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When elementary quantum systems, such as polarized
photons, are used to transmit digital information,
the uncertainty principle gives rise to novel cryp-
tographic phenomena unachieveable with traditional
transmission media, e.g. a communications channel on
which it is impossible in principle to eavesdrop
without a high probability of disturbing the trans-
mission in such a way as to be detected. Such a
quantum channel can be used in conjunction with or-
dinary insecure classical channels to distribute
random key information between two users with the
assurance that it remains unknown to anyone else,
even when the users share no secret information ini-
tially. We also present a protocol for coin-tossing
by exchange of quantum messages, which is secure
against traditional kinds of cheating, even by an
opponent with unlimited computing power, but ironi-
cally can be subverted by use of a still subtler
quantum phenomemon, the Einstein-Podolsky-Rosen par-
adox.

I. Introduction

Conventional cryptosystems such as ENIGMA,
DES, or even RSA, are based on a mixture of guess-
work ané mathematics. Information theory shows that
traditional secret-key cryptosystems cannot be to-
tally secure unless the key, used once only, is at
least as long as the cleartext. On the other hang,
the theory of computational complexity is not yet
well enough understood to prove the computational
security of public-key cryptosystems,

In this paper we use a radically different
foundation for cryptography, viz. the uncertainty
principle of guantum physics. In conventional in-
formation theory and cryptography, it is taken for
granted that digital communications in princigle can
always be passively monitored or copied, even by
someone ignorant of their meaning. However, when
information is encocded in non-orthogonal gQuantum
states, such as single photons with polarization
Girections 0, 45, 90, and 135 degrees, one obtains a
commanications channel whose transmissions in prin-
ciple cannot be read or copiecd reliably by an eaves-
éropper ignorant of certain key information used in
forming the transmission. The eavesdropper cannot
even gain partial information about such a transmis-
sion without altering it a random ané uncontrollable
way likely to be detected by the channel's legiti-
mate users.

Quantum coding was first described in W},
along with two applications: making money that is in

» principle impossible to counterfeit, ané multiplex-
ing two or three messages in such a way that reading
one destroys the others. More recently [BB3w],
quantum coding has been used in conjunction with
pudlic key cryptographic techniques to yielé several
schemes for unforgeable subway tokens. Here we show
that guantum coding by itself achieves one of the
main advantages of public key cryptography by per-~
mitting secure distribution of rancom key informa-
tion between parties who share no secret information
initially, provided the parties have access, besides
the guantum channel, to an oréinary channel suscep-
tible to passive but not active eavesdropping. Even
in the presence of active eavesdropping, the two
parties can still distribute key securely if they
share some secret information initially, provided
the eavesdropping is not so active as to suppress
communications completely. We also present a proto-
col for coin tossing by exchange of quantum mes-
sages. Except where otherwise noted the protocols
are provably secure even against an opponent with
superior technology and unlimited compating power,
barring fundamental violations of accepted physical
laws.

Offsetting these advantages is the practical
déisadvantage that quantum transmissions are neces-
sarily very weak and cannot be amplified in transit.
Moreover, quantum cryptography does not provide di-
gital signatures, or applications such as certified
mail or the ability to settle disputes before a
Juége.

II. Essential Properties of Polarized Photons

Polarized light can be produceé by sending an
ordinary light beam through a polarizing apparatus
such as a Polarocid filter or calcite crystal; the
beam's polarization axis is determined by the orien-
tation of the polarizing apparatus in which the beam
originates, Generating single polarized photons is
also possible, in principle by picking them out of a
polarized beam, ané in practice by a variation of an
experiment [AGR] of Aspect, et. al,

Although polarization is a continuous varia-
ble, the uncertainty principle forbids measurements
on any single photon from revealihg more than one
bit about its polarization. For example, if a light
beam with polarization axis a is sent into a filter
orientec¢ at angle fB, the individual photons behave
dichotomously and probabilistically, being transmit-
ted with probability cos (a-B) and absorbed with the

complementary probability sinz(a-B). The photons
behave deterministically only when the two axes are
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parallel (certain transmission) or perpendicular
(certain absorbtion).

