
Theoretische Informatik I

Einheit 3.3

Eigenschaften kontextfreier Sprachen

1. Abschlußeigenschaften

2. Normalformen

3. Prüfen von Eigenschaften / Syntaxanalyse

4. Wann sind Sprachen nicht kontextfrei?

Theoretische Informatik I §3: Kontextfreie Sprachen 1 Eigenschaften kontextfreier Sprachen

Abschlußeigenschaften kontextfreier Sprachen

Typ-2 Sprachen sind komplizierter als Typ-3 Sprachen

• Abgeschlossenheit gilt nur für 6 Operationen
– Vereinigung zweier kontextfreier Sprachen L1 ∪ L2

– Spiegelung einer kontextfreien Sprache LR

– Hülle einer kontextfreien Sprache L∗

– Verkettung zweier kontextfreier Sprachen L1◦L2

– Substitution/Homomorphismus einer kontextfreien Sprache σ(L)

– Inverse Homomorphismus einer kontextfreien Sprache h−1(L)

• Keine Abgeschlossenheit für
– Komplement einer kontextfreien Sprache L

– Durchschnitt zweier kontextfreier Sprachen L1 ∩ L2

– Differenz zweier kontextfreier Sprachen L1 - L2

• Nachweis mit Grammatiken und PDAs
– Modelle sind ineinander umwandelbar – wähle das passendste

– Negative Nachweise mit einem Typ-2 Pumping Lemma

Theoretische Informatik I §3: Kontextfreie Sprachen 2 Eigenschaften kontextfreier Sprachen

Substitutionen von Sprachen

Verallgemeinerung von Homomorphismen

• Abbildung σ von Worten in Sprachen

σ:Σ∗→L ist Substitution, wenn σ(v1..vn) = σ(v1)◦..◦σ(vn) für alle vi ∈Σ

σ(L)=
⋃

{σ(w) |w ∈L} ist das Abbild der Worte von L unter σ

• Beispiel: σ(0)={anbn | n ∈ N}, σ(1)={aa, bb}
– σ:{0, 1}∗→L ist eindeutig definiert durch σ(0) und σ(1)

– σ(01) = {anbn |n ∈N}◦{aa, bb}

= {w ∈{a, b}∗ |w = anbn+2
∨w = anbnaa für ein n ∈N}

– σ({0}∗) = {anbn |n ∈N}∗

= {w ∈{a, b}∗ |w = an1bn1an2bn2..ankbnk für ein k und ni ∈N}

• Extrem ausdrucksstarker Mechanismus

– L1 ∪ L2 = σ({1,2}) für σ(1)=L1, σ(2)=L2

– L1◦L2 = σ({12}) für σ(1)=L1, σ(2)=L2

– L∗ = σ({1}∗) für σ(1)=L
...

Theoretische Informatik I §3: Kontextfreie Sprachen 3 Eigenschaften kontextfreier Sprachen

Abgeschlossenheit unter Substitutionen

L ∈ L2, σ:T ∗→L2 Substitution, ⇒ σ(L) kontextfrei

• Beweis mit Grammatiken

Ersetze a ∈T durch Startsymbol der kontextfreien Grammatik für σ(a)

Seien L und σ(a) kontextfrei für alle a ∈T

Dann gibt es Typ-2 Grammatiken G = (V , T , P , S) mit L = L(G)

und Ga = (Va, Ta Pa, Sa) mit σ(a) = L(Ga)

Dann ist σ(L) = σ(L(G)) =
⋃
{σ(a1)◦..◦σ(an) | S

∗
−→ a1..an}

= {w1..wn | ∃a1..an. S
∗

−→ a1..an ∧Sai

∗
−→wi}

Sei Pσ = {A→ασ |A→α ∈P} ∪
⋃

a ∈TPa, wobei ασ aus α ∈ (V ∪T)∗

entsteht, indem jedes a ∈T durch Sa ersetzt wird

und Gσ = (Vσ, Tσ, Pσ, S) wobei Vσ = V ∪
⋃

a ∈ T
Va und Tσ =

⋃
a ∈ T

Ta

Dann gilt w1..wn ∈L(Gσ) ⇔ S
∗

−→ Gσw1..wn

⇔ ∃a1..an ∈T ∗. S
∗

−→ Ga1..an ∧Sai

∗
−→ Gai

wi

⇔ w1..wn ∈ σ(L)

