
Theoretische Informatik I

Einheit 3.2

Pushdown Automaten

1. Das Maschinenmodell

2. Arbeitsweise & erkannte Sprache

3. Beziehung zu Typ-2 Sprachen

4. Deterministische PDAs

Theoretische Informatik I §3.2: 1 Pushdown Automaten

Ein Maschinenmodell für Typ-2 Sprachen

Interner Zustand

Zustandsüberführung δ

Endlicher Automat-Eingabe -
Akzeptieren

Ablehnen

Maschinenmodell für Typ-3 Sprachen

• Typ-3 Sprachen werden von NEAs akzeptiert

– Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol

· NEA verarbeitet pro Schritt ein Eingabesymbol

Theoretische Informatik I §3.2: 1 Pushdown Automaten

Ein Maschinenmodell für Typ-2 Sprachen

Interner Zustand

Zustandsüberführung δ

Endlicher Automat-Eingabe -
Akzeptieren

Ablehnen

Maschinenmodell für Typ-3 Sprachen

• Typ-3 Sprachen werden von NEAs akzeptiert

– Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol

· NEA verarbeitet pro Schritt ein Eingabesymbol

– Erzeugte Terminalsymbole stehen links von der aktuellen Variablen

· Verarbeitete Eingabesymbole führen zu aktuellem Zustand

Theoretische Informatik I §3.2: 1 Pushdown Automaten

Ein Maschinenmodell für Typ-2 Sprachen

Interner Zustand

Zustandsüberführung δ

Endlicher Automat-Eingabe -
Akzeptieren

Ablehnen

Maschinenmodell für Typ-3 Sprachen

• Typ-3 Sprachen werden von NEAs akzeptiert

– Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol

· NEA verarbeitet pro Schritt ein Eingabesymbol

– Erzeugte Terminalsymbole stehen links von der aktuellen Variablen

· Verarbeitete Eingabesymbole führen zu aktuellem Zustand

– Rechts von der aktuellen Variablen steht noch nichts

· Im Zustand ist nichts über noch unverarbeitete Eingabesymbole bekannt

Theoretische Informatik I §3.2: 1 Pushdown Automaten

Ein Maschinenmodell für Typ-2 Sprachen

Interner Zustand

Zustandsüberführung δ

Endlicher Automat-Eingabe -
Akzeptieren

Ablehnen

Maschinenmodell für Typ-2 Sprachen

• Typ-3 Sprachen werden von NEAs akzeptiert

– Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol

· NEA verarbeitet pro Schritt ein Eingabesymbol

– Erzeugte Terminalsymbole stehen links von der aktuellen Variablen

· Verarbeitete Eingabesymbole führen zu aktuellem Zustand

– Rechts von der aktuellen Variablen steht noch nichts

· Im Zustand ist nichts über noch unverarbeitete Eingabesymbole bekannt

• Welches Maschinenmodell paßt zu Typ-2 Sprachen?

– Kontextfreie Grammatiken können L1 = {0m1m | m ∈N} erzeugen

– Endliche Automaten haben kein Gedächtnis und können L1 nicht erkennen

Theoretische Informatik I §3.2: 1 Pushdown Automaten

Ein Maschinenmodell für Typ-2 Sprachen

Interner Zustand

Zustandsüberführung δ

Endlicher Automat-Eingabe -
Akzeptieren

Ablehnen

Maschinenmodell für Typ-2 Sprachen
6

?

Externer Speicher

• Typ-3 Sprachen werden von NEAs akzeptiert

– Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol

· NEA verarbeitet pro Schritt ein Eingabesymbol

– Erzeugte Terminalsymbole stehen links von der aktuellen Variablen

· Verarbeitete Eingabesymbole führen zu aktuellem Zustand

– Rechts von der aktuellen Variablen steht noch nichts

· Im Zustand ist nichts über noch unverarbeitete Eingabesymbole bekannt

• Welches Maschinenmodell paßt zu Typ-2 Sprachen?

– Kontextfreie Grammatiken können L1 = {0m1m | m ∈N} erzeugen

– Endliche Automaten haben kein Gedächtnis und können L1 nicht erkennen

Typ-2 Maschinenmodell benötigt externen Speicher

Theoretische Informatik I §3.2: 2 Pushdown Automaten

Welches Speichermodell brauchen Typ-2 Sprachen?

Benutze Analogie der Linksableitungen

• Links von der aktuellen Variablen A stehen

nur erzeugte Terminalsymbole

– Entspricht den schon verarbeiteten Eingabesymbolen

Theoretische Informatik I §3.2: 2 Pushdown Automaten

Welches Speichermodell brauchen Typ-2 Sprachen?

Benutze Analogie der Linksableitungen

• Links von der aktuellen Variablen A stehen

nur erzeugte Terminalsymbole

– Entspricht den schon verarbeiteten Eingabesymbolen

• Aber rechts von A steht bereits Text

Abarbeitung von A schiebt weiteren Text in die Mitte

– Automat muß Information speichern, die noch verarbeitet werden muß

– Information erklärt, was am Ende der Eingabe erwartet wird

Theoretische Informatik I §3.2: 2 Pushdown Automaten

Welches Speichermodell brauchen Typ-2 Sprachen?

Benutze Analogie der Linksableitungen

• Links von der aktuellen Variablen A stehen

nur erzeugte Terminalsymbole

– Entspricht den schon verarbeiteten Eingabesymbolen

• Aber rechts von A steht bereits Text

Abarbeitung von A schiebt weiteren Text in die Mitte

– Automat muß Information speichern, die noch verarbeitet werden muß

– Information erklärt, was am Ende der Eingabe erwartet wird

• Wenn A komplett abgearbeitet, springt Linksableitung

über Terminalsymbole zur nächsten Variablen

– Automat muß zuletzt erzeugte Information zuerst abarbeiten

Theoretische Informatik I §3.2: 2 Pushdown Automaten

Welches Speichermodell brauchen Typ-2 Sprachen?

Benutze Analogie der Linksableitungen

• Links von der aktuellen Variablen A stehen

nur erzeugte Terminalsymbole

– Entspricht den schon verarbeiteten Eingabesymbolen

• Aber rechts von A steht bereits Text

Abarbeitung von A schiebt weiteren Text in die Mitte

– Automat muß Information speichern, die noch verarbeitet werden muß

– Information erklärt, was am Ende der Eingabe erwartet wird

• Wenn A komplett abgearbeitet, springt Linksableitung

über Terminalsymbole zur nächsten Variablen

– Automat muß zuletzt erzeugte Information zuerst abarbeiten

⇓

Speicher des Automaten sollte ein Stack sein

Theoretische Informatik I §3.2: 3 Pushdown Automaten

Pushdown-Automaten intuitiv

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6
?

Stackd
e
f• Endlicher Automat + Stack

– Endliche Steuerung liest Eingabesymbole

Theoretische Informatik I §3.2: 3 Pushdown Automaten

Pushdown-Automaten intuitiv

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6
?

Stack
e
f

d

• Endlicher Automat + Stack

– Endliche Steuerung liest Eingabesymbole

– Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

Theoretische Informatik I §3.2: 3 Pushdown Automaten

Pushdown-Automaten intuitiv

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6
?

Stack
e
f

d

• Endlicher Automat + Stack

– Endliche Steuerung liest Eingabesymbole

– Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

• Eingabe und Stack wird gleichzeitig bearbeitet

– Gelesenes Symbol wird aus Eingabe “entfernt”

– Zustand kann verändert werden

Theoretische Informatik I §3.2: 3 Pushdown Automaten

Pushdown-Automaten intuitiv

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6
?

Stack
e
f

a
b
c

• Endlicher Automat + Stack

– Endliche Steuerung liest Eingabesymbole

– Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

• Eingabe und Stack wird gleichzeitig bearbeitet

– Gelesenes Symbol wird aus Eingabe “entfernt”

– Zustand kann verändert werden

– Oberstes Stacksymbol wird durch (mehrere) neue Stacksymbole ersetzt

Theoretische Informatik I §3.2: 3 Pushdown Automaten

Pushdown-Automaten intuitiv

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6
?

Stack
e
f

a
b
c

• Endlicher Automat + Stack

– Endliche Steuerung liest Eingabesymbole

– Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

• Eingabe und Stack wird gleichzeitig bearbeitet

– Gelesenes Symbol wird aus Eingabe “entfernt”

– Zustand kann verändert werden

– Oberstes Stacksymbol wird durch (mehrere) neue Stacksymbole ersetzt

– Nichtdeterministische Entscheidungen und spontane ε-Übergänge möglich

Theoretische Informatik I §3.2: 4 Pushdown Automaten

Pushdown-Automat für ‘gerade’ Palindrome

L = {wwR | w ∈ {0, 1}∗} ist kontextfrei

• Speichere w in q0

– In q0 wird je ein Symbol gelesen und auf den Stack gelegt

– Gelesenes Wort steht von unten nach oben im Stack

Theoretische Informatik I §3.2: 4 Pushdown Automaten

Pushdown-Automat für ‘gerade’ Palindrome

L = {wwR | w ∈ {0, 1}∗} ist kontextfrei

• Speichere w in q0

– In q0 wird je ein Symbol gelesen und auf den Stack gelegt

– Gelesenes Wort steht von unten nach oben im Stack

• Spontaner Wechsel “in der Mitte”

– Nichtdeterministischer ε-Übergang von q0 nach q1

– Im Stack steht w in umgekehrter Reihenfolge

Theoretische Informatik I §3.2: 4 Pushdown Automaten

Pushdown-Automat für ‘gerade’ Palindrome

L = {wwR | w ∈ {0, 1}∗} ist kontextfrei

• Speichere w in q0

– In q0 wird je ein Symbol gelesen und auf den Stack gelegt

– Gelesenes Wort steht von unten nach oben im Stack

• Spontaner Wechsel “in der Mitte”

– Nichtdeterministischer ε-Übergang von q0 nach q1

– Im Stack steht w in umgekehrter Reihenfolge

• Verarbeite wR in q1

– In q1 wird je ein Symbol gelesen und mit dem Stacksymbol verglichen

– Stacksymbol wird bei Gleichheit entfernt

Theoretische Informatik I §3.2: 4 Pushdown Automaten

Pushdown-Automat für ‘gerade’ Palindrome

L = {wwR | w ∈ {0, 1}∗} ist kontextfrei

• Speichere w in q0

– In q0 wird je ein Symbol gelesen und auf den Stack gelegt

– Gelesenes Wort steht von unten nach oben im Stack

• Spontaner Wechsel “in der Mitte”

– Nichtdeterministischer ε-Übergang von q0 nach q1

– Im Stack steht w in umgekehrter Reihenfolge

• Verarbeite wR in q1

– In q1 wird je ein Symbol gelesen und mit dem Stacksymbol verglichen

– Stacksymbol wird bei Gleichheit entfernt

• Leerer Stack akzeptiert

– Wenn Stack leer ist, wurde wR in q1 verarbeitet

Theoretische Informatik I §3.2: 5 Pushdown Automaten

Pushdown-Automaten – mathematisch präzisiert

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6 ?

