Theoretische Informatik I

Einheit 2.6

Eigenschaften regularer Sprachen

1. Abschlufleigenschaften
2. Prufen von Eigenschaften

3. Wann sind Sprachen nicht regular?

Werg,
\3{\ !(q,’;

L ]
.0 i@ !
‘E-P -!!-

L] q?f

mn



ABSCHLUSSEIGENSCHAFTEN, WOZU? I

Zeige, dafl bestimmte Operationen auf regularen

Sprachen wieder zu regularen Sprachen fiihren

e Wiederverwendung von “Sprachmodulen”
— Schematische Komposition von
- Grammatiken zur Erzeugung von Sprachen
- Automaten zur Erkennung von Sprachen
- Regularen Ausdriicken

e Schematische Konstruktion ist effektiver
— Fehlerfreier Aufbau sehr komplexer Grammatiken / Automaten
+ Schematische Optimierung / Minimierung
— Konstruktion “von Hand” oft fehleranfallig

e Beispiel: Literale einer Programmiersprache
— Bilde Automaten fiir Tokenklassen: Zahlen, Bezeichner, Schliisselworte, ...
— Konstruktion liefert Automaten fiir alle Arten von Literalen

THEORETISCHE INFORMATIK T §2: 1 FEIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSSEIGENSCHAFTEN, PRAZISIERT

Zeige: L1, Lo regular = Ly op Lo regular

e Es gilt Abgeschlossenheit unter 9 Operationen

— Die Vereinigung zweier regularer Sprachen ist regular L, U L,y
— Das Komplement einer regularen Sprache ist regular L
— Der Durchschnitt zweier regularer Sprachen ist regular LiN Ly
— Die Differenz zweier regularer Sprachen ist regular Lq- Lo
— Die Spiegelung einer regularen Sprache ist regular L%t
— Die Hiille einer regularen Sprache ist regular L~
— Die Verkettung zweier regularer Sprachen ist regular LqoL,
— Jeder Homomorphismus einer regularen Sprache ist regular h(L)

— Jeder inverse Homomorphismus einer reguldren Sprache ist regular h~'(L)

e Nachweis durch Verwendung aller Modelle
— DEA, NEA, eNEA, regulare Ausdriicke, Typ-3 Grammatiken

— Modelle sind ineinander umwandelbar — wahle das passendste

THEORETISCHE INFORMATIK T §2: 2 FEIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSS UNTER VEREINIGUNG, VERKETTUNG UND HULLTEl

Beweisfiihrung mit regularen Ausdriicken

e Ly, L> regular = Lq U Lo regular
Lq, L, regular
= Es gibt regulare Ausdriicke Fy, By mit Ly = L(Ey), Ly = L(E»)
= L, U Ly = L(Ey) U L(Es) = L(F1+E5) regular

e Ly, L regular = L10L5 regular
L,, L, regular
= Es gibt regulire Ausdriicke Ey, Fs mit Ly = L(Fy), Ly = L(E5)
= L,0Ls = L(FE,)oL(E,) = L(E0F,) regular

e L regular = L™ regular
L regular
= Es gibt einen regularen Ausdruck £ mit L = L(F)
= L* = (L(F))* = L(E*) regular

THEORETISCHE INFORMATIK I §2: 3 FEIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSS UNTER KOMPLEMENTBILDUNG I

Beweisfuhrung mit endlichen Automaten

o L reguliar = L regulir

Komplementiere akzeptierende Zustande des erkennenden Automaten

L regular

= Es gibt einen DEA A = (Q, X, 6, qo, F') mit L = L(A)

