zustinde p und g (p = q)
— Fiir alle Worte w e X* gilt §(p, w) e F < 0(q,w)eF

— Die Worte miissen nicht zum gleichen Zustand fiithren

e Positives Prufverfahren schwierig
— Man muf3 alle Worte uiberpriifen, die von einem Zustand ausgehen
— Man kann sich auf Worte der maximalen Lénge |@Q)| beschrénken

— Besser: Nichtaquivalente (unterscheidbare) Zustdnde identifizieren

e Table-Filling Algorithmus
Markiere Unterscheidbarkeit von Zustanden in Tabelle
— Start: p 2 g, falls pe F und g ¢ F
— Iteration: p 2 ¢, falls d(p, a) 2 6(q, a) fir ein aeX
In jeder Iteration werden nur noch ungeklarte Paare iiberpriift

Nach maximal |@| Iterationen sind alle Unterschiede bestimmt
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AQUIVALENZTEST AM BEISPIEL |

A B CDEFGH

Al

Bl |\

C \

D \

E \

F \

G \

H \
0 Tabelle der Unterschiede
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AQUIVALENZTEST AM BEISPIEL |

A/ B CDE| F GH
A\ X
B \ | X
C|X|X|\[X|X|X]|X]|X
D X |\
E X \
F X \
G X \
H X \

0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ X | X X
B \ | X | X X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|X X | X
E X | X |\ | X
F|X|X|X X |\ | X | X
G X | X X |\
H X | X X \
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen

2a. Eingabesymbol 0: Nur D und F' filhren zu akzeptierenden Zustanden
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ | X|X|X X X
B| x|\ |X|X|X]|X]|X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|[X X | X
E X | X |X|\|X X
F|X|X|X X |\ | X | X
G X | X | X X |\ | X
H| X X | X | X | X | X[\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen
2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fihren zu akzeptierenden Zustanden
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ | X|X|X X X
B| x|\ |X|X|X]|X]|X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|[X X | X
E X | X |X|\|X X
F|X|X|X X |\ | X | X
G X | X | X X |\ | X
H| X X | X | X | X | X[\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen

2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fihren zu akzeptierenden Zustanden
3. Uberpriife Nachfolger von {AE}
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ | X|X|X X | X | X
B| x|\ |X|X|X]|X]|X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|[X X | X
E X | X |X|\|X X
F|X|X|X X |\ | X | X
G| X | X|X|X X |\ | X
H| X X | X | X | X | X[\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen

2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fihren zu akzeptierenden Zustanden
3. Uberpriife Nachfolger von {A E}, {A.G}
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ | X|X|X X | X | X
B| x|\ |X|X|X]|X]|X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|[X X | X
E X | X |X|\|X X
F|X|X|X X |\ | X | X
G| X | X|X|X X |\ | X
H| X X | X | X | X | X[\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen

2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fihren zu akzeptierenden Zustanden
3. Uberpriife Nachfolger von {AE}, {A.G}, {B,H}
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ | X|X|X X | X | X
B| x|\ |X|X|X]|X]|X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|[X X | X
E X | X |X|\|X X
F|X|X|X X |\ | X | X
G| X | X|X|X X |\ | X
H| X X | X | X | X | X[\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen

2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fihren zu akzeptierenden Zustanden
3. Uberpriife Nachfolger von {AE}, {A.G}, {B.H} , {DF}
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ | X|X|X X | X | X
B| x|\ |X|X|X]|X]|X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|[X X | X
E X | X | X |\ |X]|X]|X
F|X|X|X X |\ | X | X
G| X | X|X[X|X|X]|\|X
H| X X | X | X | X | X[\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen
2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fihren zu akzeptierenden Zustanden

3. Uberpriife Nachfolger von {AE}, {A.G}, {B.H} , {DF} und {E,G}.
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ | X|X|X X | X | X
B| x|\ |X|X|X]|X]|X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|[X X | X
E X | X | X |\ |X]|X]|X
F|X|X|X X |\ | X | X
G| X | X|X[X|X|X]|\|X
H| X X | X | X | X | X[\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen

2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fihren zu akzeptierenden Zustanden
3. Uberpriife Nachfolger von {AE}, {A.G}, {B.H} , {DF} und {E,G}.
4. Uberpriifung von {AE}, {BH} und {D,F} gibt keine Unterschiede
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AQUIVALENZTEST AM BEISPIEL |

A/B|/C|/D E|F| G H
A\ | X|X|X X | X | X
B| x|\ |X|X|X]|X]|X
C|X|X|\[X|X|X]|X]|X
D|x|x|x]|\|[X X | X
E X | X | X |\ |X]|X]|X
F|X|X|X X |\ | X | X
G| X | X|X[X|X|X]|\|X
H| X X | X | X | X | X[\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen

2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fihren zu akzeptierenden Zustanden
3. Uberpriife Nachfolger von {AE}, {A.G}, {B.H} , {DF} und {E,G}.
4. Uberpriifung von {AE}, {BH} und {D,F} gibt keine Unterschiede

Aquivalenklassen sind {A,E}, {B,H}, {D,F}, {C} und {G}
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AQUIVALENZTEST FUR SPRACHEN |

e Prufverfahren

— Standardisiere Beschreibungsform in zwei disjunkte DEAs A; und As um
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AQUIVALENZTEST FUR SPRACHEN |

e Prufverfahren

— Standardisiere Beschreibungsform in zwei disjunkte DEAs A; und As um
— Vereinige Automaten zu A = (Q1UQ2, X, 0,Jd, ¢, F1UF})
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AQUIVALENZTEST FUR SPRACHEN |

e Prufverfahren

— Standardisiere Beschreibungsform in zwei disjunkte DEAs A; und As um
— Vereinige Automaten zu A = (Q1UQ2, X, 0,Jd, ¢, F1UF})

~ Bilde Aquivalenzklassen von A und teste ob o1 und gp 2 aquivalent sind
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AQUIVALENZTEST FUR SPRACHEN |

e Prufverfahren

— Standardisiere Beschreibungsform in zwei disjunkte DEAs A; und As um
— Vereinige Automaten zu A = (Q1UQ2, X, 0,Jd, ¢, F1UF})

~ Bilde Aquivalenzklassen von A und teste ob o1 und gp 2 aquivalent sind

e Zwei DEAs fiir L(e + (0 4+ 1)*0)) 0 1

— Aquivalenklassen sind {A,C,D} und {B,E} i . 1 m
— Da A und C aquivalent sind,

sind die Automaten aquivalent
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MINIMIERUNG ENDLICHER AUTOMATEN I

Konstruiere aquivalenten DEA

mit minimaler Menge von Zustanden

e Entferne uberflussige Zustande
— q ist uberfliissig, wenn 0 (qo, w)+#q fiir alle Worte w € ¥

— Reduziere @) zu Menge der erreichbaren Zustéande (Verfahren auf Folie 11)
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MINIMIERUNG ENDLICHER AUTOMATEN I

Konstruiere aquivalenten DEA

mit minimaler Menge von Zustanden

e Entferne uberflussige Zustande
— q ist uberfliissig, wenn 0 (qo, w)+#q fiir alle Worte w € ¥

— Reduziere @) zu Menge der erreichbaren Zustéande (Verfahren auf Folie 11)

e Fasse aquivalente Zustande zusammen
— Bestimme Menge der Aquivalenzklassen von Q

— Setze ' als Menge der Aquivalenzklassen von Q

— Setze 0'(S,a) = Uaesé(q, a)

Wohldefiniert, da alle Nachfolger aquivalenter Zustande aquivalent
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MINIMIERUNG ENDLICHER AUTOMATEN

Konstruiere aquivalenten DEA

mit minimaler Menge von Zustanden

e Entferne uberflussige Zustande
— q ist uberflissig, wenn 0 (qo, w)+#q fiir alle Worte w € ¥

— Reduziere @) zu Menge der erreichbaren Zustéande (Verfahren auf Folie 11)

e Fasse aquivalente Zustande zusammen
— Bestimme Menge der Aquivalenzklassen von Q
— Setze ' als Menge der Aquivalenzklassen von Q

— Setze 0'(S,a) = Uaes5<q’ a) 1

Wohldefiniert, da alle Nachfolger aquivalenter Zustande aquivalent

e Minimalversion des Beispielautomaten:
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MINIMIERUNG ENDLICHER AUTOMATEN

Konstruiere aquivalenten DEA

mit minimaler Menge von Zustanden

e Entferne uberflussige Zustande
— q ist uberflissig, wenn 0 (qo, w)+#q fiir alle Worte w € ¥

— Reduziere @) zu Menge der erreichbaren Zustéande (Verfahren auf Folie 11)

e Fasse aquivalente Zustande zusammen
— Bestimme Menge der Aquivalenzklassen von Q
— Setze ' als Menge der Aquivalenzklassen von Q

— Setze 0'(S,a) = Uaes5(q, a) 1

Wohldefiniert, da alle Nachfolger aquivalenter Zustande aquivalent

e Minimalversion des Beispielautomaten:

® Resultierender Automat ist minimal
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(GRENZEN REGULARER SPRACHEN I