Stack
e
f

a
b
c

Ein Pushdown-Automat (PDA, Kellerautomat)

ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

Theoretische Informatik I §3.2: 5 Pushdown Automaten

Pushdown-Automaten – mathematisch präzisiert

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6 ?

Stack
e
f

a
b
c

Ein Pushdown-Automat (PDA, Kellerautomat)

ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

• Γ endliches Stackalphabet

• δ:Q×(Σ∪{ε})×Γ → P(Q×Γ∗) Überführungsfunktion

Theoretische Informatik I §3.2: 5 Pushdown Automaten

Pushdown-Automaten – mathematisch präzisiert

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6 ?

Stack
e
f

a
b
c

Ein Pushdown-Automat (PDA, Kellerautomat)

ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

• Γ endliches Stackalphabet

• δ:Q×(Σ∪{ε})×Γ → P(Q×Γ∗) Überführungsfunktion

• q0
∈Q Startzustand (Anfangszustand)

• Z0
∈Γ Initialsymbol des Stacks

Theoretische Informatik I §3.2: 5 Pushdown Automaten

Pushdown-Automaten – mathematisch präzisiert

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6 ?

Stack
e
f

a
b
c

Ein Pushdown-Automat (PDA, Kellerautomat)

ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

• Γ endliches Stackalphabet

• δ:Q×(Σ∪{ε})×Γ → P(Q×Γ∗) Überführungsfunktion

• q0
∈Q Startzustand (Anfangszustand)

• Z0
∈Γ Initialsymbol des Stacks

• F ⊆Q Menge von akzeptierenden Zuständen (Endzustände)

Theoretische Informatik I §3.2: 5 Pushdown Automaten

Pushdown-Automaten – mathematisch präzisiert

Zustandsüberführung δ

Interner Zustand

Endliche Steuerung-Eingabe -
Akzeptieren

Ablehnen

6 ?

Stack
e
f

a
b
c

Ein Pushdown-Automat (PDA, Kellerautomat)

ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

• Γ endliches Stackalphabet

• δ:Q×(Σ∪{ε})×Γ → P(Q×Γ∗) Überführungsfunktion

• q0
∈Q Startzustand (Anfangszustand)

• Z0
∈Γ Initialsymbol des Stacks

• F ⊆Q Menge von akzeptierenden Zuständen (Endzustände)

Pushdown-Automaten sind üblicherweise nichtdeterministisch!

Theoretische Informatik I §3.2: 6 Pushdown Automaten

Pushdown-Automat für {wwR |w ∈{0, 1}∗}

-
Start

q0

Theoretische Informatik I §3.2: 6 Pushdown Automaten

Pushdown-Automat für {wwR |w ∈{0, 1}∗}

-
Start

q0

R

0,X / 0X
1,X / 1X

• Speichere w in q0

– Jedes gelesene Symbol wird dem Stack zugefügt

– δ(q0,a,X) = {(q0,aX)} für a ∈{0,1}, X ∈Γ

Theoretische Informatik I §3.2: 6 Pushdown Automaten

Pushdown-Automat für {wwR |w ∈{0, 1}∗}

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q1

• Speichere w in q0

– Jedes gelesene Symbol wird dem Stack zugefügt

– δ(q0,a,X) = {(q0,aX)} für a ∈{0,1}, X ∈Γ

• Spontaner ε-Übergang von q0 nach q1

– δ(q0,ε,X) = {(q1,X)} für X ∈Γ

Theoretische Informatik I §3.2: 6 Pushdown Automaten

Pushdown-Automat für {wwR |w ∈{0, 1}∗}

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q1

R

0,0 / ε
1,1 / ε

• Speichere w in q0

– Jedes gelesene Symbol wird dem Stack zugefügt

– δ(q0,a,X) = {(q0,aX)} für a ∈{0,1}, X ∈Γ

• Spontaner ε-Übergang von q0 nach q1

– δ(q0,ε,X) = {(q1,X)} für X ∈Γ

• Verarbeite wR in q1

– Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen

– δ(q1,a,a) = {(q1,ε)} für a ∈{0,1}

Theoretische Informatik I §3.2: 6 Pushdown Automaten

Pushdown-Automat für {wwR |w ∈{0, 1}∗}

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0

q2

• Speichere w in q0

– Jedes gelesene Symbol wird dem Stack zugefügt

– δ(q0,a,X) = {(q0,aX)} für a ∈{0,1}, X ∈Γ

• Spontaner ε-Übergang von q0 nach q1

– δ(q0,ε,X) = {(q1,X)} für X ∈Γ

• Verarbeite wR in q1

– Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen

– δ(q1,a,a) = {(q1,ε)} für a ∈{0,1}

• “Leerer” Stack akzeptiert (ε-Übergang nach q2)

– δ(q1,ε,Z0) = {(q2,Z0)}

Theoretische Informatik I §3.2: 6 Pushdown Automaten

Pushdown-Automat für {wwR |w ∈{0, 1}∗}

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0

q2

• Speichere w in q0

– Jedes gelesene Symbol wird dem Stack zugefügt

– δ(q0,a,X) = {(q0,aX)} für a ∈{0,1}, X ∈Γ

• Spontaner ε-Übergang von q0 nach q1

– δ(q0,ε,X) = {(q1,X)} für X ∈Γ

• Verarbeite wR in q1

– Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen

– δ(q1,a,a) = {(q1,ε)} für a ∈{0,1}

• “Leerer” Stack akzeptiert (ε-Übergang nach q2)

– δ(q1,ε,Z0) = {(q2,Z0)}

P = ({q0, q1, q2}, {0,1}, {0,1,Z0}, δ, q0, Z0, {q2})

Theoretische Informatik I §3.2: 7 Pushdown Automaten

Beschreibung von Pushdown-automaten

• Übergangsdiagramme

-
Start

q
0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q
1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q

2

Theoretische Informatik I §3.2: 7 Pushdown Automaten

Beschreibung von Pushdown-automaten

• Übergangsdiagramme

-
Start

q
0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q
1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q

2

– Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt

– Für (p, α) ∈δ(q, a,X), a ∈ (Σ∪ε) hat das Diagramm eine Kante q
a,X/α
−→ p

(mehrere Beschriftungen derselben Kante möglich)

– q0 wird durch einen mit Start beschrifteten Pfeil angezeigt

– Endzustände in F werden durch doppelte Kreise gekennzeichnet

– Σ und Γ implizit durch die Diagramm bestimmt, Initialsymbol heißt Z0

Theoretische Informatik I §3.2: 7 Pushdown Automaten

Beschreibung von Pushdown-automaten

• Übergangsdiagramme

-
Start

q
0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q
1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q

2

– Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt

– Für (p, α) ∈δ(q, a,X), a ∈ (Σ∪ε) hat das Diagramm eine Kante q
a,X/α
−→ p

(mehrere Beschriftungen derselben Kante möglich)

– q0 wird durch einen mit Start beschrifteten Pfeil angezeigt

– Endzustände in F werden durch doppelte Kreise gekennzeichnet

– Σ und Γ implizit durch die Diagramm bestimmt, Initialsymbol heißt Z0

Theoretische Informatik I §3.2: 7 Pushdown Automaten

Beschreibung von Pushdown-automaten

• Übergangsdiagramme

-
Start

q
0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q
1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q

2

– Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt

– Für (p, α) ∈δ(q, a,X), a ∈ (Σ∪ε) hat das Diagramm eine Kante q
a,X/α
−→ p

(mehrere Beschriftungen derselben Kante möglich)

– q0 wird durch einen mit Start beschrifteten Pfeil angezeigt

– Endzustände in F werden durch doppelte Kreise gekennzeichnet

– Σ und Γ implizit durch die Diagramm bestimmt, Initialsymbol heißt Z0

• Übergangstabellen Q Σ∪ε Γ Resultat

→ q
0

0 ∗ q
0
,0∗

→ q
0

1 ∗ q
0
,1∗

→ q
0

ε ∗ q
1
,∗

q
1

0 0 q
1
,ε

q
1

1 1 q
1
,ε

q
1

ε Z0 q
2
,Z0

* q
2

Theoretische Informatik I §3.2: 7 Pushdown Automaten

Beschreibung von Pushdown-automaten

• Übergangsdiagramme

-
Start

q
0

R

0,X / 0X
1,X / 1X

-
ε,X / X

q
1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q

2

– Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt

– Für (p, α) ∈δ(q, a,X), a ∈ (Σ∪ε) hat das Diagramm eine Kante q
a,X/α
−→ p

(mehrere Beschriftungen derselben Kante möglich)