= L =L(A) = {weX* | §(q,w) ¢ F} = {weX* | 6(qy, w) cQ—F}
= L(Q, X, 9, qv, Q—F) regular

e Beispiel: Komplementierung von (0+1)*01
— Zugehoriger DEA ! 0

o
— {ay {apa}); @
o 1 \\_-/ 0
— Komplementautomat erkennt

Worte die nicht mit 01 enden

— Regularer Ausdruck durch Zustandseliminationsverfahren erzeugbar

EIGENSCHAFTEN REGULARER SPRACHEN

THEORETISCHE INFORMATIK T §2: 4




ABSCHLUSS UNTER DURCHSCHNITT UND DIFFERENZ I

e Einfache mathematische Beweise
Ly, Ly regulir = L;NLy = LUL, regulir

Lq, Ly regulir = L;—L, = L;NL, regular

e Produktkonstruktion auf endlichen Automaten

Simultane Abarbeitung von Worten in beiden Automaten

L., L, regular Bingabe

= Es gibt DEAs A, = (Q1, ¥, 0, q,,, F1) = Ay
und A2 = (Q% 27 527 q0727 F2) Stcmf\ w >@—>akzeptz'eren

2

mit Ly = L(Ay), Ly = L(Ay)
= Ly N Ly = {weX* | 61(q,,, w) e Fy A (g, w) e o}
= {weX" | (51(%,17 w), 52(%,27 w)) € Fix F}
Konstruiere A = (Q1xQ2, X, 0, (¢y,,9,,), F1xFY)
mit 6((p, q),a) = (0(p,a),0fq,a)) fir peQq, geQz, acl
= Ly, N Ly = L(A) regular

THEORETISCHE INFORMATIK I §2: ) FEIGENSCHAFTEN REGULARER SPRACHEN




PRODUKTKONSTRUKTION AM BEISPIEL I
1
Start . 0 .’ 0,1

(a)
0
Start . 1 .{l1
(b)

THEORETISCHE INFORMATIK I §2: 6 FEIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSS UNTER SPIEGELUNG

L regulir = LE={w,..w1|wi..wn € L} regulir

e Beweisfihrung mit Automaten
— Bilde Umkehrautomaten zu A = (Q, X3, 9, qo, ') mit L=L(A)
- Umkehrung der Pfeile im Diagramm: 6%(q,a) = ¢ g.d.w. 6(¢',a) = g
- go wird zum akzeptierenden Zustand: F'% = {qo}

- Neuer Startzustand gd’ mit e-Ubergingen zu allen g € F

e Induktiver Beweis mit regularen Ausdriicken
Sei L = L(F) fiir einen regularen Ausdruck
~Fir E e {0, ¢, alist L' = L = L(E) regular
~Fir E = E\+Es ist L = (L(E))UL(Ey)) = L(E))®PUL(E3)* regular
~TFiir E = E10F, ist L' = (L(E))oL(E»)) = L(Ey)"oL(E))* regulir
~Fir E = E} ist L = L(E)Y = (L(E)™)* regular

e Beispiel: Spiegelung von L((0+1)0%)
~ LI = L0 E0+1) ) = L((0")*(0F+15)) = L(0*(0+1))

THEORETISCHE INFORMATIK I §2: 7 FEIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSS UNTER HOMOMORPHISMEN I

L regulir, h Homomorphismus =- h(L) regular

h:>—> ist Homomorphismus, wenn h(vi..v,) = h(v1)..h(vy,)
— Homomorphismen sind mit endlichen (Fin-/Ausgabe) Automaten berechenbar

h(L)={h(w)|weL} <™ ist das Abbild der Worte von L unter h

e Beweis mit Grammatiken
L regular
= FEs gibt eine Typ-3 Grammatik G = (V, 2, P, S) mit L = L(G)
= h(L) = h(L(G)) = {h(vi)..h(v,) eX* | S == v;..0,}
Fiir A—v B € P erzeuge Regeln A—a1 By, Bi—asBs, ... B,_1—a;.B,
wobei h(v) = ay..a; und alle B; neue Hilfsvariablen
Sei P, die Menge dieser Regeln und Vj, die Menge ihrer Hilfsvariablen
Fir G, = (Vy,, &', Py, S) gilt A»vBeP < A——¢ h(v)B
und S —— gvi..v, & S —— g, h(v)..h(v,)
= h(L) = {h(v1)..h(v,) eX* | S — g, h(v1)..h(v,)} =L(G},) regulir

