Inferenzmethoden

Einheit 3

Verdichtung des logischen Schließens II Matrix-Beweise

- 1. Verdichtung von Tableauxbeweisen
- 2. Der Matrixkalkül
- 3. Zweidimensionale Repräsentation

Matrix-Kalküle: Maschinennahe Beweissuche

• Bestimme relevante Beweisinformation

- Welche komplementären Teilformeln schließen einen Beweiszweig ab?
- Welche Terme sind für γ -Variablen einzusetzen?
- In welcher Reihenfolge sind Beweisregeln anzuwenden?

Information reicht, um Tableauxbeweis ohne Suche zu konstruieren

Matrix-Kalküle: Maschinennahe Beweissuche

• Bestimme relevante Beweisinformation

- Welche komplementären Teilformeln schließen einen Beweiszweig ab?
- Welche Terme sind für γ -Variablen einzusetzen?
- In welcher Reihenfolge sind Beweisregeln anzuwenden?
 Information reicht, um Tableauxbeweis ohne Suche zu konstruieren

• Kompakte Beweisrepräsentation

- Nur atomare Teilformeln (Literale) sind beweisrelevant
- Beweiszweige repräsentierbar durch "Pfade" im Formelbaum
- Beweisführung im Formelbaum vermeidet Erzeugung von Formelkopien

Matrix-Kalküle: Maschinennahe Beweissuche

• Bestimme relevante Beweisinformation

- Welche komplementären Teilformeln schließen einen Beweiszweig ab?
- Welche Terme sind für γ -Variablen einzusetzen?
- In welcher Reihenfolge sind Beweisregeln anzuwenden? Information reicht, um Tableauxbeweis ohne Suche zu konstruieren

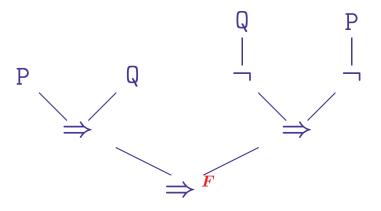
• Kompakte Beweisrepräsentation

- Nur atomare Teilformeln (Literale) sind beweisrelevant
- Beweiszweige repräsentierbar durch "Pfade" im Formelbaum
- Beweisführung im Formelbaum vermeidet Erzeugung von Formelkopien

• Zielorientiertes Vorgehen

- Verfolge Konnektionen bei Suche nach komplementären Literalen
- Gezielte Instantiierung von Quantoren durch Unifikation
- Reduktionsordnung bestimmt durch Baumordnung und Substitution

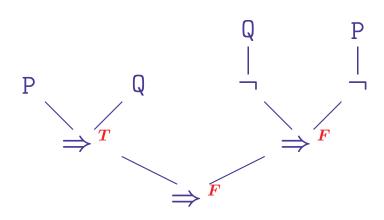
$$((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^{F}$$

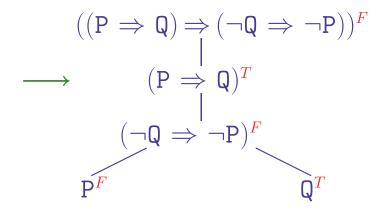


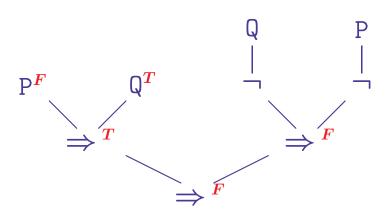
$$\longrightarrow ((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^{F}$$

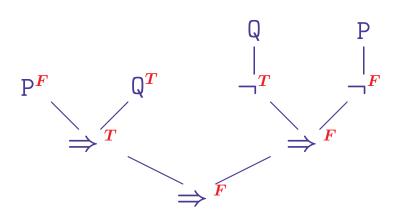
$$(P \Rightarrow Q)^{T}$$

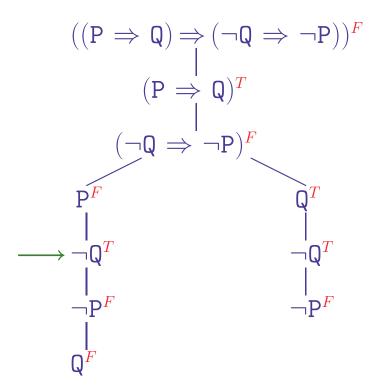
$$(\neg Q \Rightarrow \neg P)^{F}$$

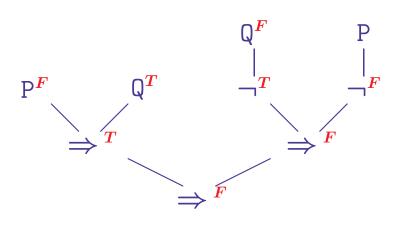


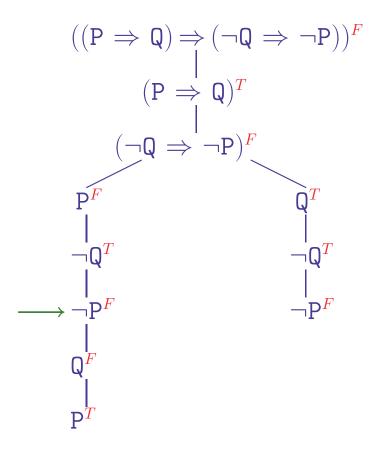


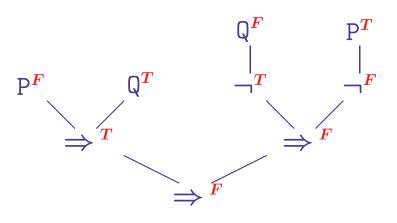












Tableauxbeweis

$$((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^{F}$$

$$(P \Rightarrow Q)^{T}$$

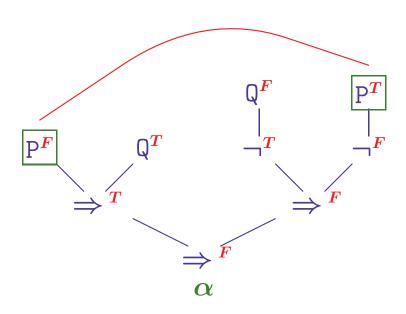
$$(\neg Q \Rightarrow \neg P)^{F}$$

$$\neg Q^{T}$$

$$\neg P^{F}$$

$$\neg P^{F}$$

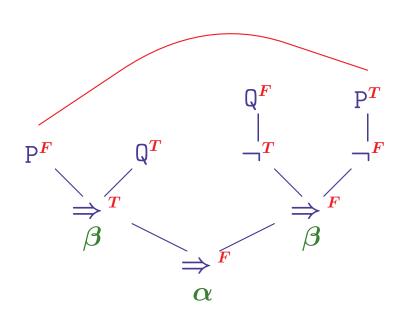
$$\neg P^{F}$$



Komplementäre Literale in α -Beziehung

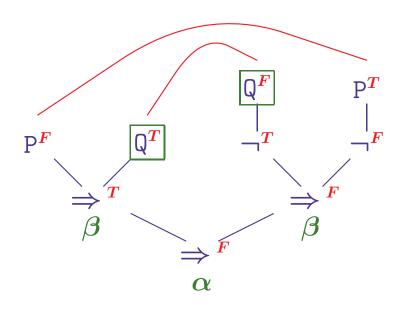
Zweig geschlossen

Tableauxbeweis



Zweiter Beweiszweig zu betrachten

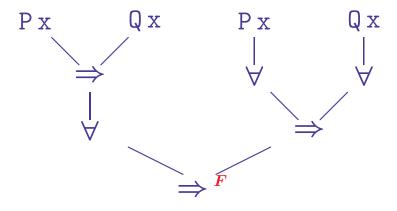
Tableauxbeweis



Komplementäre Literale in α -Beziehung

Zweig geschlossen

$$(\forall x Px \Rightarrow Qx) \Rightarrow ((\forall x Px) \Rightarrow (\forall x Qx))^{F}$$

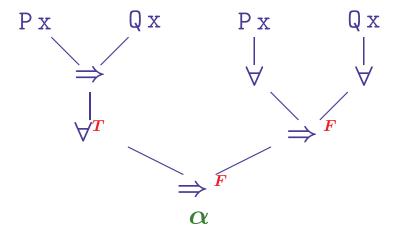


Inferenzmethoden §3 ______ 3 _____ Verdichtung des logischen Schließens IIMatrix-Beweise

$$\alpha \longrightarrow (\forall x P x \Rightarrow Q x) \Rightarrow ((\forall x P x) \Rightarrow (\forall x Q x))^{F}$$

$$(\forall x P x \Rightarrow Q x)^{T}$$

$$(\forall x P x) \Rightarrow (\forall x Q x)^{F}$$



$$(\forall x P x \Rightarrow Q x) \Rightarrow ((\forall x P x) \Rightarrow (\forall x Q x))^{F}$$

$$(\forall x P x \Rightarrow Q x)^{T}$$

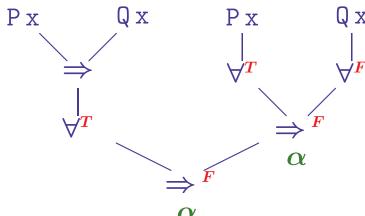
$$(\forall x P x) \Rightarrow (\forall x Q x)^{F}$$

$$(\forall x P x)^{T}$$

$$(\forall x P x)^{T}$$

$$(\forall x Q x)^{F}$$

$$F$$



$$(\forall x P x \Rightarrow Q x) \Rightarrow ((\forall x P x) \Rightarrow (\forall x Q x))^{F}$$

$$(\forall x P x \Rightarrow Q x)^{T}$$

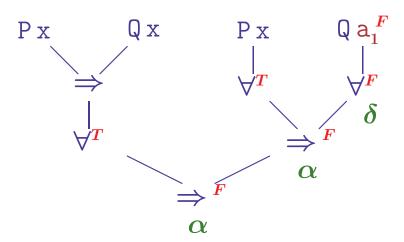
$$(\forall x P x) \Rightarrow (\forall x Q x)^{F}$$

$$(\forall x P x)^{T}$$

$$(\forall x Q x)^{F}$$

$$(\forall x Q x)^{F}$$

$$(\forall x Q x)^{F}$$



$$(\forall x P x \Rightarrow Q x) \Rightarrow ((\forall x P x) \Rightarrow (\forall x Q x))^{F}$$

$$(\forall x P x \Rightarrow Q x)^{T}$$

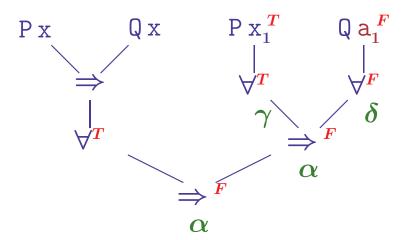
$$(\forall x P x) \Rightarrow (\forall x Q x)^{F}$$