– q0 wird durch einen mit Start beschrifteten Pfeil angezeigt

– Endzustände in F werden durch doppelte Kreise gekennzeichnet

– Σ und Γ implizit durch die Diagramm bestimmt, Initialsymbol heißt Z0

• Übergangstabellen Q Σ∪ε Γ Resultat

→ q
0

0 ∗ q
0
,0∗

→ q
0

1 ∗ q
0
,1∗

→ q
0

ε ∗ q
1
,∗

q
1

0 0 q
1
,ε

q
1

1 1 q
1
,ε

q
1

ε Z0 q
2
,Z0

* q
2

– Tabellarische Darstellung der Funktion δ

– Kennzeichnung von q0 durch einen Pfeil

– Kennzeichnung von F durch Sterne

– Σ, Γ und Q implizit durch die Tabelle bestimmt

– Wildcard (∗, ∗∗,..) für a ∈Σ oder X ∈Γ erlaubt

Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen

Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen

• Konfiguration: der wirkliche ‘Zustand’ des PDA

– Mehr als q ∈Q: auch Inhalt des Stacks und unverarbeitete Eingabe zählt

Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen

• Konfiguration: der wirkliche ‘Zustand’ des PDA

– Mehr als q ∈Q: auch Inhalt des Stacks und unverarbeitete Eingabe zählt

– Formal dargestellt als Tripel K = (q,w,γ) ∈ Q×Σ∗×Γ∗

Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen

• Konfiguration: der wirkliche ‘Zustand’ des PDA

– Mehr als q ∈Q: auch Inhalt des Stacks und unverarbeitete Eingabe zählt

– Formal dargestellt als Tripel K = (q,w,γ) ∈ Q×Σ∗×Γ∗

• Konfigurationsübergang `
∗

– Wechsel zwischen Konfigurationen durch Abarbeitung von Worten

Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen

• Konfiguration: der wirkliche ‘Zustand’ des PDA

– Mehr als q ∈Q: auch Inhalt des Stacks und unverarbeitete Eingabe zählt

– Formal dargestellt als Tripel K = (q,w,γ) ∈ Q×Σ∗×Γ∗

• Konfigurationsübergang `
∗

– Wechsel zwischen Konfigurationen durch Abarbeitung von Worten

– (q,aw,Xβ) ` (p,w,αβ), falls (p, α) ∈δ(q, a,X)

Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen

• Konfiguration: der wirkliche ‘Zustand’ des PDA

– Mehr als q ∈Q: auch Inhalt des Stacks und unverarbeitete Eingabe zählt

– Formal dargestellt als Tripel K = (q,w,γ) ∈ Q×Σ∗×Γ∗

• Konfigurationsübergang `
∗

– Wechsel zwischen Konfigurationen durch Abarbeitung von Worten

– (q,aw,Xβ) ` (p,w,αβ), falls (p, α) ∈δ(q, a,X)

– K1 `
∗

K2, falls K1 = K2 oder

es gibt eine Konfiguration K mit K1 ` K und K `
∗
K2

Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen

• Konfiguration: der wirkliche ‘Zustand’ des PDA

– Mehr als q ∈Q: auch Inhalt des Stacks und unverarbeitete Eingabe zählt

– Formal dargestellt als Tripel K = (q,w,γ) ∈ Q×Σ∗×Γ∗

• Konfigurationsübergang `
∗

– Wechsel zwischen Konfigurationen durch Abarbeitung von Worten

– (q,aw,Xβ) ` (p,w,αβ), falls (p, α) ∈δ(q, a,X)

– K1 `
∗

K2, falls K1 = K2 oder

es gibt eine Konfiguration K mit K1 ` K und K `
∗
K2

• Konfigurationsübergänge für NEAs definierbar

– Konfigurationen sind Paare K = (q,w) ∈ Q×Σ∗

– (q,aw) ` (p,w), falls p ∈δ(q, a), K1 `
∗
K2 definiert wie oben

Theoretische Informatik I §3.2: 8 Pushdown Automaten

Arbeitsweise von Pushdown-Automaten

Generalisiere δ̂ zu Konfigurationsübergängen

• Konfiguration: der wirkliche ‘Zustand’ des PDA

– Mehr als q ∈Q: auch Inhalt des Stacks und unverarbeitete Eingabe zählt

– Formal dargestellt als Tripel K = (q,w,γ) ∈ Q×Σ∗×Γ∗

• Konfigurationsübergang `
∗

– Wechsel zwischen Konfigurationen durch Abarbeitung von Worten

– (q,aw,Xβ) ` (p,w,αβ), falls (p, α) ∈δ(q, a,X)

– K1 `
∗

K2, falls K1 = K2 oder

es gibt eine Konfiguration K mit K1 ` K und K `
∗
K2

• Konfigurationsübergänge für NEAs definierbar

– Konfigurationen sind Paare K = (q,w) ∈ Q×Σ∗

– (q,aw) ` (p,w), falls p ∈δ(q, a), K1 `
∗
K2 definiert wie oben

Allgemeinere, aber für endliche Automaten weniger intuitive Notation

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

- (q
1
, 11, Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

- (q
1
, 11, Z

0
)

?
(q

2
, 11, Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

- (q
1
, 11, Z

0
)

?
(q

2
, 11, Z

0
)

q
(q

1
, 11, 11Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

- (q
1
, 11, Z

0
)

?
(q

2
, 11, Z

0
)

q
(q

1
, 11, 11Z

0
)

q
(q

1
, 1, 1Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

- (q
1
, 11, Z

0
)

?
(q

2
, 11, Z

0
)

q
(q

1
, 11, 11Z

0
)

q
(q

1
, 1, 1Z

0
)

?
(q

1
, ε, Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

- (q
1
, 11, Z

0
)

?
(q

2
, 11, Z

0
)

q
(q

1
, 11, 11Z

0
)

q
(q

1
, 1, 1Z

0
)

?
(q

1
, ε, Z

0
)

?
(q

2
, ε, Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

- (q
1
, 11, Z

0
)

?
(q

2
, 11, Z

0
)

q
(q

1
, 11, 11Z

0
)

q
(q

1
, 1, 1Z

0
)

?
(q

1
, ε, Z

0
)

?
(q

2
, ε, Z

0
)

q
(q

1
, 1, 111Z

0
)

Theoretische Informatik I §3.2: 9 Pushdown Automaten

Abarbeitung des Palindrom PDA

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

Verarbeitung von 1111

(q
0
, 1111, Z

0
)

?
(q

0
, 111, 1Z

0
)

q
(q

1
, 1111, Z

0
)

?
(q

0
, 11, 11Z

0
)

q
(q

1
, 111, 1Z

0
)

?
(q

0
, 1, 111Z

0
)

?
(q

0
, ε, 1111Z

0
)

?
(q

1
, ε, 1111Z

0
)

- (q
2
, 1111, Z

0
)

- (q
1
, 11, Z

0
)

?
(q

2
, 11, Z

0
)

q
(q

1
, 11, 11Z

0
)

q
(q

1
, 1, 1Z

0
)

?
(q

1
, ε, Z

0
)

?
(q

2
, ε, Z

0
)

q
(q

1
, 1, 111Z

0
)

?
(q

1
, ε, 11Z

0
)

Theoretische Informatik I §3.2: 10 Pushdown Automaten

Wichtige Einsichten zu Konfigurationsübergängen

• Gilt (q,x,α) `
∗

(p,y,β) dann gilt auch

(q,xw,αγ) `
∗

(p,yw,βγ) für alle w ∈Σ∗, γ ∈Γ∗

Weder w noch γ werden bei der Verarbeitung angesehen

– Beweis durch Induktion über Anzahl der Konfigurationsschritte

– Kernargument: (q,aw,Xγ) ` (p,w,βγ), falls (p, β) ∈δ(q, a,X)

was hinter a bzw. X kommt, bleibt unverändert

Theoretische Informatik I §3.2: 10 Pushdown Automaten

Wichtige Einsichten zu Konfigurationsübergängen

• Gilt (q,x,α) `
∗

(p,y,β) dann gilt auch

(q,xw,αγ) `
∗

(p,yw,βγ) für alle w ∈Σ∗, γ ∈Γ∗

Weder w noch γ werden bei der Verarbeitung angesehen

– Beweis durch Induktion über Anzahl der Konfigurationsschritte

– Kernargument: (q,aw,Xγ) ` (p,w,βγ), falls (p, β) ∈δ(q, a,X)

was hinter a bzw. X kommt, bleibt unverändert

• Gilt (q,xw,α) `
∗

(p,yw,β) dann gilt auch

(q,x,α) `
∗

(p,y,β) für alle w ∈Σ∗

Wenn w bisher nicht gelesen wurde, dann spielt es (noch) keine Rolle

Dagegen kann es von Bedeutung sein, ob im Stack hiner α etwas steht

Theoretische Informatik I §3.2: 11 Pushdown Automaten

Erkannte Sprache eines Pushdown-Automaten

• Zwei alternative Definitionen

– Akzeptanz durch akzeptierende Endzustände (Standarddefinition)

· LF (P) = {w ∈Σ∗ | ∃q ∈F.∃β ∈Γ∗. (q0, w, Z0) `
∗

(q, ε, β) }

Theoretische Informatik I §3.2: 11 Pushdown Automaten

Erkannte Sprache eines Pushdown-Automaten

• Zwei alternative Definitionen

– Akzeptanz durch akzeptierende Endzustände (Standarddefinition)

· LF (P) = {w ∈Σ∗ | ∃q ∈F.∃β ∈Γ∗. (q0, w, Z0) `
∗

(q, ε, β) }

– Akzeptanz durch leeren Stack (oft praktischer)

· Lε(P) = {w ∈Σ∗ | ∃q ∈Q. (q0, w, Z0) `
∗

(q, ε, ε) }

Theoretische Informatik I §3.2: 11 Pushdown Automaten

Erkannte Sprache eines Pushdown-Automaten

• Zwei alternative Definitionen

– Akzeptanz durch akzeptierende Endzustände (Standarddefinition)

· LF (P) = {w ∈Σ∗ | ∃q ∈F.∃β ∈Γ∗. (q0, w, Z0) `
∗

(q, ε, β) }

– Akzeptanz durch leeren Stack (oft praktischer)

· Lε(P) = {w ∈Σ∗ | ∃q ∈Q. (q0, w, Z0) `
∗

(q, ε, ε) }

• Beide Akzeptanzdefinitionen sind äquivalent

– Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

Theoretische Informatik I §3.2: 11 Pushdown Automaten

Erkannte Sprache eines Pushdown-Automaten

• Zwei alternative Definitionen

– Akzeptanz durch akzeptierende Endzustände (Standarddefinition)

· LF (P) = {w ∈Σ∗ | ∃q ∈F.∃β ∈Γ∗. (q0, w, Z0) `
∗

(q, ε, β) }

– Akzeptanz durch leeren Stack (oft praktischer)