Beweis mit regularen Ausdriicken in Hopcroft, Motwani, Ullman §4.2.3

THEORETISCHE INFORMATIK I §2: 8 FEIGENSCHAFTEN REGULARER SPRACHEN




ABSCHLUSS UNTER INVERSEN HOMOMORPHISMEN

L regulir, h Homomorphismus = h~!(L) regulir

h='L)={weX* | h(w)e L} ist das —
Urbild der Worte von L unter h N@
—~7.B. Fur L = L((Ol"‘lO)*), Z*—h_l(l))

h(a) =01, h(b) =10 ist h'(L) = L((a+b))

e Beweis mit endlichen Automaten

Berechnung von A vor Abarbeitung der Worte im Automaten

akzeptieren
ablehnen

L regular E”ig“be
= FEs gibt einen DEA A = (Q, ¥, 6, qo, F) h

mit L = L(A) = {weX™ | S(QOaw) eI’} Start [T
= h Y(L) = {weZ* | §(qo, h(w)) e F}

Konstruiere A, = (Q, X, dp,, q,F") mit d,(q,a) = 0(q, h(a))
Dann gilt 05(q, w) = (g, h(w)) fiir alle ¢ €Q und w e X*
= h (L) = {weX* | 0u(qo, h(w)) e F} = L(A}) regulir

THEORETISCHE INFORMATIK I §2: 9 FEIGENSCHAFTEN REGULARER SPRACHEN




TESTS FUR EIGENSCHAFTEN REGULARER SPRACHEN I

e Welche Eigenschaften sind automatisch prufbar?
— Ist die Sprache eines Automaten leer?
— Zugehorigkeit: Ist ein Wort w Element der Sprache eines Automaten?
— Aquivalenz: Beschreiben zwei Automaten dieselbe Sprache?

Gleiche Fragestellung fir Grammatiken und regulare Ausdriicke

e Wechsel der Reprasentation ist effektiv
— NEA +— DEA: Teilmengenkonstruktion (exponentielle Aufbldhung moglich)
— e-NEA +— DEA: Hillenbildung 4 Teilmengenkonstruktion
— DEA — e NEA/NEA: Modifikation der Prasentation (Mengenklammern)
— DEA — RA: R@—Methode oder Zustandselimination
— RA — e NEA: induktive Konstruktion von Automaten
~ DEA +— Typ-3 Grammatik: Regeln fiir Uberfithrungsschritte einfithren
— Typ-3 Grammatik — NEA: Uberfithrungstabelle codiert Regeln

Es reicht, Tests fiir ein Modell zu beschreiben

THEORETISCHE INFORMATIK I §2: 10 FEIGENSCHAFTEN REGULARER SPRACHEN




PRUFE OB EINE REGULARE SPRACHE LEER IST I

e Nichttriviales Problem
— Automaten: Gibt es iiberhaupt einen akzeptierenden Pfad?
— Regulare Ausdriicke: Wird mindestens ein einziges Wort charakterisiert?

— Grammatiken: Wird uiberhaupt ein Wort aus dem Startzustand erzeugt?

e Erreichbarkeitstest fiir DEA A = (Q, X, 6, qq, F)

~ Wegen 6 (qo, €) = qo ist qo in 0 Schritten erreichbar
— q in k Schritten erreichbar, d(q,a) = ¢' = ¢ in k+1 Schritten erreichbar
-~ L(A)=0 < kein g€ F in |Q| Schritten erreichbar

e Induktive Analyse fur regulare Ausdricke

— L(0)=0, L(e)#0, L(a)#0

- L((E))=0 < L(E)=0 keine Anderung
~ L(E+F)=0 < L(E)=0 A L(F)=0 Vereinigung von Elementen
— L(EOF):@ = L(E):@ V L(F)Z@ Elemente beider Sprachen notig
— L(E*)#0, e gehort immer zu L(E*)

THEORETISCHE INFORMATIK I §2: 11 FEIGENSCHAFTEN REGULARER SPRACHEN




TEST AUF ZUGEHORIGKEIT I

e Unterschiedlich schwierig je nach Reprasentation

— Automaten: Gibt es einen akzeptierenden Pfad fir w?
— Regulare Ausdriicke: Wird das Wort w von der Charakterisierung erfasst?