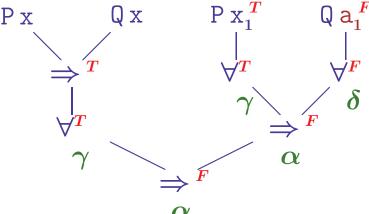
$$(\forall x P x)^{T}$$

$$(\forall x P x)^{F}$$

$$(\forall x Q x)^{F}$$

$$Q a^{F}$$





$$(\forall x P x \Rightarrow Q x) \Rightarrow ((\forall x P x) \Rightarrow (\forall x Q x))^{F}$$

$$(\forall x P x \Rightarrow Q x)^{T}$$

$$(\forall x P x) \Rightarrow (\forall x Q x)^{F}$$

$$(\forall x P x)^{T}$$

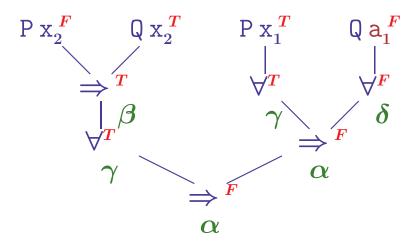
$$(\forall x Q x)^{F}$$

$$Qa^{F}$$

$$Pa^{T}$$

$$Pa^{T}$$

$$Qa^{T}$$



$$(\forall x P x \Rightarrow Q x) \Rightarrow ((\forall x P x) \Rightarrow (\forall x Q x))^{F}$$

$$(\forall x P x \Rightarrow Q x)^{T}$$

$$(\forall x P x) \Rightarrow (\forall x Q x)^{F}$$

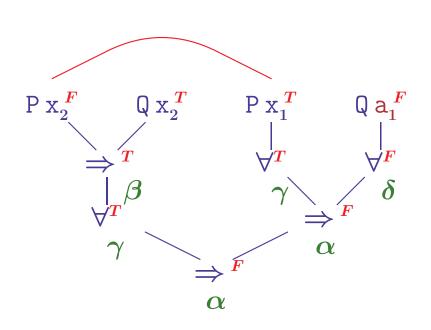
$$(\forall x Q x)^{F}$$

$$(\forall x Q x)^{F}$$

$$Q a^{F}$$

$$P a \Rightarrow Q a^{T}$$

$$(\forall x Q x)^{F}$$



 x_1 muß gleich x_2 sein

$$(\forall x P x \Rightarrow Q x) \Rightarrow ((\forall x P x) \Rightarrow (\forall x Q x))^{F}$$

$$(\forall x P x \Rightarrow Q x)^{T}$$

$$(\forall x P x) \Rightarrow (\forall x Q x)^{F}$$

$$(\forall x P x)^{T}$$

$$(\forall x Q x)^{F}$$

$$(\forall x Q x)^{F}$$

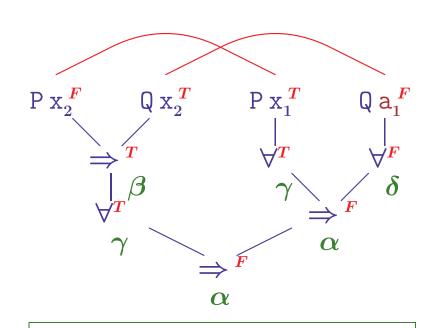
$$Pa^{T}$$

$$Pa^{T}$$

$$Pa \Rightarrow Qa^{T}$$

$$Pa^{F}$$

$$X$$



 x_1 muß gleich x_2 sein x_2 muß gleich a_1 sein Instantiiere $x_1 := x_2 := a_1$

$$(\forall x P x \Rightarrow Q x) \Rightarrow ((\forall x P x) \Rightarrow (\forall x Q x))^{F}$$

$$(\forall x P x \Rightarrow Q x)^{T}$$

$$(\forall x P x) \Rightarrow (\forall x Q x)^{F}$$

$$(\forall x P x)^{T}$$

$$(\forall x P x)^{F}$$

$$(\forall x Q x)^{F}$$

$$Q a^{F}$$

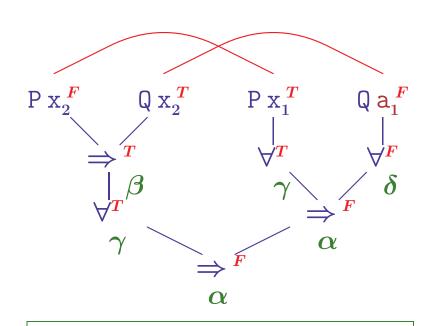
$$P a^{T}$$

$$P a \Rightarrow Q a^{T}$$

$$P a \Rightarrow Q a^{T}$$

$$X$$

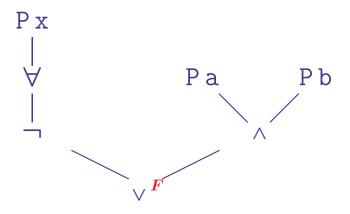
 $\forall x \ Qx \ muß \ vor \ den$ γ -Knoten zerlegt werden



 x_1 muß gleich x_2 sein x_2 muß gleich a_1 sein Instantiiere $x_1 := x_2 := a_1$

 a_1 muß vor x_1/x_2 freigegeben werden

$$\neg(\forall x P x) \lor (P a \land P b)^{F}$$



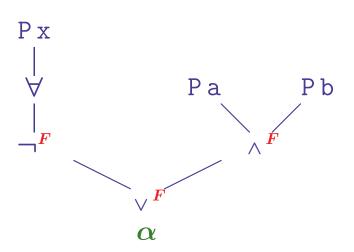
- Inferenzmethoden §3 ______ 4 _____ Verdichtung des logischen Schliessens IIMatrix-Beweise _

$$\alpha \longrightarrow \neg(\forall x P x) \lor (Pa \land Pb)^{F}$$

$$\neg(\forall x P x)^{F}$$

$$\neg(\forall x P x)^{F}$$

$$(Pa \land Pb)^{F}$$



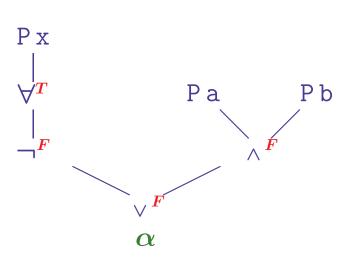
$$\alpha \longrightarrow \neg(\forall x P x) \lor (Pa \land Pb)^{F}$$