Also ist σ(L) kontextfrei

Theoretische Informatik I §3: Kontextfreie Sprachen 4 Eigenschaften kontextfreier Sprachen

Vereinigung, Verkettung, Hülle und Homomorphismen

Anwendung der Abgeschlossenheit unter Substitutionen

• L1, L2 kontextfrei ⇒ L1 ∪ L2 kontextfrei

– Sei σ(1)=L1 und σ(2)=L2

– Dann ist σ:{1, 2}→L2 Substitution und L1 ∪ L2 = σ({1,2}) ∈ L2

• L1, L2 kontextfrei ⇒ L1◦L2 kontextfrei

– Sei σ(1)=L1 und σ(2)=L2

– Dann ist σ:{1, 2}→L2 Substitution und L1◦L2 = σ({12}) ∈ L2

• L kontextfrei ⇒ L∗ kontextfrei

– Für σ(1)=L ist σ:{1}→L2 Substitution und L∗ = σ({1}∗) ∈ L2

• L kontextfrei ⇒ L+ kontextfrei

– Für σ(1)=L ist σ:{1}→L2 Substitution und L∗ = σ({1}+) ∈ L2

• L ∈ L2, h Homomorphismus ⇒ h(L) kontextfrei

– Für σ(a)={h(a)} ist σ:T→L2 Substitution und h(L) = σ(L) ∈ L2

Theoretische Informatik I §3: Kontextfreie Sprachen 5 Eigenschaften kontextfreier Sprachen

Abschluß unter Spiegelung

L kontextfrei ⇒ LR={wn..w1 | w1..wn ∈ L} kontextfrei

• Beweis mit Grammatiken

– Bilde Spiegelgrammatik zu G = (V , T , P , S) mit L = L(G)

· Setze GR = (V , T , PR, S) mit PR = {A→αR |A→α ∈P}

– Dann gilt für alle A ∈V , α ∈ (V ∪T)∗: A `
∗

G α ⇔ A `
∗

GR
αR

· Beweis durch Induktion über Länge der Ableitung

– Also L(GR) = {w ∈T ∗ |S `
∗

GR
w} = {vR ∈T ∗ |S `

∗

GR
v} = (L(G))R

• Beweis mit PDAs ähnlich wie bei Typ-3 Sprachen

– Bilde Umkehrautomaten zu P = (Q, Σ, Γ, δ, q0, Z0, F) mit L=LF (P)

Theoretische Informatik I §3: Kontextfreie Sprachen 6 Eigenschaften kontextfreier Sprachen

Abschluß unter inversen Homomorphismen

L ∈ L2, h Homomorphismus ⇒ h−1(L) kontextfrei

• Beweis mit Pushdown Automaten
Berechnung von h vor Abarbeitung der Worte im Automaten

Sei L kontextfrei und P = (Q, Σ, Γ, δ, q0, Z0, F) ein PDA

mit L = LF (P) = { v ∈Σ∗ | ∃q ∈F.∃β ∈Γ∗. (q0, v, Z0) `
∗

(q, ε, β) }

Dann ist h−1(L) = {w ∈Σ′∗ | ∃q ∈F. ∃β ∈Γ∗. (q0, h(w), Z0) `
∗

(q, ε, β) }

Konstruiere PDA Ph = (Qh, Σ’, Γ, δh, q0h
, Z0, Fh) mit der Eigenschaft

(q0h
, w, Z0) `

∗
(qh, ε, β) ⇔ (q0, h(w), Z0) `

∗
(q, ε, β) für Endzustände

Der einfache Ansatz δh(q, a,X) = δ̂(q, h(a),X) funktioniert nicht!

