
Theoretische Informatik I

Einheit 3

Kontextfreie Sprachen

1. Kontextfreie Grammatiken

2. Pushdown Automaten

3. Eigenschaften kontextfreier Sprachen

Theoretische Informatik I

Einheit 3.1

Kontextfreie Grammatiken

1. Grammatiken und Ableitungen

2. Ableitungsbäume

3. Mehrdeutigkeiten

Theoretische Informatik I §3: 1 Kontextfreie Grammatiken

Grammatiken für Programmiersprachen

• Grammatiken beschreiben Aufbau von Sprachen

– Produktionsregeln generieren nichtdeterministisch alle Worte der Sprache

– Grammatiken können sehr komplexe Sprachen beschreiben

– Chomsky Hierarchie klassifiziert Grammatiken nach “Freiheitsgraden”

• Typ-3 Grammatiken sind einfach & effizient

– Umwandelbar in endlichen Automaten und reguläre Ausdrücke

– Erkennung von Worten der Sprache in “Echtzeit”

• Programmiersprachen können nicht regulär sein

– Korrekte Klammerausdrücke / Schachtelungen sind nicht regulär

– Die meisten Programmstrukturen enthalten Schachtelungen

· Blöcke, if-then-else, arithmetische Ausdrücke, . . .

⇓
Syntaxanalyse und Compilation von Programmier-

sprachen braucht kontextfreie Grammatiken

Theoretische Informatik I §3: 2 Kontextfreie Grammatiken

Anwendungen kontextfreier Sprachen

Alle bedeutenden Computersprachen sind kontextfrei

• Programmiersprachen

– Compiler kann kontextfreie Grammatiken effizient verarbeiten

– Parser kann aus kontextfreier Grammatik automatisch erzeugt werden

· Standard Unix tool YACC unterstützt schnellen Compilerentwurf

• Markup Sprachen

– HTML: Formattierung von Dokumenten mit Links zu Programmaufrufen

– XML: Einheitliche Beschreibung der Semantik von Dokumenten

Beide Sprachen erfordern die Mächtigkeit von kontextfreie Grammatiken

Mehr in HMU §5.3

Theoretische Informatik I §3: 3 Kontextfreie Grammatiken

Kontextfreie Grammatiken – Grundbegriffe

• Eine kontextfreie Grammatik (kfG) ist ein

4-Tupel G = (V , T , P , S) mit
– T endliches Terminalalphabet

– V endliches Hilfsalphabet mit V ∩T = ∅

– P⊆V×Γ∗ endliche Menge der Produktionen (wobei Γ = V ∪T)

– S ∈V Startsymbol

Die übliche Schreibweise für Produktionen (A, r) ∈P ist A→r

Eine kompakte Notation für A→r1, A→r2..A→rn ist A→r1|r2|..|rn

• Ableitungbarkeit in G

– w −→ z ≡ ∃x, y ∈Γ∗. ∃A→r ∈ P . w=xA y ∧ z=x r y

– w
∗−→ z ≡ ∃n ∈N. w

n
−→ z

wobei w
0−→ z ≡ w=z und w

n+1−→ z ≡ ∃u ∈Γ∗. w−→ u ∧ u
n

−→ z

• Von G erzeugte Sprache:

L(G) ≡ {w ∈T ∗ | S
∗

−→w}

Theoretische Informatik I §3: 4 Kontextfreie Grammatiken

Grammatik für geschachtelte Klammerausdrücke

G4 = ({S}, {(,)}, {S→(S), S→ε}, S)

• Zeige L(G4) = {(k)k | k ∈ N}

• Beweise durch Induktion über Länge der Ableitung

– ∀k ∈ N. ∀w ∈ {(,)}∗. S
k+1−→ w ⇔ w = (k)k

Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w = ε ⇔ w = (
0
)

0 √
Induktionsschritt

– Es gelte ∀v ∈{(,)}∗. S
k+1
−→ v ⇔ v = (

k
)

k

– S
k+2
−→w ⇔ S→(S)

k+1
−→w

⇔ ∃v ∈{(,)}∗. S
k+1
−→ v ∧ w = (v)

⇔ ∃v ∈{(,)}∗. v = (
k
)

k
∧ w = (v) (Annahme)

⇔ w = (
k+1

)
k+1 √

{(k)k | k ∈ N} ∈ L2−L3

Theoretische Informatik I §3: 5 Kontextfreie Grammatiken

Kontextfreie Grammatik für Palindrome

L(G5) = {w ∈ {0, 1}∗ | w = wR}

• G5 = ({S}, {0, 1}, P, S) mit

P = {S→ε, S→0, S→1, S→0S0, S→1S1}
• Beweise durch Induktion über Länge der Ableitung