Wie zeigt man, dafl eine Sprache L nicht regular ist?
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(GRENZEN REGULARER SPRACHEN I

Wie zeigt man, dafl eine Sprache L nicht regular ist?

e Direkter Nachweis
— Zeige, dafl kein endlicher Automat genau die Worte von L erkennt
— Sprache muf3 unendlich sein und komplizierte Struktur haben

— Technisches Hilfsmittel: Pumping Lemma
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(GRENZEN REGULARER SPRACHEN I

Wie zeigt man, dafl eine Sprache L nicht regular ist?

e Direkter Nachweis
— Zeige, dafl kein endlicher Automat genau die Worte von L erkennt
— Sprache muf3 unendlich sein und komplizierte Struktur haben

— Technisches Hilfsmittel: Pumping Lemma

e Verwendung der Abschlufleigenschaften
— Zeige dafl Regularitat von L dazu fithren wiirde, dafl eine
als nichtregular bekannte Sprache regular sein miisste

— Haufige Technik: (inverse) Homomorphismen
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DAs PuMPING LEMMA FUR REGULARE SPRACHEN I

e Warum ist {0"1" | n € N} nicht regular?
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DAs PuMPING LEMMA FUR REGULARE SPRACHEN I

e Warum ist {0"1" | n € N} nicht regular?

— Ein DFA muf alle Nullen beim Abarbeiten zahlen und dann vergleichen
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DAs PuMPING LEMMA FUR REGULARE SPRACHEN I

e Warum ist {0"1" | n € N} nicht regular?
— Ein DFA muf alle Nullen beim Abarbeiten zahlen und dann vergleichen

— Fiir n>|@Q] muB ein Zustand von A doppelt benutzt worden sein
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DAs PuMPING LEMMA FUR REGULARE SPRACHEN I

e Warum ist {0"1" | n € N} nicht regular?
— Ein DFA muf alle Nullen beim Abarbeiten zahlen und dann vergleichen

— Fiir n>|@Q] muB ein Zustand von A doppelt benutzt worden sein
— Eine 0-Schleife mit k& Zustinden bedeutet, dal A auch 0"**1" akzeptiert
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DAs PuMPING LEMMA FUR REGULARE SPRACHEN I

e Warum ist {0"1" | n € N} nicht regular?
— Ein DFA muf alle Nullen beim Abarbeiten zahlen und dann vergleichen

— Fiir n>|@Q] muB ein Zustand von A doppelt benutzt worden sein
— Eine 0-Schleife mit k& Zustinden bedeutet, dal A auch 0"**1" akzeptiert

e Allgemeine Version: Pumping Lemma

Fiir jede regulare Sprache L € L3 gibt es eine Zahl n eN, so
dafl jedes Wort w € L mit Lange |w|>n zerlegt werden kann
in w = xyz mit den Eigenschaften

(1) yHe,

(2) [xy|<n und

(3) fiir alle keNist zy*z ¢ L
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DAs PuMPING LEMMA FUR REGULARE SPRACHEN I

e Warum ist {0"1" | n € N} nicht regular?
— Ein DFA muf alle Nullen beim Abarbeiten zahlen und dann vergleichen

— Fiir n>|@Q] muB ein Zustand von A doppelt benutzt worden sein
— Eine 0-Schleife mit k& Zustinden bedeutet, dal A auch 0"**1" akzeptiert

e Allgemeine Version: Pumping Lemma

Fiir jede regulare Sprache L € L3 gibt es eine Zahl n eN, so
dafl jedes Wort w € L mit Lange |w|>n zerlegt werden kann
in w = xyz mit den Eigenschaften

(1) yHe,

(2) [xy|<n und

(3) fiir alle keNist zy*z ¢ L

e Aussage ist wechselseitig konstruktiv
— Die Zahl n kann zu jeder regularen Sprache L bestimmt werden

— Die Zerlegung w = x y z kann zu jedem Wort w € L bestimmt werden
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BEWEIS DES PUMPING LEMMAS I

Fiir jede Sprache L € L3 gibt es ein n €N, so dafl jedes w e L

mit |w|>n zerlegbar ist in w = x y z mit den Eigenschaften

(1) y#e, (2) |zry|<n und (3) fiir alle keNist zy*z ¢ L

e Beweils mit Automaten
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BEWEIS DES PUMPING LEMMAS I

Fiir jede Sprache L € L3 gibt es ein n €N, so dafl jedes w e L

mit |w|>n zerlegbar ist in w = x y z mit den Eigenschaften

(1) y#e, (2) |zry|<n und (3) fiir alle keNist zy*z ¢ L

e Beweis mit Automaten
—Sei L regular und A = (Q, %, 9, qo, F') ein DEA mit L = L(A)
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BEWEIS DES PUMPING LEMMAS I

