
Theoretische Informatik I

Einheit 2.6

Eigenschaften regulärer Sprachen

1. Abschlußeigenschaften

2. Prüfen von Eigenschaften

3. Wann sind Sprachen nicht regulär?

Theoretische Informatik I §2: 1 Eigenschaften regulärer Sprachen

Abschlußeigenschaften, wozu?

Zeige, daß bestimmte Operationen auf regulären

Sprachen wieder zu regulären Sprachen führen

• Wiederverwendung von “Sprachmodulen”
– Schematische Komposition von

· Grammatiken zur Erzeugung von Sprachen

· Automaten zur Erkennung von Sprachen

· Regulären Ausdrücken

• Schematische Konstruktion ist effektiver
– Fehlerfreier Aufbau sehr komplexer Grammatiken / Automaten

+ Schematische Optimierung / Minimierung

– Konstruktion “von Hand” oft fehleranfällig

• Beispiel: Literale einer Programmiersprache
– Bilde Automaten für Tokenklassen: Zahlen, Bezeichner, Schlüsselworte, ...

– Konstruktion liefert Automaten für alle Arten von Literalen

Theoretische Informatik I §2: 2 Eigenschaften regulärer Sprachen

Abschlußeigenschaften, präzisiert

Zeige: L1, L2 regulär ⇒ L1 op L2 regulär

• Es gilt Abgeschlossenheit unter 9 Operationen

– Die Vereinigung zweier regulärer Sprachen ist regulär L1 ∪ L2

– Das Komplement einer regulären Sprache ist regulär L

– Der Durchschnitt zweier regulärer Sprachen ist regulär L1 ∩ L2

– Die Differenz zweier regulärer Sprachen ist regulär L1 - L2

– Die Spiegelung einer regulären Sprache ist regulär LR

– Die Hülle einer regulären Sprache ist regulär L∗

– Die Verkettung zweier regulärer Sprachen ist regulär L1◦L2

– Jeder Homomorphismus einer regulären Sprache ist regulär h(L)

– Jeder inverse Homomorphismus einer regulären Sprache ist regulär h−1(L)

• Nachweis durch Verwendung aller Modelle

– DEA, NEA, ε-NEA, reguläre Ausdrücke, Typ-3 Grammatiken

– Modelle sind ineinander umwandelbar – wähle das passendste

Theoretische Informatik I §2: 3 Eigenschaften regulärer Sprachen

Abschluß unter Vereinigung, Verkettung und Hüllte

Beweisführung mit regulären Ausdrücken

• L1, L2 regulär ⇒ L1 ∪ L2 regulär

L1, L2 regulär

⇒ Es gibt reguläre Ausdrücke E1, E2 mit L1 = L(E1), L2 = L(E2)

⇒ L1 ∪ L2 = L(E1) ∪ L(E2) = L(E1+E2) regulär

• L1, L2 regulär ⇒ L1◦L2 regulär

L1, L2 regulär

⇒ Es gibt reguläre Ausdrücke E1, E2 mit L1 = L(E1), L2 = L(E2)

⇒ L1◦L2 = L(E1)◦L(E2) = L(E1◦E2) regulär

• L regulär ⇒ L∗ regulär

L regulär

⇒ Es gibt einen regulären Ausdruck E mit L = L(E)

⇒ L∗ = (L(E))∗ = L(E∗) regulär

Theoretische Informatik I §2: 4 Eigenschaften regulärer Sprachen

Abschluß unter Komplementbildung

Beweisführung mit endlichen Automaten

• L regulär ⇒ L regulär

Komplementiere akzeptierende Zustände des erkennenden Automaten

L regulär

⇒ Es gibt einen DEA A = (Q, Σ, δ, q0, F) mit L = L(A)