If the two axes are not perpendicular, so that
some photons are transmitted, one might hope to
learn additional information about a by measuring
the transmitted photons again with a polarizer ori-
ented at some third angle; but this is to no avail,
because the transmitted photons, in passing through
the B polarizer, emerge with exactly B polariza-
tion, having lost all memory of their previous po-
larization a.

Another way one might hope to learn more than
one bit from a single photon would be not to measure
it directly, but rather somehow amplify it into a
clone of identically polarized photons, then perform
measurements on these; but this hope is also vain,
because such cloning can be shown to be inconsistent
with the foundations of guantum mechanics {WZ].

Formally, quantum mechanics represents the
internal state of a quantum system (e.g. the polari-
zation of a photon) as a vector ¢ of unit length
in a linear space H over the field of complex num-
bers (Hilbert space). The inner product of two vec-
tors <¢fv>, is defined as 2j¢j‘¢», where * indi-
cates complex conjugation., Thé &iménsionality of
the Hilbert space depends on the system, being larg-
er (or even infinite) for more complicated systems.
Each physical measurement M that might be performed
on the system corresponés to a resolution of its
Hilbert space into orthogonal subspaces, one for
each possible outcome of the measurement. The num-
ber of possible outcomes is thus limited to the
dimensionality & of the Hilbert space, the most
complete measurements being those that resolve the
Hilbert space into & 1-dimensional subspaces.

Let Mk represent the projection operator onto
the k'th subspace of measurement M, so that the
identity operator on H can be represented as a sum
of projections: I = My+M,+.... When a system in
state y is subjected to measurement M, its behavior
is in general probabilistic: ogutcome Kk occurs with
a probability equal to le¢| , the square of the
length of the state vector's projection into sub-
space M. After the measurement, the system is left
in a new state My/IM 1, which is the normalized
unit vector in the direction of the olé state
vector's projection into subspace My. The measure-
ment thus has a deterministic outcome, and leaves
the state vector unmodified, only in the exceptional
case that the initial state vector happens to lie
entirely in one of the orthogonal subspaces charac-
terizing the measurement.

The Hilbert space for a single polarized pho-
ton is 2-dimensional; thus the state of a photon may
be completely described as a linear tombination of,
for example, the two unit vectors ry = (1,0) and
ry = (0,1), representing respectively horizontal and
vertical polarization. 1In particular, a photon po-
larized at angle a to the horizontal is described
by the state vector (cosa, sina). When subjected
to a measurement of vertical-vs.-horizontal polari-
zation, such a photon in effect chooses to become
horizontal with probability cos®a and vertical with
probability sin‘a. The two orthogonal vectors ry
ané r, thus a exemplify the resolution of a 2-
cimensional Hilbert space into 2 orthogonal 1-

dimensional subspaces; henceforth ry and ry will be
said to comprise the 'rectilinear’ basis for the
Hilbert space.

An alternative basis for the same Hilbert
space is provided by the two ‘éiagonal' basis vec-
tors d1 = (0.707,0.707), representing a 45-degree
photon, and d2 = (0.707,-0.707), representing a
135-degree photon. Two bases {(e.g. rectilinear ané
diagonal) are said to be ‘conjugate' [W], if each
vector of one basis has equal-length projections
onto all vectors of the other basis: this means that
a system prepared in a specific state of one basis
will behave entirely randomly, ané lose all its
stored information, when subjected to a measurement
corresponding to the other basis. Owing to the com-
plex nature of its coefficients, the two-dimensional
Hilbert space also admits a third basis conjugate to
both the rectilinear ang diagonal bases, comprising
the two so-called ‘circular’ polarizations
€y = (0.707,0.7071) ané €, = (0.7074,0.707); but
the rectilinear and éiagonal bases are all that will
be needed for the cryptographic applications in this
paper.