Wie bei DEAs muß h(a) schrittweise in den Zuständen abgearbeitet werden

Setze Qh = Q × { v ∈Σ∗ | v Suffix von h(a) für ein a ∈Σ’}

δh((q,ε),a,X) = {((q,h(a)),X)} a ∈Σ’, X ∈Γ

δh((q,bv), ε,X) = {((p,v),α) | (p,α) ∈δ(q,b,X)} b ∈Σ∪{ε}, v ∈Σ∗, X ∈Γ

q0h
= (q0,ε) Fh = {(q,ε)|q ∈F}

Dann gilt ((q,ε),a,X) `
∗

Ph
((p,ε),ε,β) ⇔ (q,h(a),X) `

∗

P (p,ε,β)

Also ist h−1(L) = L(Ph) und damit kontextfrei

Theoretische Informatik I §3: Kontextfreie Sprachen 7 Eigenschaften kontextfreier Sprachen

Durchschnitt, Komplement, und Differenz

Abgeschlossenheit gilt nicht für diese Operationen

• Durchschnitt: L1, L2 ∈ L2 6⇒ L1∩L2 ∈ L2

– L = {0n1n2n |n ∈N} ist nicht kontextfrei (Beweis später)

– Aber L = {0n1n2m |n,m ∈N} ∩ {0m1n2n |n,m ∈N}

und {0n1n2m |n,m ∈N} und {0m1n2n |n,m ∈N} sind kontextfrei

(Regeln für erste Sprache: S→AB, A→0A1, A→01, B→2B, B→2)

Der Durchschnitt kontextfreier und regulärer Sprachen ist kontextfrei
HMU Satz 7.27

• Komplement L ∈ L2 6⇒ L ∈ L2

– Es ist L1∩L2 = L1∪L2

– Bei Abgeschlossenheit unter Komplementbildung würde
Abgeschlossenheit unter Durchsschnitt folgen

• Differenz: L1, L2 ∈ L2 6⇒ L1−L2 ∈ L2

– Es ist L = Σ∗−L

– Aus Abschluß unter Differenz folgt Abschluß unter Komplement

Theoretische Informatik I §3: Kontextfreie Sprachen 8 Eigenschaften kontextfreier Sprachen

Tests für Eigenschaften kontextfreier Sprachen

Welche Eigenschaften sind automatisch prüfbar?

• Ist eine kontextfreie Sprache leer?

– Entspricht Test auf Erreichbarkeit von Endzuständen

– Nicht ganz so einfach, da Stackinhalt die Erreichbarkeit beeinflußt

• Zugehörigkeit: gehört ein Wort zur Sprache?

– Verarbeitung durch Pushdown-Automaten ist nichtdeterministisch

– Deterministische Pushdown-Automaten sind nicht mächtig genug

– Frage nach Zugehörigkeit beinhaltet oft Frage nach Ableitungsbaum

• Äquivalenz: sind zwei Typ-2 Sprachen identisch?

– Zusammenfassen äquivalenter Zustände im PDA kaum durchführbar

• Kontextfreie Grammmatiken sind zu kompliziert

– Analyse braucht einfachere Versionen von Typ-2 Grammatiken

– Bringe Grammatik auf “Normalform” (äquivalente einfachere Struktur)

Theoretische Informatik I §3: Kontextfreie Sprachen 9 Eigenschaften kontextfreier Sprachen

Die Chomsky Normalform

Trenne Variablen von Terminalsymbolen

• Grammatik in Chomsky-Normalform

– Grammatik G= (V , T , P , S), bei der jede Produktion die Form

A→B C oder A→a hat (A, B, C ∈V , a ∈T)

