Theoretische Informatik I

AWEerg,,
SOVeTSy,

Einheit 3.2) Eﬁs

Pushdown Automaten Jem

-
\0d

1. Das Maschinenmodell

2. Arbeitsweise & erkannte Sprache
3. Beziehung zu Typ-2 Sprachen

4. Deterministische PDAs

EIN MASCHINENMODELL FUR TYP-2 SPRACHEN I

Maschinenmodell fiir Typ-3 Sprachen

Zustandsiberfihrung 0
Endlicher Automat

Interner Zustand

Akzeptieren
Ablehnen

Eingabe

e T'yp-3 Sprachen werden von NEAs akzeptiert

— Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
- NEA verarbeitet pro Schritt ein Eingabesymbol

THEORETISCHE INFORMATIK I §3.2: 1 PUSHDOWN AUTOMATEN

EIN MASCHINENMODELL FUR TYP-2 SPRACHEN I

Maschinenmodell fiir Typ-3 Sprachen

Zustandsiberfihrung 0
Endlicher Automat

Interner Zustand

Akzeptieren
Ablehnen

Eingabe

e T'yp-3 Sprachen werden von NEAs akzeptiert

— Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
- NEA verarbeitet pro Schritt ein Eingabesymbol

— Frzeugte Terminalsymbole stehen links von der aktuellen Variablen
- Verarbeitete Eingabesymbole fiithren zu aktuellem Zustand

THEORETISCHE INFORMATIK I §3.2: 1 PUSHDOWN AUTOMATEN

EIN MASCHINENMODELL FUR TYP-2 SPRACHEN I

Maschinenmodell fiir Typ-3 Sprachen

Zustandsiberfihrung 0
Endlicher Automat

Interner Zustand

Akzeptieren
Ablehnen

Eingabe

e T'yp-3 Sprachen werden von NEAs akzeptiert

— Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
- NEA verarbeitet pro Schritt ein Eingabesymbol

— Frzeugte Terminalsymbole stehen links von der aktuellen Variablen
- Verarbeitete Eingabesymbole fiithren zu aktuellem Zustand

— Rechts von der aktuellen Variablen steht noch nichts
- Im Zustand ist nichts tiber noch unverarbeitete Eingabesymbole bekannt

THEORETISCHE INFORMATIK I §3.2: 1 PUSHDOWN AUTOMATEN

EIN MASCHINENMODELL FUR TYP-2 SPRACHEN I

Maschinenmodell fiir Typ-2 Sprachen

Zustandsiberfihrung 0
Endlicher Automat

Interner Zustand

Akzeptieren
Ablehnen

Eingabe

e T'yp-3 Sprachen werden von NEAs akzeptiert

— Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
- NEA verarbeitet pro Schritt ein Eingabesymbol

— Frzeugte Terminalsymbole stehen links von der aktuellen Variablen
- Verarbeitete Eingabesymbole fiithren zu aktuellem Zustand

— Rechts von der aktuellen Variablen steht noch nichts
- Im Zustand ist nichts tiber noch unverarbeitete Eingabesymbole bekannt

® Welches Maschinenmodell paf3t zu Typ-2 Sprachen?
— Kontextfreie Grammatiken konnen L; = {0™1" | m € N} erzeugen

— Endliche Automaten haben kein Gedachtnis und konnen L nicht erkennen

THEORETISCHE INFORMATIK I §3.2: 1 PUSHDOWN AUTOMATEN

EIN MASCHINENMODELL FUR TYP-2 SPRACHEN I

Externer Speicher

_ |
Zustandsuberfiihrung o

Endlicher Automat

Interner Zustand

Maschinenmodell fiir Typ-2 Sprachen

Akzeptieren
Ablehnen

Eingabe

e T'yp-3 Sprachen werden von NEAs akzeptiert

— Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
- NEA verarbeitet pro Schritt ein Eingabesymbol

— Frzeugte Terminalsymbole stehen links von der aktuellen Variablen
- Verarbeitete Eingabesymbole fiithren zu aktuellem Zustand

— Rechts von der aktuellen Variablen steht noch nichts
- Im Zustand ist nichts tiber noch unverarbeitete Eingabesymbole bekannt

® Welches Maschinenmodell paf3t zu Typ-2 Sprachen?
— Kontextfreie Grammatiken konnen L; = {0™1" | m € N} erzeugen

— Endliche Automaten haben kein Gedachtnis und konnen L nicht erkennen

Typ-2 Maschinenmodell benotigt externen Speicher

THEORETISCHE INFORMATIK I §3.2: 1 PUSHDOWN AUTOMATEN

WELCHES SPEICHERMODELL BRAUCHEN TYP-2 SPRACHEN? I

Benutze Analogie der Linksableitungen

e Links von der aktuellen Variablen A stehen
nur erzeugte Terminalsymbole

— Entspricht den schon verarbeiteten Eingabesymbolen

THEORETISCHE INFORMATIK I §3.2: 2 PUSHDOWN AUTOMATEN

WELCHES SPEICHERMODELL BRAUCHEN TYP-2 SPRACHEN? I

Benutze Analogie der Linksableitungen

e Links von der aktuellen Variablen A stehen
nur erzeugte Terminalsymbole

— Entspricht den schon verarbeiteten Eingabesymbolen

e Aber rechts von A steht bereits Text
Abarbeitung von A schiebt weiteren Text in die Mitte
— Automat muf3 Information speichern, die noch verarbeitet werden muf3

— Information erklart, was am Ende der Eingabe erwartet wird

THEORETISCHE INFORMATIK I §3.2: 2 PUSHDOWN AUTOMATEN

WELCHES SPEICHERMODELL BRAUCHEN TYP-2 SPRACHEN? I

Benutze Analogie der Linksableitungen

e Links von der aktuellen Variablen A stehen

nur erzeugte Terminalsymbole

— Entspricht den schon verarbeiteten Eingabesymbolen

e Aber rechts von A steht bereits Text
Abarbeitung von A schiebt weiteren Text in die Mitte
— Automat muf3 Information speichern, die noch verarbeitet werden muf3

— Information erklart, was am Ende der Eingabe erwartet wird

e Wenn A komplett abgearbeitet, springt Linksableitung
uber Terminalsymbole zur nachsten Variablen

— Automat muf} zuletzt erzeugte Information zuerst abarbeiten

THEORETISCHE INFORMATIK I §3.2: 2 PUSHDOWN AUTOMATEN

WELCHES SPEICHERMODELL BRAUCHEN TYP-2 SPRACHEN? I

Benutze Analogie der Linksableitungen

e Links von der aktuellen Variablen A stehen

nur erzeugte Terminalsymbole

— Entspricht den schon verarbeiteten Eingabesymbolen

e Aber rechts von A steht bereits Text
Abarbeitung von A schiebt weiteren Text in die Mitte
— Automat muf3 Information speichern, die noch verarbeitet werden muf3

— Information erklart, was am Ende der Eingabe erwartet wird

e Wenn A komplett abgearbeitet, springt Linksableitung
uber Terminalsymbole zur nachsten Variablen

— Automat muf} zuletzt erzeugte Information zuerst abarbeiten

U

Speicher des Automaten sollte ein Stack sein

THEORETISCHE INFORMATIK I §3.2: 2 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN INTUITIV I

Interner Zustand

Akzeptieren

Ablehnen

Eingabe

Endliche Steuerung

Zustandstiberfiihrung o

!

Stack

— (D IO

e Endlicher Automat + Stack
— Endliche Steuerung liest Eingabesymbole

THEORETISCHE INFORMATIK I §3.2: 3 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN INTUITIV I

Interner Zustand

Akzeptieren

Ablehnen

Eingabe

Endliche Steuerung

Zustandstiberfiihrung o

!

Stack

— (D IO

e Endlicher Automat + Stack
— Endliche Steuerung liest Eingabesymbole

— Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

THEORETISCHE INFORMATIK I §3.2: 3 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN INTUITIV I

Interner Zustand

Akzeptieren
Ablehnen

Eingabe

Endliche Steuerung

Zustandstiberfiihrung o

!

Stack

— (D IO

e Endlicher Automat + Stack
— Endliche Steuerung liest Eingabesymbole

— Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

e Eingabe und Stack wird gleichzeitig bearbeitet
— Gelesenes Symbol wird aus Eingabe “entfernt”

— Zustand kann verandert werden

THEORETISCHE INFORMATIK I §3.2: 3 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN INTUITIV I

Interner Zustand

Akzeptieren
Ablehnen

Eingabe

Endliche Steuerung

Zustandstiberfiihrung o

Stack

—>
- (D | OO |
[R—

e Endlicher Automat + Stack
— Endliche Steuerung liest Eingabesymbole

— Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

e Eingabe und Stack wird gleichzeitig bearbeitet
— Gelesenes Symbol wird aus Eingabe “entfernt”
— Zustand kann verandert werden

— Oberstes Stacksymbol wird durch (mehrere) neue Stacksymbole ersetzt

THEORETISCHE INFORMATIK I §3.2: 3 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN INTUITIV I

Interner Zustand

Akzeptieren
Ablehnen

Eingabe

Endliche Steuerung

Zustandstiberfiihrung o

Stack

—>
- (D | OO |
[R—

e Endlicher Automat + Stack
— Endliche Steuerung liest Eingabesymbole

— Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

e Eingabe und Stack wird gleichzeitig bearbeitet
— Gelesenes Symbol wird aus Eingabe “entfernt”
— Zustand kann verandert werden
— Oberstes Stacksymbol wird durch (mehrere) neue Stacksymbole ersetzt

— Nichtdeterministische Entscheidungen und spontane e-Uberginge moglich

THEORETISCHE INFORMATIK I §3.2: 3 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR ‘GERADE’ PALINDROME I

L = {wwf|we{0,1}*} ist kontextfrei

e Speichere w in qq
— In q¢ wird je ein Symbol gelesen und aut den Stack gelegt

— Gelesenes Wort steht von unten nach oben im Stack

THEORETISCHE INFORMATIK I §3.2: 4 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR ‘GERADE’ PALINDROME I

L = {wwf|we{0,1}*} ist kontextfrei

e Speichere w in qq
— In q¢ wird je ein Symbol gelesen und aut den Stack gelegt

— Gelesenes Wort steht von unten nach oben im Stack

e Spontaner Wechsel “in der Mitte”
— Nichtdeterministischer e-Ubergang von ¢y nach ¢

— Im Stack steht w in umgekehrter Reihenfolge

THEORETISCHE INFORMATIK I §3.2: 4 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR ‘GERADE’ PALINDROME I

L = {wwf|we{0,1}*} ist kontextfrei

e Speichere w in qq
— In q¢ wird je ein Symbol gelesen und aut den Stack gelegt

— Gelesenes Wort steht von unten nach oben im Stack

e Spontaner Wechsel “in der Mitte”
— Nichtdeterministischer e-Ubergang von ¢y nach ¢

— Im Stack steht w in umgekehrter Reihenfolge

R iy qi

— In ¢; wird je ein Symbol gelesen und mit dem Stacksymbol verglichen
— Stacksymbol wird bei Gleichheit entfernt

® Verarbeite w

THEORETISCHE INFORMATIK I §3.2: 4 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR ‘GERADE’ PALINDROME I

L = {wwf|we{0,1}*} ist kontextfrei

e Speichere w in qq
— In q¢ wird je ein Symbol gelesen und aut den Stack gelegt

— Gelesenes Wort steht von unten nach oben im Stack

e Spontaner Wechsel “in der Mitte”
— Nichtdeterministischer e-Ubergang von ¢y nach ¢

— Im Stack steht w in umgekehrter Reihenfolge

R iy qi

— In ¢; wird je ein Symbol gelesen und mit dem Stacksymbol verglichen
— Stacksymbol wird bei Gleichheit entfernt

® Verarbeite w

e Leerer Stack akzeptiert

— Wenn Stack leer ist, wurde w’ in q; verarbeitet

THEORETISCHE INFORMATIK I §3.2: 4 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — MATHEMATISCH PRAZISIERT I

Interner Zustand

Akzeptieren
Ablehnen

Eingabe

Endliche Steuerung

Zustandsuberfuhrung

il

Stack

ma([Cl(eleni s

Ein Pushdown-Automat (PDA, Kellerautomat)
ist ein 7-Tupel P = (Q, X, I, 8, qo, Zo, F') mit
e () nichtleere endliche Zustandsmenge

e . endliches Eingabealphabet

THEORETISCHE INFORMATIK I §3.2: 5 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — MATHEMATISCH PRAZISIERT I

' Interner Zustand Abrenti
_LBingabe Y g dliche Steuerung i il
— Ablehnen
Zustandsuberfuhrung
R}
a
b
C Stack
€
.I.'