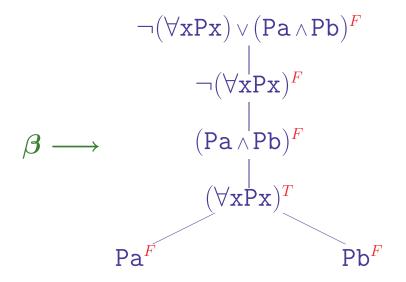
$$\neg(\forall x P x)^{F}$$

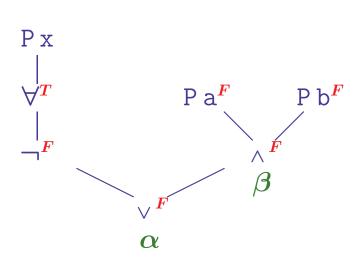
$$\neg(\forall x P x)^{F}$$

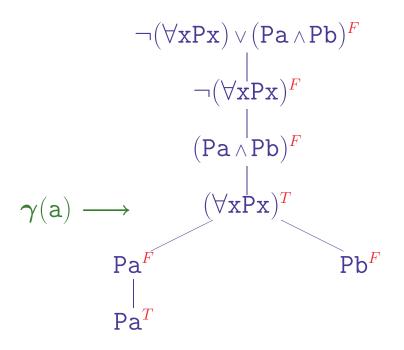
$$(Pa \land Pb)^{F}$$

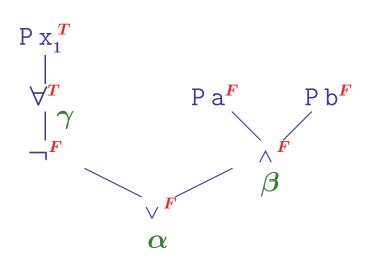
$$(\forall x P x)^{T}$$

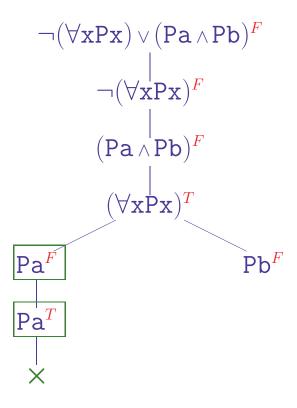


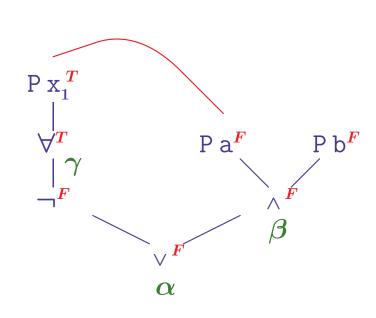




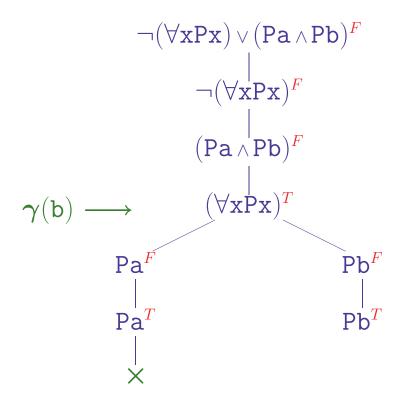


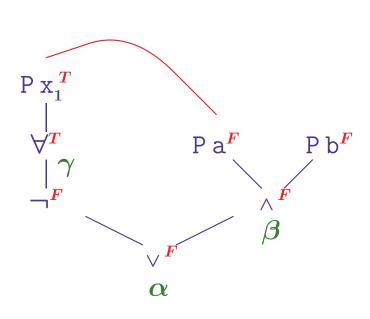


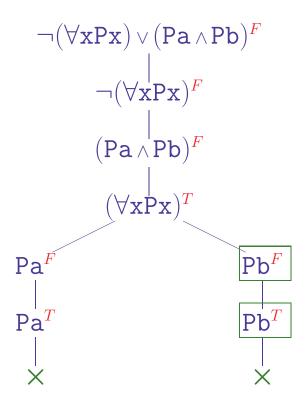


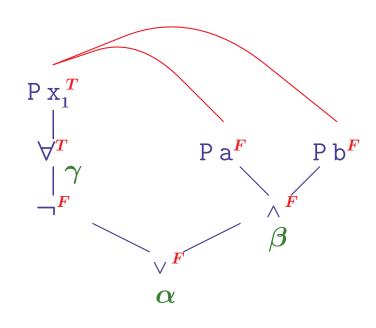


x₁ muß gleich a sein

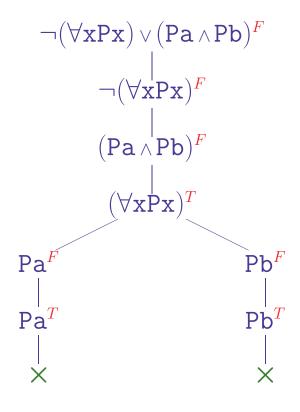


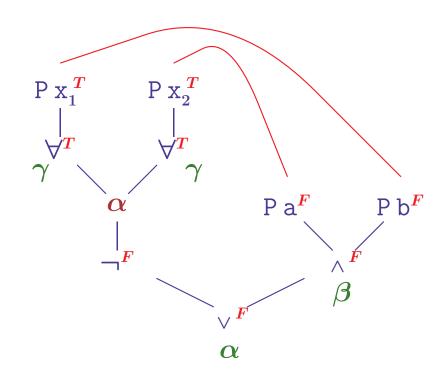






x₁ muß gleich a und gleich b sein





Zwei Instanzen derselben Formel

 γ -Formel hat Multiplizität 2 Instantiiere $x_1 := b, x_2 := a$

• Formelbaum enthält alle Teilformeln eines Beweises

- Es reicht, Knoten um Tableauxtypen und Polaritäten zu ergänzen
- Beide hängen nur vom Konnektiv und bisheriger Polarität ab

• Formelbaum enthält alle Teilformeln eines Beweises

- Es reicht, Knoten um Tableauxtypen und Polaritäten zu ergänzen
- Beide hängen nur vom Konnektiv und bisheriger Polarität ab

ullet Beweiszweige durch lpha-Knoten beschreibbar

- Nur β -Knoten erzeugen Verzweigungen
- Knoten mit α -Knoten als gemeinsamen Vorfahr gehören zum selben Zweig

• Formelbaum enthält alle Teilformeln eines Beweises

- Es reicht, Knoten um Tableauxtypen und Polaritäten zu ergänzen
- Beide hängen nur vom Konnektiv und bisheriger Polarität ab

ullet Beweiszweige durch lpha-Knoten beschreibbar

- Nur β -Knoten erzeugen Verzweigungen
- Knoten mit α -Knoten als gemeinsamen Vorfahr gehören zum selben Zweig

• Komplementaritätstests reichen aus

- Alle Zweige müssen komplementäre Literale enthalten
- Komplementarität kann durch Substitution erzeugt werden
- $-\gamma$ -Knoten dürfen dupliziert werden

• Formelbaum enthält alle Teilformeln eines Beweises

- Es reicht, Knoten um Tableauxtypen und Polaritäten zu ergänzen
- Beide hängen nur vom Konnektiv und bisheriger Polarität ab

• Beweiszweige durch α -Knoten beschreibbar

- Nur β -Knoten erzeugen Verzweigungen
- Knoten mit α -Knoten als gemeinsamen Vorfahr gehören zum selben Zweig

• Komplementaritätstests reichen aus

- Alle Zweige müssen komplementäre Literale enthalten
- Komplementarität kann durch Substitution erzeugt werden
- $-\gamma$ -Knoten dürfen dupliziert werden

• Substitutionen bestimmen Reduktionsordnung

- Tableauxbeweis muß Ordnung des Formelbaums berücksichtigen
- Tableauxbeweis muß Variablen in Termen, die für γ -Variablen eingesetzt werden, bereits freigelegt haben

Matrixkalküle präzisiert: Formelbaum

• (Annotierter) Formelbaum

- Syntaxbaum der Formel, in der jeder Knoten markiert ist mit
 - · **Position**: ein eindeutiger Name $a_0, a_1, ...,$ mit dem Knoten identifiziert
 - · Label: ein logisches Konnektiv oder atomare Formel
 - \cdot **Polarität**: T oder F
 - · **Typ**: α , β , γ , oder δ
- Knoten mit atomaren Formeln als Label heißen Atome (atomare Positionen)
- Die Baumordnung

 ✓ ist die partielle Ordnung der Knoten im Baum

Matrixkalküle präzisiert: Formelbaum

• (Annotierter) Formelbaum

- Syntaxbaum der Formel, in der jeder Knoten markiert ist mit
 - · **Position**: ein eindeutiger Name $a_0, a_1, ...,$ mit dem Knoten identifiziert
 - · Label: ein logisches Konnektiv oder atomare Formel
 - \cdot **Polarität**: T oder F
 - · **Typ**: α , β , γ , oder δ
- Knoten mit atomaren Formeln als Label heißen Atome (atomare Positionen)
- Die Baumordnung

 ✓ ist die partielle Ordnung der Knoten im Baum
- Multiplizität $\mu(a_i)$ eines γ -Knotens a_i
 - Anzahl der Kopien des Knotens im Baum ($\hat{}$ Instanzen des zugehörigen Quantors)

Matrixkalküle präzisiert: Formelbaum

• (Annotierter) Formelbaum

- Syntaxbaum der Formel, in der jeder Knoten markiert ist mit
 - · **Position**: ein eindeutiger Name $a_0, a_1, ...,$ mit dem Knoten identifiziert
 - · Label: ein logisches Konnektiv oder atomare Formel
 - \cdot **Polarität**: T oder F
 - · **Typ**: α , β , γ , oder δ
- Knoten mit atomaren Formeln als Label heißen Atome (atomare Positionen)
- Die Baumordnung

 ✓ ist die partielle Ordnung der Knoten im Baum

• Multiplizität $\mu(a_i)$ eines γ -Knotens a_i

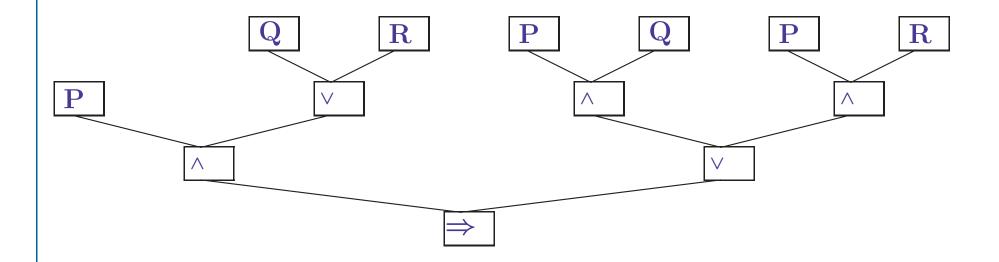
- Anzahl der Kopien des Knotens im Baum ($\hat{}$ Instanzen des zugehörigen Quantors)

• Systematische Zuordnung von Polarität und Typ

- Die Wurzel a_0 hat Polarität F
- Typ und Nachfolgerpolarität einer Position a_i werden tabellarisch bestimmt

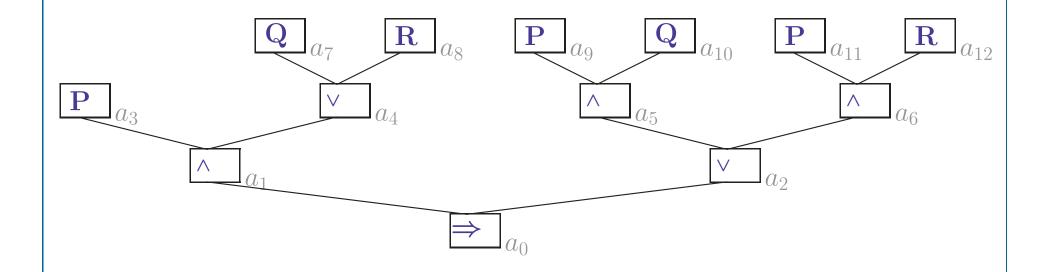
α	$(X \wedge Y)^T$	$(X \vee Y)^F$	$(X \Rightarrow Y)^{\mathbf{F}}$	$\neg X^T$	$\neg X^F$	β	$(X \wedge Y)^F$	$(X \vee Y)^T$	$(X \Rightarrow Y)^T$
α_1	X^T	X^F	X^T	X^F	X^T	β_1	X^F	X^T	X^F
$lpha_2$	Y^T	Y^F	Y^F	—	_	eta_2	Y^F	Y^T	Y^T
γ	$\forall x A^T$	$\exists x A^F$				δ	$\forall x A^F$	$\exists x A^T$	
$\gamma(a_i^j)$	$A[a_i^j/x]^{\mathbf{T}}$	$A[a_i^j/x]^F$				$\delta(a_i)$	$A[a_i/x]^F$	$A[a_i/x]^{T}$	

$$\overline{(P \wedge (Q ee R)) \Rightarrow ((P \wedge Q) ee (P \wedge R))}$$



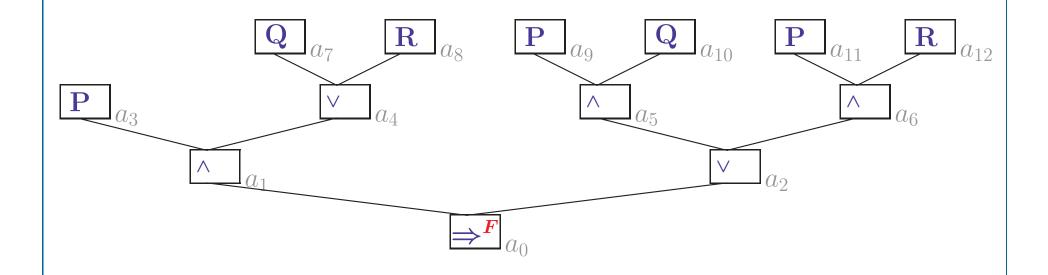
Parsen der Formel erzeugt Syntaxbaum der Formel

