Theoretische Informatik I

AWEerg,,
SOVeTSy,

Einheit 3.2) Eﬁs

Pushdown Automaten Jem

-
\0d

1. Das Maschinenmodell

2. Arbeitsweise & erkannte Sprache
3. Beziehung zu Typ-2 Sprachen

4. Deterministische PDAs

EIN MASCHINENMODELL FUR TYP-2 SPRACHEN I

Externer Speicher

_ |
Zustandsuberfiihrung 0

Endlicher Automat

Interner Zustand

Maschinenmodell fiir Typ-2 Sprachen

Akzeptieren
Ablehnen

Eingabe

e T'yp-3 Sprachen werden von NEAs akzeptiert

— Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
- NEA verarbeitet pro Schritt ein Eingabesymbol

— Frzeugte Terminalsymbole stehen links von der aktuellen Variablen
- Verarbeitete Eingabesymbole fiithren zu aktuellem Zustand

— Rechts von der aktuellen Variablen steht noch nichts
- Im Zustand ist nichts tiber noch unverarbeitete Eingabesymbole bekannt

e Welches Maschinenmodell paf3t zu Typ-2 Sprachen?
— Kontextfreie Grammatiken konnen L; = {0™1" | m € N} erzeugen

— Endliche Automaten haben kein Gedachtnis und konnen L nicht erkennen

Typ-2 Maschinenmodell benotigt externen Speicher

THEORETISCHE INFORMATIK I §3.2: 1 PUSHDOWN AUTOMATEN

WELCHES SPEICHERMODELL BRAUCHEN TYP-2 SPRACHEN? I

Benutze Analogie der Linksableitungen

e Links von der aktuellen Variablen A stehen

nur erzeugte Terminalsymbole

— Entspricht den schon verarbeiteten Eingabesymbolen

e Aber rechts von A steht bereits Text
Abarbeitung von A schiebt weiteren Text in die Mitte
— Automat muf3 Information speichern, die noch verarbeitet werden muf

— Information erklart, was am Ende der Eingabe erwartet wird

e Wenn A komplett abgearbeitet, springt Linksableitung
uber Terminalsymbole zur nachsten Variablen

— Automat mufl zuletzt erzeugte Information zuerst abarbeiten

U

Speicher des Automaten sollte ein Stack sein

THEORETISCHE INFORMATIK I §3.2: 2 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN INTUITIV I

Interner Zustand

Eingabe Akzeptieren

Ablehnen

Endliche Steuerung

Zustandsiiberfiihrung o

Stack

—>
—H|D O T (W
[R—

e Endlicher Automat 4 Stack
— Endliche Steuerung liest Eingabesymbole

— Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

e Eingabe und Stack wird gleichzeitig bearbeitet
— Gelesenes Symbol wird aus Eingabe “entfernt”
— Zustand kann verandert werden
— Oberstes Stacksymbol wird durch (mehrere) neue Stacksymbole ersetzt

— Nichtdeterministische Entscheidungen und spontane e-Uberginge moglich

THEORETISCHE INFORMATIK I §3.2: 3 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR ‘GERADE’ PALINDROME I

L = {wwf | we{0,1}*} ist kontextfrei

e Speichere w in qq
— In q¢ wird je ein Symbol gelesen und aut den Stack gelegt

— Gelesenes Wort steht von unten nach oben im Stack

e Spontaner Wechsel “in der Mitte”
— Nichtdeterministischer e-Ubergang von ¢y nach ¢

— Im Stack steht w in umgekehrter Reihenfolge

R iy qi

— In ¢; wird je ein Symbol gelesen und mit dem Stacksymbol verglichen
— Stacksymbol wird bei Gleichheit entfernt

® Verarbeite w

e Leerer Stack akzeptiert

R

— Wenn Stack leer ist, wurde w' in ¢ verarbeitet

THEORETISCHE INFORMATIK I §3.2: 4 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — MATHEMATISCH PRAZISIERT I

_ Interner Zustand Abrenti
_Lingabe f' prdliche Steuerung i el
— Ablehnen
Zustandsuberfiuhrung
ty
Stack

ma\(Cl(@lon s

Ein Pushdown-Automat (PDA, Kellerautomat)
ist ein 7-Tupel P = (Q, X, I, 4, qo, Zo, F') mit
e () nichtleere endliche Zustandsmenge
e Y. endliches Eingabealphabet
e I' endliches Stackalphabet
¢ :Q % (ZU{e})xT' — P(QxTI*) Uberfithrungsfunktion

¢ g,cQ Startzustand (Anfangszustand)
e Z,cI' Initialsymbol des Stacks
e F'C() Menge von akzeptierenden Zustanden (Endzustande)

Pushdown-Automaten sind ublicherweise nichtdeterministisch!