Ein Pushdown-Automat (PDA, Kellerautomat)
ist ein 7-Tupel P = (Q, X, I, 8, qo, Zo, F') mit
e () nichtleere endliche Zustandsmenge
e . endliches Eingabealphabet
e I' endliches Stackalphabet
¢ 5:Q % (ZU{e})xT' — P(QxTI*) Uberfithrungsfunktion

THEORETISCHE INFORMATIK I §3.2: 5 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — MATHEMATISCH PRAZISIERT I

' Interner Zustand Abrenti
_LBingabe Y g dliche Steuerung i il
— Ablehnen
Zustandsuberfuhrung
R}
a
b
C Stack
€
.I.'

Ein Pushdown-Automat (PDA, Kellerautomat)
ist ein 7-Tupel P = (Q, X, I, 8, qo, Zo, F') mit
e () nichtleere endliche Zustandsmenge
e . endliches Eingabealphabet
e I' endliches Stackalphabet
¢ 5:Q % (ZU{e})xT' — P(QxTI*) Uberfithrungsfunktion
¢ g,cQ Startzustand (Anfangszustand)
e Z,cI' Initialsymbol des Stacks

THEORETISCHE INFORMATIK I §3.2: 5 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — MATHEMATISCH PRAZISIERT I

' Interner Zustand Abrenti
_LBingabe Y g dliche Steuerung i il
— Ablehnen
Zustandsuberfuhrung
ty
Stack

ma([Cl(eleni s

Ein Pushdown-Automat (PDA, Kellerautomat)
ist ein 7-Tupel P = (Q, X, I, 8, qo, Zo, F') mit
e () nichtleere endliche Zustandsmenge
e . endliches Eingabealphabet
e I' endliches Stackalphabet
¢ 5:Q % (ZU{e})xT' — P(QxTI*) Uberfithrungsfunktion
¢ g,cQ Startzustand (Anfangszustand)
e Z,cI' Initialsymbol des Stacks

e FFC() Menge von akzeptierenden Zustanden (Endzusténde)

THEORETISCHE INFORMATIK I §3.2: 5 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — MATHEMATISCH PRAZISIERT I

' Interner Zustand Abrenti
_LBingabe Y g dliche Steuerung i il
— Ablehnen
Zustandsuberfuhrung
R}
Stack

ma([Cl(eleni s

Ein Pushdown-Automat (PDA, Kellerautomat)
ist ein 7-Tupel P = (Q, X, I, 8, qo, Zo, F') mit
e () nichtleere endliche Zustandsmenge
e . endliches Eingabealphabet
e I' endliches Stackalphabet
¢ 5:Q % (ZU{e})xT' — P(QxTI*) Uberfithrungsfunktion
¢ g,c() Startzustand (Anfangszustand)
e Z,cI' Initialsymbol des Stacks

e FFC() Menge von akzeptierenden Zustanden (Endzusténde)

Pushdown-Automaten sind ublicherweise nichtdeterministisch!

THEORETISCHE INFORMATIK I §3.2: 5 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR {ww!t |w e {0,1}*} |
Start =@

THEORETISCHE INFORMATIK I §3.2: 6 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR {ww!t |w e {0,1}*} |

0,X / 0X
1,X /1X

Y

Start

® Speichere w in q

— Jedes gelesene Symbol wird dem Stack zugefiigt
—6(qo,a,X) = {(qo,aX)} fiir ae{0,1}, X el

THEORETISCHE INFORMATIK I §3.2: 6 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR {ww!t |w e {0,1}*} |

0,X / 0X
1,X /1X

X / X
Start " qo " ql

® Speichere w in q

— Jedes gelesene Symbol wird dem Stack zugefiigt
—6(qo,a,X) = {(qo,aX)} fiir ae{0,1}, X el

e Spontaner E-Ubergang von gy nach g
—0(q0,6,X) = {(q,X)} fiir X el

THEORETISCHE INFORMATIK I §3.2: 6 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR {ww!t |w e {0,1}*} |

0,X / 0X 0,0 / €
1,X / 1X 1,1 / €
X / X
Y + 4

Start

® Speichere w in q

— Jedes gelesene Symbol wird dem Stack zugefiigt
—6(qo,a,X) = {(qo,aX)} fiir ae{0,1}, X el

e Spontaner E-Ubergang von gy nach g
—0(q0,6,X) = {(q,X)} fiir X el

fin ¢

— Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen

—0(q1,a,a) = {(q1,€)} fir ae{0,1}

® Verarbeite w

THEORETISCHE INFORMATIK I §3.2: 6 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR {ww!t |w e {0,1}*} |

0,X / 0X 0,0 / e
1,X /11X 1,1/ €
E,X / X €7ZO / ZO
d + 9 d,

Start

® Speichere w in q

— Jedes gelesene Symbol wird dem Stack zugefiigt
—6(qo,a,X) = {(qo,aX)} fiir ae{0,1}, X el

e Spontaner E-Ubergang von gy nach g
—6(qo,e,X) = {(q1,X)} fiir X el

fin ¢
— Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen
= (qu,a,a) = {(qu,e)} fir ae{0,1}

e “Leerer” Stack akzeptiert (e-Ubergang nach g»)

= 0(q1,6,%0) = {(q2,%0)}

® Verarbeite w

THEORETISCHE INFORMATIK I §3.2: 6 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR {ww!t |we{0,1}*} |

0,X / 0X 0,0 / €
1,X /1X 1,1 / €
E,X / X E,ZO / ZO
Start " qO " ql q2

® Speichere w in q
— Jedes gelesene Symbol wird dem Stack zugefiigt
—6(qo,a,X) = {(qo,aX)} fiir ae{0,1}, X el

e Spontaner e-ﬂ'bergang von gy nach g
—6(qo,e,X) = {(q1,X)} fiir X el'

fin ¢
— Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen
= 0(qu,a,a) = {(qu,e)} fir ae{0,1}

e “Leerer” Stack akzeptiert (e-Ubergang nach g»)
= 0(q1.6.Z0) = {(g2.20)}

P = ({q07 qi, CIZ}a {031}7 {0719Z0}7 0, qo, Zo, {qZ})

THEORETISCHE INFORMATIK I §3.2: 6 PUSHDOWN AUTOMATEN

® Verarbeite w

BESCHREIBUNG VON PUSHDOWN-AUTOMATEN I

0,X / 0X 0

. . 1,X /1X 1,
e Ubergangsdiagramme ;?
X /X €2y | Zy

Start q 0 \1/

THEORETISCHE INFORMATIK I §3.2: 7 PUSHDOWN AUTOMATEN

BESCHREIBUNG VON PUSHDOWN-AUTOMATEN I

0,X / 0X 0

, €
. . 1.X 71X 1,
e Ubergangsdiagramme ﬁ
X /X €2y | Zy
: q @

Start q 0 _1/

— Jeder Zustand in () wird durch einen Knoten (Kreise) dargestellt

— Fir (p,a) €d(q, a, X), ac(XUe) hat das Diagramm eine Kante qaﬁ)ap

(mehrere Beschriftungen derselben Kante maoglich)
— qo wird durch einen mit Start beschrifteten Pfeil angezeigt
— Endzustande in /' werden durch doppelte Kreise gekennzeichnet

— > und I' implizit durch die Diagramm bestimmt, Initialsymbol heifit Z,

THEORETISCHE INFORMATIK I §3.2: 7 PUSHDOWN AUTOMATEN

BESCHREIBUNG VON PUSHDOWN-AUTOMATEN I

0,X / 0X 0

, €
. . 1.X 71X 1,
e Ubergangsdiagramme ﬁ
X /X €2y | Zy
: q @

Start q 0 _1/

— Jeder Zustand in () wird durch einen Knoten (Kreise) dargestellt

— Fir (p,a) €d(q, a, X), ac(XUe) hat das Diagramm eine Kante qaﬁ)ap

(mehrere Beschriftungen derselben Kante maoglich)
— qo wird durch einen mit Start beschrifteten Pfeil angezeigt
— Endzustande in /' werden durch doppelte Kreise gekennzeichnet

— > und I' implizit durch die Diagramm bestimmt, Initialsymbol heifit Z,

THEORETISCHE INFORMATIK I §3.2: 7 PUSHDOWN AUTOMATEN

BESCHREIBUNG VON PUSHDOWN-AUTOMATEN I

0,X / 0X 0

, €
o . 1.X /1X 1.1/ €
e Ubergangsdiagramme
X | X .70 / ZO®
g 2

Start G 0 \D

— Jeder Zustand in () wird durch einen Knoten (Kreise) dargestellt

— Fir (p,a) €d(q, a, X), ac(XUe) hat das Diagramm eine Kante qaﬁ)ap

(mehrere Beschriftungen derselben Kante maoglich)
— qo wird durch einen mit Start beschrifteten Pfeil angezeigt
— Endzustande in /' werden durch doppelte Kreise gekennzeichnet

— > und I' implizit durch die Diagramm bestimmt, Initialsymbol heifit Z,

e Ubergangstabellen @ YUe T |Resultat
— q, 0 * | g, 0%
— q, 1 * | g, 1%

— g, € * | qp,%*

q 0 0| q,¢€

q 1 1 | q,¢€
q1 € ZO qg: ZO

* q,

THEORETISCHE INFORMATIK I §3.2: 7 PUSHDOWN AUTOMATEN

BESCHREIBUNG VON PUSHDOWN-AUTOMATEN I

0,X / 0X 0

, €
o . 1.X /1X 1.1/ €
e Ubergangsdiagramme
X | X .70 / ZO®
> 2

Start G 0 \ql/

— Jeder Zustand in () wird durch einen Knoten (Kreise) dargestellt

— Fir (p,a) €d(q, a, X), ac(XUe) hat das Diagramm eine Kante qaﬁ?p

(mehrere Beschriftungen derselben Kante maoglich)
— qo wird durch einen mit Start beschrifteten Pfeil angezeigt
— Endzustande in /' werden durch doppelte Kreise gekennzeichnet