⇒ L = L(A) = {w ∈Σ∗ | δ̂(q0, w) 6∈F} = {w ∈Σ∗ | δ̂(q0, w) ∈Q−F}

= L(Q, Σ, δ, q0, Q−F) regulär

• Beispiel: Komplementierung von (0+1)∗01

– Zugehöriger DEA

-
Start

R

1

-
0

R

0

-
1

�

0I 1 0
{q

0
} {q

0
,q

1
} {q

0
,q

2
}

– Komplementautomat erkennt

Worte die nicht mit 01 enden

– Regulärer Ausdruck durch Zustandseliminationsverfahren erzeugbar

Theoretische Informatik I §2: 5 Eigenschaften regulärer Sprachen

Abschluß unter Durchschnitt und Differenz

• Einfache mathematische Beweise

L1, L2 regulär ⇒ L1∩L2 = L1∪L2 regulär

L1, L2 regulär ⇒ L1−L2 = L1∩L2 regulär

• Produktkonstruktion auf endlichen Automaten

Simultane Abarbeitung von Worten in beiden Automaten

Start

*

j

Eingabe

-

-

A1

A2

j

*
und -akzeptieren

L1, L2 regulär

⇒ Es gibt DEAs A1 = (Q1, Σ, δ
1
, q

0,1
, F1)

und A2 = (Q2, Σ, δ
2
, q

0,2
, F2)

mit L1 = L(A1), L2 = L(A2)

⇒ L1 ∩ L2 = {w ∈Σ∗ | δ̂1(q0,1
, w) ∈F1 ∧ δ̂2(q0,2

, w) ∈F2}

= {w ∈Σ∗ | (δ̂1(q0,1
, w), δ̂2(q0,2

, w)) ∈F1×F2}

Konstruiere A = (Q1×Q2, Σ, δ, (q
0,1

,q
0,2

), F1×F2)

mit δ((p, q),a) = (δ
1
(p,a), δ

2
(q,a)) für p ∈Q1, q ∈Q2, a ∈Σ

⇒ L1 ∩ L2 = L(A) regulär

Theoretische Informatik I §2: 6 Eigenschaften regulärer Sprachen

Produktkonstruktion am Beispiel

Theoretische Informatik I §2: 7 Eigenschaften regulärer Sprachen

Abschluß unter Spiegelung

L regulär ⇒ LR={wn..w1 | w1..wn ∈ L} regulär

• Beweisführung mit Automaten

– Bilde Umkehrautomaten zu A = (Q, Σ, δ, q0, F) mit L=L(A)

· Umkehrung der Pfeile im Diagramm: δR(q, a) = q′ g.d.w. δ(q′, a) = q

· q0 wird zum akzeptierenden Zustand: F R = {q0}

· Neuer Startzustand qR
0 mit ε-Übergängen zu allen q ∈F

• Induktiver Beweis mit regulären Ausdrücken

Sei L = L(E) für einen regulären Ausdruck

– Für E ∈ {∅, ε, a} ist LR = L = L(E) regulär

– Für E = E1+E2 ist LR = (L(E1)∪L(E2))
R = L(E1)

R∪L(E2)
R regulär

– Für E = E1◦E2 ist LR = (L(E1)◦L(E2))
R = L(E2)

R◦L(E1)
R regulär

– Für E = E∗
1 ist LR = L(E∗

1)
R = (L(E1)

R)∗ regulär

• Beispiel: Spiegelung von L((0+1)0∗)

– LR = L((0∗)R(0+1)R) = L((0R)∗(0R+1R)) = L(0∗(0+1))

Theoretische Informatik I §2: 8 Eigenschaften regulärer Sprachen

Abschluß unter Homomorphismen

L regulär, h Homomorphismus ⇒ h(L) regulär

h:Σ→Σ’ ist Homomorphismus, wenn h(v1..vn) = h(v1)..h(vn)
– Homomorphismen sind mit endlichen (Ein-/Ausgabe) Automaten berechenbar

h(L)={h(w) |w ∈L} ⊆ Σ’∗ ist das Abbild der Worte von L unter h

• Beweis mit Grammatiken

L regulär

⇒ Es gibt eine Typ-3 Grammatik G = (V , Σ, P , S) mit L = L(G)

⇒ h(L) = h(L(G)) = {h(v1)..h(vn) ∈Σ′∗ | S
∗

−→ v1..vn}

Für A→v B ∈P erzeuge Regeln A→a1B1, B1→a2B2, ... Bk−1→akB,

wobei h(v) = a1..ak und alle Bi neue Hilfsvariablen

Sei Ph die Menge dieser Regeln und Vh die Menge ihrer Hilfsvariablen

Für Gh = (Vh, Σ’, Ph, S) gilt A→v B ∈P ⇔ A
∗

−→ Gh
h(v) B

und S
∗

−→ Gv1..vn ⇔ S
∗

−→ Gh
h(v1)..h(vn)

