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⇓

Speicher des Automaten sollte ein Stack sein
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• Endlicher Automat + Stack

– Endliche Steuerung liest Eingabesymbole

– Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

• Eingabe und Stack wird gleichzeitig bearbeitet

– Gelesenes Symbol wird aus Eingabe “entfernt”

– Zustand kann verändert werden

– Oberstes Stacksymbol wird durch (mehrere) neue Stacksymbole ersetzt

– Nichtdeterministische Entscheidungen und spontane ε-Übergänge möglich
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Pushdown-Automaten sind üblicherweise nichtdeterministisch!
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– Tabellarische Darstellung der Funktion δ

– Kennzeichnung von q0 durch einen Pfeil

– Kennzeichnung von F durch Sterne

– Σ, Γ und Q implizit durch die Tabelle bestimmt

– Wildcard (∗, ∗∗,..) für a ∈Σ oder X ∈Γ erlaubt
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Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen
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• Konfiguration: der wirkliche ‘Zustand’ des PDA

– Mehr als q ∈Q: auch Inhalt des Stacks und unverarbeitete Eingabe zählt

– Formal dargestellt als Tripel K = (q,w,γ) ∈ Q×Σ∗×Γ∗

• Konfigurationsübergang `
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∗
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• Konfigurationsübergänge für NEAs definierbar

– Konfigurationen sind Paare K = (q,w) ∈ Q×Σ∗

– (q,aw) ` (p,w), falls p ∈δ(q, a), K1 `
∗
K2 definiert wie oben

Allgemeinere, aber für endliche Automaten weniger intuitive Notation
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Wichtige Einsichten zu Konfigurationsübergängen

• Gilt (q,x,α) `
∗

(p,y,β) dann gilt auch

(q,xw,αγ) `
∗

(p,yw,βγ) für alle w ∈Σ∗, γ ∈Γ∗

Weder w noch γ werden bei der Verarbeitung angesehen

– Beweis durch Induktion über Anzahl der Konfigurationsschritte

– Kernargument: (q,aw,Xγ) ` (p,w,βγ), falls (p, β) ∈δ(q, a,X)

was hinter a bzw. X kommt, bleibt unverändert
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– Beweis durch Induktion über Anzahl der Konfigurationsschritte

– Kernargument: (q,aw,Xγ) ` (p,w,βγ), falls (p, β) ∈δ(q, a,X)

was hinter a bzw. X kommt, bleibt unverändert

• Gilt (q,xw,α) `
∗

(p,yw,β) dann gilt auch

(q,x,α) `
∗

(p,y,β) für alle w ∈Σ∗

Wenn w bisher nicht gelesen wurde, dann spielt es (noch) keine Rolle

Dagegen kann es von Bedeutung sein, ob im Stack hiner α etwas steht
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• Beide Akzeptanzdefinitionen sind äquivalent

– Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF )

– Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F ) kann ein PDA Pε

konstruiert werden mit LF (PF ) = Lε(Pε)



Theoretische Informatik I §3.2: 12 Pushdown Automaten

Sprachen des Palindromautomaten
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• LF (P ) = {wwR | w ∈ {0, 1}∗}
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R,wRZ0) `
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(q1,ε,Z0) ` (q2,ε,Z0)

⊆: Durch Induktion über Länge von x zeige
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∗
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konstruiert werden mit Lε(Pε) = LF (PF )

• Bei leerem Stack wechsele in Endzustand
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Korrektheitsbeweis durch Detailanalyse
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Umwandlung eines Lε-PDA in einen LF -PDA

• Gegeben Pε = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}

– Erkennt, daß ein (Teil-)Ausdruck mehr else als if enthält -
Start

q
0

R

if,Z / ZZ
else,Z / ε
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Transformation von LF in Lε

Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F ) kann ein PDA Pε

konstruiert werden mit LF (PF ) = Lε(Pε)

• Im Endzustand leere den Stack
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Sind PDAs wirklich die Maschinen für Typ-2 Sprachen?

L2 = LPDA = { L | ∃P :PDAs. L=Lε(P )}

• Konfigurationsübergänge =̂ Linksableitungen
– (q0, xy, Z0) `

∗
(q, y, A α) bedeutet, daß P nach Verarbeitung von x

im Zustand q ist und noch y und den Stack A α zu verarbeiten hat
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im Zustand q ist und noch y und den Stack A α zu verarbeiten hat