• Jede kontextfreie Grammatik G mit ε 6∈ L(G)

ist in Chomsky-Normalform transformierbar

– Eliminierung unnützer Symbole

– Eliminierung von ε-Produktionen A → ε

– Eliminierung von Einheitsproduktionen A → B

– Aufspalten von Produktionen A → α mit |α|>2

– Separieren von Terminalsymbolen und Variablen in Produktionen

Aufblähung/Transformationszeit quadratisch relativ zur Größe von G

Theoretische Informatik I §3: Kontextfreie Sprachen 10 Eigenschaften kontextfreier Sprachen

Unnütze Symbole eliminieren

• X nützlich, falls S
∗

−→ αXβ
∗

−→ w ∈ T

– Erzeugend (X
∗

−→ w ∈T) und erreichbar (S
∗

−→ αXβ)

• Beispiel: P = { S→AB | a, A→b }
· Erreichbar: S, A, B, a, und b erzeugend: S, A, a, und b

– Nach Elimination von B: { S→a, A→b }

· Erreichbar: S und a erzeugend: S, A, a, und b

– Nach Elimination von A: { S→a }

· Erreichbar: S und a erzeugend: S und a

Erzeugte Produktionenmenge ist äquivalent zu P

• Eliminationsverfahren für G mit L(G)6=∅
– Eliminiere nichterzeugende Symbole und Produktionen, die sie enthalten

– Eliminiere unerreichbare Symbole und Produktionen, die sie enthalten

Resultierende Grammatik G′ erzeugt dieselbe Sprache wie G

G′ enthält nur nützliche Symbole und S ∈V ′

Also w ∈L(G) ⇔ S
∗

−→
G

w ⇔ S
∗

−→ ′
G

w ⇔ w ∈L(G′)

Theoretische Informatik I §3: Kontextfreie Sprachen 11 Eigenschaften kontextfreier Sprachen

Berechnung erzeugender / erreichbarer Symbole

• Generiere Menge erzeugender Symbole iterativ
– Alle Terminalsymbole a ∈T sind erzeugend

– Ist A→X1..Xn ∈ P und alle Xi erzeugend, dann ist A erzeugend

– Verfahren terminiert nach maximal |V | + 1 Iterationen

• Generiere Menge erreichbarer Symbole iterativ
– S ist erreichbar

– Ist A→X1..Xn ∈ P und A erreichbar dann sind alle Xi erreichbar

– Verfahren terminiert nach maximal |V | + |T | Iterationen

• Beispiel: P = { S→AB | a, A→b }
– Erzeugende Symbole:

1.: a und b sind erzeugend
2.: S und A sind ebenfalls erzeugend
3.: Keine weiteren Symbole sind erzeugend

– Erreichbare Symbole:
1.: S ist erreichbar
2.: A, B und a sind ebenfalls erreichbar
3.: b ist ebenfalls erreichbar

Theoretische Informatik I §3: Kontextfreie Sprachen 12 Eigenschaften kontextfreier Sprachen

ε-Produktionen eliminieren

• ε-Produktionen sind überflüssig, falls ε 6∈ L(G)

– Variablen A ∈V mit A
∗

−→ ε sind eliminierbar

– Menge eliminierbarer Symbole kann iterativ bestimmt werden

· Ist A → ε ∈ P dann ist A eliminierbar

· Ist A→X1..Xn ∈ P und alle Xi eliminierbar, dann ist A eliminierbar

– Verfahren terminiert nach maximal |V | + 1 Iterationen

• Erzeuge Grammatik ohne eliminierbare Symbole

– Für G= (V , T , P , S) bestimme alle eliminierbare Variablen

– Für A→α ∈ P mit eliminierbaren Symbolen X1, .., Xm in α erzeuge

2m Regeln A→αi1,..,ik (Streiche jeweils die Symbole Xi1..Xik aus α)

– Entferne alle Regeln der Form A → ε (auch neu erzeugte)