The Hilbert space for a compound system is
constructed by taking the tensor procduct of the Hil-~
bert spaces of its components; thus the state of a
pair of photons is characterized by a unit vector in
the 4-dimensional Hilbert space spanned by the or-
thogonal basis vectors riry, ryry, rory, ané ryra.
This formalism entails that the state of a compound
system is not generally expressible as the cartesian
product of the states of its parts: e.g. the
Einstein-Podolsky-Rosen state of two photons,
0.7071(r1r2—r2r1), to be discussed later, is not
equivalent to any product of one-photon states.

III. Quantum Public Key Distribution

In tracitional public-key cryptography, trap-
door functions are used to conceal the meaning of
messages betvween two users from a passive eavesCrop-
per, depite the lack of any initial shared secret
information between the two users. In guantum puab-
lic key céistribution, the quantum channel is not
used directly to send meaningful messages, but is
rather used to transmit a supply of random bits be-
tween two users who share no secret information ini-
tially, in such a way that the users, by subsequent
consultation over an ordinary non-guantum channel
subject to passive eavescropping, can tell with high
probability whether the original guantum transmis-
sion has been disturbed in transit, as it would be
by an eavesdropper (it is the quantum channel's pe-
culiar virtue to compel eavesdropping to be active).
If the transmission has not been disturbed, they
agree to use these shared secret bits in the well-
known way as a one-time pad to conceal the meaning
of subsequent meaningful communications, or for oth-
er cryptographic applications (e.g. authentication
tags) requiring shared secret random information.

If transmission has been disturbed, they discaré it
and try again, deferring any meaningful communica-
tions until they have succeedeé in transmitting
enough random bits through the guantum channel to
serve as a one-time pad.
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In more detail one user ('Alice') chooses a
random bit string and a random seguence of polariza-
tion bases (rectilinear or diagonal). She then
sends the other user (Bob) a train of photons, each
representing one bit of the string in the basis cho-
sen for that bit position, a horizontal or 45-degree
photon standing for a binary zero and a vertical or
135-cegree photon standing for a binary 1. As Bob
receives the photons he decides, randomly for each
photon and independently of Alice, whether to meas-
ure the photon's rectilinear polarization or its
diagonal polarization, and interprets the result of
the measurement as a binary zero or one. As ex-
plained in the pPrevious section a random answer is
procduced and all information lost when one attempts
to measure the rectilinear polarization of a diago-
nal photon, or vice versa. Thus Bob obtains mean-
ingful data from only half the photons he detects—-
those for which he guessed the correct polarization
basis. Bob's information is further degraded by the
fact that, realistically, some of the photons would
be lost in transit or woulg fail to be counted by
Bob's imperfectly-efficient detectors.

Subseqguent steps of the protocol take place
over an ordinary public communications channel, as-
sumed to be susceptible to eavesdropping but not to
the injection or alteration of messages. Bob and
Alice first determine, by public exchange of mes-
sages, which photons were successfully received and
of these which were received with the correct basis.
If the quantum transmission has been undisturbed,
Alice and Bob should agree on the bits encoded by
these photons, even this data has never been dis—
cussed over the public channel. Each of these pho-
tons, in other words, bresumably carries one bit of
random information (e.g. whether a rectilinear pho-
ton was vertical or horizontal) known to Alice and
Bob but to no one else.