$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



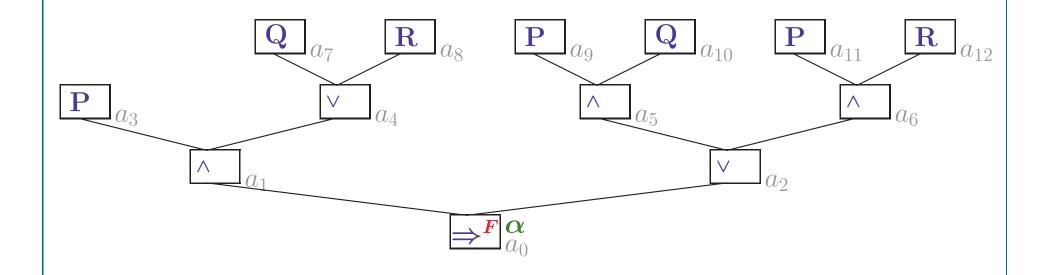
Ergänzung der Positionen

$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



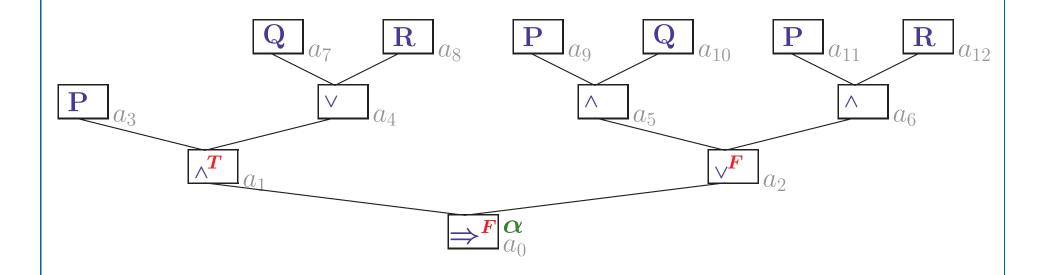
Polarität der Wurzel

$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



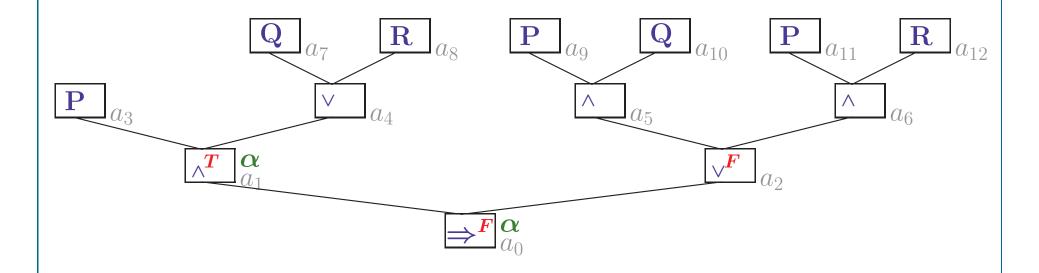
Typ der Wurzel

$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



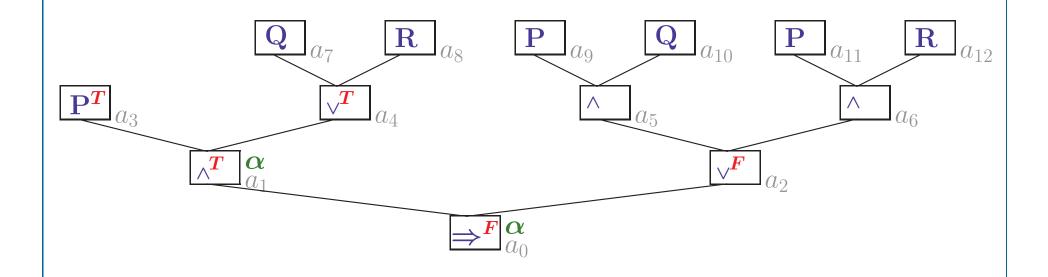
Polaritäten der Nachfolger

$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



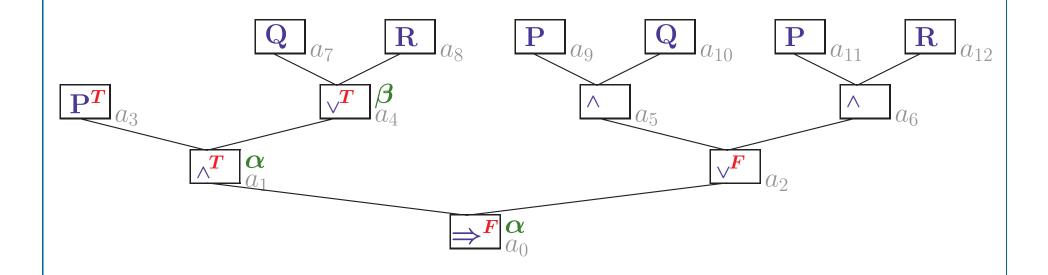
Typ des linken Nachfolgers

$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



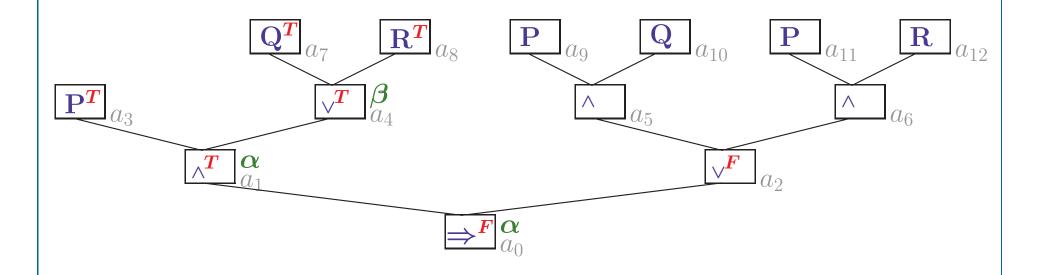
Polaritäten

$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$

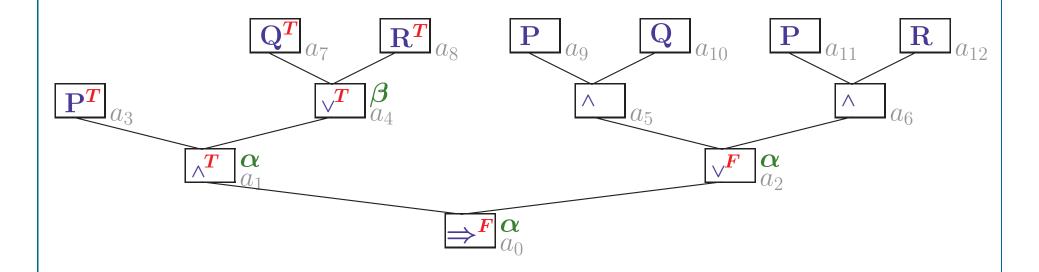


• • • • •

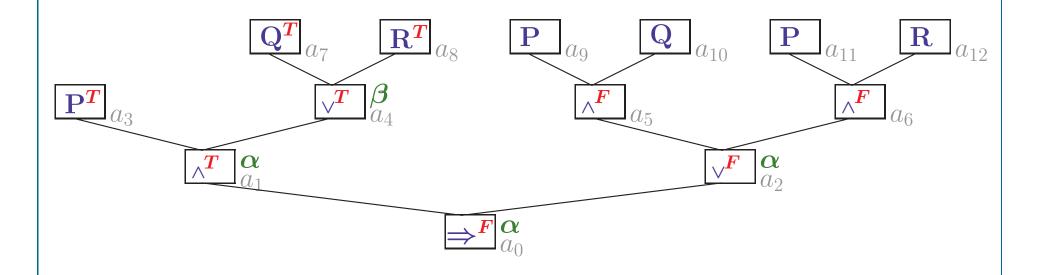
$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



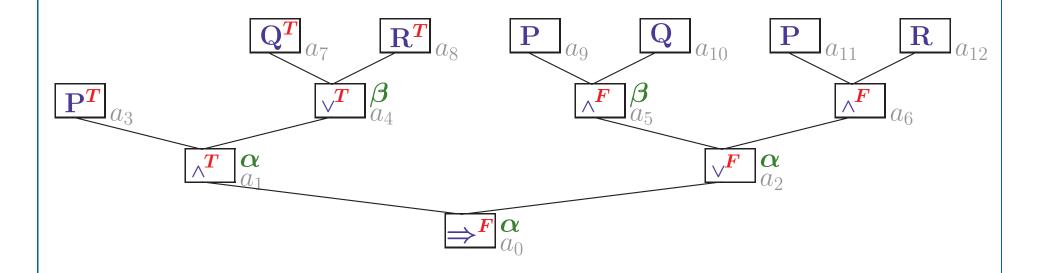
$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



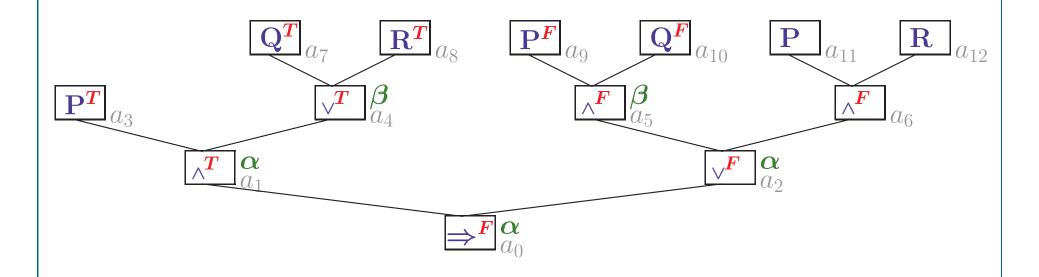
$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



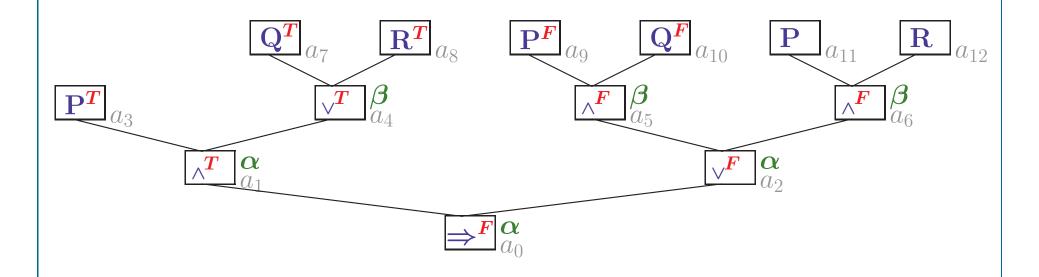
$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