— > und I' implizit durch die Diagramm bestimmt, Initialsymbol heifit Z,

e Ubergangstabellen @ YUe T |Resultat
— Tabellarische Darstellung der Funktion o — qy 0 * | q,0%
. . . — q, 1 | qplx
— Kennzeichnung von ¢y durch einen Pfeil — q, € * | q,*
— Kennzeichnung von F' durch Sterne q, 0 0| q.¢€
— >, ['und @) implizit durch die Tabelle bestimmt 31 i 1Z gl’EZ
0 s £()
— Wildcard (x, *x,..) fiir a € oder X €I erlaubt * q; 2

THEORETISCHE INFORMATIK I §3.2: 7 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

Generalisiere 0 zu Konfigurationsiibergangen

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

Generalisiere 0 zu Konfigurationsiibergangen

e Konfiguration: der wirkliche ‘Zustand’ des PDA
— Mehr als ¢ €(): auch Inhalt des Stacks und unverarbeitete Eingabe zahlt

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

Generalisiere 0 zu Konfigurationsiibergangen

e Konfiguration: der wirkliche ‘Zustand’ des PDA

— Mehr als ¢ €(): auch Inhalt des Stacks und unverarbeitete Eingabe zahlt
— Formal dargestellt als Tripel K = (qw,y) € @QxX*xI™

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

Generalisiere 0 zu Konfigurationsiibergangen

e Konfiguration: der wirkliche ‘Zustand’ des PDA

— Mehr als ¢ €(): auch Inhalt des Stacks und unverarbeitete Eingabe zahlt
— Formal dargestellt als Tripel K = (qw,y) € @QxX*xI™

e Konfigurationsiibergang -

— Wechsel zwischen Konfigurationen durch Abarbeitung von Worten

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

Generalisiere 0 zu Konfigurationsiibergangen

e Konfiguration: der wirkliche ‘Zustand’ des PDA

— Mehr als ¢ €(): auch Inhalt des Stacks und unverarbeitete Eingabe zahlt
— Formal dargestellt als Tripel K = (qw,y) € @QxX*xI™

e Konfigurationsiibergang -

— Wechsel zwischen Konfigurationen durch Abarbeitung von Worten
- (gaw XB) b (pw.af), falls (p,a)eci(q, a,X)

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

Generalisiere 0 zu Konfigurationsiibergangen

e Konfiguration: der wirkliche ‘Zustand’ des PDA

— Mehr als ¢ €(): auch Inhalt des Stacks und unverarbeitete Eingabe zahlt
— Formal dargestellt als Tripel K = (qw,y) € @QxX*xI™

e Konfigurationsiibergang -~
— Wechsel zwischen Konfigurationen durch Abarbeitung von Worten
—(q,aw,X3) F (pw,aB), falls (p,a)ed(q,a, X)
- K, F K, falls K1 = Ky oder
es gibt eine Konfiguration K mit K; + K und K +F K5

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

Generalisiere 0 zu Konfigurationsiibergangen

e Konfiguration: der wirkliche ‘Zustand’ des PDA

— Mehr als ¢ €(): auch Inhalt des Stacks und unverarbeitete Eingabe zahlt
— Formal dargestellt als Tripel K = (qw,y) € @QxX*xI™

e Konfigurationsiibergang -~
— Wechsel zwischen Konfigurationen durch Abarbeitung von Worten
—(q,aw,X3) F (pw,aB), falls (p,a)ed(q,a, X)
- K, F K, falls K1 = Ky oder
es gibt eine Konfiguration K mit K; + K und K +F K5

e Konfigurationsiibergange fiir NEAs definierbar
— Konfigurationen sind Paare K = (qw) € QxX*
—(q.aw) F (pw), falls ped(q,a), K, F K definiert wie oben

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

Generalisiere 0 zu Konfigurationsiibergangen

e Konfiguration: der wirkliche ‘Zustand’ des PDA

— Mehr als ¢ €(): auch Inhalt des Stacks und unverarbeitete Eingabe zahlt
— Formal dargestellt als Tripel K = (qw,y) € @QxX*xI™

e Konfigurationsiibergang -~
— Wechsel zwischen Konfigurationen durch Abarbeitung von Worten
—(q,aw,X3) F (pw,aB), falls (p,a)ed(q,a, X)
- K, F K, falls K1 = Ky oder
es gibt eine Konfiguration K mit K; + K und K +F K5

e Konfigurationsiibergange fiir NEAs definierbar
— Konfigurationen sind Paare K = (qw) € QxX*
—(q.aw) F (pw), falls ped(q,a), K, F K definiert wie oben

Allgemeinere, aber fiir endliche Automaten weniger intuitive Notation

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(qp 1111, Z,)

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

THEORETISCHE INFORMATIK I §3.2: 9

PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(qp 1111, Z,)

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

(4 111, 12,)

THEORETISCHE INFORMATIK I §3.2: 9

PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(qp 1111, Z,)

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

(qp 111, 1Z)) (qp 1111, Z))

THEORETISCHE INFORMATIK I §3.2:

PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(qp 1111, Z,)

(4 111, 12,)

(ap 11, 112)

THEORETISCHE INFORMATIK I §3.2:

0,X / 0X
1,X /71X

0,0 / €
1,1;6

(qp 1111, Z)

PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(qp 1111, Z,)

(4 111,12,)

(ap 11, 112)

THEORETISCHE INFORMATIK I §3.2:

0,X / 0X
1,X /71X

0,0 / €
1,1;6

(qp 1111, Z)

(qp 111, 1Z))

PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

Verarbeitung von 1111 W
X / X €2y | Z
(q, 1111, Z) dy { g n L @

(qp 111, 1Z) (qp 1111, Z))

(qp 11, 112)) (qp, 111, 12)

(4 1, 1112,)

THEORETISCHE INFORMATIK I §3.2: 9 PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(q, 1111, Z,)
(dp 11"17 17)
(ap 11, 112))

A

(4o 1, 1112,)

(a9 € 11112

0,X / 0X
1,X /71X

0,0 / €
1,1;6

(qp 1111, Z)

(qp 111, 1Z))

THEORETISCHE INFORMATIK I §3.2:

PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(q, 1111, Z,)
(dp 11"17 17)
(ap 11, 112))

(4o 1, 1112,)

(qp € 11112

(a, € 1111Z)

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

(qp 1111, Z)

(qp 111, 1Z))

PUSHDOWN AUTOMATEN

THEORETISCHE INFORMATIK I §3.2:

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(q, 1111, Z,)
(dp 11"17 17)
(ap 11, 112))

(4o 1, 1112,)

(qp € 11112

(a, € 1111Z)

Start

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

€, X X;?E,Zo Zy
q, /X0 q /

>
-

(ap 1111, Z)) — (g, 1111, Z))

(qp 111, 1Z))

PUSHDOWN AUTOMATEN

THEORETISCHE INFORMATIK I §3.2:

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(q, 1111, Z,)
(dp 11"17 17)
(ap 11, 112))

(4o 1, 1112,)

(qp € 11112

(a, € 1111Z)

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

€, X X;?E,Zo Zy
q, /X0 q /

>
-

Start

(ap 1111, Z)) — (g, 1111, Z))

(qp 111,1Z) — (qp 11, Z)

9 PUSHDOWN AUTOMATEN

THEORETISCHE INFORMATIK I §3.2:

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(q, 1111, Z,)
(dp 11"17 17)
(ap 11, 112))

(4o 1, 1112,)

(qp € 11112

(a, € 1111Z)

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

€, X X;?E,Zo Zy
q, /X0 q /

>
-

Start

(ap 1111, Z)) — (g, 1111, Z))

(qp 111,1Z) — (qp 11, Z)

(0 11, Z))

9 PUSHDOWN AUTOMATEN

THEORETISCHE INFORMATIK I §3.2:

ABARBEITUNG DES PALINDROM PDA I

0,X / 0X 0,0 / €
1,X /71X 1,17/ €
Verarbeitung von 1111 W
X / X €,Zy | Zy

(9, 111,120)\(%1111, Z) — (g, 1111, Z))
(qp 11, 11Z7) (qp 111,1Z) — (g, 11, Z)
(45 1, 1112 (ap 11, 11Z) (a5 11, Z))
(qp € 11112

(a, € 1111Z)

THEORETISCHE INFORMATIK I §3.2: 9 PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

0,X / 0X 0,0 / €
1,X /71X 1,17/ €
Verarbeitung von 1111 W
X / X €,Zy | Zy

(S mw\ - N @
(9, 111,120)\(%1111, Z) — (g, 1111, Z))
(qp 11, 11Z7) (qp 111,1Z) — (qp 11, Z)
(9 1, 1117 (ap 11, 11Z) (a5 11, Z)
(qp €, 11117 (ap 1, 1Z)

(a, € 1111Z)

THEORETISCHE INFORMATIK I §3.2: 9 PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

0,X / 0X 0,0 / €
1LX 71X 117 e
Verarbeitung von 1111 W
X / X €,Zy | Zy

(o mw\ A N @
(9, 111,120)\(%,1111, Z) — (g, 1111, Z))
(qp 11, 11Z7) (qp 111,1Z) — (qp 11, Z)
(9 1, 1117 (ap 11, 11Z) (a5 11, Z)
(qp €, 11117 (ap 1, 1Z)
(qp €, 11117 (ap €, Z))

THEORETISCHE INFORMATIK I §3.2: 9 PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

0,X / 0X 0,0 / €
1LX 71X 117 e
Verarbeitung von 1111 W
X / X €,Zy | Zy
(qm 111,120)\(%,1111, ZO) — (qz, 1111, Zo)
(qo, 11, 11Z0) (ql, 111, IZO) — (ql, 11, ZO)
(9p 1, 1112 (q, 11, 11Z)) (a5 11, Z)
(qp €, 11117 (ap 1, 1Z)
(qp €, 11117 (ap €, Z))
¥
(qm €, Zo)

PUSHDOWN AUTOMATEN

THEORETISCHE INFORMATIK I §3.2: 9

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(ap 1111, Z)
(a, 111, 1Z))
(qp 11, 112)
(a9, 1, 1112))

(qp € 11112

(a, € 1111Z)

THEORETISCHE INFORMATIK I §3.2:

Start

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

€, X X;?E,Zo Zy
q, /X0 q /

\

(a)

(qp 1111, Z) —

(qp 111,1Z) —

(qp 11, 11Z7)

(qp 1111, Z))

(qp 11, Z)

(0 11, Z))

\

(qp 1, 111Z))

(ap 1, 1Z)

(9, €, Z))

¥
(qm €, Zo)

PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

Verarbeitung von 1111

(ap 1111, Z)
(a, 111, 1Z))
(qp 11, 112)
(a9, 1, 1112))

(qp € 11112

(a, € 1111Z)

THEORETISCHE INFORMATIK I §3.2:

Start

0,X / 0X 0,0 / €
1,X /1X 1,17/ €

€, X X;?E,Zo Zy
q, /X0 q /

\

(a)

(qp 1111, Z) —

(qp 111,1Z) —

(qp 11, 11Z7)

(qp 1111, Z))

(qp 11, Z)

(0 11, Z))

\

(qp 1, 111272

(qp €, 112))

(ap 1, 1Z)

(9, €, Z))

¥
(qm €, Zo)

