
Theoretische Informatik I

Einheit 4

Rückblick Theoretische Informatik I

1. Mathematische Methoden

2. Reguläre Sprachen

3. Kontextfreie Sprachen



Theoretische Informatik I §4: 1 Rückblick: Automaten & Formale Sprachen

Themen der Theoretischen Informatik I & II

• Mathematische Methodik in der Informatik TI-1

• Automatentheorie und Formale Sprachen TI-1

– Endliche Automaten und Reguläre Sprachen

· Lexikalische Analyse

– Kontextfreie Sprachen und Pushdown Automaten

· Syntaxanalyse und Semantik

– Die Chomsky Hierarchie

• Theorie der Berechenbarkeit TI-2

– Berechenbarkeitsmodelle

– Aufzählbarkeit und Entscheidbarkeit

– Unlösbare Probleme (Unentscheidbarkeit)

• Komplexitätstheorie TI-2

– Komplexitätsmaße und -klassen für Algorithmen und Probleme

– Nicht handhabbare Probleme (NP-Vollständigkeit)



Theoretische Informatik I §4: 2 Rückblick: Automaten & Formale Sprachen

Mathematische Methodik

• Methodik des Problemlösens

– Klärung der Voraussetzungen

– Lösungsweg konkretisieren: Einzelschritte und Begründungen

– Ergebnis kurz und prägnant zusammenfassen

• Viele Arten von Beweisen

– Deduktive Beweise: Logische Beweisschritte von Annahme zur Konklusion

ggf. Definitionen auflösen, Mengenäquivalenz punktweise zeigen

– Widerlegungsbeweise: Widerspruch, Gegenbeispiel, Diagonalisierung

auch genutzt für indirekte Beweisführung

– Induktionsbeweise: Zahlen-, vollständige, strukturelle, gegenseitige Induktion

Präzise Argumente sind essentiell in der Informatik



Theoretische Informatik I §4: 3 Rückblick: Automaten & Formale Sprachen

Reguläre Sprachen

• Endliche Automaten
– Endliche Menge von Zuständen und Eingabesymbolen

– Verarbeitung von Eingabesymbolen ändert internen Zustand

– Erkannte Sprache: Abarbeitung endet in akzeptierendem Zustand

– Varianten: Deterministisch, nichtdeterministisch, mit ε-Übergängen

– Umwandlung in deterministische Variante über Teilmengenkonstruktion

• Reguläre Ausdrücke
– Algebraische Notation für Sprachen: ε, ∅, Symbole von Σ, +, ◦, ∗

– Umwandelbar in ε-NEAs (iterative Konstruktion)

– DEAs umwandelbar in reguläre Ausdrücke für Verarbeitungspfade

oder durch Zustandselemination im RA Automaten

• Grammatiken
– Beschreibung des Aufbaus von Sprachen durch Produktionsregeln

– Erzeugte Sprache: schrittweise Ableitung endet in Terminalworten

– Typ-3 (rechtsslineare) Grammatiken sind äquivalent zu ε-NEAs

Direkte Umwandlung zwischen Produktionen und Überführungsfunktion



Theoretische Informatik I §4: 4 Rückblick: Automaten & Formale Sprachen

Eigenschaften regulärer Sprachen

• Abschlußeigenschaften

– Operationen ∪, ∩, , -, R, ◦, ∗, h, h
−1 erhalten Regularität von Sprachen

– Verwendbar zum Nachweis von Regularität oder zur Widerlegung

• Automatische Prüfungen

– Man kann testen ob eine reguläre Sprache leer ist

– Man kann testen ob ein Wort zu einer regulären Sprache gehört

– Man kann testen ob zwei reguläre Sprachen gleich sind

• Minimierung von Automaten

– Ein Automat kann minimiert werden indem man äquivalente Zustände

zusammenlegt und unerreichbare Zustände entfernt

• Pumping Lemma

– Wiederholt man einen bestimmten Teil ausreichend großer Worte einer

regulären Sprache beliebig oft, so erhält man immer ein Wort der Sprache

– Verwendbar zur Widerlegung von Regularität



Theoretische Informatik I §4: 5 Rückblick: Automaten & Formale Sprachen

Kontextfreie Sprachen

Kompliziertere Struktur als reguläre Sprachen

• Kontextfreie Grammatiken

– Produktionsregeln ersetzen einzelne Variablen durch beliebige Worte

– Ableitungsbäume beschreiben Struktur von Terminalworten (Compiler!)

– Ableitungsbäume entsprechen Links- (oder Rechts-)ableitungen

– Programmiersprachen brauchen eindeutig bestimmbare Ableitungsbäume

• Pushdown-Automaten

– Nichtdeterministischer endlicher Automat mit Stack und ε-Übergängen

– Erkennung von Worten durch Endzustand oder leeren Stack

– Analyse durch Betrachtung von Konfigurationsübergängen

– Nichtdeterministische PDAs äquivalent zu kontextfreien Grammatiken

· Umwandlung von Konfigurationsübergängen in Regeln und umgekehrt

– Deterministische PDAs weniger mächtig (nur eindeutige Typ-2 Sprachen)



Theoretische Informatik I §4: 6 Rückblick: Automaten & Formale Sprachen

Eigenschaften kontextfreier Sprachen

• Abschlußeigenschaften

– Operationen ∪, R, ◦, ∗, σ, h
−1 erhalten Kontextfreiheit von Sprachen

– Keine Abgeschlossenheit unter ∩, , -

• Automatische Prüfungen

– Man kann testen ob eine kontextfreie Sprache leer ist

– Man kann testen ob ein Wort zu einer kontextfreien Sprache gehört

– Man kann nicht testen ob zwei kontextfreie Sprachen gleich sind

Viele wichtige Fragen sind nicht automatisch prüfbar

• Pumping Lemma

– Wiederholt man bestimmte Teile ausreichend großer Worte einer kontext-

freien Sprache beliebig oft, so erhält man immer ein Wort der Sprache

– Viele einfache Sprachen sind nicht kontextfrei



Theoretische Informatik I §4: 7 Rückblick: Automaten & Formale Sprachen

Theoretische Informatik I im Rückblick

FRAGEN ?