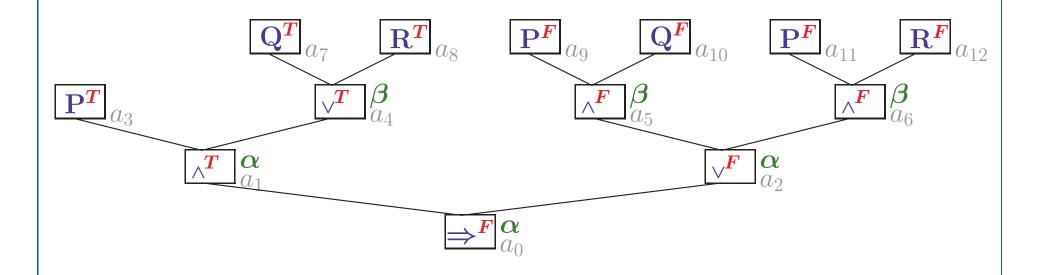
$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



$$(P \land (Q \lor R)) \Rightarrow ((P \land Q) \lor (P \land R))$$



FORMELBAUM MIT MULITPLIZITÄT

$$(\forall xSx) \land (\forall y \neg (Ty \Rightarrow Ry) \Rightarrow Py) \Rightarrow \neg (\exists z(Pz \Rightarrow Qz) \land (Tz \Rightarrow Rz)) \Rightarrow \neg \neg Pa \land Sa \land Sb$$

$$Ta_4^F_{Q_8} Ra_4^T_{Q_9} Ra_{13}^T_{Q_{13}} Ra_{13}^T_{Q_{13}} Ra_{13}^T_{Q_{19}} Ra_{13}^T_{Q_{20}}$$

$$\Rightarrow^F_{Q_1} \alpha_{15} \qquad \Rightarrow^F_{Q_1} \alpha_{15} \qquad \Rightarrow^F_{Q_2} \alpha_{15} \qquad \Rightarrow^F_{Q_2} \alpha_{15}^T_{Q_2} \qquad \Rightarrow^F_{Q_2} \alpha_{15}$$

- α/β -Beziehung zwischen atomaren Positionen
 - $-\boldsymbol{u} \sim_{\alpha} \boldsymbol{v}$: $u \neq v$ und größter gemeinsamer Vorfahr hat Typ α
 - $-\mathbf{u} \sim_{\beta} \mathbf{v}$: $u \neq v$ und größter gemeinsamer Vorfahr hat Typ β

• α/β -Beziehung zwischen atomaren Positionen

- $-\mathbf{u} \sim_{\alpha} \mathbf{v}$: $u \neq v$ und größter gemeinsamer Vorfahr hat Typ α
- $-u\sim_{\beta}v$: u≠v und größter gemeinsamer Vorfahr hat Typ β

Pfad

- (Maximale) Menge von Atomen in gegenseitiger α -Beziehung

• α/β -Beziehung zwischen atomaren Positionen

- $-u\sim_{\alpha}v$: $u\neq v$ und größter gemeinsamer Vorfahr hat Typ α
- $-\mathbf{u} \sim_{\beta} \mathbf{v}$: $u \neq v$ und größter gemeinsamer Vorfahr hat Typ β

Pfad

– (Maximale) Menge von Atomen in gegenseitiger α -Beziehung

Konnektion

– Paar $\{u,v\}$ von Knoten mit gleichem Label, unterschiedlicher Polarität

• α/β -Beziehung zwischen atomaren Positionen

- $-\mathbf{u} \sim_{\alpha} \mathbf{v}$: $u \neq v$ und größter gemeinsamer Vorfahr hat Typ α
- $-\mathbf{u} \sim_{\beta} \mathbf{v}$: $u \neq v$ und größter gemeinsamer Vorfahr hat Typ β

Pfad

- (Maximale) Menge von Atomen in gegenseitiger α -Beziehung

Konnektion

– Paar $\{u,v\}$ von Knoten mit gleichem Label, unterschiedlicher Polarität

\bullet σ -komplementäre Konnektion

– Konnektion $\{u,v\}$ deren Label mit der Substitution σ unifizierbar sind

• α/β -Beziehung zwischen atomaren Positionen

- $-\boldsymbol{u} \sim_{\alpha} \boldsymbol{v}$: $u \neq v$ und größter gemeinsamer Vorfahr hat Typ α
- $-\mathbf{u} \sim_{\beta} \mathbf{v}$: $u \neq v$ und größter gemeinsamer Vorfahr hat Typ β

Pfad

– (Maximale) Menge von Atomen in gegenseitiger α -Beziehung

Konnektion

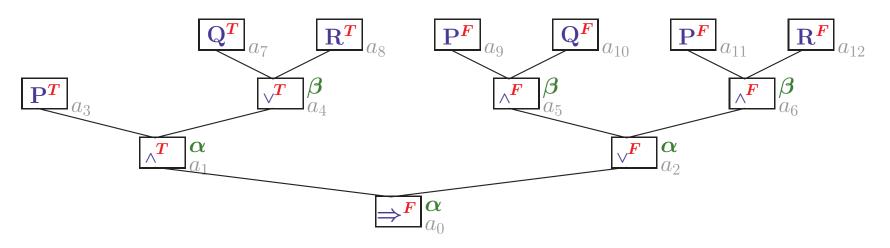
– Paar $\{u,v\}$ von Knoten mit gleichem Label, unterschiedlicher Polarität

\bullet σ -komplementäre Konnektion

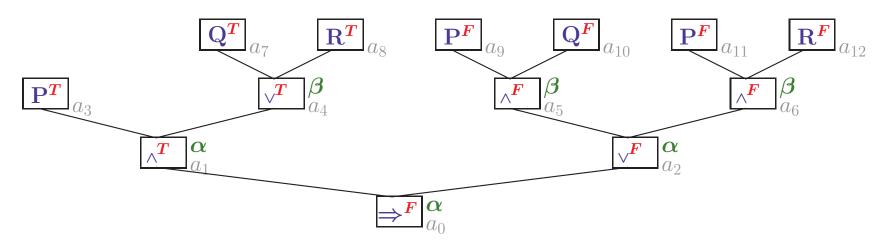
– Konnektion $\{u,v\}$ deren Label mit der Substitution σ unifizierbar sind

• Aufspannende Paarung für eine Formel

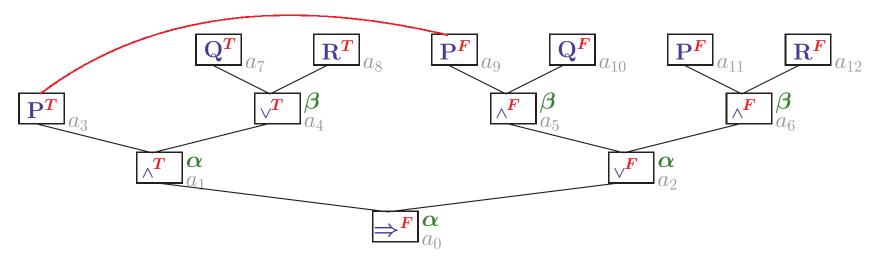
- Paarung: Menge von σ -komplementären Konnektionen,
- Aufspannend: jeder Pfad durch die Formel enthält eine der Konnektionen



- $\bullet \alpha/\beta$ -Beziehungen zwischen atomaren Formeln
 - $-a_{7}\sim_{\beta}a_{8}, \ a_{9}\sim_{\beta}a_{10}, \ a_{11}\sim_{\beta}a_{12}$
 - Für alle anderen Paare von Atomen gilt $a_i \sim_{\alpha} a_j$



- α/β -Beziehungen zwischen atomaren Formeln
 - $-a_{7}\sim_{\beta}a_{8}, \ a_{9}\sim_{\beta}a_{10}, \ a_{11}\sim_{\beta}a_{12}$
 - Für alle anderen Paare von Atomen gilt $a_i \sim_{\alpha} a_i$
- 3 β -Beziehungen liefern 8 Pfade:
 - $egin{aligned} -a_3a_7a_9a_{11},\ a_3a_7a_9a_{12},\ a_3a_7a_{10}a_{11},\ a_3a_7a_{10}a_{12},\ a_3a_8a_9a_{11},\ a_3a_8a_9a_{12},\ a_3a_8a_{10}a_{11},\ a_3a_8a_{10}a_{12} \end{aligned}$



• α/β -Beziehungen zwischen atomaren Formeln

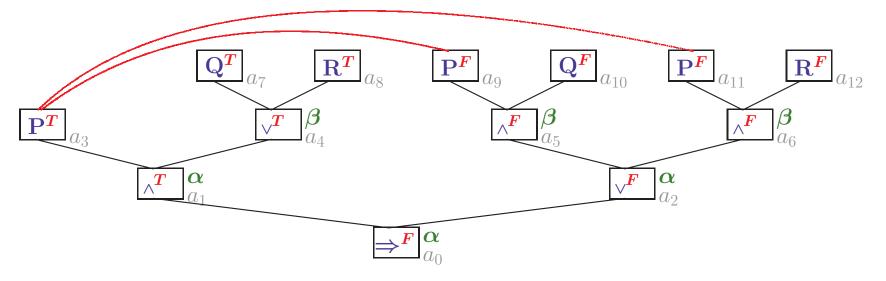
- $-a_{7}\sim_{\beta}a_{8}, \ a_{9}\sim_{\beta}a_{10}, \ a_{11}\sim_{\beta}a_{12}$
- Für alle anderen Paare von Atomen gilt $a_i \sim_{\alpha} a_i$

• 3 β -Beziehungen liefern 8 Pfade:

 $egin{aligned} -a_3a_7a_9a_{11},\ a_3a_7a_9a_{12},\ a_3a_7a_{10}a_{11},\ a_3a_7a_{10}a_{12},\ a_3a_8a_9a_{11},\ a_3a_8a_9a_{12},\ a_3a_8a_{10}a_{11},\ a_3a_8a_{10}a_{12} \end{aligned}$