– Wenn S eliminierbar ist, kann S ′ → S und S ′ → ε ergänzt werden

• Erzeugte Grammatik ist äquivalent

– Zeige A
∗

−→ ′
G
w ⇔ A

∗
−→

G
w ∧ (w 6=ε ∨ A=S′)

durch Induktion über Länge der Ableitung

Theoretische Informatik I §3: Kontextfreie Sprachen 13 Eigenschaften kontextfreier Sprachen

Elimination von ε-Produktionen am Beispiel

P = { S→AB, A→aAA | ε, B→bBB | ε }

• Ermittelung eliminierbarer Symbole

1.: A und B sind eliminierbar

2.: S ist ebenfalls eliminierbar

• Verändere Regeln der Grammatik

– Aus S→AB wird S→AB | A | B

– Aus A→aAA | ε wird A→aAA | aA | a

– Aus B→bBB | ε wird B→bBB | bB | b

Grammatik erzeugt L(G)−{ε} ohne ε-Produktionen

• Ergänze neues Startsymbol

– S war eliminierbar: ergänze Produktionen S′ → S | ε

Grammatik erzeugt L(G) mit initialer ε-Produktion

Theoretische Informatik I §3: Kontextfreie Sprachen 14 Eigenschaften kontextfreier Sprachen

Einheitsproduktionen eliminieren

Einheitsproduktionen verlängern Ableitungen

und verkomplizieren technische Beweise

• Bestimme alle Einheitspaare (A,B) mit A
∗

−→ B

– Wie üblich ... iteratives Verfahren:

· Alle Paare (A,A) für A ∈V sind Einheitspaare

· Ist (A,B) Einheitspaar und B→C ∈ P dann ist (A,C) Einheitspaar

– Verfahren terminiert nach maximal |V | + 1 Iterationen

• Erzeuge Grammatik ohne Einheitsproduktionen

– Bestimme alle Einheitspaare in G

– Für jedes Einheitspaar (A,B) erzeuge Produktionen

{A→α |B→α ∈P keine Einheitsproduktion}

• Erzeugte Grammatik ist äquivalent

– Ableitungen in G′ sind “Kurzformen” von Ableitungen in G

Beweis, wie immer, durch Induktion über Länge der Ableitung

Theoretische Informatik I §3: Kontextfreie Sprachen 15 Eigenschaften kontextfreier Sprachen

Elimination von Einheitsproduktionen am Beispiel

P ′ = { E → T | E+T , T → F | T∗F , F → I | (E)

I → a | b | Ia | Ib | I0 | I1 }

• Bestimme alle Einheitspaare (A,B) mit A
∗

−→ B

1.: (E,E), (T ,T), (F ,F) und (I ,I) sind Einheitspaare

2.: (E,T), (T ,F) und (F ,I) sind ebenfalls Einheitspaare

3.: (E,F) und (T ,I) sind ebenfalls Einheitspaare

4.: (E,I) ist ebenfalls Einheitspaar

5.: Keine weiteren Einheitspaare möglich

• Erzeuge Grammatik ohne Einheitsproduktionen

– Einheitspaare mit E: {E→E+T | T∗F | (E) | a | b | Ia | Ib | I0 | I1}

– Einheitspaare mit T : {T→T∗F | (E) | a | b | Ia | Ib | I0 | I1}

– Einheitspaare mit F : {F→(E) | a | b | Ia | Ib | I0 | I1}

– Einheitspaare mit I : {I→a | b | Ia | Ib | I0 | I1}

Theoretische Informatik I §3: Kontextfreie Sprachen 16 Eigenschaften kontextfreier Sprachen

Erzeugung der Chomsky-Normalform

Nur Produktionen der Form A→B C oder A→a

• Jede kontextfreie Grammatik G ist umwandelbar in

eine äquivalente Grammatik ohne unnütze Symbole,

(echte) ε-Produktionen und Einheitsproduktionen

– Falls L(G) = ∅, wähle G′ = (V , T , ∅, S) (Test auf ∅ später)