⇒ h(L) = {h(v1)..h(vn) ∈Σ′∗ | S
∗

−→ Gh
h(v1)..h(vn)} =L(Gh) regulär

Beweis mit regulären Ausdrücken in Hopcroft, Motwani, Ullman §4.2.3

Theoretische Informatik I §2: 9 Eigenschaften regulärer Sprachen

Abschluß unter inversen Homomorphismen

L regulär, h Homomorphismus ⇒ h−1(L) regulär

h−1(L)={w ∈Σ∗ |h(w) ∈L} ist das

Urbild der Worte von L unter h

h

h

h−1(L) L

Σ′∗−L

Σ∗−h−1(L)– z.B. Für L = L((01+10)∗),

h(a) = 01, h(b) = 10 ist h−1(L) = L((a+b))

• Beweis mit endlichen Automaten

Berechnung von h vor Abarbeitung der Worte im Automaten

Start
-

Eingabe

?

h

?

A -
akzeptieren
ablehnen

L regulär

⇒ Es gibt einen DEA A = (Q, Σ’, δ, q0, F)

mit L = L(A) = {w ∈Σ′∗ | δ̂(q0, w) ∈F}

⇒ h−1(L) = {w ∈Σ∗ | δ̂(q0, h(w)) ∈F}

Konstruiere Ah = (Q, Σ, δh, q
0
,F) mit δh(q, a) = δ̂(q, h(a))

Dann gilt δ̂h(q, w) = δ̂(q, h(w)) für alle q ∈Q und w ∈Σ∗

⇒ h−1(L) = {w ∈Σ∗ | δ̂h(q0, h(w)) ∈F} = L(Ah) regulär

Theoretische Informatik I §2: 10 Eigenschaften regulärer Sprachen

Tests für Eigenschaften regulärer Sprachen

• Welche Eigenschaften sind automatisch prüfbar?

– Ist die Sprache eines Automaten leer?

– Zugehörigkeit: Ist ein Wort w Element der Sprache eines Automaten?

– Äquivalenz: Beschreiben zwei Automaten dieselbe Sprache?

Gleiche Fragestellung für Grammatiken und reguläre Ausdrücke

• Wechsel der Repräsentation ist effektiv

– NEA 7→ DEA: Teilmengenkonstruktion (exponentielle Aufblähung möglich)

– ε-NEA 7→ DEA: Hüllenbildung + Teilmengenkonstruktion

– DEA 7→ ε-NEA/NEA: Modifikation der Präsentation (Mengenklammern)

– DEA 7→ RA: Rk
ij-Methode oder Zustandselimination

– RA 7→ ε-NEA: induktive Konstruktion von Automaten

– DEA 7→ Typ-3 Grammatik: Regeln für Überführungsschritte einführen

– Typ-3 Grammatik 7→ NEA: Überführungstabelle codiert Regeln

Es reicht, Tests für ein Modell zu beschreiben

Theoretische Informatik I §2: 11 Eigenschaften regulärer Sprachen

Prüfe ob eine reguläre Sprache leer ist

• Nichttriviales Problem

– Automaten: Gibt es überhaupt einen akzeptierenden Pfad?

– Reguläre Ausdrücke: Wird mindestens ein einziges Wort charakterisiert?

– Grammatiken: Wird überhaupt ein Wort aus dem Startzustand erzeugt?