THEORETISCHE INFORMATIK I §3.2: 5 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMAT FUR {ww!t |we{0,1}*} |

0,X / 0X 0,0 / €
1,X /1X 1,1 / €

; ; e,X / X ; ; €,Zy | Zy
~ 9 ~ 9 ds

Start '\—O/ U

e Speichere w in q

— Jedes gelesene Symbol wird dem Stack zugetiigt
—6(qo,a,X) = {(qo,aX)} fiir ae{0,1}, X el

e Spontaner e-ﬂ'bergang von gy nach g
—0(qo,e,X) = {(q1,X)} fiir X el

Bin qq
— Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen
= 0(qu,a,a) = {(qu,e)} fir ae{0,1}

e “Leerer” Stack akzeptiert (e-ﬂ'bergang nach q,)

—0(q1.6,20) = {(q2.20)}
P = ({CI(), di, QZ}a {071}7 {0717Z0}7 57 do, ZO) {QZ})

THEORETISCHE INFORMATIK I §3.2: 6 PUSHDOWN AUTOMATEN

® Verarbeite w

BESCHREIBUNG VON PUSHDOWN-AUTOMATEN I

0,X / 0X 0,0 / €
1,X /1X 1,1/ €

e Ubergangsdiagramme ’
X | X ;q ;e,ZO/ZO@
2

Start q 0 =U

— Jeder Zustand in) wird durch einen Knoten (Kreise) dargestellt

— Fiir (p,) €0(q, a, X), ae(3Ue) hat das Diagramm eine Kante qaﬁap
(mehrere Beschriftungen derselben Kante moglich)

— qop wird durch einen mit Start beschrifteten Pfeil angezeigt

— Endzustande in F' werden durch doppelte Kreise gekennzeichnet

— > und I' implizit durch die Diagramm bestimmt, Initialsymbol heifit Z

° Ijbergangstabellen @ YUe T [Resultat
— Tabellarische Darstellung der Funktion ¢ — q, 0 x| qp0%
. . . — q, 1 x| qplx

— Kennzeichnung von ¢y durch einen Pfeil —q, € k| q,*

— Kennzeichnung von F' durch Sterne q, 0 O | g€

— 2, ' und @) implizit durch die Tabelle bestimmt 21 i 1Z gl’EZ
0 » £()

— Wildcard (x, #x,..) fiir a €X oder X €I erlaubt * q; 2

THEORETISCHE INFORMATIK I §3.2: 7 PUSHDOWN AUTOMATEN

ARBEITSWEISE VON PUSHDOWN-AUTOMATEN I

A

Generalisiere 0 zu Konfigurationsiibergangen

e Konfiguration: der wirkliche ‘Zustand’ des PDA

— Mehr als q € (): auch Inhalt des Stacks und unverarbeitete Eingabe zahlt
— Formal dargestellt als Tripel K = (qw,y) € @QxX*xI™

e Konfigurationsiibergang -
— Wechsel zwischen Konfigurationen durch Abarbeitung von Worten
- (q,aw, XB) F (pw,af), falls (p,a)ecd(q,a, X)
- K, F K, falls K; = K, oder
es gibt eine Konfiguration K mit Ky F K und K - K

e Konfigurationsiibergange fiir NEAs definierbar
— Konfigurationen sind Paare K = (qw) € QxX*
—(q.aw) F (pw), falls ped(q,a), K; F K definiert wie oben