– A α muß gespeichert und beim Lesen von y komplett abgearbeitet werden

– Linksableitung S
∗

−→xA α
∗

−→xy erzeugt aus dem Startsymbol

zuerst das Wort xA α umd muß dann y aus A α ableiten

• Grammatik −→ Pushdown-Automat
– PDA muß Linksableitung auf Stack simulieren

– Erzeugte linke Terminalteilworte müssen mit Teil der Eingabe verglichen

werden um nächste Variable freizulegen

• Pushdown-Automat −→ Grammatik
– Grammatik muß Abarbeitung von Symbolen des Stacks simulieren

– Regeln beschreiben wie PDA zur Abarbeitung von X mit δ

Zwischenworte im Stack auf- und schließlich wieder abbaut
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Von Grammatiken zu Pushdown-Automaten

Zu jeder kontextfreien Grammatik G = (V, T, PG, S)

kann ein PDA P konstruiert werden mit L(G) = Lε(P )

• Stack simuliert Linksableitungen von G

– Beginne mit Startsymbol von G

– A ∈V wird durch die rechte Seite β einer Regel A→β ersetzt

– a ∈T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint

um nächste Variable der Linksableitungen im Stack zu identifizieren
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Von Grammatiken zu Pushdown-Automaten

Zu jeder kontextfreien Grammatik G = (V, T, PG, S)

kann ein PDA P konstruiert werden mit L(G) = Lε(P )

• Stack simuliert Linksableitungen von G

– Beginne mit Startsymbol von G

– A ∈V wird durch die rechte Seite β einer Regel A→β ersetzt

– a ∈T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint

um nächste Variable der Linksableitungen im Stack zu identifizieren

• P = ({q}, T, V ∪T, q, S, δ, ∅)

– δ(q,ε,A) = {(q,β) |A→β ∈PG} für alle A ∈V

– δ(q,a,a) = {(q,ε)} für alle a ∈T

• Korrektheitsbeweis L(G) = Lε(P )

– Zeige: (⊆) Wenn S = x1A1α1 −→L
..xmAmαm −→

L
w ∈T ∗ dann

gibt es yi mit (q, w, S) `
∗

(q, yi, Aiαi) und xiyi = w

(⊇) Wenn (q, w,X) `
∗

(q, ε, ε) dann X
∗

−→w
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Korrektheitsbeweis L(G)⊆Lε(P )

Wenn S = x1A1α1 −→
L

..xmAmαm −→
L

w ∈T ∗ (xi ∈T ∗, Ai ∈V )

dann gibt es yi mit (q, w, S) `
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L

w ∈T ∗

– Es folgt S = A1 und x1=α1=ε, also y1=w

– (q, w, S) `
∗

(q, w, S) gilt mit 0 Konfigurationsübergängen

• Induktionsschritt: S.. −→
L

xiAiαi −→
L

xi+1Ai+1αi+1 −→
L

w ∈T ∗

– xiAiαi −→L
xi+1Ai+1αi+1 verlangt Ai→β ∈PG für ein β

– Also (q,β) ∈δ(q,ε,Ai) also (q,yi,Aiαi) `
∗

(q,yi,βαi)

– Zerlege βαi in xAi+1αi+1. Dann kann yi in xyi+1 zerlegt werden

– Es folgt (q,xyi+1,xAi+1αi+1) `
∗

(q, yi+1, Ai+1αi+1) (PDA arbeitet x ab)

– Mit Induktionsannahme: (q, w, S) `
∗

(q, yi, Aiαi) `
∗

(q, yi+1, Ai+1αi+1)
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∗
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∗
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– xm+1=w und Am+1=αm+1=ym+1=ε

– Also (q, w, S) `
∗
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∗
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• Beweis durch Induktion über Länge der PDA Berechnung

• Basisfall: (q, w, X) ` (q, ε, ε)

– Es folgt X→ε ∈PG und w = ε, also X
∗

−→w

• Induktionsschritt: (q, w, X) `
n+1

(q, ε, ε)

– Da X oben im Stack steht, muß der erste Schritt die Form

(q, w,X) ` (q, w, Y1..Yk) für ein X→Y1..Yk ∈PG haben

– Dann gibt eine Zerlegung w = w1..wk mit
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– Per Induktionsannahme folgt Yi
∗

−→wi für alle i
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∗

−→w1..wk = w
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∗
−→ w

• Beweis durch Induktion über Länge der PDA Berechnung

• Basisfall: (q, w, X) ` (q, ε, ε)

– Es folgt X→ε ∈PG und w = ε, also X
∗

−→w

• Induktionsschritt: (q, w, X) `
n+1

(q, ε, ε)

– Da X oben im Stack steht, muß der erste Schritt die Form

(q, w,X) ` (q, w, Y1..Yk) für ein X→Y1..Yk ∈PG haben

– Dann gibt eine Zerlegung w = w1..wk mit

(q, w1..wk, Y1..Yk) `
∗

(q, w2..wk, Y2..Yk) `
∗

(q, ε, ε)