Because of the random mix of rectilinear and

diagonal photons in the guantum transmission,
eavesdropping carries the risk of altering the
transmission in such a way as to produce disagree-~
ment between Bob and Alice on some of the bits on
which they think they shoulé agree. Specifically,
it can be shown that no measurement on a photon in
transit, by -an eavesdropper who is informed of the
photon's original basis only after he has performed
his measurement, can yield more than 1/2 expectea
bits of information about the key bit encoded by
that photon; and that any such measurement yielding
b bits of expected information (b £ 1/2) must induce
a disagreement with probability at least b/2 if
the measured photon, or an attempted forgery of it,
is later re-measured in its original basis. (This
optimum tradeoff occurs, for example, when the ea-
vesdropper measures and retransmits all intercepted
photons in the rectilinear basis, thereby learning
the correct polarizations of half the photons and
inducing disagreements in 1/4 of those that are lat-
er re-measured in the original basis.)

any

Alice and Bob can therefore test for eaves-
dropping by publicly comparing some of the bits on
which they think they should agree, though of course
this sacrifices the secrecy of these bits. The bit
positions used in this comparison should be a rancom
subset (say one third) of the correctly received
bits, so that eavescropping on more than a few pho-
tons is unlikely to escape detection. If al) the
comparisons agree, Alice and Bob can conclude that
the quantum transmission has been free of signifi-
cant eavescropping, and those of the remaining bits
that were sent and received with the same basis also
agree, and can safely be used as a one time pacé for
subsequent secure communications over the public
channel. When this one-time pad is used up, the
protocol is repeated to send a new body of random
information over the quantum channel.

The following example illustrates the above proto-
col.

QUANTUM TRANSMISSION

Alice's random bits............................... )
Random sending bases.............................. D
Photons Alice senés............................... 7

Random receiving bases...,.......
Bits as received by 3ob
PUBLIC DISCUSSION
Bob reports bases of received bits................ R
Alice says which bases were correct...............
Presumably shared information (if no eavesdrop)
Bob reveals some key bits at random
Alice confirms them
OUTCOME
Remaining shared secret bits

R N 1

B

ftereccanasvaa

T

O+ o

1 o] 1 1 o o] 1 0 1 1 [ 0 1
D R R R R R D D R D D D R
IR S SR R VY I L VRN R
D R R D D R D R D D D D R
1 1 o] 0 0 1 1 1 0 1
D R D D R R D o) D R
OK OK OK oK OK OK
1 1 0 1 [¢] 1

1 0

OX OK

The need for the public {(non-quantum) channel
in this scheme to be immune to active eaveséropping
can be relaxed if the Alice and Bob have agreed be-
forehand on a small secret key, which they use to
create Wegman-Carter authentication tags [WC] for
their messages over the public channel. In more
detail the Wegman-Carter multiple-message authenti-
cation scheme uses a small random key to produce a
message-dependent 'tag' (rather like a check sum)
for an arbitrary large message, in such a way that

an eavesdropper ignorant of the key has only a small
probability of being able to gencrate any other va-
1id message-tag pairs. The tag thus provides evi-
dence that the message is legitimate, and was not
generated or altered by someone ignorant of the key.
(Key bits are gradually used up in the Wegman-Carter
scheme, and cannot be reused without compromising
the system's provable security; however, in the
pPresent application, these key bits can be replaced
by fresh random bits successfully transmitted
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through the quantum channel.) The eavesdropper can

- still prevent communication by suppressing messages
in the public channel, as of course he can by sup-
pressing or excessively perturbing the photons sent
through the quantum channel. However, in either
case, Alice and Bob will conclude with high proba-
bility that their secret communications are being
suppressed, and will not be fooled into thinking
their communications are secure when in fact they're
not.

IV. Quantum Coin Tossing

'Coin Flipping by Telephone' was first dis-
cussed by Blum {Bl}. The problem is for two dis-
trustful parties, communicating at a distance with-
out the help of a third party, to come to agree on a
winner and a loser in such a way that each party has
exactly 50 per cent chance of winning. Any attempt
by either party to bias the outcome should be de-
tected by the other party as cheating. Previous
protocols for this problem are based on unproved
assumptions in computational complexity theory,
which makes them vulnerable to a breakthrough in
algorithm design.