Allgemeinere, aber fiir endliche Automaten weniger intuitive Notation

THEORETISCHE INFORMATIK I §3.2: 8 PUSHDOWN AUTOMATEN

ABARBEITUNG DES PALINDROM PDA I

0,X / 0X 0,0 /
1

1.X 71X 117 ¢
Verarbeitung von 1111
e,X / X €2y | Z
(q, 1111, Z) dg {9 = @

Start U

(qp 111, 12) (a, 1111, Z) — (q, 1111, Z)
(q, 11, 112) (q, 111, 1Z) — (q, 11, Z)
(ap 1, 1112)) (a, 11, 112)) (a, 11, Z,)
(a9 € 111172 (a, 1, 111Z) (ap 1, 1Z,)
(a, € 1111Z) (a, € 11Z) (a, € Z,)
(a, € Z,)

THEORETISCHE INFORMATIK I §3.2: 9 PUSHDOWN AUTOMATEN

WICHTIGE EINSICHTEN ZU KONFIGURATIONSUBERGANGEN I

o Gilt (q,r,x) - (p,y,3) dann gilt auch
g,zw,oy) F (pyw,B3y) fiir alle w € B*, v €
() F (By) f 11 ¥ I'*

Weder w noch v werden bei der Verarbeitung angesehen

— Beweis durch Induktion iiber Anzahl der Konfigurationsschritte
— Kernargument: (¢q,aw,X~) = (pw,B7), falls (p,3)<d(q,a, X)

was hinter a bzw. X kommt, bleibt unverandert

e Gilt (q,xw,a) - (p,yw,3) dann gilt auch
(g,x,) - (p,y,3) fiir alle w € X*

Wenn w bisher nicht gelesen wurde, dann spielt es (noch) keine Rolle

Dagegen kann es von Bedeutung sein, ob im Stack hiner a etwas steht

THEORETISCHE INFORMATIK I §3.2: 10 PUSHDOWN AUTOMATEN

ERKANNTE SPRACHE EINES PUSHDOWN-AUTOMATEN I

e Zwel alternative Definitionen
— Akzeptanz durch akzeptierende Endzustinde (Standarddefinition)

- Lp(P) ={weX*|IqeF. 33T (qo,w, Zo) F (¢q,€,3)}
— Akzeptanz durch leeren Stack (oft praktischer)
- L (P) ={weX*|3qeQ. (qo,w, Zy) (q,¢,€) }

e Beide Akzeptanzdefinitionen sind aquivalent
—7Zu jedem PDA P. = (Q, >, T, qy, Zy, 0, D) kann ein PDA Pp
konstruiert werden mit L.(P.) = Lp(Pp)
— Zu jedem PDA Pr = (Q, >, 1, qo, Zo, 0, I') kann ein PDA P.
konstruiert werden mit Lp(Pp) = L(P.)

THEORETISCHE INFORMATIK I §3.2: 11 PUSHDOWN AUTOMATEN

SPRACHEN DES PALINDROMAUTOMATEN I

0,X / 0X 0(1)/e

1.X 71X 1, / €
X / X €2y | Z

L

Start

o L (P) = {wwl|we{0,1}*}
D: Durch Induktion iiber Lange von w zeige daB fiir jedes Wort ww!t gilt
(qo.ww® Zo) = (qow®whZy) + (qw®wi2y) b (q.e.Z) F (q2.6.2)
C: Durch Induktion iiber Lange von x zeige
Wenn (qo,x,a) F (qi,e,c) dann z=ww? fiir ein w e {0,1}*
Kernidee: (qo,z1..2n, @) F (qo.xa..Tn, 210) F (q1,25.. 20, fT100)
1,0, T100) F (qea)

impliziert (C]o,$1--96‘n—1, Ck) - (qO,I’Q..$n_1, I‘le) R o (ql,E, 331&)
und 2.2, = 1129..2,_ 171 = x1oviy fir ein ve{0,1}* Siche HMU §6.2.1

oL (P) =10
— Einfaches Argument: Z; wird nie geloscht

— Modifikation: Andere Kantenbeschriftung von ¢; nach Qs zu €,7; /€
Dann gilt L.(P') = Lz(P) = {ww! [we{0,1}*}

THEORETISCHE INFORMATIK I §3.2: 12 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L¢ IN Lg I