— Grammatiken: Kann w aus dem Startzustand erzeugt werden?

e Abarbeitung durch DEA A = (Q, X, §, qq, F)

— Bestimme ¢ := 5((]0, w) und teste g € F

— Maximal |w|+ |F| Arbeitsschritte

Test fir andere Reprasentationen durch
Umwandlung in DEA

THEORETISCHE INFORMATIK I §2: 12 FEIGENSCHAFTEN REGULARER SPRACHEN




TEST AUF AQUIVALENZ VON SPRACHEN |

e Wann sind zwei regulare Sprachen gleich?
— Nichttrivial, da Beschreibungsformen sehr verschieden sein konnen

- Verschiedene Automaten, Grammatiken, Ausdriicke, Mischformen, ...

e (Gibt es eine “kanonische” Reprasentation?
— z.B. - Transformiere alles in deterministische endliche Automaten
- Erzeuge Standardversion mit kleinstmoglicher Anzahl von Zustanden

— Aquivalenztest priift dann, ob der gleiche Standardautomat erzeugt wird

e Wie standardisiert man Automaten?
— Entferne Zustande, die vom Startzustand unerreichbar sind
— Fasse Zustande zusammen, die fiir alle Worte “aquivalent” sind
- Es fithren exakt dieselben Worte zu akzeptierenden Zustanden

— Ergibt minimalen aquivalenten Automaten

THEORETISCHE INFORMATIK I §2: 13 FEIGENSCHAFTEN REGULARER SPRACHEN




AQUIVALENZTEST FUR ZUSTANDE |

e Aquivalenz der Zustinde p und ¢ (p = q)
— Fiir alle Worte w e X* gilt d(p, w) e F < 0(q, w) e F

— Die Worte miissen nicht zum gleichen Zustand fiithren

e Positives Prufverfahren schwierig
— Man muf3 alle Worte tiberpriifen, die von einem Zustand ausgehen
— Man kann sich auf Worte der maximalen Léange |Q| beschrénken

— Besser: Nichtaquivalente (unterscheidbare) Zustdnde identifizieren

e Table-Filling Algorithmus
Markiere Unterscheidbarkeit von Zustanden in Tabelle
— Start: p 2 ¢, falls pe Fund q ¢ F
— Iteration: p 2 ¢, falls d(p, a) Z (g, a) fiir ein a X
In jeder Iteration werden nur noch ungeklarte Paare uiberprift

Nach maximal |@Q)| Iterationen sind alle Unterschiede bestimmt

THEORETISCHE INFORMATIK I §2: 14 FEIGENSCHAFTEN REGULARER SPRACHEN




AQUIVALENZTEST AM BEISPIEL |

A/B|/C/ D E|F| G H
A\ [ X]|X]|X X | X | X
B| x|\ |X|X|X]|X]|X
ClX|X|\|X|X|X]|X]|X
D|x|x|x]\|X X | X
E X | X | X |\ |X]|X]|X
F|X|X|X X |\ | X|X
G| X | X|X[X|X|X]|\|X
H| X X | X | X | X | X |\
0 Tabelle der Unterschiede

1. Unterscheide akzeptierende Zustande von anderen

2a. Eingabesymbol 0: Nur D und F’ filhren zu akzeptierenden Zustanden
2b. Eingabesymbol 1: Nur B und H fiithren zu akzeptierenden Zustanden
3. Uberpriife Nachfolger von {AE}, {A.G}, {B.H}, {D,F} und {E.G}.
4. Uberpriifung von {A,E}, {B,H} und {D,F} gibt keine Unterschiede

Aquivalenklassen sind {A,E}, {B,H}, {D,F}, {C} und {G}

THEORETISCHE INFORMATIK I §2: 15 FEIGENSCHAFTEN REGULARER SPRACHEN




AQUIVALENZTEST FUR SPRACHEN |

e Prufverfahren

— Standardisiere Beschreibungsform in zwei disjunkte DEAs A; und Ay um
— Vereinige Automaten zu A = (Q1UQ9, X, 6,Jd,, ¢', F1UF)