Fiir jede Sprache L € L3 gibt es ein n €N, so dafl jedes w e L

mit |w|>n zerlegbar ist in w = x y z mit den Eigenschaften

(1) y#e, (2) |zry|<n und (3) fiir alle keNist zy*z ¢ L

e Beweis mit Automaten
—Sei L regular und A = (Q, %, 9, qo, F') ein DEA mit L = L(A)
— Wihle n=|Q|. Betrachte w=as..a,, mit |w|>n und p; == 6(qo, a1..a;)
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BEWEIS DES PUMPING LEMMAS I

Fiir jede Sprache L € L3 gibt es ein n €N, so dafl jedes w e L

mit |w|>n zerlegbar ist in w = x y z mit den Eigenschaften

(1) y#e, (2) |zry|<n und (3) fiir alle keNist zy*z ¢ L

e Beweis mit Automaten
—Sei L regular und A = (Q, %, 9, qo, F') ein DEA mit L = L(A)
— Wihle n=|Q|. Betrachte w=as..a,, mit |w|>n und p; := d(qo, a1..a;)
— Dann gibt es ¢, § mit 0<i<j<n und p; = p; (Schubfachprinzip)
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BEWEIS DES PUMPING LEMMAS I

Fiir jede Sprache L € L3 gibt es ein n €N, so dafl jedes w e L

mit |w|>n zerlegbar ist in w = x y z mit den Eigenschaften

(1) y#e, (2) |zry|<n und (3) fiir alle keNist zy*z ¢ L

e Beweis mit Automaten
—Sei L regular und A = (Q, %, 9, qo, F') ein DEA mit L = L(A)
— Wihle n=|Q|. Betrachte w=as..a,, mit |w|>n und p; := d(qo, a1..a;)
— Dann gibt es ¢, § mit 0<i<j<n und p; = p; (Schubfachprinzip)

— Zerlege w in w = xyz mit r=ay..q;, y=a;+1..a; und 2=a;;1..ay,
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— Dann gibt es ¢, § mit 0<i<j<n und p; = p; (Schubfachprinzip)

— Zerlege w in w = xyz mit r=ay..q;, y=a;+1..a; und 2=a;;1..ay,

~ Per Konstruktion gilt y=£e, |zy|<n und 0(p;,y*) = p; fiir alle keN
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(1) y#e, (2) |zry|<n und (3) fiir alle keNist zy*z ¢ L

e Beweis mit Automaten
—Sei L regular und A = (Q, %, 9, qo, F') ein DEA mit L = L(A)
— Wihle n=|Q|. Betrachte w=as..a,, mit |w|>n und p; := d(qo, a1..a;)
— Dann gibt es ¢, § mit 0<i<j<n und p; = p; (Schubfachprinzip)

— Zerlege w in w = xyz mit r=ay..q;, y=a;+1..a; und 2=a;;1..ay,

Start a, ... & a

_____________ o .._;:':-___5311. e By

~ Per Konstruktion gilt y=£e, |zy|<n und 0(p;,y*) = p; fiir alle keN
— Also 0(qo, zy" 2)= 0(pi, y* 2) = 0(pi,y 2) = 0(qo, 2y z) = d(qo, w) ¢ F
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ANWENDUNGEN DES PUMPING LEMMAS I

e L1 = {0™1™ | m €N} ist nicht regular

— Wir nehmen an L; sei regular
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e L1 = {0™1™ | m €N} ist nicht regular
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— Dann kann w = 0™1™ zerlegt werden in 2=0", y=0/ z=0""""/1"
mit j£0 und i+j<n und zy* z € L, fiir alle keN
— Aber fir k=0ist z ¢’z = 0" 71" ¢ L,

— Dies ist ein Widerspruch, also ist L nicht regular

Lo ={we{l1}*| |w| ist Primzahl} ¢ L3

— Wir nehmen an Ls sei regular

— Wabhle n entsprechend des Pumping Lemmas und eine Primzahl p>n + 1
, y=1) z=1P"""J

mit j£0 und i+j<n und zy"* z € L, fiir alle keN

— Dann kann w zerlegt werden in x=1"