Zu jedem PDA P. = (Q, X, T, qo, Zo,9,0) kann ein PDA Pr
konstruiert werden mit L.(P.) = Lg(PF)

e Bei leerem Stack wechsele in Endzustand
— Neues Initialsymbol X fir Pr markiert unteres Ende des Stacks
— Neuer Anfangszustand pg fiir Pr schreibt Initialsymbol von P, auf Stack

— Neuer Endzustand py in den bei “leerem” Stack gewechselt wird

o Pr = (QU{po, pf}a 3, TU{Xo},pos X0 9F; {pf})
= 0p(po,€,X0) = {(q0,.20X0) } e, X /e
—0p(q,a,X) = 0(q.a,X) fir alle ge @, X el
—0rp(q.e,X0) = {(py.€)} fiir alle geQ -
Korrektheitsbeweis durch Detailanalyse —®

THEORETISCHE INFORMATIK I §3.2: 13

UMWANDLUNG EINES L.-PDA IN EINEN Lp-PDA

e Gegeben P, = ({q}, {if,else},{Z},q, Z,9,0)
mit (g, if, Z) = {(q, Z22)}

if,Z é7z
else €
5(Q9 else, Z) — {(q9 6)} '
— Erkennt, daf ein (Teil-)Ausdruck mehr else als if enthalt o »

o Pr = ({po,q,pr},{if,else}, {Xo, Z}, po, X0,0r,{Pf})

o 5F<p07€7X0) — {((],ZX())} if,Z / YA
else Z / €
- 5F(CI7 if Z) - {(Qv ZZ)}

5r(q, else, Z) = {()} X/ 7% EX(’/GQ
— Ofr\g, €el5¢€, - q, € Start U

- dr(q.€,X0) = {(py.€)

THEORETISCHE INFORMATIK I §3.2: 14 PUSHDOWN AUTOMATEN

TRANSFORMATION VON L IN L,

Zu jedem PDA Pr = (Q, %, T, qo, Zy, 0, F) kann ein PDA P,
konstruiert werden mit Lp(Pr) = L.(P;)

e Im Endzustand leere den Stack
— Neuer Stacklosch-Zustand p, in von Endzustanden gewechselt wird
— Neues Initialsymbol X fur P, verhindert irrtiimliches Leeren des Stacks
— Neuer Anfangszustand pg fir P, schreibt Initialsymbol von Pr auf Stack

o Pp = (QU{pOa p}a 2, FU{XO}a qos X0, Oc; (Z))
= 0e(po.€,X0) = {(q0.Z0X0) }

E(an) = 0(q,a,X) fur alle qe @, X el

e(Xo) = {(p,e)} fiir alle ge F

0c(p,e,X) = {(p,e)} fiir alle X eI'U{ X}

€

e, bel./e e, bel./e

Start _ e, X, /ZX

_..@

e, bel./e

THEORETISCHE INFORMATIK I §3.2: 15 PUSHDOWN AUTOMATEN

SIND PDAS WIRKLICH DIE MASCHINEN FUR TYP-2 SPRACHEN?

Lo = Lppa = {L|3IP:PDAs. L=L.(P)}

e Konfigurationsiibergange = Linksableitungen
—(qo, 7y, Zo) - (q, y, Ac) bedeutet, dal P nach Verarbeitung von x
im Zustand ¢ ist und noch y und den Stack A o zu verarbeiten hat
— A o muf3 gespeichert und beim Lesen von y komplett abgearbeitet werden

~ Linksableitung S — A o — zy erzeugt aus dem Startsymbol
zuerst das Wort A o umd mufl dann y aus A « ableiten

e Grammatik — Pushdown-Automat
— PDA muf Linksableitung auf Stack simulieren
— Erzeugte linke Terminalteilworte miissen mit Teil der Eingabe verglichen
werden um nachste Variable freizulegen

e Pushdown-Automat — Grammatik
— Grammatik mufl Abarbeitung von Symbolen des Stacks simulieren
— Regeln beschreiben wie PDA zur Abarbeitung von X mit 0
Zwischenworte im Stack auf- und schliefllich wieder abbaut