— Bilde Aquivalenzklassen von A und teste ob qo.1 und qp 2 aquivalent sind

e Zwei DEAs fiir L(e + (0 4+ 1)*0)) 0 1

— Aquivalenklassen sind {A,C,D} und {B,E} = . 1 m
— Da A und C aquivalent sind,

sind die Automaten aquivalent

THEORETISCHE INFORMATIK I §2: 16 FEIGENSCHAFTEN REGULARER SPRACHEN




MINIMIERUNG ENDLICHER AUTOMATEN

Konstruiere aquivalenten DEA

mit minimaler Menge von Zustanden

e Entferne uberflussige Zustande
~ g ist iiberfliissig, wenn & (qo, w)#q fur alle Worte w € 3%

— Reduziere @) zu Menge der erreichbaren Zustande (Verfahren auf Folie 11)

e Fasse aquivalente Zustande zusammen
— Bestimme Menge der Aquivalenzklassen von Q

— Setze Q' als Menge der Aquivalenzklassen von Q

— Setze §'(S,a) = UGES(S(Q, a) :

Wohldefiniert, da alle Nachfolger aquivalenter Zustande aquivalent

e Minimalversion des Beispielautomaten:

® Resultierender Automat ist minimal

THEORETISCHE INFORMATIK I §2: 17 FEIGENSCHAFTEN REGULARER SPRACHEN




(GRENZEN REGULARER SPRACHEN I

Wie zeigt man, dafl eine Sprache L nicht regular ist?

e Direkter Nachweis
— Zeige, daf3 kein endlicher Automat genau die Worte von L erkennt
— Sprache muf3 unendlich sein und komplizierte Struktur haben

— Technisches Hilfsmittel: Pumping Lemma

e Verwendung der Abschlufleigenschaften
— Zeige dafl Regularitat von L dazu fithren wiirde, daf3 eine
als nichtregular bekannte Sprache regular sein miisste

— Haufige Technik: (inverse) Homomorphismen

THEORETISCHE INFORMATIK I §2: 18 FEIGENSCHAFTEN REGULARER SPRACHEN




DAs PuMPING LEMMA FUR REGULARE SPRACHEN I

e Warum ist {0"1" | n € N} nicht regular?
— Ein DFA muf alle Nullen beim Abarbeiten zahlen und dann vergleichen

— Fiir n>|@Q| muB ein Zustand von A doppelt benutzt worden sein
— Eine 0-Schleife mit k& Zustinden bedeutet, dal A auch 0"**1" akzeptiert

e Allgemeine Version: Pumping Lemma
Fiir jede regulare Sprache L € L3 gibt es eine Zahl n eN, so
daf3 jedes Wort w € L mit Lange |w|>n zerlegt werden kann
in w = xyz mit den Eigenschaften
(1) y#e,
(2) |ley|<n und
(3) fiir alle keNist zy*z ¢ L

e Aussage ist wechselseitig konstruktiv
— Die Zahl n kann zu jeder regularen Sprache L bestimmt werden

— Die Zerlegung w = x y z kann zu jedem Wort w € L bestimmt werden

THEORETISCHE INFORMATIK I §2: 19 FEIGENSCHAFTEN REGULARER SPRACHEN




BEWEIS DES PUMPING LEMMAS I

Fiir jede Sprache L € L3 gibt es ein n €N, so daf} jedes w e L

mit |w|>n zerlegbar ist in w = x y z mit den Eigenschaften

(1) y#e, (2) |zy|<n und (3) fiir alle keNist zy*2z ¢ L

e Beweis mit Automaten
—Sei L regular und A = (Q, %, 9, qo, F') ein DEA mit L = L(A)
— Wihle n=|Q|. Betrachte w=as..a,, mit |w|>n und p; == d(qo, a1..a;)
— Dann gibt es ¢, j mit 0<i<j<n und p; = p; (Schubfachprinzip)

— Zerlege w In w = xyz mit r=ay..q;, y=a;41..a; und 2=a;;1..ay,

Start a ... N

_____________ o .._;:':___-3%-1. .

— Per Konstruktion gilt y=£e, |zy|<n und d(p;,y") = p; fiir alle kN
~ Also d(qo, 2 y* 2)=0(pi,y" 2) = (pi,y 2) = 6(qo, 2y 2) = 0(qo, w) € F