· Lε(P) = {w ∈Σ∗ | ∃q ∈Q. (q0, w, Z0) `
∗

(q, ε, ε) }

• Beide Akzeptanzdefinitionen sind äquivalent

– Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

– Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F) kann ein PDA Pε

konstruiert werden mit LF (PF) = Lε(Pε)

Theoretische Informatik I §3.2: 12 Pushdown Automaten

Sprachen des Palindromautomaten

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

• LF (P) = {wwR | w ∈ {0, 1}∗}

Theoretische Informatik I §3.2: 12 Pushdown Automaten

Sprachen des Palindromautomaten

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

• LF (P) = {wwR | w ∈ {0, 1}∗}
⊇: Durch Induktion über Länge von w zeige, daß für jedes Wort wwR gilt

(q0,wwR,Z0) `
∗

(q0,w
R,wRZ0) ` (q1,w

R,wRZ0) `
∗

(q1,ε,Z0) ` (q2,ε,Z0)

Theoretische Informatik I §3.2: 12 Pushdown Automaten

Sprachen des Palindromautomaten

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

• LF (P) = {wwR | w ∈ {0, 1}∗}
⊇: Durch Induktion über Länge von w zeige, daß für jedes Wort wwR gilt

(q0,wwR,Z0) `
∗

(q0,w
R,wRZ0) ` (q1,w

R,wRZ0) `
∗

(q1,ε,Z0) ` (q2,ε,Z0)

⊆: Durch Induktion über Länge von x zeige

Wenn (q0,x,α) `
∗

(q1,ε,α) dann x=wwR für ein w ∈{0,1}∗

Kernidee: (q0,x1..xn,α) `
∗

(q0,x2..xn,x1α) `
∗

(q1,xi..xn,βx1α)

`
∗

(q1,xn,x1α) `
∗

(q1,ε,α)

impliziert (q0,x1..xn−1,α) `
∗

(q0,x2..xn−1,x1α) `
∗

. . . `
∗

(q1,ε,x1α)

und x1..xn = x1x2..xn−1x1 = x1vvRx1 für ein v ∈{0,1}∗

Theoretische Informatik I §3.2: 12 Pushdown Automaten

Sprachen des Palindromautomaten

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

• LF (P) = {wwR | w ∈ {0, 1}∗}
⊇: Durch Induktion über Länge von w zeige, daß für jedes Wort wwR gilt

(q0,wwR,Z0) `
∗

(q0,w
R,wRZ0) ` (q1,w

R,wRZ0) `
∗

(q1,ε,Z0) ` (q2,ε,Z0)

⊆: Durch Induktion über Länge von x zeige

Wenn (q0,x,α) `
∗

(q1,ε,α) dann x=wwR für ein w ∈{0,1}∗

Kernidee: (q0,x1..xn,α) `
∗

(q0,x2..xn,x1α) `
∗

(q1,xi..xn,βx1α)

`
∗

(q1,xn,x1α) `
∗

(q1,ε,α)

impliziert (q0,x1..xn−1,α) `
∗

(q0,x2..xn−1,x1α) `
∗

. . . `
∗

(q1,ε,x1α)

und x1..xn = x1x2..xn−1x1 = x1vvRx1 für ein v ∈{0,1}∗ Siehe HMU §6.2.1

Theoretische Informatik I §3.2: 12 Pushdown Automaten

Sprachen des Palindromautomaten

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

• LF (P) = {wwR | w ∈ {0, 1}∗}
⊇: Durch Induktion über Länge von w zeige, daß für jedes Wort wwR gilt

(q0,wwR,Z0) `
∗

(q0,w
R,wRZ0) ` (q1,w

R,wRZ0) `
∗

(q1,ε,Z0) ` (q2,ε,Z0)

⊆: Durch Induktion über Länge von x zeige

Wenn (q0,x,α) `
∗

(q1,ε,α) dann x=wwR für ein w ∈{0,1}∗

Kernidee: (q0,x1..xn,α) `
∗

(q0,x2..xn,x1α) `
∗

(q1,xi..xn,βx1α)

`
∗

(q1,xn,x1α) `
∗

(q1,ε,α)

impliziert (q0,x1..xn−1,α) `
∗

(q0,x2..xn−1,x1α) `
∗

. . . `
∗

(q1,ε,x1α)

und x1..xn = x1x2..xn−1x1 = x1vvRx1 für ein v ∈{0,1}∗ Siehe HMU §6.2.1

• Lε(P) = ∅
– Einfaches Argument: Z0 wird nie gelöscht

Theoretische Informatik I §3.2: 12 Pushdown Automaten

Sprachen des Palindromautomaten

-
Start

q0

R

0,X / 0X
1,X / 1X

-
ε,X / X q1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0 q2

• LF (P) = {wwR | w ∈ {0, 1}∗}
⊇: Durch Induktion über Länge von w zeige, daß für jedes Wort wwR gilt

(q0,wwR,Z0) `
∗

(q0,w
R,wRZ0) ` (q1,w

R,wRZ0) `
∗

(q1,ε,Z0) ` (q2,ε,Z0)

⊆: Durch Induktion über Länge von x zeige

Wenn (q0,x,α) `
∗

(q1,ε,α) dann x=wwR für ein w ∈{0,1}∗

Kernidee: (q0,x1..xn,α) `
∗

(q0,x2..xn,x1α) `
∗

(q1,xi..xn,βx1α)

`
∗

(q1,xn,x1α) `
∗

(q1,ε,α)

impliziert (q0,x1..xn−1,α) `
∗

(q0,x2..xn−1,x1α) `
∗

. . . `
∗

(q1,ε,x1α)

und x1..xn = x1x2..xn−1x1 = x1vvRx1 für ein v ∈{0,1}∗ Siehe HMU §6.2.1

• Lε(P) = ∅
– Einfaches Argument: Z0 wird nie gelöscht

– Modifikation: Ändere Kantenbeschriftung von q1 nach Q2 zu ε,Z0 / ε

Dann gilt Lε(P
′) = LF (P) = {wwR |w ∈{0, 1}∗}

Theoretische Informatik I §3.2: 13 Pushdown Automaten

Transformation von Lε in LF

Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

• Bei leerem Stack wechsele in Endzustand

Theoretische Informatik I §3.2: 13 Pushdown Automaten

Transformation von Lε in LF

Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

• Bei leerem Stack wechsele in Endzustand

– Neues Initialsymbol X0 für PF markiert unteres Ende des Stacks

Theoretische Informatik I §3.2: 13 Pushdown Automaten

Transformation von Lε in LF

Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

• Bei leerem Stack wechsele in Endzustand

– Neues Initialsymbol X0 für PF markiert unteres Ende des Stacks

– Neuer Anfangszustand p0 für PF schreibt Initialsymbol von Pε auf Stack

Theoretische Informatik I §3.2: 13 Pushdown Automaten

Transformation von Lε in LF

Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

• Bei leerem Stack wechsele in Endzustand

– Neues Initialsymbol X0 für PF markiert unteres Ende des Stacks

– Neuer Anfangszustand p0 für PF schreibt Initialsymbol von Pε auf Stack

– Neuer Endzustand pf in den bei “leerem” Stack gewechselt wird

Theoretische Informatik I §3.2: 13 Pushdown Automaten

Transformation von Lε in LF

Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

• Bei leerem Stack wechsele in Endzustand

– Neues Initialsymbol X0 für PF markiert unteres Ende des Stacks

– Neuer Anfangszustand p0 für PF schreibt Initialsymbol von Pε auf Stack

– Neuer Endzustand pf in den bei “leerem” Stack gewechselt wird

• PF = (Q∪{p0, pf}, Σ, Γ∪{X0}, p0, X0, δF , {pf})

– δF (p0,ε,X0) = {(q0,Z0X0)}

– δF (q,a,X) = δ(q,a,X) für alle q ∈Q, X ∈Γ

– δF (q,ε,X0) = {(pf ,ε)} für alle q ∈Q

Theoretische Informatik I §3.2: 13 Pushdown Automaten

Transformation von Lε in LF

Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

• Bei leerem Stack wechsele in Endzustand

– Neues Initialsymbol X0 für PF markiert unteres Ende des Stacks

– Neuer Anfangszustand p0 für PF schreibt Initialsymbol von Pε auf Stack

– Neuer Endzustand pf in den bei “leerem” Stack gewechselt wird

• PF = (Q∪{p0, pf}, Σ, Γ∪{X0}, p0, X0, δF , {pf})

– δF (p0,ε,X0) = {(q0,Z0X0)}

– δF (q,a,X) = δ(q,a,X) für alle q ∈Q, X ∈Γ

– δF (q,ε,X0) = {(pf ,ε)} für alle q ∈Q

Theoretische Informatik I §3.2: 13 Pushdown Automaten

Transformation von Lε in LF

Zu jedem PDA Pε = (Q, Σ, Γ, q0, Z0, δ, ∅) kann ein PDA PF

konstruiert werden mit Lε(Pε) = LF (PF)

• Bei leerem Stack wechsele in Endzustand

– Neues Initialsymbol X0 für PF markiert unteres Ende des Stacks

– Neuer Anfangszustand p0 für PF schreibt Initialsymbol von Pε auf Stack

– Neuer Endzustand pf in den bei “leerem” Stack gewechselt wird

• PF = (Q∪{p0, pf}, Σ, Γ∪{X0}, p0, X0, δF , {pf})

– δF (p0,ε,X0) = {(q0,Z0X0)}

– δF (q,a,X) = δ(q,a,X) für alle q ∈Q, X ∈Γ

– δF (q,ε,X0) = {(pf ,ε)} für alle q ∈Q

Korrektheitsbeweis durch Detailanalyse

Theoretische Informatik I §3.2: 14 Pushdown Automaten

Umwandlung eines Lε-PDA in einen LF -PDA

• Gegeben Pε = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}

– Erkennt, daß ein (Teil-)Ausdruck mehr else als if enthält -
Start

q
0

R

if,Z / ZZ
else,Z / ε

Theoretische Informatik I §3.2: 14 Pushdown Automaten

Umwandlung eines Lε-PDA in einen LF -PDA

• Gegeben Pε = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}

– Erkennt, daß ein (Teil-)Ausdruck mehr else als if enthält -
Start

q
0

R

if,Z / ZZ
else,Z / ε

• PF = ({p0, q, pf}, {if, else}, {X0, Z}, p0, X0, δF , {pf})