THEORETISCHE INFORMATIK I §3.2: 16 PUSHDOWN AUTOMATEN

VON GRAMMATIKEN ZU PUSHDOWN-AUTOMATEN I

Zu jeder kontextfreien Grammatik G = (V, T, Pg, S)
kann ein PDA P konstruiert werden mit L(G) = L.(P)

e Stack simuliert Linksableitungen von G
— Beginne mit Startsymbol von G
— A eV wird durch die rechte Seite 3 einer Regel A— (3 ersetzt

—a<T wird vom Stack entfernt, wenn es als Eingabesymbol erscheint
um nachste Variable der Linksableitungen im Stack zu identifizieren

oP = ({q}, T,VUT,q,S,95,0)
~0(q,6,A) = {(q,0) | A—=0 € Py} fir alle AeV
—6(q,a,a) = {(q.€)} fur alle a €T

e Korrektheitsbeweis L(G) = L¢(P)

— Zeige: (¢) Wenn S = 214100 —, .2 Ay, —, weT™ dann
glbt €S Yi mit <Q7 w, S) l_* (QJ Yis AZ@Z> und LiYi — W
(2) Wenn (q,w, X) F (g, €, €) dann X —— w

THEORETISCHE INFORMATIK I §3.2: 17 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)CL¢(P)

Wenn S =z1A1000 —, .. ey Apoy, —, weT™ (x; €T, A;eV)

dann gibt es y; mit (q,w, S) F (q,y:, Ajo;) und x;y; = w

e Beweis durch Induktion uber Lange 7 der Linksableitung

e Basisfall: =1: S = r1 Aoy —, weT™
— Es folgt S = Ay und x1=a;=¢, also y1=w
—(q,w,S) F (¢, w,S) gilt mit 0 Konfigurationsiibergéingen

e Induktionsschritt: S.. —, z;A;0; —, i1 Aipi0i g —, weT™
iAoy —, i Aipioyg verlangt A, — 3 e Pg fir ein 8
— Also (q,0) €6(q.e,4;) also (q.yi,Aicw) F (q.y:,805)
— Zerlege Bay; in ¢ A; 1. Dann kann y; in 2y, zerlegt werden
-~ Es folgt (q.2yi,wAiniciv) F (¢ Y1, Aiproia) (PDA arbeitet « ab)

*

— Mit Induktionsannahme: (g, w, S) = (¢, yi, Aici) = (q,yiv1, Aiv10iy1)

e Schlufifolgerung: S = 1Ay —, .. Tmr1Ami10m41 = weT™
— Tpp1=w und Ay 1= 1=Ym1=¢

~ Also (q,w,S) F (q,€,¢€), dh. we L (P)

THEORETISCHE INFORMATIK I §3.2: 18 PUSHDOWN AUTOMATEN

KORREKTHEITSBEWEIS L(G)2Lc(P)

Wenn (g, w, X) F (g, €,€) dann X — w

e Beweis durch Induktion uber Lange der PDA Berechnung

e Basisfall: (g, w, X) + (q,¢€,€)
— Es folgt X —eePrund w = ¢, also X — w

e Induktionsschritt: (g, w, X) R (g, €, €)
— Da X oben im Stack steht, muf3 der erste Schritt die Form
(q,w,X) F (q,w,Y1..Y}) fiir ein X—Y7..Y) € Ps haben
— Dann gibt eine Zerlegung w = wy..wj; mit
(q, 1wy, Y1..Y3) F (g, we.wy, Ya..Y3) F (g, €, €)
— Es folgt (q, w;..wy, Y;) F (q, wis1..wy, €) also (q,w;, Y;) F (g, €, €)
— Per Induktionsannahme folgt Y; s w; fiir alle 7

*
also X — Y1.Y, — wi..wp, = w

e L(G)2L.(P) folgt nun mit we L(P) und X = §

THEORETISCHE INFORMATIK I §3.2: 19 PUSHDOWN AUTOMATEN

UMWANDLUNG EINER GRAMMATIK IN EINEN PDA I

.GG — ({EaI}a {aabvoala—l_v*a(a)}v PGa E)
mit P ={F — 1| E+E | ExE | (FE)
I -a|b|Ia|Ib|IO|I1}

e Erzeuge P = ({q},T,VUT,q, E, ,0)
mit V={FE, I} und T={a,b,0,1,+,%,(,)}

~-6(q.e.E)={(ql) (¢ E+E), (q.ExE), (q.(E))}
~d(qel)={(q.a) (qb), (q1a), (q1b) (q10), (q11)}
-6(q.a,a) ={(q€)} —d(q++)=1{(q¢€)}