– Es folgt (q, wi..wk, Yi) `
∗

(q, wi+1..wk, ε) also (q, wi, Yi) `
∗

(q, ε, ε)

– Per Induktionsannahme folgt Yi
∗

−→wi für alle i

also X −→Y1..Yk
∗

−→w1..wk = w

• L(G)⊇Lε(P ) folgt nun mit w ∈Lε(P ) und X = S
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mit PG = { E → I | E+E | E∗E | (E)

I → a | b | Ia | Ib | I0 | I1 }
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Umwandlung einer Grammatik in einen PDA

• G6 = ({E, I}, {a, b, 0, 1, +, ∗, (, )}, PG, E)

mit PG = { E → I | E+E | E∗E | (E)

I → a | b | Ia | Ib | I0 | I1 }

• Erzeuge P = ({q}, T, V ∪T, q, E, δ, ∅)

mit V ={E, I} und T ={a, b, 0, 1, +, ∗, (, )}

– δ(q,ε,E) = {(q,I), (q,E+E), (q,E∗E), (q,(E))}

– δ(q,ε,I) = {(q,a), (q,b), (q,Ia), (q,Ib), (q,I0), (q,I1)}

– δ(q,a,a) = {(q,ε)}

– δ(q,b,b) = {(q,ε)}

– δ(q,0,0) = {(q,ε)}

– δ(q,1,1) = {(q,ε)}

– δ(q,+,+) = {(q,ε)}

– δ(q,∗,∗) = {(q,ε)}

– δ(q,(,() = {(q,ε)}

– δ(q,),)) = {(q,ε)}
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Von Pushdown-Automaten zu Grammatiken

Zu jedem PDA P = (Q, Σ, Γ, q0, Z0, δ, F ) kann eine kontextfreie

Grammatik G konstruiert werden mit Lε(P ) = L(G)

• Simuliere Abarbeitung eines Symbols vom Stack
– Verarbeite Variablen der Form (p, X, q):

“Entfernen von X kann von Zustand p zu Zustand q führen”

– Entfernen von X kann heißen, zuerst ein Y1..Ym auf- und dann abzubauen

– Beginne mit Erzeugung von Z0 und zeige, daß Z0 entfernt werden kann
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Von Pushdown-Automaten zu Grammatiken

Zu jedem PDA P = (Q, Σ, Γ, q0, Z0, δ, F ) kann eine kontextfreie

Grammatik G konstruiert werden mit Lε(P ) = L(G)

• Simuliere Abarbeitung eines Symbols vom Stack
– Verarbeite Variablen der Form (p, X, q):

“Entfernen von X kann von Zustand p zu Zustand q führen”

– Entfernen von X kann heißen, zuerst ein Y1..Ym auf- und dann abzubauen

– Beginne mit Erzeugung von Z0 und zeige, daß Z0 entfernt werden kann

• G = (Σ, {S}∪Q×Γ×Q, PG, S)
– S→(q0, Z0, q) ∈ PG für alle q ∈Q

– (p,X, qm)→a (p, Y1, q1)...(qm−1, Ym, qm) ∈ PG, für beliebige q1, .., qm ∈Q,

falls (p, Y1..Ym) ∈δ(q, a,X)

• Korrektheitsbeweis Lε(P ) = L(G) (viele Details)

– Zeige: (p,X, q)
∗

−→ w ∈Σ∗ genau dann, wenn (p,w,X) `
∗

(q, ε, ε)
⊆: Induktion über Länge der PDA Berechnung
⊇: Induktion über Länge der Ableitung
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Umwandlung eines PDA in eine Grammatik

• Gegeben P = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}
-

Start
q

0

R

if,Z / ZZ
else,Z / ε
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Umwandlung eines PDA in eine Grammatik

• Gegeben P = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}
-

Start
q

0

R

if,Z / ZZ
else,Z / ε

• G = ({if, else}, {S, (q, Z, q)}, PG, S)

mit PG = S → (q, Z, q)

(q, Z, q) → if (q, Z, q)(q, Z, q)

(q, Z, q) → else

Kurzschreibweise A für Hilfssymbol (q, Z, q) ergibt elegantere Darstellung

G = ({if, else}, {S, A}, PG, S) mit PG = S → A

A → ifAA

A → else
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Brauchen wir Nichtdeterministische Automaten?