PUSHDOWN AUTOMATEN

WICHTIGE EINSICHTEN zZU KONFIGURATIONSUBERGANGEN I

o Gilt (q,r,x) - (p,y,3) dann gilt auch
g,zw,oy) F (pyw,B3y) fiir alle w € T*, v €
() F (By) f 11 >* I'*

Weder w noch v werden bei der Verarbeitung angesehen

— Beweis durch Induktion iber Anzahl der Konfigurationsschritte
— Kernargument: (¢q,aw,X~) = (pw,B7), falls (p,3)<d(q,a, X)

was hinter a bzw. X kommt, bleibt unverandert

THEORETISCHE INFORMATIK I §3.2: 10 PUSHDOWN AUTOMATEN

WICHTIGE EINSICHTEN ZU KONFIGURATIONSUBERGANGEN I

o Gilt (q,r,x) - (p,y,3) dann gilt auch
g,zw,oy) F (pyw,B3y) fiir alle w € T*, v €
() F (By) f 11 >* I'*

Weder w noch v werden bei der Verarbeitung angesehen

— Beweis durch Induktion tiber Anzahl der Konfigurationsschritte
— Kernargument: (¢q,aw,X~) = (pw,B7), falls (p,3)<d(q,a, X)

was hinter a bzw. X kommt, bleibt unverandert

o Gilt (g,xw,x) - (p,yw,3) dann gilt auch
(g,z,a) - (p,y,3) fiir alle w € X*

Wenn w bisher nicht gelesen wurde, dann spielt es (noch) keine Rolle

Dagegen kann es von Bedeutung sein, ob im Stack hiner a etwas steht

THEORETISCHE INFORMATIK I §3.2: 10 PUSHDOWN AUTOMATEN

ERKANNTE SPRACHE EINES PUSHDOWN-AUTOMATEN I

e Zwel alternative Definitionen

— Akzeptanz durch akzeptierende Endzustinde (Standarddefinition)
- Lp(P) ={weX*|IqeF. 33T (qo,w, Zy) F (¢q,€,3)}

THEORETISCHE INFORMATIK I §3.2: 11 PUSHDOWN AUTOMATEN

ERKANNTE SPRACHE EINES PUSHDOWN-AUTOMATEN I

e Zweil alternative Definitionen
— Akzeptanz durch akzeptierende Endzustinde (Standarddefinition)
- Lp(P) ={weX*|IqeF. 33T (qo,w, Zy) F (¢q,€,3)}
— Akzeptanz durch leeren Stack (oft praktischer)
Le(P) = {weX'[3gQ. (q.w, %) F (g,¢,¢)}

THEORETISCHE INFORMATIK I §3.2: 11 PUSHDOWN AUTOMATEN

ERKANNTE SPRACHE EINES PUSHDOWN-AUTOMATEN I

e Zweil alternative Definitionen
— Akzeptanz durch akzeptierende Endzustinde (Standarddefinition)
- Lp(P) ={weX*|IqeF. 33T (qo,w, Zy) F (¢q,€,3)}
— Akzeptanz durch leeren Stack (oft praktischer)
Le(P) = {weX'[3gQ. (q.w, %) F (g,¢,¢)}

e Beide Akzeptanzdefinitionen sind aquivalent
— 7Zu jedem PDA P, = (Q,%, T, qo, Zy, 0, () kann ein PDA Pr
konstruiert werden mit L.(P.) = Lp(Pp)

THEORETISCHE INFORMATIK I §3.2: 11 PUSHDOWN AUTOMATEN

ERKANNTE SPRACHE EINES PUSHDOWN-AUTOMATEN I

e Zweil alternative Definitionen
— Akzeptanz durch akzeptierende Endzustinde (Standarddefinition)
- Lp(P) ={weX*|IqeF. 33T (qo,w, Zy) F (¢q,€,3)}
— Akzeptanz durch leeren Stack (oft praktischer)
Le(P) = {weX'[3gQ. (q.w, %) F (g,¢,¢)}

e Beide Akzeptanzdefinitionen sind aquivalent
—7Zu jedem PDA P. = (Q, >, T, qv, Zy, 6, 0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Lp(Pp)
— Zu jedem PDA Pr = (Q, >, 1", qo, 2o, 9, I') kann ein PDA P.
konstruiert werden mit Lp(Pr) = L.(P.)

THEORETISCHE INFORMATIK I §3.2: 11 PUSHDOWN AUTOMATEN

SPRACHEN DES PALINDROMAUTOMATEN I

0,X / 0X 0,0 / €
1,X /1X 1,1/ €

o L (P) = {wwf|we{0,1}*}

THEORETISCHE INFORMATIK I §3.2: 12 PUSHDOWN AUTOMATEN

SPRACHEN DES PALINDROMAUTOMATEN I

0,X / 0X 0,0 / €
1,X /1X 1,1/

€,X XWG,ZO Zy

\

Start

o L(P) = {wwf|we{0,1}*}
D: Durch Induktion iiber Lange von w zeige daB fiir jedes Wort ww® gilt
(qoww® Z) F (qowwZ) F (g wwhZy) © (q1.6,20) b (q2.6.%)

THEORETISCHE INFORMATIK I §3.2: 12 PUSHDOWN AUTOMATEN

SPRACHEN DES PALINDROMAUTOMATEN I

0,X / 0X 0,0 / €
1,X /1X 1,1/

€,X X@G,Zo Zy

\

Start

o L(P) = {wwf|we{0,1}*}
D: Durch Induktion iiber Lange von w zeige daB fiir jedes Wort ww® gilt
(qoww® Z) F (qowwZ) F (g wwhZy) © (q1.6,20) b (q2.6.%)

C: Durch Induktion iiber Lange von x zeige
Wenn (qo,x,a) F (q1,6,a) dann z=ww? fiir ein w e {0,1}*
Kernidee: (qo,z1..2n, @) F (qo,xo..Tn, 210) F (q1,24.. 20, BT100)

= Sql,xn,xla) = (ql,e,o:)

. .. *
impliziert (qo,x1..2p_1,) F (qo,x2..2p_1,770) F ... F (q,€6, 1100)
und 2.2, = T129..2,_ 121 = x0vie; fir ein ve {01}

THEORETISCHE INFORMATIK I §3.2: 12 PUSHDOWN AUTOMATEN

SPRACHEN DES PALINDROMAUTOMATEN I

0,X / 0X 0,0 / €
1,X /1X 1,1/

€,X X@G,Zo Zy

\

Start

o L(P) = {wwf|we{0,1}*}
D: Durch Induktion iiber Lange von w zeige daB fiir jedes Wort ww® gilt
(qoww® Z) F (qowwZ) F (g wwhZy) © (q1.6,20) b (q2.6.%)

C: Durch Induktion iiber Lange von x zeige
Wenn (qo,x,a) F (q1,6,a) dann z=ww? fiir ein w e {0,1}*
Kernidee: (qo,z1..2n, @) F (qo,xo..Tn, 210) F (q1,24.. 20, BT100)
= Sql,xn,xla) = (ql,e,o:) *

impliziert (qo,x1..2p_1,) F (qo,x2..2p_1,770) F ... F (q,€6, 1100)
und 2.2, = T129..2,_ 121 = x0vie; fir ein ve {01} Siche HMU §6.2.1

THEORETISCHE INFORMATIK I §3.2: 12 PUSHDOWN AUTOMATEN

SPRACHEN DES PALINDROMAUTOMATEN I

0,X / 0X 0,0 / €
1,X /1X 1,1/

€,X X@G,Zo Zy

\

Start

o Lp(P) = {wwf|we{0,1}*}
D: Durch Induktion iiber Lange von w zeige daB fiir jedes Wort ww’ gilt
(C]o,wwR,ZO) - (qo,w wRZO) = (qw wRZO) - (q1,6,20) = (q2,€6,%0)
C: Durch Induktion iiber Lange von x zeige
Wenn (qo,x,a) F (q1,6,a) dann z=ww? fiir ein w e {0,1}*
Kernidee: (qo,z1..2n, @) F (qo,xo..Tn, 210) F (q1,24.. 20, BT100)
= 5(11,%7 T10) - <Q17€70:>)

impliziert (qo,x1..2p_1,) F (qo,x2..2p_1,770) F ... F (q,€6, 1100)
und 2.2, = T129..2,_ 121 = x0vie; fir ein ve {01} Siche HMU §6.2.1

oL (P) =10

— Einfaches Argument: Z; wird nie geloscht

THEORETISCHE INFORMATIK I §3.2: 12 PUSHDOWN AUTOMATEN

SPRACHEN DES PALINDROMAUTOMATEN I

0,X / 0X 0,0 / €
1,X /1X 1,1/

€,X X@G,Zo Zy

\

Start

o Lp(P) = {wwf|we{0,1}*}
D: Durch Induktion iiber Lange von w zeige daB fiir jedes Wort ww’ gilt
(C]o,wwR,ZO) - (qo,w wRZO) = (qw wRZO) - (q1,6,20) = (q2,€6,%0)
C: Durch Induktion iiber Lange von x zeige
Wenn (qo,x,a) F (q1,6,a) dann z=ww? fiir ein w e {0,1}*
Kernidee: (qo,z1..2n, @) F (qo,xo..Tn, 210) F (q1,24.. 20, BT100)
= 5(11,%7 T10) - <Q17€70:>)

impliziert (qo,x1..2p_1,) F (qo,x2..2p_1,770) F ... F (q,€6, 1100)
und 2.2, = T129..2,_ 121 = x0vie; fir ein ve {01} Siche HMU §6.2.1

oL (P) =10
— Einfaches Argument: Z; wird nie geloscht

— Modifikation: Andere Kantenbeschriftung von ¢; nach Qs zu €, /€
Dann gilt L. (P') = Ly(P) = {ww" |we{0,1}*}

THEORETISCHE INFORMATIK I §3.2: 12 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L¢ IN Lp I

Zu jedem PDA P. = (Q, X, T, qo, Zo,9,0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Ly(Pr)

® Beil leerem Stack wechsele in Endzustand

THEORETISCHE INFORMATIK I §3.2: 13 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L¢ IN Lp I

Zu jedem PDA P. = (Q, X, T, qo, Zo,9,0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Ly(Pr)

® Beil leerem Stack wechsele in Endzustand

— Neues Initialsymbol X fiir Pr markiert unteres Ende des Stacks

THEORETISCHE INFORMATIK I §3.2: 13 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L¢ IN Lp I

Zu jedem PDA P. = (Q, X, T, qo, Zo,9,0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Ly(Pr)

® Beil leerem Stack wechsele in Endzustand
— Neues Initialsymbol X fiir Pr markiert unteres Ende des Stacks

— Neuer Anfangszustand pg fiir Pg schreibt Initialsymbol von P, auf Stack

THEORETISCHE INFORMATIK I §3.2: 13 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L¢ IN Lp I

Zu jedem PDA P. = (Q, X, T, qo, Zo,9,0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Ly(Pr)

e Bei leerem Stack wechsele in Endzustand
— Neues Initialsymbol X fiir Pr markiert unteres Ende des Stacks
— Neuer Anfangszustand pg fiir Pg schreibt Initialsymbol von P, auf Stack

— Neuer Endzustand py in den bei “leerem” Stack gewechselt wird

THEORETISCHE INFORMATIK I §3.2: 13 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L¢ IN Lg I