THEORETISCHE INFORMATIK I §2: 20 FEIGENSCHAFTEN REGULARER SPRACHEN




ANWENDUNGEN DES PUMPING LEMMAS I

e L1 = {0™1™ | m €N} ist nicht regular
— Wir nehmen an L; sei regular
— Wahle n entsprechend des Pumping Lemmas und m>n
— Dann kann w = 0™1™ zerlegt werden in 2=0", y=0/ z=0""""/1"
mit j£0 und i+j<n und zy* z € L, fiir alle keN
— Aber fir k=0ist z ¢’z = 0" 71" ¢ L,

— Dies ist ein Widerspruch, also ist L nicht regular

Lo ={we{l1}* | |w| ist Primzahl} ¢ L3
— Wir nehmen an Ly sei regular
— Wabhle n entsprechend des Pumping Lemmas und eine Primzahl p>n + 1
— Dann kann w zerlegt werden in x=1", y=1/ z=17"""/
mit j£0 und i+j<n und zy* z € L, fiir alle keN
— Aber fiir k=p—j ist |zy* 2| =i + m(p—j) + p—i—j = (m+1)(p—j)
Da dies keine Primzahl ist (m+1>2, p—j>2), ist xy* 2 ¢ L,

— Dies ist ein Widerspruch, also ist Lo nicht regular

THEORETISCHE INFORMATIK I §2: 21 FEIGENSCHAFTEN REGULARER SPRACHEN




NACHWEIS VON L ¢ /L3 MIT ABSCHLUSSEIGENSCHAFTEN I

e Anwendung des Pumping Lemmas ist oft mithsam
— Beweis fiir Ly = {(™)™ | meN} ¢ L3 identisch mit dem von I
— Beweis fiir Ly = {we{0,1}* | #o(w) = #1(w)} ¢ L3 &hnlich
(#1(w) ist die Anzahl der Einsen in w)

e Verwende Umkehrung der Abschlufleigenschaften
Lé¢ls = Lels Li¢Ls = Le¢Ls
h(L)¢Ls = L¢Ls hY(L)¢Ls = L¢L3
LUL ¢Ls n L'els = Lg¢Lls LNL' ¢Ls n L'els = L¢Lls
Lol ¢Lq n L'els = L¢ls L'oLg¢lLs nLcly = L¢Lls

e Anwendungsbeispiele
L3 ¢ L3: Wéhle Homomorphismus h:{(,)}—{0,1} mit h(() =0, h()) =1
Dann ist h(Lg) = {0™1™ | meN} = Ly ¢ L3
Ly ¢ L3 Esgilt Ly N L(0*+1%) = Ly ¢ L3

DEAs konnen korrekte Klammerausdriucke nicht erkennen!

THEORETISCHE INFORMATIK I §2: 22 FEIGENSCHAFTEN REGULARER SPRACHEN




EIGENSCHAFTEN REGULARER SPRACHEN IM RUCKBLICK I

e Abschlufleigenschaften
— Operationen N, N, —, -, . o, * h, h~! erhalten Regularitiit von Sprachen

— Verwendbar zum Nachweis von Regularitat oder zur Widerlegung

e Automatische Prufungen
— Man kann testen ob eine regulare Sprache leer ist
— Man kann testen ob ein Wort zu einer regularen Sprache gehort

— Man kann testen ob zwei regulare Sprachen gleich sind

e Minimierung von Automaten

— Ein Automat kann minimiert werden indem man aquivalente Zustande

zusammenlegt und unerreichbare Zustande entfernt

e Pumping Lemma

— Wiederholt man einen bestimmten Teil ausreichend grofler Worte einer
regularen Sprache beliebig oft, so erhalt man immer ein Wort der Sprache

— Verwendbar zur Widerlegung von Regularitat

THEORETISCHE INFORMATIK I §2: 23 FEIGENSCHAFTEN REGULARER SPRACHEN