– ∀k ∈N. ∀w ∈{0, 1}∗. S
k+1−→ w ⇔ w = wR ∧ |w| ∈{2k, 2k+1}

Basisfall

– S
1

−→w ⇔ (S→w) ∈P ⇔ w ∈{0, 1, ε} ⇔ w = wR
∧ |w| ∈{0, 1} √

Induktionsschritt

– Es gelte ∀v ∈{0, 1}∗. S
k+1
−→ v ⇔ v = vR

∧ |v| ∈{2k, 2k+1}

– S
k+2
−→w ⇔ S→0S0

k+1
−→w ∨ S→1S1

k+1
−→w

⇔ ∃v ∈{0, 1}∗. S
k+1
−→ v ∧ w = 0v0 ∨ w = 1v1

⇔ ∃v ∈{0, 1}∗. v = vR
∧ |v| ∈{2k, 2k+1} ∧ w = 0v0 ∨ w = 1v1

⇔ w = wR
∧ |w| ∈{2k+2, 2k+3} √

Theoretische Informatik I §3: 6 Kontextfreie Grammatiken

Grammatik für Arithmetische Ausdrücke

• Ausdrücke über Operatoren + und ∗
– Bezeichner (Identifier): Buchstabe gefolgt von Buchstaben/Ziffern

· Buchstaben a, b, Ziffern 0, 1

– Ausdrücke (Expressions): Schachtelung mit +, ∗ und Klammern

• G6 = ({E, I}, {a, b, 0, 1, +, ∗, (,)}, P, E)

mit P = { E → I | E+E | E∗E | (E)

I → a | b | Ia | Ib | I0 | I1 }

Theoretische Informatik I §3: 7 Kontextfreie Grammatiken

Links- und rechtsseitige Ableitungen

Strategie für Auswahl von Produktionen

• Beliebige Ableitung

E −→ E∗E −→ I∗E −→ I∗(E)

−→ I∗(E+E) −→ I∗(I+E) −→ I∗(I+I) −→ I∗(a+I)

−→ I∗(a+I0) −→ I∗(a+I00) −→ I∗(a+b00) −→ a∗(a+b00)

• Linksseitige Ableitung w −→
L

z

– In w wird die am weitesten links stehende Variable ersetzt

E −→
L

E∗E −→
L

I∗E −→
L

a∗E −→
L

a∗(E)

−→
L

a∗(E+E) −→
L

a∗(I+E) −→
L

a∗(a+E) −→
L

a∗(a+I)

−→
L

a∗(a+I0) −→
L

a∗(a+I00) −→
L

a∗(a+b00)

• Rechtsseitige Ableitung w −→
R

z

– In w wird die am weitesten rechts stehende Variable ersetzt

E −→
R

E∗E −→
R

E∗(E) −→
R

E∗(E+E) −→
R

E∗(E+I)

−→
R

E∗(E+I0) −→
R

E∗(E+I00) −→
R

E∗(E+b00)

−→
R

E∗(I+b00) −→
R

E∗(a+b00) −→
R

I∗(a+b00) −→
R

a∗(a+b00)

Theoretische Informatik I §3: 8 Kontextfreie Grammatiken

Ableitungsbäume (Parsebäume)

Baumdarstellung von Ableitungen

E

E ∗ E

I (E)

a E + E

I I

a I 0

I 0

b

• Geordneter markierter Baum

– Innere Knoten mit Variablen A ∈V markiert

– Wurzel markiert mit Startsymbol

– Blätter mit Terminalsymbolen a ∈T oder mit ε markiert

– Hat ein innerer Knoten Markierung A und Nachfolger

mit Markierungen v1...vn so ist A→v1...vn ∈ P

• Exkurs: Notation für Bäume

– Baum: Sammlungen von Knoten mit Nachfolgerrelation

– Nachfolger sind geordnet

– Ein Knoten hat maximal einen Vorgänger

– Wurzel: Knoten ohne Vorgänger

– Blatt / Innerer Knoten: Knoten ohne/mit Nachfolger

– Nachkommen: transitive Hülle der Nachfolgerrelation

Theoretische Informatik I §3: 9 Kontextfreie Grammatiken

Ableitungsbäume repräsentieren Ableitungen

E

E ∗ E

I

a

(E)

E + E

I

a

I

I 0

I 0

b

• Blätter repräsentieren Terminalworte

– Auslesen durch Tiefensuche von links nach rechts

– a ∗ (a + b00)