Zu jedem PDA P. = (Q, X, T, qo, Zo,9,0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Ly(Pr)

e Bei leerem Stack wechsele in Endzustand
— Neues Initialsymbol X fiir Pr markiert unteres Ende des Stacks
— Neuer Anfangszustand pg fiir Pg schreibt Initialsymbol von P, auf Stack

— Neuer Endzustand py in den bei “leerem” Stack gewechselt wird

o Pr = (QU{po,p+}, X, TU{Xo}, po, X0,9F, {Pr})
= 0p(po.€,Xo) = {(q0,Z0X0) }
—0p(q,a,X) = 0(q.a,X) fir alle ge @, X el

—0rp(q.e,X0) = {(py.€)} fiir alle geQ

THEORETISCHE INFORMATIK I §3.2: 13 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L¢ IN Lg I

Zu jedem PDA P. = (Q, X, T, qo, Zo,9,0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Ly(Pr)

e Bei leerem Stack wechsele in Endzustand
— Neues Initialsymbol X fiir Pr markiert unteres Ende des Stacks
— Neuer Anfangszustand pg fiir Pg schreibt Initialsymbol von P, auf Stack

— Neuer Endzustand py in den bei “leerem” Stack gewechselt wird

o Pr = (QU{po, pf}a 3, TU{Xo},pos X0 9F, {pf})
o 5F(p07€7X0) - {<QO7ZOXO>} g Xy /e
—0p(q,a,X) = 0(q.a,X) fir alle ge @, X el

—0rp(q.e,X0) = {(py.€)} fiir alle geQ

£, XO /€

THEORETISCHE INFORMATIK I §3.2: 13 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L¢ IN Lp I

Zu jedem PDA P. = (Q, X, T, qo, Zo,9,0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Ly(Pr)

e Bei leerem Stack wechsele in Endzustand
— Neues Initialsymbol X fiir Pr markiert unteres Ende des Stacks
— Neuer Anfangszustand pg fiir Pg schreibt Initialsymbol von P, auf Stack

— Neuer Endzustand py in den bei “leerem” Stack gewechselt wird

¢ Pp = (QU{po, pf}a 3, Tu{Xo},po, Xo0,9F, {pf})
= 0p(po,e. Xo) = {(q0,20X0)} e, Xo /e
—0p(q,a,X) = 0(q.a,X) fir alle ge @, X el
—0rp(q.e,X0) = {(py.€)} fiir alle geQ

Korrektheitsbeweis durch Detailanalyse

£, XO /€

THEORETISCHE INFORMATIK I §3.2: 13 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES L.-PDA IN EINEN Lp-PDA I

e Gegeben P, = ({q},{if,else},{Z},q,Z,05,0)
mit 6(q, if, Z) = {(¢, ZZ)}

it,7 232
else, €
d(q,else, Z) = {(q,¢€)} '
— Erkennt, daf§ ein (Teil-)Ausdruck mehr else als if enthalt - »

THEORETISCHE INFORMATIK I §3.2: 14 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES L.-PDA IN EINEN Lp-PDA

e Gegeben P, = ({q},{if,else},{Z},q,Z,05,0)
mit 6(q, if, Z) = {(¢, ZZ)}

it,7 é7z
else, €
d(q,else, Z) = {(q,¢€)} '
— Erkennt, daf§ ein (Teil-)Ausdruck mehr else als if enthalt - »

o Pr = ({po,q,pr}, {if,else}, {Xo, Z}, p0o, X0,0F, {Pt})

Start .

THEORETISCHE INFORMATIK I §3.2: 14 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES L.-PDA IN EINEN Lp-PDA

e Gegeben P, = ({q},{if,else},{Z},q,Z,05,0)
mit 6(q, if, Z) = {(¢, ZZ)}

it,7 é7z
else, €
d(q,else, Z) = {(q,¢€)} '
— Erkennt, daf§ ein (Teil-)Ausdruck mehr else als if enthalt - »

o Pr = ({po,q,pr}, {if,else}, {Xo, Z}, p0o, X0,0F, {Pt})

- 5F<p07€7X0> — {<q7ZXO>}
G,Xo/ZXo
Start pO " qO

THEORETISCHE INFORMATIK I §3.2: 14 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES L.-PDA IN EINEN Lp-PDA

e Gegeben P, = ({q},{if,else},{Z},q,Z,05,0)
mit 6(q, if, Z) = {(¢, ZZ)}

it,7 é7z
else, €
d(q,else, Z) = {(q,¢€)} '
— Erkennt, daf§ ein (Teil-)Ausdruck mehr else als if enthalt - »

e Pr = ({po,q,pr}, {if,else}, {Xo, Z},p0o, X0,0F, {P¢})

o 5F<p07€7X0> — {<q7ZXO>} if,Z | ZZ
else,Z / €
- 5F(Q7 if, Z) — {(Cb ZZ)}

G,Xo/ZXO
~0rp(q,else, Z) = {(q,¢€)} Start Po "

Yo

THEORETISCHE INFORMATIK I §3.2: 14 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES L.-PDA IN EINEN Lp-PDA

e Gegeben P, = ({q},{if,else},{Z},q,Z,05,0)
mit 6(q, if, Z) = {(¢, ZZ)}

it,7 é7z
else €
d(q,else, Z) = {(q,¢€)} '
— Erkennt, daf§ ein (Teil-)Ausdruck mehr else als if enthalt - »

e Pr = ({po,q,pr}, {if,else}, {Xo, Z},p0o, X0,0F, {P¢})

o 5F<p07€7X0> — {<q7ZXO>} if,Z | ZZ
else Z /e

-6r(q,1f,2) = {(q, Z2)}
be(q, e1se, Z) = {(q,)} ﬂ)ex"/”"@j - Q

- dr(q,6,Xo) = {(py.€)

THEORETISCHE INFORMATIK I §3.2: 14 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES L.-PDA IN EINEN Lp-PDA

e Gegeben P, = ({q},{if,else},{Z},q,Z,05,0)
mit 6(q, if, Z) = {(¢, ZZ)}

it,7 é7z
else €
d(q,else, Z) = {(q,¢€)} '
— Erkennt, daf§ ein (Teil-)Ausdruck mehr else als if enthalt - »

e Pr = ({po,q,pr}, {if,else}, {Xo, Z},p0o, X0,0F, {P¢})

o 5F<p07€7X0> — {<q7ZXO>} if,Z | ZZ
else Z /e

-6r(q,1f,2) = {(q, Z2)}
be(q, e1se, Z) = {(q,)} ﬂ)ex"/”"@j - Q

- dr(q,6,Xo) = {(py.€)

THEORETISCHE INFORMATIK I §3.2: 14 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L IN L I

Zu jedem PDA Pr = (Q, %, T, qo, Zy, 6, F) kann ein PDA P,
konstruiert werden mit Ly(Pr) = L(FP)

e Im Endzustand leere den Stack

THEORETISCHE INFORMATIK I §3.2: 15 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L IN L I

Zu jedem PDA Pr = (Q, %, T, qo, Zy, 6, F) kann ein PDA P,
konstruiert werden mit Lp(Pr) = L.(P;)

e Im Endzustand leere den Stack
— Neuer Stacklosch-Zustand p, in von Endzustanden gewechselt wird

THEORETISCHE INFORMATIK I §3.2: 15 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L IN L I

Zu jedem PDA Pr = (Q, %, T, qo, Zy, 6, F) kann ein PDA P,
konstruiert werden mit Lp(Pr) = L.(P;)

e Im Endzustand leere den Stack
— Neuer Stacklosch-Zustand p, in von Endzustanden gewechselt wird
— Neues Initialsymbol X fur P, verhindert irrtiimliches Leeren des Stacks

THEORETISCHE INFORMATIK I §3.2: 15 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L IN Lg I

Zu jedem PDA Pr = (Q, %, T, qo, Zy, 6, F) kann ein PDA P,
konstruiert werden mit Lp(Pr) = L.(P;)

e Im Endzustand leere den Stack
— Neuer Stacklosch-Zustand p, in von Endzustanden gewechselt wird
— Neues Initialsymbol X fur P, verhindert irrtiimliches Leeren des Stacks
— Neuer Anfangszustand pg fiir P, schreibt Initialsymbol von Pr auf Stack

THEORETISCHE INFORMATIK I §3.2: 15 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L IN L, I

Zu jedem PDA Pr = (Q, %, T, qo, Zy, 6, F) kann ein PDA P,
konstruiert werden mit Lp(Pr) = L.(P;)

e Im Endzustand leere den Stack
— Neuer Stacklosch-Zustand p, in von Endzustanden gewechselt wird
— Neues Initialsymbol X fur P, verhindert irrtiimliches Leeren des Stacks
— Neuer Anfangszustand pg fiir P, schreibt Initialsymbol von Pr auf Stack

o Pp = (QU{pOa p}a 2, FU{XO}a qos X0, Oc; (Z))
= 0e(po.€,X0) = {(q0.Z0X0) }

—0:(q,a,X) = 0(q,a,X) fir alle ge @, X el

e(Xo) = {(p,e)} fiir alle ge F

0c(p,e,X) = {(p,e)} fiir alle X eI'U{ X}

€

THEORETISCHE INFORMATIK I §3.2: 15 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L IN L,

Zu jedem PDA Pr = (Q, %, T, qo, Zy, 6, F) kann ein PDA P,
konstruiert werden mit Lp(Pr) = L.(P;)

e Im Endzustand leere den Stack
— Neuer Stacklosch-Zustand p, in von Endzustanden gewechselt wird
— Neues Initialsymbol X fur P, verhindert irrtiimliches Leeren des Stacks
— Neuer Anfangszustand pg fiir P, schreibt Initialsymbol von Pr auf Stack

o Pp = (QU{pOa p}a 2, FU{XO}a qos X0, Oc; (Z))
= 0e(po.€,X0) = {(q0.Z0X0) }

—0:(q,a,X) = 0(q,a,X) fir alle ge @, X el

e(Xo) = {(p,e)} fiir alle ge F

0c(p,e,X) = {(p,e)} fiir alle X eI'U{ X}

€

e, bel./e e, bel./e

Start _ e, X, /ZX

_..@

THEORETISCHE INFORMATIK I §3.2: 15 PUSHDOWN AUTOMATEN

SIND PDAS WIRKLICH DIE MASCHINEN FUR TYP-2 SPRACHEN?

Lo = Lppa = {L|3IP:PDAs. L=L.(P)}

e Konfigurationsiibergange = Linksableitungen
~(qo, 2y, Zo) F (¢, y, Aa) bedeutet, daB P nach Verarbeitung von
im Zustand ¢ ist und noch y und den Stack A a zu verarbeiten hat

THEORETISCHE INFORMATIK I §3.2: 16 PUSHDOWN AUTOMATEN

SIND PDAS WIRKLICH DIE MASCHINEN FUR TYP-2 SPRACHEN?