-
Start

p0

Theoretische Informatik I §3.2: 14 Pushdown Automaten

Umwandlung eines Lε-PDA in einen LF -PDA

• Gegeben Pε = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}

– Erkennt, daß ein (Teil-)Ausdruck mehr else als if enthält -
Start

q
0

R

if,Z / ZZ
else,Z / ε

• PF = ({p0, q, pf}, {if, else}, {X0, Z}, p0, X0, δF , {pf})

-
Start

p0
-

ε,X0 / ZX0

q0

– δF (p0,ε,X0) = {(q,ZX0)}

Theoretische Informatik I §3.2: 14 Pushdown Automaten

Umwandlung eines Lε-PDA in einen LF -PDA

• Gegeben Pε = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}

– Erkennt, daß ein (Teil-)Ausdruck mehr else als if enthält -
Start

q
0

R

if,Z / ZZ
else,Z / ε

• PF = ({p0, q, pf}, {if, else}, {X0, Z}, p0, X0, δF , {pf})

-
Start

p0
-

ε,X0 / ZX0

q0

R

if,Z / ZZ
else,Z / ε

– δF (p0,ε,X0) = {(q,ZX0)}

– δF (q, if, Z) = {(q, ZZ)}

– δF (q, else, Z) = {(q, ε)}

Theoretische Informatik I §3.2: 14 Pushdown Automaten

Umwandlung eines Lε-PDA in einen LF -PDA

• Gegeben Pε = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}

– Erkennt, daß ein (Teil-)Ausdruck mehr else als if enthält -
Start

q
0

R

if,Z / ZZ
else,Z / ε

• PF = ({p0, q, pf}, {if, else}, {X0, Z}, p0, X0, δF , {pf})

-
Start

p0
-

ε,X0 / ZX0

q0

R

if,Z / ZZ
else,Z / ε

-
ε,X0 / ε

pf

– δF (p0,ε,X0) = {(q,ZX0)}

– δF (q, if, Z) = {(q, ZZ)}

– δF (q, else, Z) = {(q, ε)}

– δF (q,ε,X0) = {(pf ,ε)}

Theoretische Informatik I §3.2: 14 Pushdown Automaten

Umwandlung eines Lε-PDA in einen LF -PDA

• Gegeben Pε = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}

– Erkennt, daß ein (Teil-)Ausdruck mehr else als if enthält -
Start

q
0

R

if,Z / ZZ
else,Z / ε

• PF = ({p0, q, pf}, {if, else}, {X0, Z}, p0, X0, δF , {pf})

-
Start

p0
-

ε,X0 / ZX0

q0

R

if,Z / ZZ
else,Z / ε

-
ε,X0 / ε

pf

– δF (p0,ε,X0) = {(q,ZX0)}

– δF (q, if, Z) = {(q, ZZ)}

– δF (q, else, Z) = {(q, ε)}

– δF (q,ε,X0) = {(pf ,ε)}

Theoretische Informatik I §3.2: 15 Pushdown Automaten

Transformation von LF in Lε

Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F) kann ein PDA Pε

konstruiert werden mit LF (PF) = Lε(Pε)

• Im Endzustand leere den Stack

Theoretische Informatik I §3.2: 15 Pushdown Automaten

Transformation von LF in Lε

Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F) kann ein PDA Pε

konstruiert werden mit LF (PF) = Lε(Pε)

• Im Endzustand leere den Stack
– Neuer Stacklösch-Zustand p, in von Endzuständen gewechselt wird

Theoretische Informatik I §3.2: 15 Pushdown Automaten

Transformation von LF in Lε

Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F) kann ein PDA Pε

konstruiert werden mit LF (PF) = Lε(Pε)

• Im Endzustand leere den Stack
– Neuer Stacklösch-Zustand p, in von Endzuständen gewechselt wird

– Neues Initialsymbol X0 für Pε verhindert irrtümliches Leeren des Stacks

Theoretische Informatik I §3.2: 15 Pushdown Automaten

Transformation von LF in Lε

Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F) kann ein PDA Pε

konstruiert werden mit LF (PF) = Lε(Pε)

• Im Endzustand leere den Stack
– Neuer Stacklösch-Zustand p, in von Endzuständen gewechselt wird

– Neues Initialsymbol X0 für Pε verhindert irrtümliches Leeren des Stacks

– Neuer Anfangszustand p0 für Pε schreibt Initialsymbol von PF auf Stack

Theoretische Informatik I §3.2: 15 Pushdown Automaten

Transformation von LF in Lε

Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F) kann ein PDA Pε

konstruiert werden mit LF (PF) = Lε(Pε)

• Im Endzustand leere den Stack
– Neuer Stacklösch-Zustand p, in von Endzuständen gewechselt wird

– Neues Initialsymbol X0 für Pε verhindert irrtümliches Leeren des Stacks

– Neuer Anfangszustand p0 für Pε schreibt Initialsymbol von PF auf Stack

• PF = (Q∪{p0, p}, Σ, Γ∪{X0}, q0, X0, δε, ∅)
– δε(p0,ε,X0) = {(q0,Z0X0)}

– δε(q,a,X) = δ(q,a,X) für alle q ∈Q, X ∈Γ

– δε(q,ε,X0) = {(p,ε)} für alle q ∈F

– δε(p,ε,X) = {(p,ε)} für alle X ∈Γ∪{X0}

Theoretische Informatik I §3.2: 15 Pushdown Automaten

Transformation von LF in Lε

Zu jedem PDA PF = (Q, Σ, Γ, q0, Z0, δ, F) kann ein PDA Pε

konstruiert werden mit LF (PF) = Lε(Pε)

• Im Endzustand leere den Stack
– Neuer Stacklösch-Zustand p, in von Endzuständen gewechselt wird

– Neues Initialsymbol X0 für Pε verhindert irrtümliches Leeren des Stacks

– Neuer Anfangszustand p0 für Pε schreibt Initialsymbol von PF auf Stack

• PF = (Q∪{p0, p}, Σ, Γ∪{X0}, q0, X0, δε, ∅)
– δε(p0,ε,X0) = {(q0,Z0X0)}

– δε(q,a,X) = δ(q,a,X) für alle q ∈Q, X ∈Γ

– δε(q,ε,X0) = {(p,ε)} für alle q ∈F

– δε(p,ε,X) = {(p,ε)} für alle X ∈Γ∪{X0}

Theoretische Informatik I §3.2: 16 Pushdown Automaten

Sind PDAs wirklich die Maschinen für Typ-2 Sprachen?

L2 = LPDA = { L | ∃P :PDAs. L=Lε(P)}

• Konfigurationsübergänge =̂ Linksableitungen
– (q0, xy, Z0) `

∗
(q, y, A α) bedeutet, daß P nach Verarbeitung von x

im Zustand q ist und noch y und den Stack A α zu verarbeiten hat

Theoretische Informatik I §3.2: 16 Pushdown Automaten

Sind PDAs wirklich die Maschinen für Typ-2 Sprachen?

L2 = LPDA = { L | ∃P :PDAs. L=Lε(P)}

• Konfigurationsübergänge =̂ Linksableitungen
– (q0, xy, Z0) `

∗
(q, y, A α) bedeutet, daß P nach Verarbeitung von x

im Zustand q ist und noch y und den Stack A α zu verarbeiten hat

– A α muß gespeichert und beim Lesen von y komplett abgearbeitet werden

Theoretische Informatik I §3.2: 16 Pushdown Automaten

Sind PDAs wirklich die Maschinen für Typ-2 Sprachen?

L2 = LPDA = { L | ∃P :PDAs. L=Lε(P)}

• Konfigurationsübergänge =̂ Linksableitungen
– (q0, xy, Z0) `

∗
(q, y, A α) bedeutet, daß P nach Verarbeitung von x

im Zustand q ist und noch y und den Stack A α zu verarbeiten hat

– A α muß gespeichert und beim Lesen von y komplett abgearbeitet werden

– Linksableitung S
∗

−→xA α
∗

−→xy erzeugt aus dem Startsymbol

zuerst das Wort xA α umd muß dann y aus A α ableiten

Theoretische Informatik I §3.2: 16 Pushdown Automaten

Sind PDAs wirklich die Maschinen für Typ-2 Sprachen?

L2 = LPDA = { L | ∃P :PDAs. L=Lε(P)}

• Konfigurationsübergänge =̂ Linksableitungen
– (q0, xy, Z0) `

∗
(q, y, A α) bedeutet, daß P nach Verarbeitung von x

im Zustand q ist und noch y und den Stack A α zu verarbeiten hat

– A α muß gespeichert und beim Lesen von y komplett abgearbeitet werden

– Linksableitung S
∗

−→xA α
∗

−→xy erzeugt aus dem Startsymbol

zuerst das Wort xA α umd muß dann y aus A α ableiten

• Grammatik −→ Pushdown-Automat
– PDA muß Linksableitung auf Stack simulieren

– Erzeugte linke Terminalteilworte müssen mit Teil der Eingabe verglichen

werden um nächste Variable freizulegen

Theoretische Informatik I §3.2: 16 Pushdown Automaten

Sind PDAs wirklich die Maschinen für Typ-2 Sprachen?