• Erreichbarkeitstest für DEA A = (Q, Σ, δ, q0, F)

– Wegen δ̂(q0, ε) = q0 ist q0 in 0 Schritten erreichbar

– q in k Schritten erreichbar, δ(q, a) = q′ ⇒ q′ in k+1 Schritten erreichbar

– L(A)=∅ ⇔ kein q ∈F in |Q| Schritten erreichbar

• Induktive Analyse für reguläre Ausdrücke

– L(∅)=∅, L(ε)6=∅, L(a)6=∅

– L((E))=∅ ⇔ L(E)=∅ keine Änderung

– L(E+F)=∅ ⇔ L(E)=∅ ∧ L(F)=∅ Vereinigung von Elementen

– L(E◦F)=∅ ⇔ L(E)=∅ ∨ L(F)=∅ Elemente beider Sprachen nötig

– L(E∗)6=∅, ε gehört immer zu L(E∗)

Theoretische Informatik I §2: 12 Eigenschaften regulärer Sprachen

Test auf Zugehörigkeit

• Unterschiedlich schwierig je nach Repräsentation

– Automaten: Gibt es einen akzeptierenden Pfad für w?

– Reguläre Ausdrücke: Wird das Wort w von der Charakterisierung erfasst?

– Grammatiken: Kann w aus dem Startzustand erzeugt werden?

• Abarbeitung durch DEA A = (Q, Σ, δ, q0, F)

– Bestimme q := δ̂(q0, w) und teste q ∈F

– Maximal |w| + |F | Arbeitsschritte

Test für andere Repräsentationen durch

Umwandlung in DEA

Theoretische Informatik I §2: 13 Eigenschaften regulärer Sprachen

Test auf Äquivalenz von Sprachen

• Wann sind zwei reguläre Sprachen gleich?

– Nichttrivial, da Beschreibungsformen sehr verschieden sein können

· Verschiedene Automaten, Grammatiken, Ausdrücke, Mischformen, ...

• Gibt es eine “kanonische” Repräsentation?

– z.B. · Transformiere alles in deterministische endliche Automaten

· Erzeuge Standardversion mit kleinstmöglicher Anzahl von Zuständen

– Äquivalenztest prüft dann, ob der gleiche Standardautomat erzeugt wird

• Wie standardisiert man Automaten?

– Entferne Zustände, die vom Startzustand unerreichbar sind

– Fasse Zustände zusammen, die für alle Worte “äquivalent” sind

· Es führen exakt dieselben Worte zu akzeptierenden Zuständen

– Ergibt minimalen äquivalenten Automaten

Theoretische Informatik I §2: 14 Eigenschaften regulärer Sprachen

Äquivalenztest für Zustände

• Äquivalenz der Zustände p und q (p ∼= q)

– Für alle Worte w ∈Σ∗ gilt δ̂(p,w) ∈F ⇔ δ̂(q, w) ∈F

– Die Worte müssen nicht zum gleichen Zustand führen

• Positives Prüfverfahren schwierig

– Man muß alle Worte überprüfen, die von einem Zustand ausgehen

– Man kann sich auf Worte der maximalen Länge |Q| beschränken

– Besser: Nichtäquivalente (unterscheidbare) Zustände identifizieren

• Table-Filling Algorithmus

Markiere Unterscheidbarkeit von Zuständen in Tabelle

– Start: p 6∼= q, falls p ∈F und q 6∈F

– Iteration: p 6∼= q, falls δ(p, a) 6∼= δ(q, a) für ein a ∈Σ

In jeder Iteration werden nur noch ungeklärte Paare überprüft

Nach maximal |Q| Iterationen sind alle Unterschiede bestimmt

Theoretische Informatik I §2: 15 Eigenschaften regulärer Sprachen

Äquivalenztest am Beispiel

A B C D E F G H

A \ × × × × × ×

B × \ × × × × ×

C × × \ × × × × ×

D × × × \ × × ×

E × × × \ × × ×

F × × × × \ × ×

G × × × × × × \ ×

H × × × × × × \

Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustände von anderen

2a. Eingabesymbol 0: Nur D und F führen zu akzeptierenden Zuständen

2b. Eingabesymbol 1: Nur B und H führen zu akzeptierenden Zuständen

3. Überprüfe Nachfolger von {A,E}, {A,G}, {B,H}, {D,F} und {E,G}.