– Sonst eliminiere ε-Produktionen, Einheitsproduktionen, unnütze Symbole

• Separiere Terminalsymbole von Variablen

– Für jedes Terminalsymbol a ∈T erzeuge neue Variable Xa

– Ersetze jede Produktion A→α (|α|≥2) durch A→h(α), wobei h(a) = Xa

– Ergänze Produktionen Xa→a für alle a ∈T

• Spalte Produktionen A → α mit |α|>2

– Ersetze jede Produktion A→X1..Xk durch k−1 Produktionen

A→X1Y1, Y1→X2Y2, ...Yk−2→Xk−1Xk, wobei alle Yi neue Variablen

Theoretische Informatik I §3: Kontextfreie Sprachen 17 Eigenschaften kontextfreier Sprachen

Erzeugung der Chomsky-Normalform am Beispiel

P = {E→E+T | T∗F | (E) | a | b | Ia | Ib | I0 | I1

T→T∗F | (E) | a | b | Ia | Ib | I0 | I1

F→(E) | a | b | Ia | Ib | I0 | I1

I→a | b | Ia | Ib | I0 | I1 }

• Separiere Terminalsymbole von Variablen

P ′ = {E→EX+T | TX∗F | X(EX) | a | b | IXa | IXb | IX0 | IX1

T→TX∗F | X(EX) | a | b | IXa | IXb | IX0 | IX1

F→X(EX) | a | b | IXa | IXb | IX0 | IX1

I→a | b | IXa | IXb | IX0 | IX1

Xa→a, Xb→b, X0→0, X1→1, X+→+, X∗→∗, X(→(, X)→) }

• Spalte Produktionen A → α mit |α|>2

P ′ = {E→EY1 | TY2 | X(Y3 | a | b | IXa | IXb | IX0 | IX1

T→TY2 | X(Y3 | a | b | IXa | IXb | IX0 | IX1

F→X(Y3 | a | b | IXa | IXb | IX0 | IX1

I→a | b | IXa | IXb | IX0 | IX1

Y1→X+T, Y2→X∗F, Y3→EX)

Xa→a, Xb→b, X0→0, X1→1, X+→+, X∗→∗, X(→(, X)→) }

Theoretische Informatik I §3: Kontextfreie Sprachen 18 Eigenschaften kontextfreier Sprachen

Tests für Eigenschaften kontextfreier Sprachen

• Ist eine kontextfreie Sprache leer?

– Für G = (V , T , P , S) gilt

L(G) ist leer genau dann wenn S nicht erzeugend ist

– Menge erzeugender Variablen kann iterativ bestimmt werden

– Mit speziellen Datenstrukturen ist Test in linearer Zeit durchführbar

(Details ins HMU §7.4.3)

• Gehört ein Wort zu einer kontextfreien Sprache?

– Naive Methode für den Test w ∈L(G):

1. Erzeuge Chomsky-Normalform G′ von G

2. In G′ erzeuge alle Ableitungsbäume mit 2|w| − 1 Variablenknoten

3. Teste, ob einer dieser Bäume das Wort w erzeugt

– Hochgradig ineffizient, da exponentiell viele Bäume zu erzeugen

– Iterative Analyseverfahren sind besser

Theoretische Informatik I §3: Kontextfreie Sprachen 19 Eigenschaften kontextfreier Sprachen

Syntaxanalyse: Cocke-Younger-Kasami-Algorithmus

Bestimme Variablenmengen, aus denen wi..wj ableitbar

• Eingabe: Grammatik G = (V, T, P, S) in Chomsky-NF, w ∈T ∗

• Berechne Mengen Vi,j = {A ∈V | A
∗

−→ wi...wj} iterativ

V1,n

V1,n−1 V2,n
...

V1,2 V2,3 . . . Vn−1,n

V1,1 V2,2 . . . Vn−1,n−1 Vn,n

w1 w2 . . . wn−1 wn

j=i: Vi,i = {A ∈V | A→wi ∈P}

j>i: Vi,j = {A ∈V |

∃i≤k<j.

∃A→BC ∈P.