L2 = LPDA = { L | ∃P :PDAs. L=Lε(P)}

• Konfigurationsübergänge =̂ Linksableitungen
– (q0, xy, Z0) `

∗
(q, y, A α) bedeutet, daß P nach Verarbeitung von x

im Zustand q ist und noch y und den Stack A α zu verarbeiten hat

– A α muß gespeichert und beim Lesen von y komplett abgearbeitet werden

– Linksableitung S
∗

−→xA α
∗

−→xy erzeugt aus dem Startsymbol

zuerst das Wort xA α umd muß dann y aus A α ableiten

• Grammatik −→ Pushdown-Automat
– PDA muß Linksableitung auf Stack simulieren

– Erzeugte linke Terminalteilworte müssen mit Teil der Eingabe verglichen

werden um nächste Variable freizulegen

• Pushdown-Automat −→ Grammatik
– Grammatik muß Abarbeitung von Symbolen des Stacks simulieren

– Regeln beschreiben wie PDA zur Abarbeitung von X mit δ

Zwischenworte im Stack auf- und schließlich wieder abbaut

Theoretische Informatik I §3.2: 17 Pushdown Automaten

Von Grammatiken zu Pushdown-Automaten

Zu jeder kontextfreien Grammatik G = (V, T, PG, S)

kann ein PDA P konstruiert werden mit L(G) = Lε(P)

• Stack simuliert Linksableitungen von G

– Beginne mit Startsymbol von G

– A ∈V wird durch die rechte Seite β einer Regel A→β ersetzt

– a ∈T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint

um nächste Variable der Linksableitungen im Stack zu identifizieren

Theoretische Informatik I §3.2: 17 Pushdown Automaten

Von Grammatiken zu Pushdown-Automaten

Zu jeder kontextfreien Grammatik G = (V, T, PG, S)

kann ein PDA P konstruiert werden mit L(G) = Lε(P)

• Stack simuliert Linksableitungen von G

– Beginne mit Startsymbol von G

– A ∈V wird durch die rechte Seite β einer Regel A→β ersetzt

– a ∈T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint

um nächste Variable der Linksableitungen im Stack zu identifizieren

• P = ({q}, T, V ∪T, q, S, δ, ∅)

– δ(q,ε,A) = {(q,β) |A→β ∈PG} für alle A ∈V

– δ(q,a,a) = {(q,ε)} für alle a ∈T

Theoretische Informatik I §3.2: 17 Pushdown Automaten

Von Grammatiken zu Pushdown-Automaten

Zu jeder kontextfreien Grammatik G = (V, T, PG, S)

kann ein PDA P konstruiert werden mit L(G) = Lε(P)

• Stack simuliert Linksableitungen von G

– Beginne mit Startsymbol von G

– A ∈V wird durch die rechte Seite β einer Regel A→β ersetzt

– a ∈T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint

um nächste Variable der Linksableitungen im Stack zu identifizieren

• P = ({q}, T, V ∪T, q, S, δ, ∅)

– δ(q,ε,A) = {(q,β) |A→β ∈PG} für alle A ∈V

– δ(q,a,a) = {(q,ε)} für alle a ∈T

• Korrektheitsbeweis L(G) = Lε(P)

– Zeige: (⊆) Wenn S = x1A1α1 −→L
..xmAmαm −→

L
w ∈T ∗ dann

gibt es yi mit (q, w, S) `
∗

(q, yi, Aiαi) und xiyi = w

(⊇) Wenn (q, w,X) `
∗

(q, ε, ε) dann X
∗

−→w

Theoretische Informatik I §3.2: 18 Pushdown Automaten

Korrektheitsbeweis L(G)⊆Lε(P)

Wenn S = x1A1α1 −→
L

..xmAmαm −→
L

w ∈T ∗ (xi ∈T ∗, Ai ∈V)

dann gibt es yi mit (q, w, S) `
∗
(q, yi, Aiαi) und xiyi = w

• Beweis durch Induktion über Länge i der Linksableitung

Theoretische Informatik I §3.2: 18 Pushdown Automaten

Korrektheitsbeweis L(G)⊆Lε(P)

Wenn S = x1A1α1 −→
L

..xmAmαm −→
L

w ∈T ∗ (xi ∈T ∗, Ai ∈V)

dann gibt es yi mit (q, w, S) `
∗
(q, yi, Aiαi) und xiyi = w

• Beweis durch Induktion über Länge i der Linksableitung

• Basisfall i = 1: S = x1A1α1 −→
L

w ∈T ∗

– Es folgt S = A1 und x1=α1=ε, also y1=w

– (q, w, S) `
∗

(q, w, S) gilt mit 0 Konfigurationsübergängen

Theoretische Informatik I §3.2: 18 Pushdown Automaten

Korrektheitsbeweis L(G)⊆Lε(P)

Wenn S = x1A1α1 −→
L

..xmAmαm −→
L

w ∈T ∗ (xi ∈T ∗, Ai ∈V)

dann gibt es yi mit (q, w, S) `
∗
(q, yi, Aiαi) und xiyi = w

• Beweis durch Induktion über Länge i der Linksableitung

• Basisfall i = 1: S = x1A1α1 −→
L

w ∈T ∗

– Es folgt S = A1 und x1=α1=ε, also y1=w

– (q, w, S) `
∗

(q, w, S) gilt mit 0 Konfigurationsübergängen

• Induktionsschritt: S.. −→
L

xiAiαi −→
L

xi+1Ai+1αi+1 −→
L

w ∈T ∗

– xiAiαi −→L
xi+1Ai+1αi+1 verlangt Ai→β ∈PG für ein β

– Also (q,β) ∈δ(q,ε,Ai) also (q,yi,Aiαi) `
∗

(q,yi,βαi)

– Zerlege βαi in xAi+1αi+1. Dann kann yi in xyi+1 zerlegt werden

– Es folgt (q,xyi+1,xAi+1αi+1) `
∗

(q, yi+1, Ai+1αi+1) (PDA arbeitet x ab)

– Mit Induktionsannahme: (q, w, S) `
∗

(q, yi, Aiαi) `
∗

(q, yi+1, Ai+1αi+1)

Theoretische Informatik I §3.2: 18 Pushdown Automaten

Korrektheitsbeweis L(G)⊆Lε(P)

Wenn S = x1A1α1 −→
L

..xmAmαm −→
L

w ∈T ∗ (xi ∈T ∗, Ai ∈V)

dann gibt es yi mit (q, w, S) `
∗
(q, yi, Aiαi) und xiyi = w

• Beweis durch Induktion über Länge i der Linksableitung

• Basisfall i = 1: S = x1A1α1 −→
L

w ∈T ∗

– Es folgt S = A1 und x1=α1=ε, also y1=w

– (q, w, S) `
∗

(q, w, S) gilt mit 0 Konfigurationsübergängen

• Induktionsschritt: S.. −→
L

xiAiαi −→
L

xi+1Ai+1αi+1 −→
L

w ∈T ∗

– xiAiαi −→L
xi+1Ai+1αi+1 verlangt Ai→β ∈PG für ein β

– Also (q,β) ∈δ(q,ε,Ai) also (q,yi,Aiαi) `
∗

(q,yi,βαi)

– Zerlege βαi in xAi+1αi+1. Dann kann yi in xyi+1 zerlegt werden

– Es folgt (q,xyi+1,xAi+1αi+1) `
∗

(q, yi+1, Ai+1αi+1) (PDA arbeitet x ab)

– Mit Induktionsannahme: (q, w, S) `
∗

(q, yi, Aiαi) `
∗

(q, yi+1, Ai+1αi+1)

• Schlußfolgerung: S = x1A1α1 −→
L

..xm+1Am+1αm+1 = w ∈T ∗

– xm+1=w und Am+1=αm+1=ym+1=ε

– Also (q, w, S) `
∗

(q, ε, ε), d.h. w ∈Lε(P)

Theoretische Informatik I §3.2: 19 Pushdown Automaten

Korrektheitsbeweis L(G)⊇Lε(P)

Wenn (q, w, X) `
∗
(q, ε, ε) dann X

∗
−→ w

• Beweis durch Induktion über Länge der PDA Berechnung

Theoretische Informatik I §3.2: 19 Pushdown Automaten

Korrektheitsbeweis L(G)⊇Lε(P)

Wenn (q, w, X) `
∗
(q, ε, ε) dann X

∗
−→ w

• Beweis durch Induktion über Länge der PDA Berechnung

• Basisfall: (q, w, X) ` (q, ε, ε)

– Es folgt X→ε ∈PG und w = ε, also X
∗

−→w

Theoretische Informatik I §3.2: 19 Pushdown Automaten

Korrektheitsbeweis L(G)⊇Lε(P)

Wenn (q, w, X) `
∗
(q, ε, ε) dann X

∗
−→ w

• Beweis durch Induktion über Länge der PDA Berechnung

• Basisfall: (q, w, X) ` (q, ε, ε)

– Es folgt X→ε ∈PG und w = ε, also X
∗

−→w

• Induktionsschritt: (q, w, X) `
n+1

(q, ε, ε)

– Da X oben im Stack steht, muß der erste Schritt die Form

(q, w,X) ` (q, w, Y1..Yk) für ein X→Y1..Yk ∈PG haben

– Dann gibt eine Zerlegung w = w1..wk mit

(q, w1..wk, Y1..Yk) `
∗

(q, w2..wk, Y2..Yk) `
∗

(q, ε, ε)

– Es folgt (q, wi..wk, Yi) `
∗

(q, wi+1..wk, ε) also (q, wi, Yi) `
∗

(q, ε, ε)

– Per Induktionsannahme folgt Yi
∗

−→wi für alle i

also X −→Y1..Yk
∗

−→w1..wk = w

Theoretische Informatik I §3.2: 19 Pushdown Automaten

Korrektheitsbeweis L(G)⊇Lε(P)

Wenn (q, w, X) `
∗
(q, ε, ε) dann X

∗
−→ w

• Beweis durch Induktion über Länge der PDA Berechnung

• Basisfall: (q, w, X) ` (q, ε, ε)

– Es folgt X→ε ∈PG und w = ε, also X
∗

−→w

• Induktionsschritt: (q, w, X) `
n+1

(q, ε, ε)

– Da X oben im Stack steht, muß der erste Schritt die Form

(q, w,X) ` (q, w, Y1..Yk) für ein X→Y1..Yk ∈PG haben

– Dann gibt eine Zerlegung w = w1..wk mit

(q, w1..wk, Y1..Yk) `
∗

(q, w2..wk, Y2..Yk) `
∗

(q, ε, ε)

– Es folgt (q, wi..wk, Yi) `
∗

(q, wi+1..wk, ε) also (q, wi, Yi) `
∗

(q, ε, ε)

– Per Induktionsannahme folgt Yi
∗

−→wi für alle i

also X −→Y1..Yk
∗

−→w1..wk = w

• L(G)⊇Lε(P) folgt nun mit w ∈Lε(P) und X = S

Theoretische Informatik I §3.2: 20 Pushdown Automaten

Umwandlung einer Grammatik in einen PDA

• G6 = ({E, I}, {a, b, 0, 1, +, ∗, (,)}, PG, E)

mit PG = { E → I | E+E | E∗E | (E)