4. Überprüfung von {A,E}, {B,H} und {D,F} gibt keine Unterschiede

Äquivalenklassen sind {A,E}, {B,H}, {D,F}, {C} und {G}

Theoretische Informatik I §2: 16 Eigenschaften regulärer Sprachen

Äquivalenztest für Sprachen

• Prüfverfahren

– Standardisiere Beschreibungsform in zwei disjunkte DEAs A1 und A2 um

– Vereinige Automaten zu A = (Q1∪Q2, Σ, δ
1
∪δ

2
, q′, F1∪F2)

– Bilde Äquivalenzklassen von A und teste ob q0,1 und q0,2 äquivalent sind

• Zwei DEAs für L(ε + (0 + 1)∗0))

– Äquivalenklassen sind {A,C,D} und {B,E}

– Da A und C äquivalent sind,

sind die Automaten äquivalent

Theoretische Informatik I §2: 17 Eigenschaften regulärer Sprachen

Minimierung endlicher Automaten

Konstruiere äquivalenten DEA

mit minimaler Menge von Zuständen

• Entferne überflüssige Zustände

– q ist überflüssig, wenn δ̂(q0, w)6=q für alle Worte w ∈Σ∗

– Reduziere Q zu Menge der erreichbaren Zustände (Verfahren auf Folie 11)

• Fasse äquivalente Zustände zusammen

– Bestimme Menge der Äquivalenzklassen von Q

– Setze Q′ als Menge der Äquivalenzklassen von Q

– Setze δ′(S, a) =
⋃

a ∈S
δ(q, a)

Wohldefiniert, da alle Nachfolger äquivalenter Zustände äquivalent

• Minimalversion des Beispielautomaten:

• Resultierender Automat ist minimal

Theoretische Informatik I §2: 18 Eigenschaften regulärer Sprachen

Grenzen regulärer Sprachen

Wie zeigt man, daß eine Sprache L nicht regulär ist?

• Direkter Nachweis

– Zeige, daß kein endlicher Automat genau die Worte von L erkennt

– Sprache muß unendlich sein und komplizierte Struktur haben

– Technisches Hilfsmittel: Pumping Lemma

• Verwendung der Abschlußeigenschaften

– Zeige daß Regularität von L dazu führen würde, daß eine

als nichtregulär bekannte Sprache regulär sein müsste

– Häufige Technik: (inverse) Homomorphismen

Theoretische Informatik I §2: 19 Eigenschaften regulärer Sprachen

Das Pumping Lemma für reguläre Sprachen

• Warum ist {0n1n | n ∈ N} nicht regulär?

– Ein DFA muß alle Nullen beim Abarbeiten zählen und dann vergleichen

– Für n>|Q| muß ein Zustand von A doppelt benutzt worden sein

– Eine δ-Schleife mit k Zuständen bedeutet, daß A auch 0n+k1n akzeptiert

• Allgemeine Version: Pumping Lemma

Für jede reguläre Sprache L ∈L3 gibt es eine Zahl n ∈N, so

daß jedes Wort w ∈L mit Länge |w|≥n zerlegt werden kann

in w = x y z mit den Eigenschaften

(1) y 6=ε,

(2) |x y|≤n und

(3) für alle k ∈ N ist x yk z ∈ L

• Aussage ist wechselseitig konstruktiv

– Die Zahl n kann zu jeder regulären Sprache L bestimmt werden

– Die Zerlegung w = x y z kann zu jedem Wort w ∈L bestimmt werden

Theoretische Informatik I §2: 20 Eigenschaften regulärer Sprachen

Beweis des Pumping Lemmas

Für jede Sprache L ∈L3 gibt es ein n ∈N, so daß jedes w ∈L

mit |w|≥n zerlegbar ist in w = x y z mit den Eigenschaften

(1) y 6=ε, (2) |x y|≤n und (3) für alle k ∈ N ist x yk z ∈ L

• Beweis mit Automaten

– Sei L regulär und A = (Q, Σ, δ, q0, F) ein DEA mit L = L(A)

– Wähle n=|Q|. Betrachte w=a1..am mit |w|≥n und pi := δ̂(q0, a1..ai)

– Dann gibt es i, j mit 0≤i<j≤n und pi = pj (Schubfachprinzip)

– Zerlege w in w = x y z mit x=a1..ai, y=ai+1..aj und z=aj+1..am

– Per Konstruktion gilt y 6=ε, |x y|≤n und δ̂(pi, y
k) = pi für alle k ∈N

– Also δ̂(q0, x yk z)= δ̂(pi, y
k z) = δ̂(pi, y z) = δ̂(q0, x y z) = δ̂(q0, w) ∈F