B ∈Vi,k ∧C ∈Vk+1,j}

• Akzeptiere w genau dann, wenn S ∈V1,|w|

Entscheidet w ∈L(G) in kubischer Zeit relativ zur Größe von w

Konstruiert gleichzeitig den Syntaxbaum von w

Theoretische Informatik I §3: Kontextfreie Sprachen 20 Eigenschaften kontextfreier Sprachen

Der CYK-Algorithmus am Beispiel

{ S → AB|BC A → BA|a, B → CC|b C → AB|a }

• Prüfe w = baaba ∈ L(G)

• Berechne Vi,j = {A ∈ V | A
∗

−→ wi...wj}

{S, A, C}

— {S, A, C}

— {B} {B}

{S, A} {B} {S, C} {S, A}

{B} {A, C} {A, C} {B} {A, C}

b a a b a

• S ∈ V1,5, also w ∈ L(G)

Theoretische Informatik I §3: Kontextfreie Sprachen 21 Eigenschaften kontextfreier Sprachen

Unentscheidbare Probleme für Typ-2 Sprachen

Die folgenden Probleme können nicht getestet werden

• L(G) = T ∗ Welche Menge beschreibt G?

• L(G1) = L(G2) Äquivalenz von Grammatiken

• L(G1)⊆L(G2)

• L(G1)∩L(G2) = ∅

• L(G) ∈ L3

• L(G) ∈ L2 kontextfreies Komplement?

• L(G1)∩L(G2) ∈ L2 kontextfreier Schnitt ?

Beweise brauchen Berechenbarkeitstheorie / TI-2

Theoretische Informatik I §3: Kontextfreie Sprachen 22 Eigenschaften kontextfreier Sprachen

Grenzen kontextfreier Sprachen

Warum ist L = {0n1n2n | n ∈ N} nicht kontextfrei?

• Typ-2 Grammatiken arbeiten lokal
– Anwendbarkeit einer Produktion hängt nur von einer Variablen ab

(der Kontext der Variablen ist irrelevant)

– Eine Regel kann nur an einer Stelle im Wort etwas erzeugen

– Eine Typ-2 Grammatik kann entweder 0/1 oder 1/2 simultan erhöhen
aber nicht beides gleichzeitig

– Grammatik müßte die Anzahl der 0/1 oder 1/2 im Voraus bestimmen

und für die 2 bzw. 0 im Namen der Variablen codieren

• Grammatiken sind endlich
– Es gibt nur endlich viele Variablen

– Für n>|V | muß eine Variable X doppelt benutzt worden sein

zur Codierung von 0n1n und 0i1i mit i<n

– Grammatik würde auch 0n1n2i und 0i1i2n generieren

• Genaues Argument ist etwas komplizierter
– Allgemeine Version: Pumping Lemma für kontextfreie Sprachen

Theoretische Informatik I §3: Kontextfreie Sprachen 23 Eigenschaften kontextfreier Sprachen

Das Pumping Lemma für kontextfreie Sprachen

Wie zeigt man, daß eine Sprache nicht kontextfrei ist?

• Für jede kontextfreie Sprache L ∈L2 gibt es eine Zahl n ∈ N,

so daß jedes Wort z ∈L mit Länge |z|≥n zerlegt werden kann

in z = u v w x y mit den Eigenschaften

(1) v◦x6=ε,

(2) |v w x|≤n und

(3) für alle i ∈N ist u vi w xi y ∈ L

• Aussage ist wechselseitig konstruktiv

– Die Zahl n kann zu jeder kontextfreien Sprache L bestimmt werden

– Die Zerlegung z = u v w x y kann zu jedem Wort z ∈L bestimmt werden

• Beweis benötigt Chomsky-Normalform

– Ableitungen der Länge k können maximal Worte der Länge 2k generieren

– Ableitungen der Länge k>|V | benutzen ein Hilfssymbol X doppelt

– Die Schleife der Ableitung von X aus X kann beliebig wiederholt werden

Theoretische Informatik I §3: Kontextfreie Sprachen 24 Eigenschaften kontextfreier Sprachen