• Grammatiken sind nichtdeterministisch

– Nichtdeterministische Automaten sind das “natürliche” Gegenstück

· Grammatikregeln führen zu mengenwertiger Überführungsfunktion

– “Wirkliche” Automaten müssen deterministisch sein
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• Grammatiken sind nichtdeterministisch

– Nichtdeterministische Automaten sind das “natürliche” Gegenstück

· Grammatikregeln führen zu mengenwertiger Überführungsfunktion

– “Wirkliche” Automaten müssen deterministisch sein

• Typ-3 Sprachen haben deterministische Modelle

– NEAs können in äquivalente DEAs umgewandelt werden

– Teilmengenkonstruktion kann Automaten exponentiell vergrößern

• Reichen deterministische PDAs für Typ-2 Sprachen?

– Überführungsfunktion δ:Q×(Σ∪{ε})×Γ → Q×Γ∗ muß eindeutig sein

– Gibt es für PDAs immer äquivalente deterministische PDAs?
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Deterministische Pushdown-Automaten – präzisiert

Ein Deterministischer Pushdown-Automat (DPDA)

ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F ) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

• Γ endliches Stackalphabet

• δ:Q×(Σ∪{ε})×Γ → Q×Γ∗ Überführungsfunktion

– δ(q,ε,X) nur definiert, wenn δ(q,a,X) für alle a ∈Σ undefiniert

• q0
∈Q Startzustand (Anfangszustand)

• Z0
∈Γ Initialsymbol des Stacks

• F ⊆Q Menge von akzeptierenden Zuständen (Endzustände)
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ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F ) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

• Γ endliches Stackalphabet

• δ:Q×(Σ∪{ε})×Γ → Q×Γ∗ Überführungsfunktion

– δ(q,ε,X) nur definiert, wenn δ(q,a,X) für alle a ∈Σ undefiniert

• q0
∈Q Startzustand (Anfangszustand)

• Z0
∈Γ Initialsymbol des Stacks

• F ⊆Q Menge von akzeptierenden Zuständen (Endzustände)

Erkannte Sprache

– LF (P ) = {w ∈Σ∗ | ∃q ∈F.∃β ∈Γ∗. (q0, w, Z0) `
∗

(q, ε, β) }

– Lε(P ) = {w ∈Σ∗ | ∃q ∈Q. (q0, w, Z0) `
∗

(q, ε, ε) }
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· Wenn stattdessen 0m110m (m6=n) kommt, darf P nicht akzeptieren

· Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)
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· Wenn 0n110n (großes n) gelesen ist, ist Stack durchs Zählen geleert

· Wenn noch einmal 0n110n gelesen wird, muß P akzeptieren

· Wenn stattdessen 0m110m (m6=n) kommt, darf P nicht akzeptieren

· Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)

• DPDAs erkennen nur eindeutige Typ-2 Sprachen

1. Für jeden DPDA P hat Lε(P ) eine eindeutige Grammatik

Für DPDAs ergibt die Umwandlung eine eindeutige Typ-2 Grammatik

· Folge der Konfigurationsübergänge bestimmt Linksableitung eindeutig)

2. Für jeden DPDA P hat LF (P ) eine eindeutige Grammatik

Umwandlung in Lε − DPDA kann deterministisch gemacht werden
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– Aussage gilt nur für Erkennung mit Endzustand

• L = {w#wR | w ∈ {0, 1}∗} ∈ LF (DPDA)−L(DEA)

– L ist nicht regulär

· Beweis durch Pumping Lemma, analog zu {wwR |w ∈{0, 1}∗}
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· Beweis durch Pumping Lemma, analog zu {wwR |w ∈{0, 1}∗}

– L = LF (P ) für folgenden DPDA P

-
Start

q
0

R

0,X / 0X
1,X / 1X

-
#,X / X

q
1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0

q
2

– P ist deterministisch, da ε-Übergang in q1 genau bei Stacksymbol Z0

• {0}∗ 6∈ Lε(DPDA)

– Wenn der Stack einmal leer ist, kann ein DPDA nicht mehr weiterarbeiten
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Pushdown-Automaten – Zusammenfassung

• Maschinenmodell für kontextfreie Sprachen

– Nichtdeterministischer endlicher Automat mit Stack und ε-Übergängen

– Erkennung von Worten durch Endzustand oder leeren Stack

– Erkennungsmodelle sind ineinander transformierbar

• Verhaltensanalyse durch Konfigurationsübergänge

– Konfigurationen beschreiben ‘Gesamtzustand’ von Pushdown-Automaten

– Konfigurationsübergänge verallgemeinern Überführungsfunktionen

• Äquivalent zu kontextfreien Grammatiken

– Umwandlung von Konfigurationsübergängen in Regeln und umgekehrt

• Deterministische PDAs sind weniger mächtig

– DPDAs erkennen nur eindeutige Typ-2 Sprachen

– Lε-DPDAs können nicht einmal alle regulären Sprachen erkennen