Theoretische Informatik I §2: 21 Eigenschaften regulärer Sprachen

Anwendungen des Pumping Lemmas

• L1 = {0m1m | m ∈ N} ist nicht regulär

– Wir nehmen an L1 sei regulär

– Wähle n entsprechend des Pumping Lemmas und m>n

– Dann kann w = 0m1m zerlegt werden in x=0i, y=0j z=0m−i−j1m

mit j 6=0 und i+j≤n und x yk z ∈ L1 für alle k ∈N

– Aber für k=0 ist x y0 z = 0m−j1m 6∈ L1

– Dies ist ein Widerspruch, also ist L1 nicht regulär

• L2 = {w ∈ {1}∗ | |w| ist Primzahl} 6∈ L3

– Wir nehmen an L2 sei regulär

– Wähle n entsprechend des Pumping Lemmas und eine Primzahl p>n + 1

– Dann kann w zerlegt werden in x=1i, y=1j z=1p−i−j

mit j 6=0 und i+j≤n und x yk z ∈ L2 für alle k ∈N

– Aber für k=p−j ist |x yk z| = i + m(p−j) + p−i−j = (m+1)(p−j)

Da dies keine Primzahl ist (m+1≥2, p−j≥2), ist x yk z 6∈ L2

– Dies ist ein Widerspruch, also ist L2 nicht regulär

Theoretische Informatik I §2: 22 Eigenschaften regulärer Sprachen

Nachweis von L 6∈L3 mit Abschlußeigenschaften

• Anwendung des Pumping Lemmas ist oft mühsam

– Beweis für L3 = {(m)m | m ∈N} 6∈ L3 identisch mit dem von L1

– Beweis für L4 = {w ∈{0, 1}∗ | #0(w) = #1(w)} 6∈ L3 ähnlich

(#1(w) ist die Anzahl der Einsen in w)

• Verwende Umkehrung der Abschlußeigenschaften
L 6∈L3 ⇒ L 6∈L3 LR 6∈L3 ⇒ L 6∈L3

h(L) 6∈L3 ⇒ L 6∈L3 h−1(L) 6∈L3 ⇒ L 6∈L3

L∪L′ 6∈L3 ∧ L′ ∈L3 ⇒ L 6∈L3 L∩L′ 6∈L3 ∧ L′ ∈L3 ⇒ L 6∈L3

L◦L′ 6∈L3 ∧ L′ ∈L3 ⇒ L 6∈L3 L′◦L 6∈L3 ∧ L′ ∈L3 ⇒ L 6∈L3

... ...

• Anwendungsbeispiele

L3 6∈ L3: Wähle Homomorphismus h:{(,)}→{0,1} mit h(() = 0, h()) = 1

Dann ist h(L3) = {0m1m | m ∈N} = L1 6∈ L3

L4 6∈ L3: Es gilt L4 ∩ L(0∗+1∗) = L1 6∈ L3

DEAs können korrekte Klammerausdrücke nicht erkennen!

Theoretische Informatik I §2: 23 Eigenschaften regulärer Sprachen

Eigenschaften regulärer Sprachen im Rückblick

• Abschlußeigenschaften

– Operationen ∩, ∩, , -, R, ◦, ∗, h, h−1 erhalten Regularität von Sprachen

– Verwendbar zum Nachweis von Regularität oder zur Widerlegung

• Automatische Prüfungen

– Man kann testen ob eine reguläre Sprache leer ist

– Man kann testen ob ein Wort zu einer regulären Sprache gehört

– Man kann testen ob zwei reguläre Sprachen gleich sind

• Minimierung von Automaten

– Ein Automat kann minimiert werden indem man äquivalente Zustände

zusammenlegt und unerreichbare Zustände entfernt

• Pumping Lemma

– Wiederholt man einen bestimmten Teil ausreichend großer Worte einer

regulären Sprache beliebig oft, so erhält man immer ein Wort der Sprache

– Verwendbar zur Widerlegung von Regularität