I → a | b | Ia | Ib | I0 | I1 }

Theoretische Informatik I §3.2: 20 Pushdown Automaten

Umwandlung einer Grammatik in einen PDA

• G6 = ({E, I}, {a, b, 0, 1, +, ∗, (,)}, PG, E)

mit PG = { E → I | E+E | E∗E | (E)

I → a | b | Ia | Ib | I0 | I1 }

• Erzeuge P = ({q}, T, V ∪T, q, E, δ, ∅)

mit V ={E, I} und T ={a, b, 0, 1, +, ∗, (,)}

Theoretische Informatik I §3.2: 20 Pushdown Automaten

Umwandlung einer Grammatik in einen PDA

• G6 = ({E, I}, {a, b, 0, 1, +, ∗, (,)}, PG, E)

mit PG = { E → I | E+E | E∗E | (E)

I → a | b | Ia | Ib | I0 | I1 }

• Erzeuge P = ({q}, T, V ∪T, q, E, δ, ∅)

mit V ={E, I} und T ={a, b, 0, 1, +, ∗, (,)}

– δ(q,ε,E) = {(q,I), (q,E+E), (q,E∗E), (q,(E))}

Theoretische Informatik I §3.2: 20 Pushdown Automaten

Umwandlung einer Grammatik in einen PDA

• G6 = ({E, I}, {a, b, 0, 1, +, ∗, (,)}, PG, E)

mit PG = { E → I | E+E | E∗E | (E)

I → a | b | Ia | Ib | I0 | I1 }

• Erzeuge P = ({q}, T, V ∪T, q, E, δ, ∅)

mit V ={E, I} und T ={a, b, 0, 1, +, ∗, (,)}

– δ(q,ε,E) = {(q,I), (q,E+E), (q,E∗E), (q,(E))}

– δ(q,ε,I) = {(q,a), (q,b), (q,Ia), (q,Ib), (q,I0), (q,I1)}

Theoretische Informatik I §3.2: 20 Pushdown Automaten

Umwandlung einer Grammatik in einen PDA

• G6 = ({E, I}, {a, b, 0, 1, +, ∗, (,)}, PG, E)

mit PG = { E → I | E+E | E∗E | (E)

I → a | b | Ia | Ib | I0 | I1 }

• Erzeuge P = ({q}, T, V ∪T, q, E, δ, ∅)

mit V ={E, I} und T ={a, b, 0, 1, +, ∗, (,)}

– δ(q,ε,E) = {(q,I), (q,E+E), (q,E∗E), (q,(E))}

– δ(q,ε,I) = {(q,a), (q,b), (q,Ia), (q,Ib), (q,I0), (q,I1)}

– δ(q,a,a) = {(q,ε)}

– δ(q,b,b) = {(q,ε)}

– δ(q,0,0) = {(q,ε)}

– δ(q,1,1) = {(q,ε)}

– δ(q,+,+) = {(q,ε)}

– δ(q,∗,∗) = {(q,ε)}

– δ(q,(,() = {(q,ε)}

– δ(q,),)) = {(q,ε)}

Theoretische Informatik I §3.2: 21 Pushdown Automaten

Von Pushdown-Automaten zu Grammatiken

Zu jedem PDA P = (Q, Σ, Γ, q0, Z0, δ, F) kann eine kontextfreie

Grammatik G konstruiert werden mit Lε(P) = L(G)

• Simuliere Abarbeitung eines Symbols vom Stack
– Verarbeite Variablen der Form (p, X, q):

“Entfernen von X kann von Zustand p zu Zustand q führen”

– Entfernen von X kann heißen, zuerst ein Y1..Ym auf- und dann abzubauen

– Beginne mit Erzeugung von Z0 und zeige, daß Z0 entfernt werden kann

Theoretische Informatik I §3.2: 21 Pushdown Automaten

Von Pushdown-Automaten zu Grammatiken

Zu jedem PDA P = (Q, Σ, Γ, q0, Z0, δ, F) kann eine kontextfreie

Grammatik G konstruiert werden mit Lε(P) = L(G)

• Simuliere Abarbeitung eines Symbols vom Stack
– Verarbeite Variablen der Form (p, X, q):

“Entfernen von X kann von Zustand p zu Zustand q führen”

– Entfernen von X kann heißen, zuerst ein Y1..Ym auf- und dann abzubauen

– Beginne mit Erzeugung von Z0 und zeige, daß Z0 entfernt werden kann

• G = (Σ, {S}∪Q×Γ×Q, PG, S)
– S→(q0, Z0, q) ∈ PG für alle q ∈Q

– (p,X, qm)→a (p, Y1, q1)...(qm−1, Ym, qm) ∈ PG, für beliebige q1, .., qm ∈Q,

falls (p, Y1..Ym) ∈δ(q, a,X)

Theoretische Informatik I §3.2: 21 Pushdown Automaten

Von Pushdown-Automaten zu Grammatiken

Zu jedem PDA P = (Q, Σ, Γ, q0, Z0, δ, F) kann eine kontextfreie

Grammatik G konstruiert werden mit Lε(P) = L(G)

• Simuliere Abarbeitung eines Symbols vom Stack
– Verarbeite Variablen der Form (p, X, q):

“Entfernen von X kann von Zustand p zu Zustand q führen”

– Entfernen von X kann heißen, zuerst ein Y1..Ym auf- und dann abzubauen

– Beginne mit Erzeugung von Z0 und zeige, daß Z0 entfernt werden kann

• G = (Σ, {S}∪Q×Γ×Q, PG, S)
– S→(q0, Z0, q) ∈ PG für alle q ∈Q

– (p,X, qm)→a (p, Y1, q1)...(qm−1, Ym, qm) ∈ PG, für beliebige q1, .., qm ∈Q,

falls (p, Y1..Ym) ∈δ(q, a,X)

• Korrektheitsbeweis Lε(P) = L(G) (viele Details)

– Zeige: (p,X, q)
∗

−→ w ∈Σ∗ genau dann, wenn (p,w,X) `
∗

(q, ε, ε)
⊆: Induktion über Länge der PDA Berechnung
⊇: Induktion über Länge der Ableitung

Theoretische Informatik I §3.2: 22 Pushdown Automaten

Umwandlung eines PDA in eine Grammatik

• Gegeben P = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}
-

Start
q

0

R

if,Z / ZZ
else,Z / ε

Theoretische Informatik I §3.2: 22 Pushdown Automaten

Umwandlung eines PDA in eine Grammatik

• Gegeben P = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}
-

Start
q

0

R

if,Z / ZZ
else,Z / ε

• G = ({if, else}, {S, (q, Z, q)}, PG, S)

mit PG = S → (q, Z, q)

Theoretische Informatik I §3.2: 22 Pushdown Automaten

Umwandlung eines PDA in eine Grammatik

• Gegeben P = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}
-

Start
q

0

R

if,Z / ZZ
else,Z / ε

• G = ({if, else}, {S, (q, Z, q)}, PG, S)

mit PG = S → (q, Z, q)

(q, Z, q) → if (q, Z, q)(q, Z, q)

Theoretische Informatik I §3.2: 22 Pushdown Automaten

Umwandlung eines PDA in eine Grammatik

• Gegeben P = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}
-

Start
q

0

R

if,Z / ZZ
else,Z / ε

• G = ({if, else}, {S, (q, Z, q)}, PG, S)

mit PG = S → (q, Z, q)

(q, Z, q) → if (q, Z, q)(q, Z, q)

(q, Z, q) → else

Theoretische Informatik I §3.2: 22 Pushdown Automaten

Umwandlung eines PDA in eine Grammatik

• Gegeben P = ({q}, {if, else}, {Z}, q, Z, δ, ∅)

mit δ(q, if, Z) = {(q, ZZ)}

δ(q, else, Z) = {(q, ε)}
-

Start
q

0

R

if,Z / ZZ
else,Z / ε

• G = ({if, else}, {S, (q, Z, q)}, PG, S)

mit PG = S → (q, Z, q)

(q, Z, q) → if (q, Z, q)(q, Z, q)

(q, Z, q) → else

Kurzschreibweise A für Hilfssymbol (q, Z, q) ergibt elegantere Darstellung

G = ({if, else}, {S, A}, PG, S) mit PG = S → A

A → ifAA

A → else

Theoretische Informatik I §3.2: 23 Pushdown Automaten

Brauchen wir Nichtdeterministische Automaten?

• Grammatiken sind nichtdeterministisch

– Nichtdeterministische Automaten sind das “natürliche” Gegenstück

· Grammatikregeln führen zu mengenwertiger Überführungsfunktion

– “Wirkliche” Automaten müssen deterministisch sein

Theoretische Informatik I §3.2: 23 Pushdown Automaten

Brauchen wir Nichtdeterministische Automaten?

• Grammatiken sind nichtdeterministisch

– Nichtdeterministische Automaten sind das “natürliche” Gegenstück

· Grammatikregeln führen zu mengenwertiger Überführungsfunktion

– “Wirkliche” Automaten müssen deterministisch sein

• Typ-3 Sprachen haben deterministische Modelle

– NEAs können in äquivalente DEAs umgewandelt werden

– Teilmengenkonstruktion kann Automaten exponentiell vergrößern

Theoretische Informatik I §3.2: 23 Pushdown Automaten

Brauchen wir Nichtdeterministische Automaten?

• Grammatiken sind nichtdeterministisch

– Nichtdeterministische Automaten sind das “natürliche” Gegenstück

· Grammatikregeln führen zu mengenwertiger Überführungsfunktion

– “Wirkliche” Automaten müssen deterministisch sein

• Typ-3 Sprachen haben deterministische Modelle

– NEAs können in äquivalente DEAs umgewandelt werden

– Teilmengenkonstruktion kann Automaten exponentiell vergrößern

• Reichen deterministische PDAs für Typ-2 Sprachen?

– Überführungsfunktion δ:Q×(Σ∪{ε})×Γ → Q×Γ∗ muß eindeutig sein

– Gibt es für PDAs immer äquivalente deterministische PDAs?