By contrast, we present here a scheme involv-
ing classical and quantum messages which is secure
against traditional kinds of cheating, even by an
opponent with unlimited computing power. Ironical-
ly, it can be subverted by a still subtler guantum
phenomenon, the so-called Einstein-Podolsky-Rosen
effect. This threat is merely theoretical, because
it requires perfect efficiency of storage and detec-
tion of photons, which though not impossible in
principle is far beyond the capabilities of current

technology. The honestly-followed protocol, on the
other hand, could be realized with current technolo-
gy.

1. Alice chooses randomly one basis (say rectili-
near}) and a sequence of random bits {one thousand
should be sufficient). She then encodes her bits as
a sequence of photons in this same basis, using the
same cocding scheme as before. She senés the result-
ing train of polarized photons to Bob.

2. Bob chooses, independently and randomly for each
photon, a sequence of reading bases. He reads the
photons accordingly, recording the results in two
tables, one of rectilinearly received photons and
one of diagonally received photons. Because of
losses in his detectors and of the transmission
channel, some of the photons may not be received at
all, resulting in holes in his tables. At this
time, Bob makes his guess as to which basis Alice
used, and announces it to Alice. He wins if he
guessed correctly, loses otherwise.

3. Alice reports to Bob whether he won, by telling
him which basis she had actually used. She certif-
ies this information by sending Bob, over a classi-
cal channel, her entire original bit seguence used
in step 1.

4. Bob verifies that no cheating has occurred by
comparing Alice's sequence with both his tables.
There should be perfect agreement with the table
corresponding to Alice's basis and no correlation
with the other table. In our example, Bob can be
confident that Alice's original basis was indeed
rectilinear as claimed.

Illustrating the protocol by a specific example,

Alice’s Dit SEring....uveiieeciennsennenneneananan 1

Alice's ranGom DaSiS....c.uveveeseenrennnsencnnnnnse
Photons Alice Sents.......u.iiieeeneennnennnnnnnnn I
BOb'S Xandom DaSeS.....ccvvrenccennrnnernnnnneannn R
Bob's rectilinear table..... L
Bob's Giagonal table..v.veeeeeniereeeesvonannnnnan
BOD S GUESS..iiuiitieenncnenonnnucnenansaosnananns

AliCe'S YOPlY..iuueeoneeoeeoseooenonoenaennoannnnas
Alice sends her original bit string to certify.... "y
Bob's rectilinear table.......vouevvueuannn T |
Bob's diagonal table. . ..vieniveeeenenninnionnneenn

1 [ (4] 1 1 1 o] 1 0 1 1 o] 0
Rectilinear
l el T ot o1 e e
D D R R D R " R D R R D D R
1 0 ]
1 1 o]
‘Rectilinear’
‘You win'
1 0 o] 1 1 1 o] 1 0 1 1 o] 0’
o] [}
1 1 o]

In order to cheat, Bob would need to guess

Alice's basis with probability greater than 1/2. -

This amounts to distingushing a train of photons
randomly polarized in one basis from a train random-
ly polarized in another basis. However, it can be
shown that any measuring apparatus capable of making
this distinction can also be used, in conjunction
with the Einstein-Podolsky-Rosen effect described
below, to transmit useful information faster than
the speed of light, in violation of well-established
physical laws,

Alice coulé attempt cheating either at step 1
or step 3. Let us first assume that she follows
step 1 honestly and finds herself losing at the end
of step 2, because Bob made he correct guess, here
rectliniear. 1In order to pretend she has won, she