• 4 Konnektionen

 $-a_{3}a_{9},$



• α/β -Beziehungen zwischen atomaren Formeln

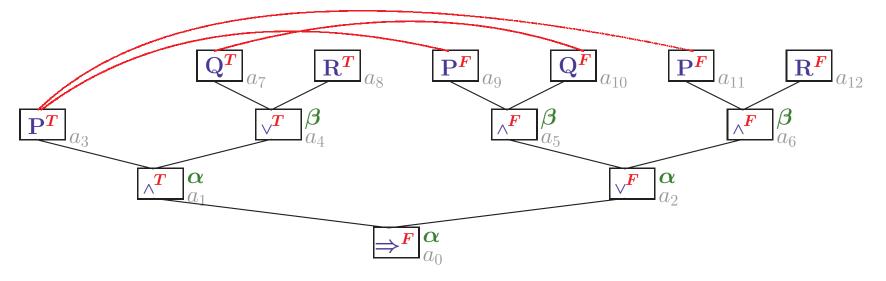
- $-a_{7}\sim_{\beta}a_{8}, \ a_{9}\sim_{\beta}a_{10}, \ a_{11}\sim_{\beta}a_{12}$
- Für alle anderen Paare von Atomen gilt $a_i \sim_{\alpha} a_i$

• 3 β -Beziehungen liefern 8 Pfade:

 $egin{aligned} -a_3a_7a_9a_{11},\ a_3a_7a_9a_{12},\ a_3a_7a_{10}a_{11},\ a_3a_7a_{10}a_{12},\ a_3a_8a_9a_{11},\ a_3a_8a_9a_{12},\ a_3a_8a_{10}a_{11},\ a_3a_8a_{10}a_{12} \end{aligned}$

• 4 Konnektionen

 $-a_3a_9, a_3a_{11},$



• α/β -Beziehungen zwischen atomaren Formeln

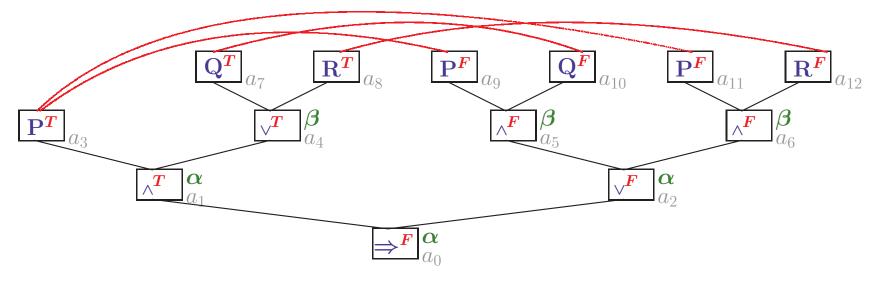
- $-a_{7}\sim_{\beta}a_{8}, \ a_{9}\sim_{\beta}a_{10}, \ a_{11}\sim_{\beta}a_{12}$
- Für alle anderen Paare von Atomen gilt $a_i \sim_{\alpha} a_i$

• 3 β -Beziehungen liefern 8 Pfade:

 $egin{aligned} -a_3a_7a_9a_{11},\ a_3a_7a_9a_{12},\ a_3a_7a_{10}a_{11},\ a_3a_7a_{10}a_{12},\ a_3a_8a_9a_{11},\ a_3a_8a_9a_{12},\ a_3a_8a_{10}a_{11},\ a_3a_8a_{10}a_{12} \end{aligned}$

• 4 Konnektionen

 $-a_3a_9, \quad a_3a_{11}, \quad a_7a_{10},$

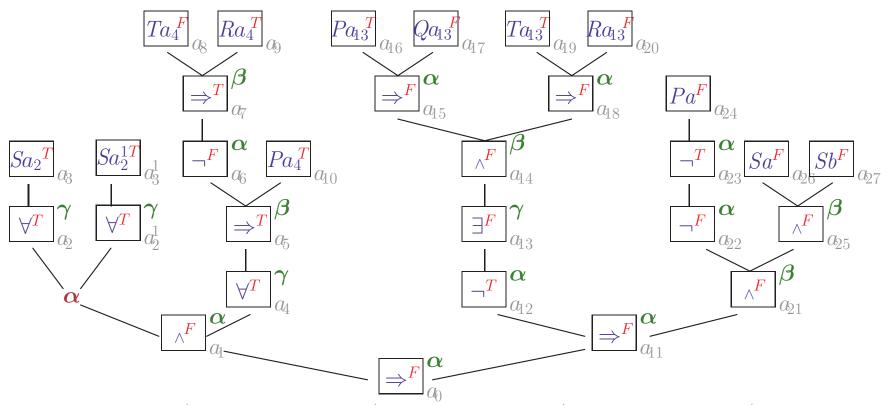


• α/β -Beziehungen zwischen atomaren Formeln

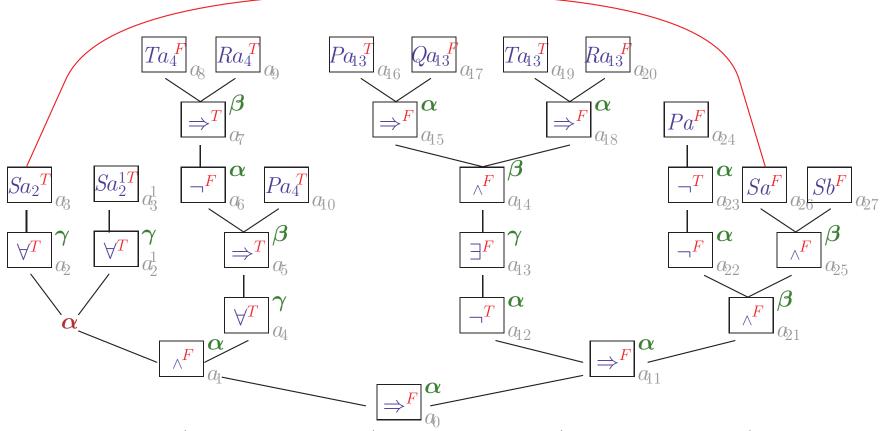
- $-a_7 \sim_{\beta} a_8$, $a_9 \sim_{\beta} a_{10}$, $a_{11} \sim_{\beta} a_{12}$
- Für alle anderen Paare von Atomen gilt $a_i \sim_{\alpha} a_i$

• 3 β -Beziehungen liefern 8 Pfade:

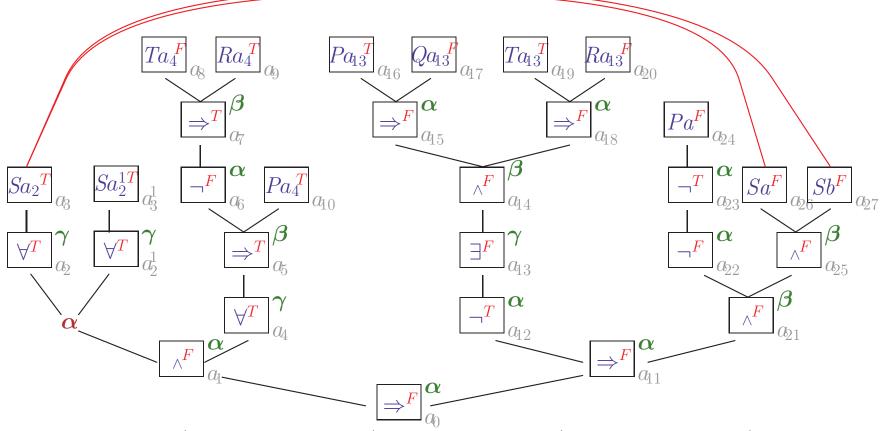
- $-a_3a_7a_9a_{11}, a_3a_7a_9a_{12}, a_3a_7a_{10}a_{11}, a_3a_7a_{10}a_{12},$ $a_3a_8a_9a_{11}, a_3a_8a_9a_{12}, a_3a_8a_{10}a_{11}, a_3a_8a_{10}a_{12}$
- 4 Konnektionen
 - $-a_3a_9$, a_3a_{11} , a_7a_{10} , a_8a_{12}



• 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...

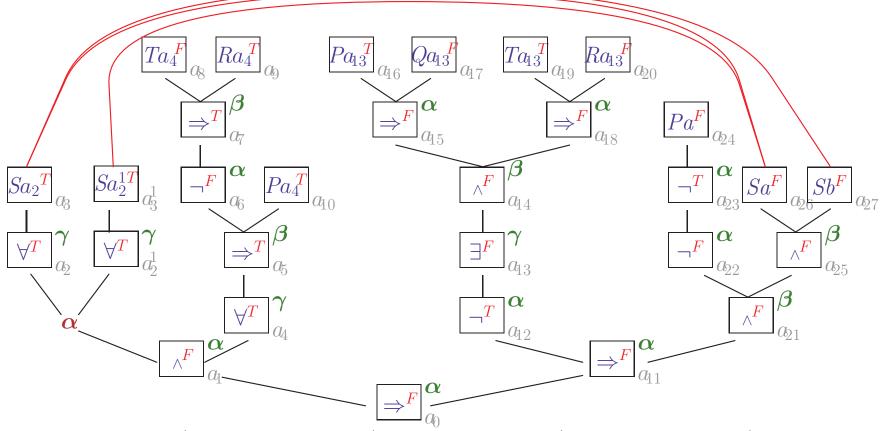


- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} ,



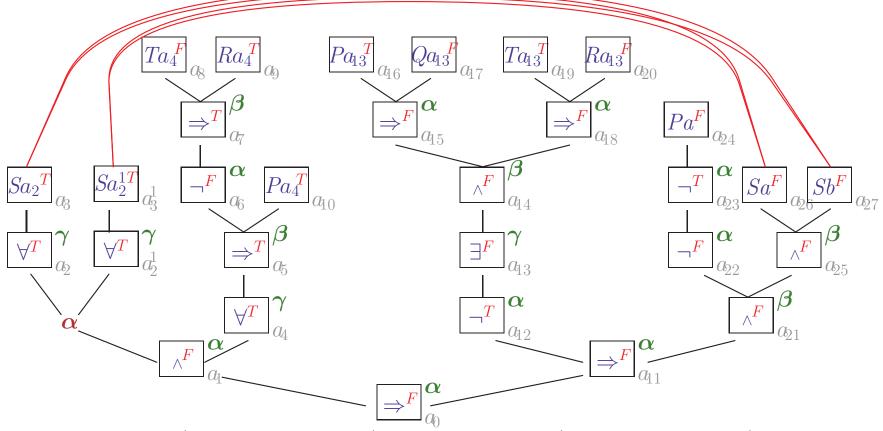
- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} ,