Lo = Lppa = {L|3IP:PDAs. L=L.(P)}

e Konfigurationsiibergange = Linksableitungen
~(qo, 2y, Zo) F (¢, y, Aa) bedeutet, daB P nach Verarbeitung von
im Zustand ¢ ist und noch y und den Stack A a zu verarbeiten hat
— A o mufl gespeichert und beim Lesen von y komplett abgearbeitet werden

THEORETISCHE INFORMATIK I §3.2: 16 PUSHDOWN AUTOMATEN

SIND PDAS WIRKLICH DIE MASCHINEN FUR TYP-2 SPRACHEN?I

Lo = Lppa = {L|3IP:PDAs. L=L.(P)}

e Konfigurationsiibergange = Linksableitungen
~(qo, 2y, Zo) F (¢, y, Aa) bedeutet, daB P nach Verarbeitung von
im Zustand ¢ ist und noch y und den Stack A a zu verarbeiten hat
— A o mufl gespeichert und beim Lesen von y komplett abgearbeitet werden
— Linksableitung S — A o — zy erzeugt aus dem Startsymbol
zuerst das Wort A o umd mufl dann y aus A « ableiten

THEORETISCHE INFORMATIK I §3.2: 16 PUSHDOWN AUTOMATEN

SIND PDAS WIRKLICH DIE MASCHINEN FUR TYP-2 SPRACHEN?I

Lo = Lppa = {L|3IP:PDAs. L=L.(P)}

e Konfigurationsiibergange = Linksableitungen
~(qo, 2y, Zo) F (¢, y, Aa) bedeutet, daB P nach Verarbeitung von
im Zustand ¢ ist und noch y und den Stack A a zu verarbeiten hat
— A o muf3 gespeichert und beim Lesen von y komplett abgearbeitet werden

— Linksableitung S — A o — xy erzeugt aus dem Startsymbol
zuerst das Wort A o umd mufl dann y aus A « ableiten

e Grammatik — Pushdown-Automat
— PDA muf} Linksableitung auf Stack simulieren
— Erzeugte linke Terminalteilworte miissen mit Teil der Eingabe verglichen
werden um nachste Variable freizulegen

THEORETISCHE INFORMATIK I §3.2: 16 PUSHDOWN AUTOMATEN

SIND PDAS WIRKLICH DIE MASCHINEN FUR TYP-2 SPRACHEN?

Lo = Lppa = {L|3IP:PDAs. L=L.(P)}

e Konfigurationsiibergange = Linksableitungen
~(qo, 2y, Zo) F (¢, y, Aa) bedeutet, daB P nach Verarbeitung von
im Zustand ¢ ist und noch y und den Stack A a zu verarbeiten hat
— A o muf3 gespeichert und beim Lesen von y komplett abgearbeitet werden

— Linksableitung S — A o — xy erzeugt aus dem Startsymbol
zuerst das Wort A o umd mufl dann y aus A « ableiten

e Grammatik — Pushdown-Automat
— PDA muf} Linksableitung auf Stack simulieren
— Erzeugte linke Terminalteilworte miissen mit Teil der Eingabe verglichen
werden um nachste Variable freizulegen

e Pushdown-Automat — Grammatik
— Grammatik mufl Abarbeitung von Symbolen des Stacks simulieren
— Regeln beschreiben wie PDA zur Abarbeitung von X mit o
Zwischenworte im Stack auf- und schliefilich wieder abbaut

THEORETISCHE INFORMATIK I §3.2: 16 PUSHDOWN AUTOMATEN

VON GRAMMATIKEN ZU PUSHDOWN-AUTOMATEN I

Zu jeder kontextfreien Grammatik G = (V,T, Pg, S)
kann ein PDA P konstruiert werden mit L(G) = L.(P)

e Stack simuliert Linksableitungen von G

— Beginne mit Startsymbol von G
— A eV wird durch die rechte Seite § einer Regel A— 3 ersetzt

—a<T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint
um nachste Variable der Linksableitungen im Stack zu identifizieren

THEORETISCHE INFORMATIK I §3.2: 17 PUSHDOWN AUTOMATEN

VON GRAMMATIKEN ZU PUSHDOWN-AUTOMATEN I

Zu jeder kontextfreien Grammatik G = (V,T, Pg, S)
kann ein PDA P konstruiert werden mit L(G) = L.(P)

e Stack simuliert Linksableitungen von G

— Beginne mit Startsymbol von G
— A eV wird durch die rechte Seite § einer Regel A— 3 ersetzt

—a<T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint
um nachste Variable der Linksableitungen im Stack zu identifizieren

oP = ({q}, T,VUT,q,S,95,0)
~0(q,6,A) = {(q,0) | A—=0 €Pg} fir alle AV
- d(q,a,a) = {(q.€)} fur alle a €T

THEORETISCHE INFORMATIK I §3.2: 17 PUSHDOWN AUTOMATEN

VON GRAMMATIKEN ZU PUSHDOWN-AUTOMATEN I

Zu jeder kontextfreien Grammatik G = (V,T, Pg, S)
kann ein PDA P konstruiert werden mit L(G) = L.(P)

e Stack simuliert Linksableitungen von G
— Beginne mit Startsymbol von G
— A eV wird durch die rechte Seite 3 einer Regel A— (3 ersetzt

—a<T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint
um nachste Variable der Linksableitungen im Stack zu identifizieren

oP = ({q}, T,VUT,q,S,95,0)
~0(q,6,A) = {(q,0) | A—=0 €Pg} fir alle AV
- d(q,a,a) = {(q.€)} fur alle a €T

e Korrektheitsbeweis L(G) = L¢(P)

— Zeige: (¢) Wenn S = 214100 —, .2 Ay, —, weT™ dann
glbt €S Yi mit <Q7 w, S) l_* (QJ Yis AZ@Z> und LiYi — W
(2) Wenn (¢, w, X) F (¢, ¢, €) dann X — w

THEORETISCHE INFORMATIK I §3.2: 17 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)CL¢(P)

Wenn S =z1A000 —, ..ty Apoy, —, weT™ (x;€T*, A;eV)

dann gibt es y; mit (q,w,S) F (q,yi, Ajo;) und z;y; = w

e Beweis durch Induktion uiber Lange ¢ der Linksableitung

THEORETISCHE INFORMATIK I §3.2: 18 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)CL¢(P)

Wenn S =z1A000 —, ..ty Apoy, —, weT™ (x;€T*, A;eV)

dann gibt es y; mit (q,w,S) F (q,yi, Ajo;) und z;y; = w

e Beweis durch Induktion uiber Lange ¢ der Linksableitung

e Basisfall : =1: S = 1Ay —, weT”
— Es folgt S = Ay und z1=a1=¢, also y;=w
—(q,w,S) F (¢, w,S) gilt mit 0 Konfigurationsiibergéingen

THEORETISCHE INFORMATIK I §3.2: 18 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)CL¢(P)

Wenn S =z1A000 —, ..ty Apoy, —, weT™ (x;€T*, A;eV)

dann gibt es y; mit (q,w,S) F (q,yi, Ajo;) und z;y; = w

e Beweis durch Induktion uiber Lange ¢ der Linksableitung

e Basisfall : =1: S = 1Ay —, weT”
— Es folgt S = A; und z1=a=¢, also y;=w
—(q,w,S) F (¢, w,S) gilt mit 0 Konfigurationsiibergéingen

e Induktionsschritt: S.. —, r;A;0; —, i1 A0 —, weT™
— ZIZZ'AZ'OQ' —r ZCZ'_|_1AZ'_|_1OQ'_|_1 Verlangt AZ—>ﬁ EPG fur ein ﬁ

o AlSO <Q76> ECS(QJEJAi) alSO <Q7y27AZ052) l_* <Qin76ai)

— Zerlege fa; in ¢A; ;1. Dann kann y; in xy;, 1 zerlegt werden
- Es folgt (q.2yi1,0Aimqin) F (¢, Y1, Aiproi) (PDA arbeitet - ab)

— Mit Induktionsannahme: (g, w, 5) - (q,¥i, Aici) & (q,Yir1, Ai10isa)

THEORETISCHE INFORMATIK I §3.2: 18 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)CL¢(P)

Wenn S =z1A000 —, ..ty Apoy, —, weT™ (x;€T*, A;eV)

dann gibt es y; mit (q,w,S) F (q,yi, Ajo;) und z;y; = w

e Beweis durch Induktion uiber Lange ¢ der Linksableitung

e Basisfall : =1: S = 1Ay —, weT”
— Es folgt S = A; und z1=a=¢, also y;=w
—(q,w,S) F (¢, w,S) gilt mit 0 Konfigurationsiibergéingen

e Induktionsschritt: S.. —, r;A;0; —, i1 A0 —, weT™
~xiAjq; —, 21 Aoy verlangt A;—f3 e Pg fiir ein 8
~ Also (q,8) €d(q.e,A;) also (q.y:,Aicii) F (q.y:,8q;)
— Zerlege fa; in ¢A; ;1. Dann kann y; in xy;, 1 zerlegt werden
- Es folgt (q.2yi1,0Aimqin) F (¢, Y1, Aiproi) (PDA arbeitet - ab)

*

— Mit Induktionsannahme: (g, w, 5) - (q,¥i, Aici) & (q,Yir1, Ai10isa)

e Schluflfolgerung: S = A0y —, .. Tm11Am+10m41 = weT™
— Tpp1=w und Ay 1= 1=Ym1=¢€
~ Also (q,w,S) F (q,¢,€), dh. we L. (P)

THEORETISCHE INFORMATIK I §3.2: 18 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)2L¢(P)

Wenn (g, w, X) F (g, €,€) dann X — w

e Beweis durch Induktion iiber Lange der PDA Berechnung

THEORETISCHE INFORMATIK I §3.2: 19 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)2L¢(P)

Wenn (g, w, X) F (g, €,€) dann X — w

e Beweis durch Induktion iiber Lange der PDA Berechnung
e Basisfall: (g, w, X) F (q,¢€,¢€)

— Es folgt X—ecPrund w = e, also X — w

THEORETISCHE INFORMATIK I §3.2: 19 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)2Lc(P)

Wenn (g, w, X) F (g, €,€) dann X — w

e Beweis durch Induktion iiber Lange der PDA Berechnung
e Basisfall: (g, w, X) F (q,¢€,¢€)

~ Es folgt X—ecPrund w =€, also X — w

n+1

e Induktionsschritt: (g, w, X) = (q,¢€,¢€)
— Da X oben im Stack steht, muf3 der erste Schritt die Form
(q,w,X) F (q,w,Y1..Y}) fiir ein X—Y7..Y) € Pg haben
— Dann gibt eine Zerlegung w = wy..wy mit
(q, w1..wy, Y7..Yy) - (q, wo..wy, Y5..Yy) - (q,€,¢€)
— Es folgt (q, w;..wy, Vi) F (g, wis1..wp, €) also (q,w;, Y;) F (q,€,¢)
— Per Induktionsannahme folgt Y; s w; fiir alle 4

*
also X — Y1.Y, — wi..wp, = w

THEORETISCHE INFORMATIK I §3.2: 19 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)2Lc(P)

Wenn (g, w, X) F (g, €,€) dann X — w

e Beweis durch Induktion iiber Lange der PDA Berechnung
e Basisfall: (g, w, X) F (q,¢€,¢€)