would need to convince Bob that her photons were
diagonally polarized, which she can only do by prod-
ucing a sequence of bits in perfect agreement with
Bob's diagonal table. This she cannot do relianbly
because this table is the result of probabilistic
behavior of the photons after the left her hands.
Suppose she goes ahead anyway and sends Bob a new
‘original’ sequence, different from the one that she
used in step 1, in hopes that it will by luck agree
perfectly with Bob's diaognal table. This attempt
to cheat requires Alice to be not only lucky but
daring, because in the vast majority of cases, the
gamble would fail and would be detected as cheating.
By contrast, in traditional coin-tossing schemes,
analogous attempts to seize a lucky victory from the
jaws of defeat, though unlikely to succeeed, are
unaccompanied by any danger of detection.
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It is easy to see that things are even worse
for Alice if she attempts to cheat in step 1, by
sending a mixture of rectilinear and diagonal pho-
tons, or photons which are polarized neither rectil~
inearly or diagonally. 1In this case she will not be
able to agree with either of Bob's tables in step 3,
since both tables will record the results of proba-
bilistic behavior not under her control.

In order to say how Alice can cheat using
quantum mechanics it is necessary to describe the
Einstein-Podolsky-Rosen (EPR) effect [Bo,AGR], often
called a paradox because it contradicts the common -
sense notion that for two individually random events
happening at distance from one another to be corre- "
lated, some physical influence must have propagated .
from the earlier event to the later, or else from
some common random cause to both events.

The EPR effect occurs when certain types of
atom or molecule decay with the emission of two pho-
tons, and consists of the fact that the two photons
are always found to have opposite polarization, re-
gardless of the basis used to observe them, provided
both are opserved in the same basis. For example,
if both photons are measured rectilinearly, it will
always be found that one is horizontal and the other
vertical, though which is horizontal will vary ran-
domly from one decay to the next. If both photons
are measured diagonally, one will always be 135-
degree and the other 45-degree. A moment's reflec-
tion will show that this behavior cannot be ex-
plaineé by assuming the decay produces a distribu-
tion over a of oppositely polarized (e and a+90)

. photons, since, in that case, if such a pair of pho-
tons were measured in an intermediate basis {say
a+45), both would behave probabilistically so as to
sometimes come out with the same polarization.

Probably the simplest, but paradoxical-
sounding, verbal explanation of the EPR effect is to
say that the two photons are produced in an initial
state of undefined polarization; and when one of
them is measured, the measuring apparatus forces it
to choose a polarization (choosing rancomly and
equiprobably between the two characteristic direc-
tions offered by the apparatus) while simultaneously
forcing the other unmeasured photon, no matter how
far away, to choose the opposite polarization. This
implausible-sounding explanation is supported by
formal quantum mechanics, which represents the state
of a pair of photons as a vector in a 4-dimensional
Hilbert space obtained by taking the tensor product
of two 2-dimensional Hilbert spaces. The EPR state
produced by the decay is described by the vector
0.7071(r1r2 - r2r1), and the EPR effect is explained
by the fact that this vector has anticorrelated pro-
jections into the 2-dimensional Hilbert spaces of
the two photons no matter what basis is usegd to ex-
press the tensor product (e.g. the same state vector
is demonstrably equal to 0.7071(d1d2 - d2d1), and
to 0.7071(c1c2 - czc1)).

In order to cheat, Alice produces a number of
EPR photon-pairs instead of individual random pho~-
tons in step 1. 1In each case she sends Bob one mem-
ber of the pair and stores the other herself, per-
haps between perfectly reflecting mirrors. When Bob
L}

makes his guess (e.qg. rectilinear) she then measures
all her stored photons in the opposite (diagonal)
basis, thereby obtaining results perfectly correlat-
ed with his diagonal table but uncorrelated with his
rectilinear table. She then announces these re-
sults, pretending them to be the random bits she was
supposed to have encoded in the photons in step 1,
and thereby forces a win from which Bob cannot es-~
cape even by delaying his measurements until after
his guess. This cheat requires that Alice be able
to store the twin photons for a considerable time
and then measure them with high detection efficien~
Ccy, and thus would be possible only in principle,
not in practice. Any photons lost by Alice during
storage or measurement woulgd result in holes in her
pretended bit Sequence, which she would have to fill
by guessing, and these guesses would risk detection
by Bob if they failed to agree with his tables.
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