-0
-0
-0

qbdb)={(qe)} -0
q.00)={(qe} 6
ql11)={(qe€)} -6

q.%%) = {(q.€)}
q,(,0) = {(g€);
q,))) = 1(g.€)}

e N N N N
/N 7/ N 7 N N

VON PUSHDOWN-AUTOMATEN ZU (GRAMMATIKEN I

Zu jedem PDA P = (Q,X,T, qo, Zy, 9, F') kann eine kontextfreie
Grammatik G konstruiert werden mit L.(P) = L(G)

e Simuliere Abarbeitung eines Symbols vom Stack
— Verarbeite Variablen der Form (p, X, q):
“Entfernen von X kann von Zustand p zu Zustand q fuhren”
— Entfernen von X kann heiflen, zuerst ein Y7..Y,, aut- und dann abzubauen
— Beginne mit Erzeugung von Zy und zeige, dafl Z; entfernt werden kann

oG = (X, {S}u@QXT'xQ, Pg, S)
~ S—(qo, Zy,q) € Pg fir alle ge@
— (0, X, qm)—a (p, Y1, q1)-- (@1, Ym, @) € Pg, fiir beliebige q1, .., ¢ € @,
falls (p, ¥7..Y;,) €0(q, a, X)

e Korrektheitsbeweis L.(P) = L(G) (viele Details)
~ Zeige: (p, X,q) — weX* genau dann, wenn (p,w, X) F (g, €, €)
c: Induktion tiber Lange der PDA Berechnung
>: Induktion tiber Lange der Ableitung

THEORETISCHE INFORMATIK I §3.2: 21 PUSHDOWN AUTOMATEN

UMWANDLUNG EINES PDA IN EINE GRAMMATIK I

e Gegeben P = ({q},{if,else},{Z},q,Z,0,0) 7 27
mit 5(q, if, Z) — {(q, ZZ)} else,Z / €

5((]’ else, Z) — {(Q9 E)}

Start 0

o G = ({if,else},{S, (q,Z,q)}, Pg, S)
mit Fe = S — (q, Z, q)

(Qv Z, CI) — 1if (Cb Z, Q)(Cb Z, Q)
(g, Z,q) — else

Kurzschreibweise A fiir Hilfssymbol (g, Z, q) ergibt elegantere Darstellung

G = ({if,else}, {S, A}, Pg,S)mit Pa =S — A
A— if AA

A — else

THEORETISCHE INFORMATIK I §3.2: 22 PUSHDOWN AUTOMATEN

BRAUCHEN WIR NICHTDETERMINISTISCHE AUTOMATEN? I

e Grammatiken sind nichtdeterministisch
— Nichtdeterministische Automaten sind das “natiirliche” Gegenstiick
. Grammatikregeln fithren zu mengenwertiger Uberfithrungsfunktion

— “Wirkliche” Automaten mussen deterministisch sein

e T'yp-3 Sprachen haben deterministische Modelle
— NEAs konnen in aquivalente DEAs umgewandelt werden

— Teilmengenkonstruktion kann Automaten exponentiell vergrofiern

® Reichen deterministische PDAs fur Typ-2 Sprachen?
— Uberfithrungsfunktion 6:Qx (XU{e})xI" — @xT"* muf eindeutig sein
— Gibt es fur PDAs immer aquivalente deterministische PDAs?