— Aber fiir k=p—j ist |zy* 2| =i + m(p—j) + p—i—j = (m+1)(p—j)
Da dies keine Primzahl ist (m+1>2, p—j>2), ist xy* 2 ¢ L,
— Dies ist ein Widerspruch, also ist Lo nicht regular
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NACHWEIS VON L ¢ /L3 MIT ABSCHLUSSEIGENSCHAFTEN I

e Anwendung des Pumping Lemmas ist oft mithsam
— Beweis fiir Ly = {(™)™ | meN} ¢ L3 identisch mit dem von I
— Beweis fiir Ly = {we{0,1}" | #o(w) = #1(w)} ¢ L5 &hnlich
(#1(w) ist die Anzahl der Einsen in w)
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e Verwende Umkehrung der Abschlufleigenschaften
L¢Lls = Le¢Lls L%¢ Ly = L¢Ls
h(L)¢Ls = L¢Ls hY(L)¢Ls = L¢L3
LUL ¢Ls n L'els = L¢Lls LNL'¢Ls n L'els = L¢Lls
Lol ¢Ls n L'els = L¢Lls L'oL¢Ls n L'els = L¢Lls
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Lol ¢Ls n L'els = L¢Lls L'oL¢Ls n L'els = L¢Lls

e Anwendungsbeispiele
Ly ¢ L3 Wéhle Homomorphismus h:{(,)}—{0,1} mit h(() =0, h()) =1
Dann ist h(Lg) = {01 | meN} = Ly ¢ L3
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e Anwendung des Pumping Lemmas ist oft mithsam
— Beweis fiir Ly = {(™)™ | meN} ¢ L3 identisch mit dem von I
— Beweis fiir Ly = {we{0,1}" | #o(w) = #1(w)} ¢ L5 &hnlich
(#1(w) ist die Anzahl der Einsen in w)

e Verwende Umkehrung der Abschlufleigenschaften
L¢Lls = Le¢Lls L%¢ Ly = L¢Ls
h(L)¢Ls = L¢Ls hY(L)¢Ls = L¢L3
LUL ¢Ls n L'els = L¢Lls LNL'¢Ls n L'els = L¢Lls
Lol ¢Ls n L'els = L¢Lls L'oL¢Ls n L'els = L¢Lls

e Anwendungsbeispiele
Ly ¢ L3 Wéhle Homomorphismus h:{(,)}—{0,1} mit h(() =0, h()) =1
Dann ist h(Lg) = {01 | meN} = Ly ¢ L3
Ly ¢ L3 Esgilt Ly N L(0*+1%) = Ly ¢ L3
DEAs konnen korrekte Klammerausdriicke nicht erkennen!
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EIGENSCHAFTEN REGULARER SPRACHEN IM RUCKBLICK I

e Abschlulleigenschaften
— Operationen N, N, , -, . o, * h, h~! erhalten Regularitit von Sprachen

— Verwendbar zum Nachweis von Regularitat oder zur Widerlegung
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e Abschlulleigenschaften
— Operationen N, N, , -, . o, * h, h~! erhalten Regularitit von Sprachen

— Verwendbar zum Nachweis von Regularitat oder zur Widerlegung

e Automatische Priifungen
— Man kann testen ob eine regulare Sprache leer ist
— Man kann testen ob ein Wort zu einer regularen Sprache gehort

— Man kann testen ob zwei regulare Sprachen gleich sind
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EIGENSCHAFTEN REGULARER SPRACHEN IM RUCKBLICK I

e Abschlulleigenschaften
— Operationen N, N, —, -, ®*, o, * h, h~! erhalten Regularitit von Sprachen

— Verwendbar zum Nachweis von Regularitat oder zur Widerlegung

e Automatische Priifungen
— Man kann testen ob eine regulare Sprache leer ist
— Man kann testen ob ein Wort zu einer regularen Sprache gehort

— Man kann testen ob zwei regulare Sprachen gleich sind

e Minimierung von Automaten

— Ein Automat kann minimiert werden indem man aquivalente Zustande

zusammenlegt und unerreichbare Zustande entfernt
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e Abschlulleigenschaften
— Operationen N, N, —, -, ®*, o, * h, h~! erhalten Regularitit von Sprachen

— Verwendbar zum Nachweis von Regularitat oder zur Widerlegung

e Automatische Priifungen
— Man kann testen ob eine regulare Sprache leer ist
— Man kann testen ob ein Wort zu einer regularen Sprache gehort

— Man kann testen ob zwei regulare Sprachen gleich sind

e Minimierung von Automaten

— Ein Automat kann minimiert werden indem man aquivalente Zustande

zusammenlegt und unerreichbare Zustande entfernt

e Pumping Lemma

— Wiederholt man einen bestimmten Teil ausreichend grofier Worte einer
regularen Sprache beliebig oft, so erhalt man immer ein Wort der Sprache

— Verwendbar zur Widerlegung von Regularitat
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