Pfade und Konnektionen in Formelbäumen

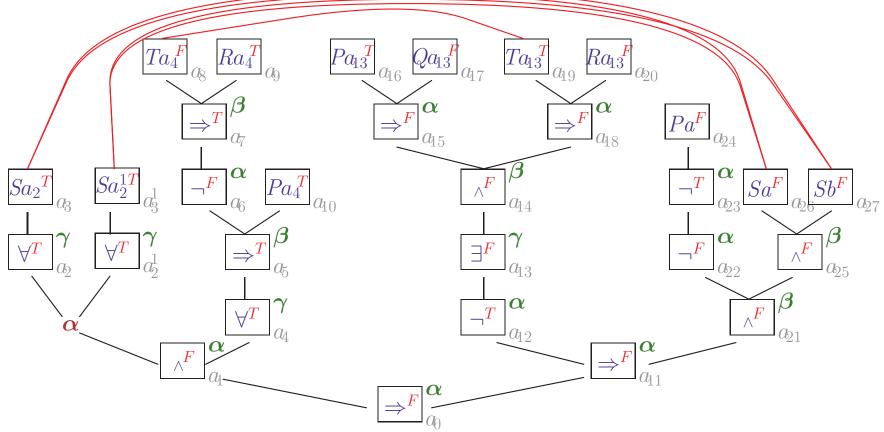


- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} , $a_3^1a_{26}$,

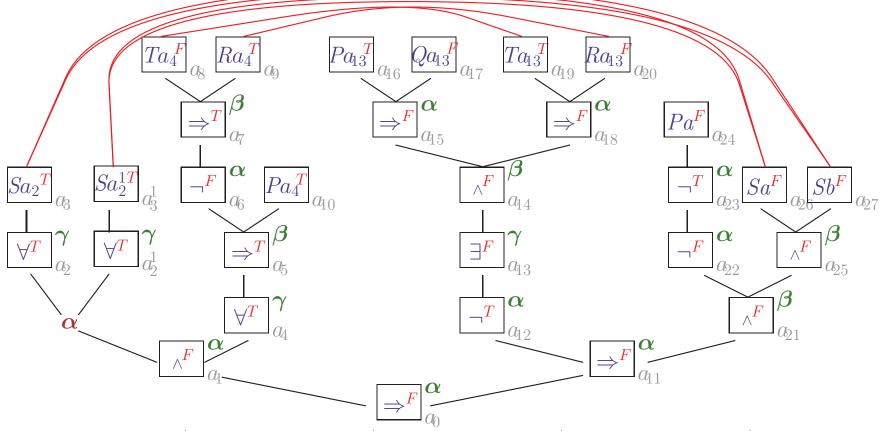
Pfade und Konnektionen in Formelbäumen



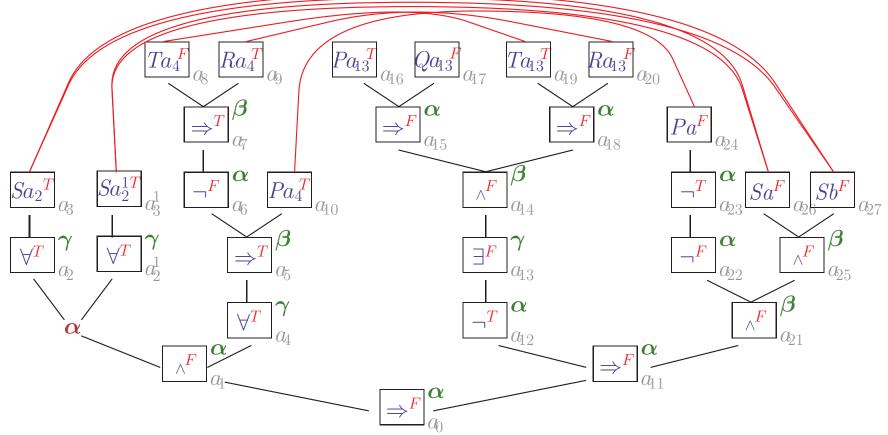
- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} , $a_3^1a_{26}$, $a_3^1a_{27}$,



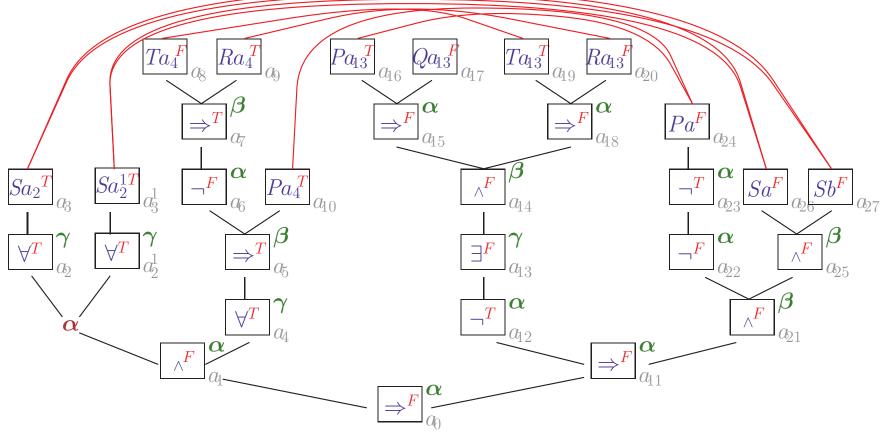
- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} , $a_3^1a_{26}$, $a_3^1a_{27}$, a_8a_{19} ,



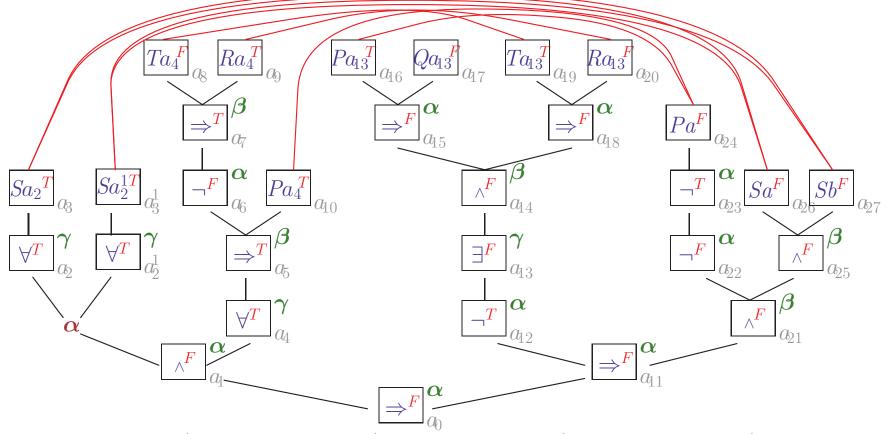
- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} , $a_3^1a_{26}$, $a_3^1a_{27}$, a_8a_{19} , a_9a_{20} ,



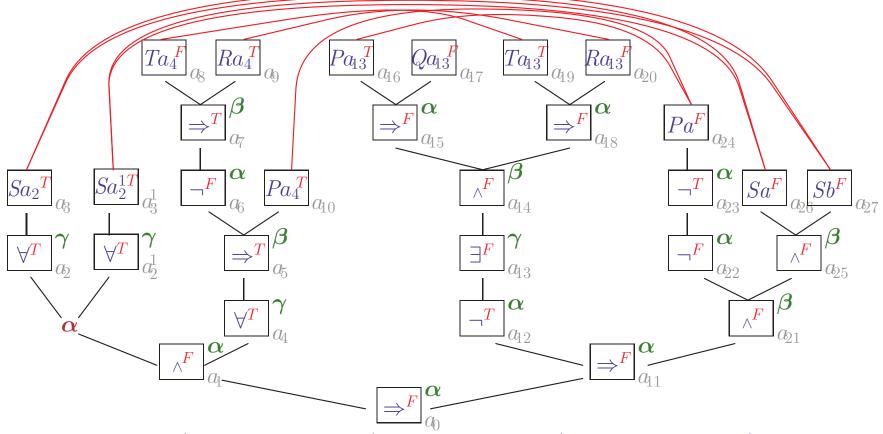
- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} , $a_3^1a_{26}$, $a_3^1a_{27}$, a_8a_{19} , a_9a_{20} , $a_{10}a_{24}$,



- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} , $a_3^1a_{26}$, $a_3^1a_{27}$, a_8a_{19} , a_9a_{20} , $a_{10}a_{24}$, $a_{16}a_{24}$



- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} , $a_3^1a_{26}$, $a_3^1a_{27}$, a_8a_{19} , a_9a_{20} , $a_{10}a_{24}$, $a_{16}a_{24}$ a_3a_{26} , $a_3^1a_{27}$, a_8a_{19} , a_9a_{20} , $a_{10}a_{24}$, $a_{16}a_{24}$ komplementär unter $\sigma = [b/a_2, a/a_2^1, a/a_4, a/a_{13}]$



- 18 Pfade: $a_3a_3^1a_8a_{16}a_{17}a_{24}$, $a_3a_3^1a_8a_{16}a_{17}a_{26}$, $a_3a_3^1a_8a_{16}a_{17}a_{27}$, $a_3a_3^1a_8a_{19}a_{20}a_{24}$, $a_3a_3^1a_8a_{18}a_{19}a_{26}$, $a_3a_3^1a_8a_{18}a_{19}a_{27}$, $a_3a_3^1a_9a_{16}a_{17}a_{24}$, ... $a_3a_3^1a_{10}a_{16}a_{17}a_{24}$, ...
- 8 Konnektionen: a_3a_{26} , a_3a_{27} , $a_3^1a_{26}$, $a_3^1a_{27}$, a_8a_{19} , a_9a_{20} , $a_{10}a_{24}$, $a_{16}a_{24}$ − a_3a_{26} , $a_3^1a_{27}$, a_8a_{19} , a_9a_{20} , $a_{10}a_{24}$, $a_{16}a_{24}$ komplementär unter $\sigma = [b/a_2, a/a_2^1, a/a_4, a/a_{13}]$
 - $-a_3a_{27},\ a_3^1a_{26},\ a_8a_{19},\ a_9a_{20},\ a_{10}a_{24},\ a_{16}a_{24}\ \text{komplement\"{a}r unter}\ \sigma=[a/a_2,b/a_2^1,a/a_4,a/a_{13}]$