• Baum repräsentiert Ableitungen

– Rekursive Erzeugung beginnend mit Wurzel

– Vorrang für tiefe linke Knoten ergibt Linksableitung

E −→
L

E∗E −→
L

I∗E −→
L

a∗E −→
L

a∗(E)

−→
L

a∗(E+E) −→
L

a∗(I+E) −→
L

a∗(a+E)

−→
L

a∗(a+I) −→
L

a∗(a+I0) −→
L

a∗(a+I00)

−→
L

a∗(a+b00)

– Vorrang für tiefe rechte Knoten ergibt Rechtssableitung

S
∗−→ w ⇔ es gibt einen Ableitungsbaum mit Blattmarkierung w

⇒ : Konstruiere Baum induktiv aus Linksableitung von w

⇐ : Extrahiere Linksableitung von w induktiv aus Baum HMU §5.2

Theoretische Informatik I §3: 10 Kontextfreie Grammatiken

Wann ist der Ableitungsbaum eindeutig?

E

+E

∗E

I

a

E

I

b

E

I

c

E

E ∗ E

I E + E

a I I

b c

• a ∗ b + c hat zwei Ableitungen in G6

E −→ E+E −→ E∗E+E −→ I∗E+E −→ a∗E+E −→ a∗I+E

−→ a∗b+E −→ a∗b+I −→ a∗b+c

E −→ E∗E −→ I∗E −→ a∗E −→ a∗E+E −→ a∗I+E

−→ a∗b+E −→ a∗b+I −→ a∗b+c

Beide Ableitungen sind Linksableitungen

• Grammatik G6 ist mehrdeutig

– Worte der Sprache können nicht eindeutig analysiert werden

Theoretische Informatik I §3: 11 Kontextfreie Grammatiken

Mehrdeutigkeit

• Eindeutige Grammatik G = (V , T , P , S)

– Jedes Wort w ∈L(G) hat genau einen Ableitungsbaum

– Andernfalls ist G mehrdeutig

(ein w ∈L(G) hat mindestens zwei verschiedene Ableitungsbäume)

– G6 ist mehrdeutig

• Eindeutige Sprache L

– Es gibt eine eindeutige Grammatik G mit L = L(G)

– Andernfalls ist L inhärent mehrdeutig

(eine eindeutige Grammatik kann nicht angegeben werden)

– Die Sprache von G6 ist eindeutig

– {0i1j2k | i=j ∨j=k} ist inhärent mehrdeutig 7→ Buch von Wegener

Programmiersprachen mussen eindeutig sein

Theoretische Informatik I §3: 12 Kontextfreie Grammatiken

Auflösung von Mehrdeutigkeiten

• G6 = ({E, I}, {a, b, 0, 1, +, ∗, (,)}, P, E)

mit P = { E → I | E+E | E∗E | (E), I → a | b | Ia | Ib | I0 | I1 }

– G6 beinhaltet keine Konventionen für ∗ und +

· ∗ bindet stärker als +

· ∗ und + werden als linkssassoziativ angesehen

· Alle anderen Lesarten benötigen Klammern

• Prioritätsregeln können Eindeutigkeit erzeugen

– Niedrigste Prioriät + steht linkssassoziativ außen 7→ T erme

– Höhere Prioriät ∗ steht linkssassoziativ innen 7→ F aktoren

– Faktoren können Bezeichner oder Ausdrücke in Klammern sein

G′
6 = ({E, T, F, I}, {a, b, 0, 1, +, ∗, (,)}, P ′, E)

mit P ′ = { E → T | E+T , T → F | T∗F , F → I | (E)

I → a | b | Ia | Ib | I0 | I1 }
G′

6 ist äquivalent zu G6 und eindeutig

Theoretische Informatik I §3: 13 Kontextfreie Grammatiken

Eindeutigkeit von G′
6

P ′ = { E → T | E+T , T → F | T∗F , F → I | (E)

I → a | b | Ia | Ib | I0 | I1 }

E

E + T

T T ∗ F

F F I

I

a

I c

b

Einziger Ableitungsbaum
für a ∗ b + c

• Jeder Term muß aus einer Faktorenfolge bestehen

– Faktorenfolge muß von rechts nach links erzeugt werden

– Faktoren sind nur Bezeichner oder Ausdrücke in Klammern

– Es gibt nur einen Parsebaum für f1 ∗ f2 ∗ ... ∗ fn

• Jeder Ausdruck muß aus einer Termfolge bestehen

– Termefolge muß von rechts nach links erzeugt werden

– Terme haben keine Ausdrücke als direkte Teile

– Es gibt nur einen Parsebaum für t1 + t2 + ... + tk