~ Es folgt X—ecPrund w =€, also X — w

n+1

e Induktionsschritt: (g, w, X) = (q,¢€,¢€)
— Da X oben im Stack steht, muf3 der erste Schritt die Form
(q,w,X) F (q,w,Y1..Y}) fiir ein X—Y7..Y) € Pg haben
— Dann gibt eine Zerlegung w = wy..wy mit
(q, w1..wy, Y7..Yy) - (q, wo..wy, Y5..Yy) - (q,€,¢€)
— Es folgt (q, w;..wy, Vi) F (g, wis1..wp, €) also (q,w;, Y;) F (q,€,¢)
— Per Induktionsannahme folgt Y; s w; fiir alle 4

also X — 1.V, —— wy..wp = w
e L(G)2L.(P) folgt nun mit we L (P) und X = S

THEORETISCHE INFORMATIK I §3.2: 19 PUSHDOWN AUTOMATEN

UMWANDLUNG EINER GRAMMATIK IN EINEN PDA I

'GG — ({EvI}a {aabvovla—l_v*a(a)}v PGa E)
mit Po ={ F — 1| E+E | ExE | (E)
I -a|b|Ia|Ib|IO|I1}

THEORETISCHE INFORMATIK I §3.2: 20 PUSHDOWN AUTOMATEN

UMWANDLUNG EINER GRAMMATIK IN EINEN PDA I

.GG — ({EaI}a {aabvoala—l_v*a(a)}v PGa E)
mit Po ={ F — 1| E+E | ExE | (E)
I -a|b|Ia|Ib|IO|I1}

e Erzeuge P = ({q},T,VUT,q, E, 6, 0)
mit V={FE, I} und T={a,b,0,1,+,%,(,)}

THEORETISCHE INFORMATIK I §3.2: 20 PUSHDOWN AUTOMATEN

UMWANDLUNG EINER GRAMMATIK IN EINEN PDA I

.GG — ({EaI}a {aabvoala—l_v*a(a)}v PGa E)
mit Po ={ F — 1| E+E | ExE | (E)
I -a|b|Ia|Ib|IO|I1}

e Erzeuge P = ({q},T,VUT,q, E, ,0)
mit V={FE, I} und T={a,b,0,1,+,%,(,)}

~6(qe.E)={(q1), (g E+E), (q.ExE), (q.(E))}

THEORETISCHE INFORMATIK I §3.2: 20 PUSHDOWN AUTOMATEN

UMWANDLUNG EINER GRAMMATIK IN EINEN PDA I

.GG — ({EaI}a {aabvoala—l_v*a(a)}v PGa E)
mit Po ={ F — 1| E+E | ExE | (E)
I -a|b|Ia|Ib|IO|I1}

e Erzeuge P = ({q},T,VUT,q, E, ,0)
mit V={FE, I} und T={a,b,0,1,+,%,(,)}

~-6(q.e.E)={(ql), (¢ E+E), (q.ExE), (q.(E))}
~d(qel)={(q.a) (qb), (q1a), (q1b) (qI0), (qI1)}

THEORETISCHE INFORMATIK I §3.2: 20 PUSHDOWN AUTOMATEN

UMWANDLUNG EINER GRAMMATIK IN EINEN PDA I

.GG — ({EaI}a {aabvoala—l_v*a(a)}v PGa E)
mit Po ={ F — 1| E+E | ExE | (E)
I -a|b|Ia|Ib|IO|I1}

e Erzeuge P = ({q},T,VUT,q, E, ,0)
mit V={FE, I} und T={a,b,0,1,+,%,(,)}

- 0(q.e,E)={(qI), (q.E+E), (qExE), (q.(E))}

- 6(q.e,I) = {(q,a), (¢,b), (q,1a), (q,Ib), (q,10), (q,I1)}
-d0(q.aa)={(g€)} -d(g+.+)={(ge)}

~0(g.bb) ={(g€)} ~dlgxx)={(qe€)}

-6(q,0,0) ={(g.€)} —4(q,(,() ={(q.€)}

-0(q.1.1) ={(g.€)} -4(q,),)) ={(g.€)}

N N N N

VON PUSHDOWN-AUTOMATEN ZU (GRAMMATIKEN I

Zu jedem PDA P = (Q,X, T, q¢, Zy, 9, F') kann eine kontextfreie
Grammatik G konstruiert werden mit L.(P) = L(G)

e Simuliere Abarbeitung eines Symbols vom Stack
— Verarbeite Variablen der Form (p, X, q):
“Entfernen von X kann von Zustand p zu Zustand q fihren”
— Entfernen von X kann heiflen, zuerst ein Y;..Y,, aut- und dann abzubauen
— Beginne mit Erzeugung von Z, und zeige, dafl Z; entfernt werden kann

THEORETISCHE INFORMATIK I §3.2: 21 PUSHDOWN AUTOMATEN

VON PUSHDOWN-AUTOMATEN ZU (GRAMMATIKEN I

Zu jedem PDA P = (Q,X, T, q¢, Zy, 9, F') kann eine kontextfreie
Grammatik G konstruiert werden mit L.(P) = L(G)

e Simuliere Abarbeitung eines Symbols vom Stack
— Verarbeite Variablen der Form (p, X, q):
“Entfernen von X kann von Zustand p zu Zustand q fihren”
— Entfernen von X kann heiflen, zuerst ein Y;..Y,, aut- und dann abzubauen
— Beginne mit Erzeugung von Z, und zeige, dafl Z; entfernt werden kann

oG = (X, {S}u@QXT'xQ, Pg, S)
— S—(qo, Zo,q) € Pg fir alle ge@

- (P, X, qm)—a(p, Y1, q1)...(Gm—-1, Y. qm) € Pg, fiir beliebige q1, .., gm € Q.
falls (p, ¥1..Y,,) €0(q, a, X)

THEORETISCHE INFORMATIK I §3.2: 21 PUSHDOWN AUTOMATEN

VON PUSHDOWN-AUTOMATEN ZU (GRAMMATIKEN I

Zu jedem PDA P = (Q,X, T, qo, Zo, 9, F') kann eine kontextfreie
Grammatik G konstruiert werden mit L.(P) = L(G)

e Simuliere Abarbeitung eines Symbols vom Stack
— Verarbeite Variablen der Form (p, X, q):
“Entfernen von X kann von Zustand p zu Zustand q fihren”
— Entfernen von X kann heiflen, zuerst ein Y;..Y,, aut- und dann abzubauen
— Beginne mit Erzeugung von Z, und zeige, dafl Z; entfernt werden kann

oG = (X, {S}u@QXT'xQ, Pg, S)
— S—(qo, Zo,q) € Pg fir alle ge@
o <p7 X7 Qm)_>a’ <p7 }/17 Q1>---<Qm—17 Yma Qm> € PG; fir beheblge di, -, 4m EQ)
falls (p, Y1..Y,,) €d(q, a, X)

e Korrektheitsbeweis L.(P) = L(G) (viele Details)

~ Zeige: (p, X,q) — weX* genau dann, wenn (p,w, X) F (g, €, €)
c: Induktion uiber Lange der PDA Berechnung
>: Induktion tiber Lange der Ableitung

THEORETISCHE INFORMATIK I §3.2: 21 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES PDA IN EINE GRAMMATIK I

e Gegeben P = ({q},{if,else},{Z},q,Z,9,0) 7 27
mit 5((], if, Z) = {(q, ZZ)} else,Z / €

5(Q9 else, Z) — {(qa E)}

Start @

THEORETISCHE INFORMATIK I §3.2: 22 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES PDA IN EINE GRAMMATIK I

e Gegeben P = ({q},{if,else},{Z},q,Z,9,0) 7 27
mit 5((1, if, Z) = {(q, ZZ)} else,Z / €

5(Q9 else, Z) — {(qa E)}

Start @

oG = ({ifa else}a {Sa (Qa Z, Q)}aPGa S)
mit Pe = S — (q, Z, q)

THEORETISCHE INFORMATIK I §3.2: 22 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES PDA IN EINE GRAMMATIK I

e Gegeben P = ({q},{if,else},{Z},q,Z,9,0) 7 27
mit 5((1, if, Z) = {(q, ZZ)} else,Z / €

5(Q9 else, Z) — {(qa E)}

Start @

oG = ({ifa else}a {Sa (Qa Z, Q)}aPGa S)
mit Pe = S — (q, Z, q)

(Qa Z, CI) — 1if (Qa Z, Q)(Cb Z, Q)

THEORETISCHE INFORMATIK I §3.2: 22 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES PDA IN EINE GRAMMATIK I

e Gegeben P = ({q},{if,else},{Z},q,Z,9,0) 7 27
mit 5((1, if, Z) = {(q, ZZ)} else,Z / €

5(Q9 else, Z) — {(qa E)}

Start @

oG = ({ifa else}a {Sa (Qa Z, Q)}aPGa S)
mit Pe = S — (q, Z, q)

(Qa Z, CI) — 1if (Qa Z, Q)(Cb Z, Q)
(g, Z,q) — else

THEORETISCHE INFORMATIK I §3.2: 22 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES PDA IN EINE GRAMMATIK I

e Gegeben P = ({q},{if,else},{Z},q,Z,9,0) 7 27
mit 5((1, if, Z) = {(q, ZZ)} else,Z / €

5((]’ else, Z) — {(Q9 E)}

Start @

o G = ({if,else},{S, (q,Z,q)}, P, S)
mit Fe = S — (q, Z, q)

(Qv Z, CI) — 1if (Cb Z, Q)(Cb Z, Q)
(g, Z,q) — else

Kurzschreibweise A fiir Hilfssymbol (q, Z, q) ergibt elegantere Darstellung

G = ({if,else},{S, A}, Pg,S)mit Pa =S — A
A— if AA

A — else

THEORETISCHE INFORMATIK I §3.2: 22 PUSHDOWN AUTOMATEN

BRAUCHEN WIR NICHTDETERMINISTISCHE AUTOMATEN? I

e Grammatiken sind nichtdeterministisch
— Nichtdeterministische Automaten sind das “natiirliche” Gegenstiick
. Grammatikregeln fithren zu mengenwertiger Uberfithrungsfunktion

— “Wirkliche” Automaten mussen deterministisch sein

THEORETISCHE INFORMATIK I §3.2: 23 PUSHDOWN AUTOMATEN

BRAUCHEN WIR NICHTDETERMINISTISCHE AUTOMATEN? I

e Grammatiken sind nichtdeterministisch
— Nichtdeterministische Automaten sind das “natiirliche” Gegenstiick
. Grammatikregeln fithren zu mengenwertiger Uberfithrungsfunktion

— “Wirkliche” Automaten mussen deterministisch sein

e T'yp-3 Sprachen haben deterministische Modelle
— NEAs konnen in aquivalente DEAs umgewandelt werden

— Teilmengenkonstruktion kann Automaten exponentiell vergrofiern

THEORETISCHE INFORMATIK I §3.2: 23 PUSHDOWN AUTOMATEN

BRAUCHEN WIR NICHTDETERMINISTISCHE AUTOMATEN? I

e Grammatiken sind nichtdeterministisch
— Nichtdeterministische Automaten sind das “natiirliche” Gegenstiick
. Grammatikregeln fithren zu mengenwertiger Uberfithrungsfunktion

— “Wirkliche” Automaten mussen deterministisch sein

e T'yp-3 Sprachen haben deterministische Modelle
— NEAs konnen in aquivalente DEAs umgewandelt werden

— Teilmengenkonstruktion kann Automaten exponentiell vergrofiern

® Reichen deterministische PDAs fiir Typ-2 Sprachen?
— Uberfithrungsfunktion 6:Qx (SU{e})xTI" — QxI* muf eindeutig sein
— Gibt es fiir PDAs immer aquivalente deterministische PDAs?