THEORETISCHE INFORMATIK I §3.2: 23 PUSHDOWN AUTOMATEN

DETERMINISTISCHE PUSHDOWN-AUTOMATEN — PRAZISIERT

Ein Deterministischer Pushdown-Automat (DPDA)
ist ein 7-Tupel P = (Q, X, T, 8, qo, Zo, F') mit

e () nichtleere endliche Zustandsmenge

e . endliches Eingabealphabet

e I' endliches Stackalphabet

¢ 5:Q X (ZU{e})xT — QxI'* Uberfithrungsfunktion

— 0(q,6,X) nur definiert, wenn 0(q,a,X) fiir alle a €3 undefiniert
® g,c() Startzustand (Anfangszustand)
e Z,cI' Initialsymbol des Stacks

e FFC() Menge von akzeptierenden Zustanden (Endzusténde)

Erkannte Sprache
— Lp(P) = {weX*|3geF.3Bel*. (qy,w, Zy) F (g.€,3)}
— Le(P) = {weX*|3qeqQ. (qo,w, Zo) F (q,6,€) }

THEORETISCHE INFORMATIK I §3.2: 24 PUSHDOWN AUTOMATEN

DPDAS SIND NICHT MACHTIG GENUG I

e DPDA-Sprachen sind eine echte Teilklasse von Lo
1. L(DPDA)CL,: Jeder DPDA ist ein spezieller PDA
2. DPDAs kénnen {ww®|w €{0,1}*} nicht erkennen
DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt
- Wenn 0"110" (grofles n) gelesen ist, ist Stack durchs Zéhlen geleert
- Wenn noch einmal 0"110" gelesen wird, mufl P akzeptieren
- Wenn stattdessen 0"110™ (m#n) kommt, darf P nicht akzeptieren

- Aber die Information tiber n ist nicht mehr gespeichert —(Details aufwendig)

e DPDASs erkennen nur eindeutige Typ-2 Sprachen

1. Fiir jeden DPDA P hat L.(P) eine eindeutige Grammatik
Fir DPDAs ergibt die Umwandlung eine eindeutige Typ-2 Grammatik

- Folge der Konfigurationsiibergange bestimmt Linksableitung eindeutig)

2. Fiir jeden DPDA P hat Lp(P) eine eindeutige Grammatik
Umwandlung in L, — DPDA kann deterministisch gemacht werden

THEORETISCHE INFORMATIK I §3.2: 25 PUSHDOWN AUTOMATEN

DPDAS SIND MACHTIGER ALS ENDLICHE AUTOMATEN

e L3 = L(DEA)CLr(DPDA)
— Jeder DEA ist ein spezieller DPDA

— Aussage gilt nur fir Erkennung mit Endzustand

o L = {w#Hwl|we{0,1}*}c Lpr(DPDA)—L(DEA)
— L ist nicht regular
- Beweis durch Pumping Lemma, analog zu {ww® | we{0,1}*}
— L = Lp(P) fiir folgenden DPDA P

0,X / 0X 0,0 / €
1,X /1X 1,1/ e

#7X/X i i €7ZO/ZO
Start qO =\(j1/ q2

— P ist deterministisch, da e-Ubergang in ¢; genau bei Stacksymbol Z;
e {0} ¢ L. (DPDA)

— Wenn der Stack einmal leer ist, kann ein DPDA nicht mehr weiterarbeiten

THEORETISCHE INFORMATIK I §3.2: 26 PUSHDOWN AUTOMATEN

PUSHDOWN-AUTOMATEN — ZUSAMMENFASSUNG I

e Maschinenmodell fiir kontextfreie Sprachen
— Nichtdeterministischer endlicher Automat mit Stack und e-Ubergingen
— Erkennung von Worten durch Endzustand oder leeren Stack

— Erkennungsmodelle sind ineinander transformierbar

e Verhaltensanalyse durch Konfigurationsiibergange
— Konfigurationen beschreiben ‘Gesamtzustand’ von Pushdown-Automaten

— Konfigurationsiiberginge verallgemeinern Uberfithrungsfunktionen

° Aquivalent zu kontextfreien Grammatiken

— Umwandlung von Konfigurationsibergangen in Regeln und umgekehrt

e Deterministische PDAs sind weniger machtig
— DPDAs erkennen nur eindeutige Typ-2 Sprachen

— L-DPDAs konnen nicht einmal alle regularen Sprachen erkennen

THEORETISCHE INFORMATIK I §3.2: 27 PUSHDOWN AUTOMATEN