Theoretische Informatik I §3.2: 24 Pushdown Automaten

Deterministische Pushdown-Automaten – präzisiert

Ein Deterministischer Pushdown-Automat (DPDA)

ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

• Γ endliches Stackalphabet

• δ:Q×(Σ∪{ε})×Γ → Q×Γ∗ Überführungsfunktion

– δ(q,ε,X) nur definiert, wenn δ(q,a,X) für alle a ∈Σ undefiniert

• q0
∈Q Startzustand (Anfangszustand)

• Z0
∈Γ Initialsymbol des Stacks

• F ⊆Q Menge von akzeptierenden Zuständen (Endzustände)

Theoretische Informatik I §3.2: 24 Pushdown Automaten

Deterministische Pushdown-Automaten – präzisiert

Ein Deterministischer Pushdown-Automat (DPDA)

ist ein 7-Tupel P = (Q, Σ, Γ, δ, q0, Z0, F) mit

• Q nichtleere endliche Zustandsmenge

• Σ endliches Eingabealphabet

• Γ endliches Stackalphabet

• δ:Q×(Σ∪{ε})×Γ → Q×Γ∗ Überführungsfunktion

– δ(q,ε,X) nur definiert, wenn δ(q,a,X) für alle a ∈Σ undefiniert

• q0
∈Q Startzustand (Anfangszustand)

• Z0
∈Γ Initialsymbol des Stacks

• F ⊆Q Menge von akzeptierenden Zuständen (Endzustände)

Erkannte Sprache

– LF (P) = {w ∈Σ∗ | ∃q ∈F.∃β ∈Γ∗. (q0, w, Z0) `
∗

(q, ε, β) }

– Lε(P) = {w ∈Σ∗ | ∃q ∈Q. (q0, w, Z0) `
∗

(q, ε, ε) }

Theoretische Informatik I §3.2: 25 Pushdown Automaten

DPDAs sind nicht mächtig genug

• DPDA-Sprachen sind eine echte Teilklasse von L2

Theoretische Informatik I §3.2: 25 Pushdown Automaten

DPDAs sind nicht mächtig genug

• DPDA-Sprachen sind eine echte Teilklasse von L2

1. L(DPDA)⊆L2: Jeder DPDA ist ein spezieller PDA

Theoretische Informatik I §3.2: 25 Pushdown Automaten

DPDAs sind nicht mächtig genug

• DPDA-Sprachen sind eine echte Teilklasse von L2

1. L(DPDA)⊆L2: Jeder DPDA ist ein spezieller PDA

2. DPDAs können {wwR | w ∈{0, 1}∗} nicht erkennen

DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt

· Wenn 0n110n (großes n) gelesen ist, ist Stack durchs Zählen geleert

· Wenn noch einmal 0n110n gelesen wird, muß P akzeptieren

· Wenn stattdessen 0m110m (m6=n) kommt, darf P nicht akzeptieren

· Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)

Theoretische Informatik I §3.2: 25 Pushdown Automaten

DPDAs sind nicht mächtig genug

• DPDA-Sprachen sind eine echte Teilklasse von L2

1. L(DPDA)⊆L2: Jeder DPDA ist ein spezieller PDA

2. DPDAs können {wwR | w ∈{0, 1}∗} nicht erkennen

DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt

· Wenn 0n110n (großes n) gelesen ist, ist Stack durchs Zählen geleert

· Wenn noch einmal 0n110n gelesen wird, muß P akzeptieren

· Wenn stattdessen 0m110m (m6=n) kommt, darf P nicht akzeptieren

· Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)

• DPDAs erkennen nur eindeutige Typ-2 Sprachen

Theoretische Informatik I §3.2: 25 Pushdown Automaten

DPDAs sind nicht mächtig genug

• DPDA-Sprachen sind eine echte Teilklasse von L2

1. L(DPDA)⊆L2: Jeder DPDA ist ein spezieller PDA

2. DPDAs können {wwR | w ∈{0, 1}∗} nicht erkennen

DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt

· Wenn 0n110n (großes n) gelesen ist, ist Stack durchs Zählen geleert

· Wenn noch einmal 0n110n gelesen wird, muß P akzeptieren

· Wenn stattdessen 0m110m (m6=n) kommt, darf P nicht akzeptieren

· Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)

• DPDAs erkennen nur eindeutige Typ-2 Sprachen

1. Für jeden DPDA P hat Lε(P) eine eindeutige Grammatik

Für DPDAs ergibt die Umwandlung eine eindeutige Typ-2 Grammatik

· Folge der Konfigurationsübergänge bestimmt Linksableitung eindeutig)

Theoretische Informatik I §3.2: 25 Pushdown Automaten

DPDAs sind nicht mächtig genug

• DPDA-Sprachen sind eine echte Teilklasse von L2

1. L(DPDA)⊆L2: Jeder DPDA ist ein spezieller PDA

2. DPDAs können {wwR | w ∈{0, 1}∗} nicht erkennen

DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt

· Wenn 0n110n (großes n) gelesen ist, ist Stack durchs Zählen geleert

· Wenn noch einmal 0n110n gelesen wird, muß P akzeptieren

· Wenn stattdessen 0m110m (m6=n) kommt, darf P nicht akzeptieren

· Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)

• DPDAs erkennen nur eindeutige Typ-2 Sprachen

1. Für jeden DPDA P hat Lε(P) eine eindeutige Grammatik

Für DPDAs ergibt die Umwandlung eine eindeutige Typ-2 Grammatik

· Folge der Konfigurationsübergänge bestimmt Linksableitung eindeutig)

2. Für jeden DPDA P hat LF (P) eine eindeutige Grammatik

Umwandlung in Lε − DPDA kann deterministisch gemacht werden

Theoretische Informatik I §3.2: 26 Pushdown Automaten

DPDAs sind mächtiger als endliche Automaten

• L3 = L(DEA)⊆LF (DPDA)

– Jeder DEA ist ein spezieller DPDA

– Aussage gilt nur für Erkennung mit Endzustand

Theoretische Informatik I §3.2: 26 Pushdown Automaten

DPDAs sind mächtiger als endliche Automaten

• L3 = L(DEA)⊆LF (DPDA)

– Jeder DEA ist ein spezieller DPDA

– Aussage gilt nur für Erkennung mit Endzustand

• L = {w#wR | w ∈ {0, 1}∗} ∈ LF (DPDA)−L(DEA)

– L ist nicht regulär

· Beweis durch Pumping Lemma, analog zu {wwR |w ∈{0, 1}∗}

– L = LF (P) für folgenden DPDA P

-
Start

q
0

R

0,X / 0X
1,X / 1X

-
#,X / X

q
1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0

q
2

– P ist deterministisch, da ε-Übergang in q1 genau bei Stacksymbol Z0

Theoretische Informatik I §3.2: 26 Pushdown Automaten

DPDAs sind mächtiger als endliche Automaten

• L3 = L(DEA)⊆LF (DPDA)

– Jeder DEA ist ein spezieller DPDA

– Aussage gilt nur für Erkennung mit Endzustand

• L = {w#wR | w ∈ {0, 1}∗} ∈ LF (DPDA)−L(DEA)

– L ist nicht regulär

· Beweis durch Pumping Lemma, analog zu {wwR |w ∈{0, 1}∗}

– L = LF (P) für folgenden DPDA P

-
Start

q
0

R

0,X / 0X
1,X / 1X

-
#,X / X

q
1

R

0,0 / ε
1,1 / ε

-
ε,Z0 / Z0

q
2

– P ist deterministisch, da ε-Übergang in q1 genau bei Stacksymbol Z0

• {0}∗ 6∈ Lε(DPDA)

– Wenn der Stack einmal leer ist, kann ein DPDA nicht mehr weiterarbeiten

Theoretische Informatik I §3.2: 27 Pushdown Automaten

Pushdown-Automaten – Zusammenfassung

• Maschinenmodell für kontextfreie Sprachen

– Nichtdeterministischer endlicher Automat mit Stack und ε-Übergängen

– Erkennung von Worten durch Endzustand oder leeren Stack

– Erkennungsmodelle sind ineinander transformierbar

Theoretische Informatik I §3.2: 27 Pushdown Automaten

Pushdown-Automaten – Zusammenfassung

• Maschinenmodell für kontextfreie Sprachen

– Nichtdeterministischer endlicher Automat mit Stack und ε-Übergängen

– Erkennung von Worten durch Endzustand oder leeren Stack

– Erkennungsmodelle sind ineinander transformierbar

• Verhaltensanalyse durch Konfigurationsübergänge

– Konfigurationen beschreiben ‘Gesamtzustand’ von Pushdown-Automaten

– Konfigurationsübergänge verallgemeinern Überführungsfunktionen

Theoretische Informatik I §3.2: 27 Pushdown Automaten

Pushdown-Automaten – Zusammenfassung

• Maschinenmodell für kontextfreie Sprachen

– Nichtdeterministischer endlicher Automat mit Stack und ε-Übergängen

– Erkennung von Worten durch Endzustand oder leeren Stack

– Erkennungsmodelle sind ineinander transformierbar

• Verhaltensanalyse durch Konfigurationsübergänge

– Konfigurationen beschreiben ‘Gesamtzustand’ von Pushdown-Automaten

– Konfigurationsübergänge verallgemeinern Überführungsfunktionen

• Äquivalent zu kontextfreien Grammatiken

– Umwandlung von Konfigurationsübergängen in Regeln und umgekehrt

Theoretische Informatik I §3.2: 27 Pushdown Automaten

Pushdown-Automaten – Zusammenfassung

• Maschinenmodell für kontextfreie Sprachen

– Nichtdeterministischer endlicher Automat mit Stack und ε-Übergängen

– Erkennung von Worten durch Endzustand oder leeren Stack

– Erkennungsmodelle sind ineinander transformierbar

• Verhaltensanalyse durch Konfigurationsübergänge

– Konfigurationen beschreiben ‘Gesamtzustand’ von Pushdown-Automaten

– Konfigurationsübergänge verallgemeinern Überführungsfunktionen

• Äquivalent zu kontextfreien Grammatiken

– Umwandlung von Konfigurationsübergängen in Regeln und umgekehrt

• Deterministische PDAs sind weniger mächtig

– DPDAs erkennen nur eindeutige Typ-2 Sprachen

– Lε-DPDAs können nicht einmal alle regulären Sprachen erkennen