THEORETISCHE INFORMATIK I §3.2: 23 PUSHDOWN AUTOMATEN

DETERMINISTISCHE PUSHDOWN-AUTOMATEN — PRAZISIERT

Ein Deterministischer Pushdown-Automat (DPDA)
ist ein 7-Tupel P = (Q, X, I, 8, qo, Zo, F') mit
e () nichtleere endliche Zustandsmenge
e . endliches Eingabealphabet
e I' endliches Stackalphabet
¢ 5:Q X (ZU{e})xT — QxTI'* Uberfithrungsfunktion
—0(q,6,X) nur definiert, wenn §(q,a,X) fiir alle a € ¥ undefiniert

¢ g,cQ Startzustand (Anfangszustand)
e Z,cI' Initialsymbol des Stacks
e F'C() Menge von akzeptierenden Zustanden (Endzustande)

THEORETISCHE INFORMATIK I §3.2: 24 PUSHDOWN AUTOMATEN

DETERMINISTISCHE PUSHDOWN-AUTOMATEN — PRAZISIERT

Ein Deterministischer Pushdown-Automat (DPDA)
ist ein 7-Tupel P = (Q, X, I, 8, qo, Zo, F') mit
e () nichtleere endliche Zustandsmenge
e . endliches Eingabealphabet
e I' endliches Stackalphabet
¢ 5:Q X (ZU{e})xT — QxTI'* Uberfithrungsfunktion
—0(q,6,X) nur definiert, wenn §(q,a,X) fiir alle a € ¥ undefiniert

¢ g,cQ Startzustand (Anfangszustand)
e Z,cI' Initialsymbol des Stacks
e F'C() Menge von akzeptierenden Zustanden (Endzustande)

Erkannte Sprache
— Lp(P) = {wex*|3ge F.3BeT* (g, w, Zp) ¥ (q.€,5) }
— L(P) = {wex*|3¢€qQ. (qo.w, Z) F (q.¢.€) }

THEORETISCHE INFORMATIK I §3.2: 24 PUSHDOWN AUTOMATEN

DPDAS SIND NICHT MACHTIG GENUG I

e DPDA-Sprachen sind eine echte Teilklasse von Lo

THEORETISCHE INFORMATIK I §3.2: 25 PUSHDOWN AUTOMATEN

DPDAS SIND NICHT MACHTIG GENUG I

e DPDA-Sprachen sind eine echte Teilklasse von Lo
1. L(DPDA)CL,: Jeder DPDA ist ein spezieller PDA

THEORETISCHE INFORMATIK I §3.2: 25 PUSHDOWN AUTOMATEN

DPDAS SIND NICHT MACHTIG GENUG I

e DPDA-Sprachen sind eine echte Teilklasse von Lo
1. L(DPDA)CL,: Jeder DPDA ist ein spezieller PDA
2. DPDAs konnen {ww® | w € {0,1}*} nicht erkennen
DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt
- Wenn 0"110" (grofles n) gelesen ist, ist Stack durchs Zéhlen geleert
- Wenn noch einmal 0"110" gelesen wird, mufl P akzeptieren
- Wenn stattdessen 0"110™ (m%n) kommt, darf P nicht akzeptieren

- Aber die Information tiber n ist nicht mehr gespeichert —(Details aufwendig)

THEORETISCHE INFORMATIK I §3.2: 25 PUSHDOWN AUTOMATEN

DPDAS SIND NICHT MACHTIG GENUG I

e DPDA-Sprachen sind eine echte Teilklasse von Lo
1. L(DPDA)CL,: Jeder DPDA ist ein spezieller PDA

2. DPDAs konnen {ww® | w € {0,1}*} nicht erkennen
DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt
- Wenn 0"110" (grofles n) gelesen ist, ist Stack durchs Zéhlen geleert
- Wenn noch einmal 0"110" gelesen wird, mufl P akzeptieren
- Wenn stattdessen 0"110™ (m%n) kommt, darf P nicht akzeptieren

- Aber die Information tiber n ist nicht mehr gespeichert —(Details aufwendig)

e DPDASs erkennen nur eindeutige Typ-2 Sprachen

THEORETISCHE INFORMATIK I §3.2: 25 PUSHDOWN AUTOMATEN

DPDAS SIND NICHT MACHTIG GENUG I

e DPDA-Sprachen sind eine echte Teilklasse von Lo
1. L(DPDA)CL,: Jeder DPDA ist ein spezieller PDA
2. DPDAs konnen {ww® | w € {0,1}*} nicht erkennen
DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt
- Wenn 0"110" (grofles n) gelesen ist, ist Stack durchs Zéhlen geleert
- Wenn noch einmal 0"110" gelesen wird, mufl P akzeptieren
- Wenn stattdessen 0"110™ (m%n) kommt, darf P nicht akzeptieren

- Aber die Information tiber n ist nicht mehr gespeichert —(Details aufwendig)

e DPDASs erkennen nur eindeutige Typ-2 Sprachen

1. Fiir jeden DPDA P hat L. (P) eine eindeutige Grammatik
Fir DPDAs ergibt die Umwandlung eine eindeutige Typ-2 Grammatik

- Folge der Konfigurationsiibergange bestimmt Linksableitung eindeutig)

THEORETISCHE INFORMATIK I §3.2: 25 PUSHDOWN AUTOMATEN

DPDAS SIND NICHT MACHTIG GENUG I

e DPDA-Sprachen sind eine echte Teilklasse von Lo
1. L(DPDA)CL,: Jeder DPDA ist ein spezieller PDA
2. DPDAs konnen {ww® | w € {0,1}*} nicht erkennen
DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt
- Wenn 0"110" (grofles n) gelesen ist, ist Stack durchs Zéhlen geleert
- Wenn noch einmal 0"110" gelesen wird, mufl P akzeptieren
- Wenn stattdessen 0"110™ (m%n) kommt, darf P nicht akzeptieren

- Aber die Information tiber n ist nicht mehr gespeichert —(Details aufwendig)

e DPDASs erkennen nur eindeutige Typ-2 Sprachen

1. Fiir jeden DPDA P hat L. (P) eine eindeutige Grammatik
Fir DPDAs ergibt die Umwandlung eine eindeutige Typ-2 Grammatik

- Folge der Konfigurationsiibergange bestimmt Linksableitung eindeutig)

2. Fiir jeden DPDA P hat Lp(P) eine eindeutige Grammatik
Umwandlung in L, — DPDA kann deterministisch gemacht werden

THEORETISCHE INFORMATIK I §3.2: 25 PUSHDOWN AUTOMATEN

DPDAS SIND MACHTIGER ALS ENDLICHE AUTOMATEN I

e L3 =L(DEA)CLr(DPDA)
— Jeder DEA ist ein spezieller DPDA

— Aussage gilt nur fiir Erkennung mit Endzustand

THEORETISCHE INFORMATIK I §3.2: 26 PUSHDOWN AUTOMATEN

DPDAS SIND MACHTIGER ALS ENDLICHE AUTOMATEN

e L3 =L(DEA)CLr(DPDA)
— Jeder DEA ist ein spezieller DPDA

— Aussage gilt nur fiir Erkennung mit Endzustand

o L = {w#Hwl|we{0,1}*}c Lp(DPDA)—L(DEA)
— L ist nicht regular
- Beweis durch Pumping Lemma, analog zu {ww® | w e {0, 1}*}
— L = Lp(P) fiir folgenden DPDA P

0,X / 0X 0,0 / €
1,X /1X 1,1/ e

#aX/X i i e7Z0/Z0
Start qo =Qy q2

— P ist deterministisch, da e-Ubergang in ¢; genau bei Stacksymbol Z;

THEORETISCHE INFORMATIK I §3.2: 26 PUSHDOWN AUTOMATEN

DPDAS SIND MACHTIGER ALS ENDLICHE AUTOMATEN

e L3 = L(DEA)CLp(DPDA)
— Jeder DEA ist ein spezieller DPDA

— Aussage gilt nur fiir Erkennung mit Endzustand

o L = {w#Hwl|we{0,1}*}c Lp(DPDA)—L(DEA)
— L ist nicht regular
- Beweis durch Pumping Lemma, analog zu {ww® |w {0, 1}*}
— L = Lp(P) fiir folgenden DPDA P

0,X / 0X 0,0 / €
1,X /1X 1,1/ e

#aX/X i i e7Z0/Z0
Start qo =\(j1/ q2

— P ist deterministisch, da e-Ubergang in ¢; genau bei Stacksymbol Z;
o {0}* ¢ L.(DPDA)

— Wenn der Stack einmal leer ist, kann ein DPDA nicht mehr weiterarbeiten

THEORETISCHE INFORMATIK I §3.2: 26 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — ZUSAMMENFASSUNG I

e Maschinenmodell fur kontextfreie Sprachen
— Nichtdeterministischer endlicher Automat mit Stack und e-Ubergingen
— Erkennung von Worten durch Endzustand oder leeren Stack

— Erkennungsmodelle sind ineinander transformierbar

THEORETISCHE INFORMATIK I §3.2: 27 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — ZUSAMMENFASSUNG I

e Maschinenmodell fur kontextfreie Sprachen
— Nichtdeterministischer endlicher Automat mit Stack und e-Ubergéngen
— Erkennung von Worten durch Endzustand oder leeren Stack

— Erkennungsmodelle sind ineinander transformierbar

e Verhaltensanalyse durch Konfigurationsubergange
— Konfigurationen beschreiben ‘Gesamtzustand’ von Pushdown-Automaten

— Konfigurationsiibergéinge verallgemeinern Uberfithrungsfunktionen

THEORETISCHE INFORMATIK I §3.2: 27 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — ZUSAMMENFASSUNG I

e Maschinenmodell fur kontextfreie Sprachen
— Nichtdeterministischer endlicher Automat mit Stack und e-Ubergéngen
— Erkennung von Worten durch Endzustand oder leeren Stack

— Erkennungsmodelle sind ineinander transformierbar

e Verhaltensanalyse durch Konfigurationsubergange
— Konfigurationen beschreiben ‘Gesamtzustand’ von Pushdown-Automaten

— Konfigurationsiiberginge verallgemeinern Uberfithrungsfunktionen

° Aquivalent zu kontextfreien Grammatiken

— Umwandlung von Konfigurationsiibergangen in Regeln und umgekehrt

THEORETISCHE INFORMATIK I §3.2: 27 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — ZUSAMMENFASSUNG I

e Maschinenmodell fur kontextfreie Sprachen
— Nichtdeterministischer endlicher Automat mit Stack und e-Ubergéngen
— Erkennung von Worten durch Endzustand oder leeren Stack

— Erkennungsmodelle sind ineinander transformierbar

e Verhaltensanalyse durch Konfigurationsubergange
— Konfigurationen beschreiben ‘Gesamtzustand’ von Pushdown-Automaten

— Konfigurationsiiberginge verallgemeinern Uberfithrungsfunktionen

° Aquivalent zu kontextfreien Grammatiken

— Umwandlung von Konfigurationsiibergangen in Regeln und umgekehrt

e Deterministische PDAs sind weniger machtig
— DPDASs erkennen nur eindeutige Typ-2 Sprachen

— L~-DPDAs konnen nicht einmal alle regularen Sprachen erkennen

THEORETISCHE INFORMATIK I §3.2: 27 PUSHDOWN AUTOMATEN