Beweis des Pumping Lemmas

Für jede Sprache L ∈L2 gibt es ein n ∈ N, so daß jedes z ∈L mit

Länge |z|≥n zerlegt werden kann in z = u v w x y mit

(1) v◦x6=ε, (2) |v w x|≤n (3) u vi w xi y ∈ L für alle i ∈ N

Beweis mit Grammatiken in Chomsky-Normalform

– Für L = ∅ oder L = {ε} gilt die Behauptung trivialerweise

– Andernfalls sei G= (V , T , P , S) in Chomsky-Normalform mit L = L(G)

– Wähle n=2|V | und betrachte z=z1..zm mit |z|≥n

X0

Xk

Xi

Xj

wu v x y

– Dann hat jeder Ableitungsbaum für z eine Tiefe von mindestens |V |+1

– Sei X0, ...Xk die Folge der verarbeiteten Variablen auf dem längsten Pfad

Dann erscheint eine Variable zweimal: Xi = Xj für ein i<j mit k−|V |<i

– Seien w und t die aus Xj bzw. Xi abgeleiteten Teilworte

– Dann gilt t = v w x und z = u t y für Worte u, v, x und y

– Da G in Chomsky-Normalform ist, gilt v◦x6=ε

– Wegen k−|V |<i gilt |v w x| = |t|≤n

– Wegen Xi = Xj kann die Ableitung von Xi bis Xj beliebig

wiederholt werden und es gilt u vi w xi y ∈ L für alle i ∈N

Theoretische Informatik I §3: Kontextfreie Sprachen 25 Eigenschaften kontextfreier Sprachen

Anwendungen des Pumping Lemmas

• L = {0m1m2m | m ∈ N} ist nicht kontextfrei

– Wir nehmen an L sei kontextfrei

und zeigen, daß die Aussage des Pumping Lemmas verletzt wird

– Wähle n entsprechend des Pumping Lemmas und m>n

– Dann kann z = 0m1m2m zerlegt werden in z = u v w x y

mit (1) v◦x6=ε und (2) |v w x|≤n und (3) u w y = u v0 w x0 y ∈ L

– Wegen (2) enthält v w x keine Nullen oder keine Zweien

– Falls v w x keine Null enthält, dann enthält u w y genau m Nullen

aber wegen (1) weniger Einsen und/oder Zweien

– Falls v w x keine Zwei enthält, dann enthält u w y genau m Zweien

aber wegen (1) weniger Nullen und/oder Einsen

– Damit kann v w x nicht zu L gehören

– Dies ist ein Widerspruch, also ist L nicht kontextfrei

• L′ = { ww | w ∈ {0, 1}∗} 6∈ L2

– Ähnliches Argument mit Worten der Form 0m1m0m1m

Theoretische Informatik I §3: Kontextfreie Sprachen 26 Eigenschaften kontextfreier Sprachen

Eigenschaften kontextfreier Sprachen im Rückblick

Kontextfreie Sprachen sind deutlich komplizierter

• Abschlußeigenschaften

– Operationen ∪, R, ◦, ∗, σ, h−1 erhalten Kontextfreiheit von Sprachen

– Keine Abgeschlossenheit unter ∩, , -

• Automatische Prüfungen

– Man kann testen ob eine kontextfreie Sprache leer ist

– Man kann testen ob ein Wort zu einer kontextfreien Sprache gehört

– Man kann nicht testen ob zwei kontextfreie Sprachen gleich sind

Viele wichtige Fragen sind nicht automatisch prüfbar

• Pumping Lemma

– Wiederholt man bestimmte Teile ausreichend großer Worte einer kontext-

freien Sprache beliebig oft, so erhält man immer ein Wort der Sprache

– Konsequenz: viele einfache Sprachen sind nicht kontextfrei

Für diese sind aufwendigere Mechanismen erforderlich 7→ TI-2