- σ induziert Reduktionsordnung $\triangleleft := (< \cup \sqsubseteq)^+$
 - $-\boldsymbol{v} \sqsubseteq \boldsymbol{u}$, falls $\sigma(u) = t$ und v kommt in t vor $(v \delta$ -Position, $u \gamma$ -Position)
 - $-\sigma$ ist **zulässig**, falls \triangleleft azyklisch ($\hat{=}$ eine Tableauxreduktion ist möglich)

- σ induziert Reduktionsordnung $\triangleleft := (< \cup \sqsubseteq)^+$
 - $-\boldsymbol{v} \sqsubseteq \boldsymbol{u}$, falls $\sigma(u) = t$ und v kommt in t vor $(v \delta$ -Position, $u \gamma$ -Position)
 - $-\sigma$ ist **zulässig**, falls \triangleleft azyklisch ($\hat{=}$ eine Tableauxreduktion ist möglich)
- Charakterisierungstheorem für klassische Logik Eine Formel F ist gültig, wenn es eine Multiplizität μ , eine zulässige Substitution σ und eine Menge \mathcal{C} von σ -komplementären Konnektionen gibt, so daß jeder Pfad durch F eine Konnektion aus \mathcal{C} enthält

- σ induziert Reduktionsordnung $\triangleleft := (< \cup \sqsubseteq)^+$
 - $-\boldsymbol{v} \sqsubseteq \boldsymbol{u}$, falls $\sigma(u) = t$ und v kommt in t vor $(v \delta$ -Position, $u \gamma$ -Position)
 - $-\sigma$ ist **zulässig**, falls \triangleleft azyklisch ($\hat{=}$ eine Tableauxreduktion ist möglich)
- Charakterisierungstheorem für klassische Logik Eine Formel F ist gültig, wenn es eine Multiplizität μ , eine zulässige Substitution σ und eine Menge $\mathcal C$ von σ -komplementären Konnektionen gibt, so daß jeder Pfad durch F eine Konnektion aus \mathcal{C} enthält
- Aufgabe eines automatischen Beweisverfahrens
 - Identifiziere mögliche Konnektionen
 - Teste, ob jeder Pfad durch F mindestens eine Konnektion enthält
 - Bestimme Substitution σ , die Konnektionen komplementär macht
 - Uberprüfe Zulässigkeit der Substitution
 - Wo nötig, erhöhe Multiplizität μ von γ -Knoten

Beweis des Charakterisierungstheorems (Skizze)

Eine Formel F ist gültig, wenn es eine Multiplizität μ , eine zulässige Substitution σ und eine Menge $\mathcal C$ von σ -komplementären Konnektionen gibt, so daß jeder Pfad durch F eine Konnektion aus $\mathcal C$ enthält

Beweis des Charakterisierungstheorems (Skizze)

Eine Formel F ist gültig, wenn es eine Multiplizität μ , eine zulässige Substitution σ und eine Menge $\mathcal C$ von σ -komplementären Konnektionen gibt, so daß jeder Pfad durch F eine Konnektion aus $\mathcal C$ enthält

• Korrektheit: erzeuge Tableauxbeweis aus μ, σ

- Transformiere (azyklische) Reduktionsordnung ⊲ in eine lineare Ordnung
- Wende Tableauxregeln in der Reihenfolge dieser Ordnung an
- Instantiiere δ -Formeln wie im annotierten Formelbaum
- Instantiiere γ -Formeln entsprechend der Substitution σ

Per Konstruktion ist jeder Zweig des Tableaus geschlossen

Beweis des Charakterisierungstheorems (Skizze)

Eine Formel F ist gültig, wenn es eine Multiplizität μ , eine zulässige Substitution σ und eine Menge $\mathcal C$ von σ -komplementären Konnektionen gibt, so daß jeder Pfad durch F eine Konnektion aus C enthält

• Korrektheit: erzeuge Tableauxbeweis aus μ, σ

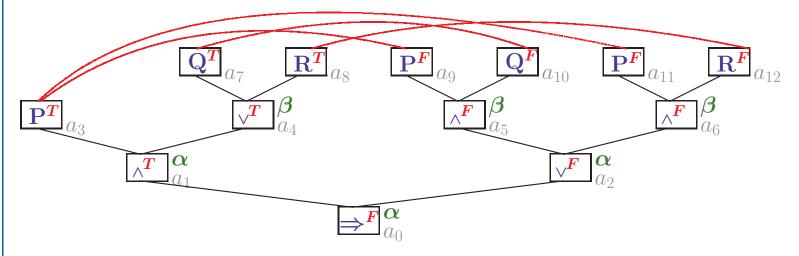
- Transformiere (azyklische) Reduktionsordnung ⊲ in eine lineare Ordnung
- Wende Tableauxregeln in der Reihenfolge dieser Ordnung an
- Instantiiere δ -Formeln wie im annotierten Formelbaum
- Instantiiere γ -Formeln entsprechend der Substitution σ Per Konstruktion ist jeder Zweig des Tableaus geschlossen

• Vollständigkeit: erzeuge C, μ , σ aus Tableauxbeweis

- Generiere annotierten Formelbaum
- Für γ -Knoten ist μ die Anzahl der Instanzen im Tableauxbeweis
- Wähle Substitution σ passend zu den ausgeführten γ -Regeln σ ist zulässig aufgrund der Bedingungen an γ - und δ -Regeln
- Wähle \mathcal{C} als Menge der Formelpaare, welche die Zweige abschließen Alle Konnektionen sind σ -komplementär

Per Konstruktion enthält jeder Pfad durch F eine Konnektion aus \mathcal{C}

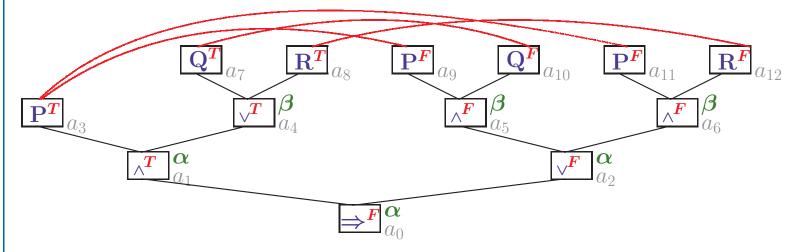
Beweis für (P \wedge (Q \vee R)) \Rightarrow ((P \wedge Q) \vee (P \wedge R))



• Alle Pfade enthalten eine Konnektion

 $egin{aligned} -a_3a_7a_9a_{11},\ a_3a_7a_9a_{12},\ a_3a_7a_{10}a_{11},\ a_3a_7a_{10}a_{12},\ a_3a_8a_9a_{11},\ a_3a_8a_9a_{12},\ a_3a_8a_{10}a_{11},\ a_3a_8a_{10}a_{12} \end{aligned}$

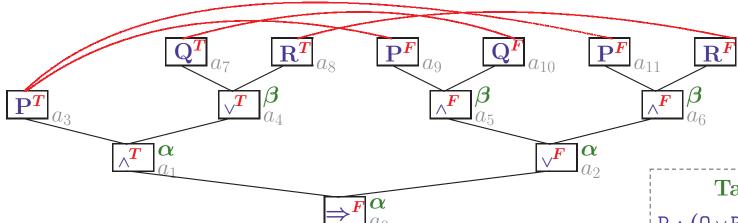
Beweis für (P \wedge (Q \vee R)) \Rightarrow ((P \wedge Q) \vee (P \wedge R))



• Alle Pfade enthalten eine Konnektion

- $-a_3a_7a_9a_{11},\, a_3a_7a_9a_{12},\, a_3a_7a_{10}a_{11},\, a_3a_7a_{10}a_{12}, \ a_3a_8a_9a_{11},\, a_3a_8a_9a_{12},\, a_3a_8a_{10}a_{11},\, a_3a_8a_{10}a_{12}$
- Die Formel ist gültig
 - Alle Konnektionen sind komplementär

Beweis für (P \wedge (Q \vee R)) \Rightarrow ((P \wedge Q) \vee (P \wedge R))



• Alle Pfade enthalten eine Konnektion

- $-a_3a_7a_9a_{11},\,a_3a_7a_9a_{12},\,a_3a_7a_{10}a_{11},\,a_3a_7a_{10}a_{12},\ a_3a_8a_9a_{11},\,a_3a_8a_9a_{12},\,a_3a_8a_{10}a_{11},\,a_3a_8a_{10}a_{12}$
- Die Formel ist gültig
 - Alle Konnektionen sind komplementär
- Reduktionsordnung ist Baumordnung
 - Mögliche Linearisierung: a_0 a_1 a_2 a_4 a_5 a_6

Tableauxbeweis

$$P \wedge (Q \vee R) \Rightarrow (P \wedge Q) \vee (P \wedge R)^{F}$$

$$(P \wedge (Q \vee R))^{T}$$

$$((P \wedge Q) \vee (P \wedge R))^{F}$$

$$P^{T}$$

$$(Q \vee R)^{T}$$

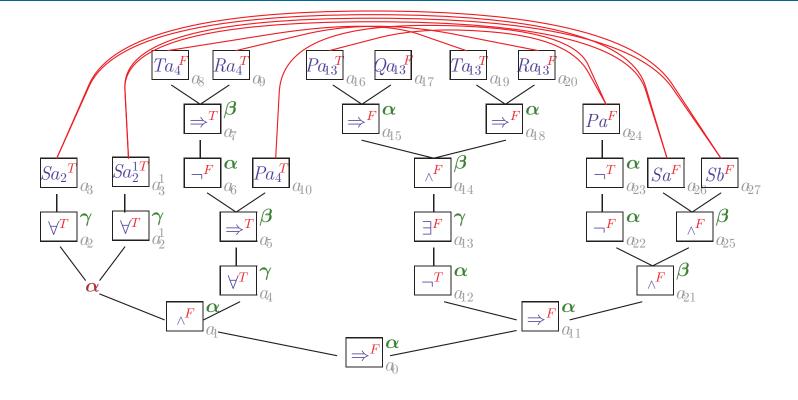
$$(P \wedge Q)^{F}$$

$$(P \wedge R)^{F}$$

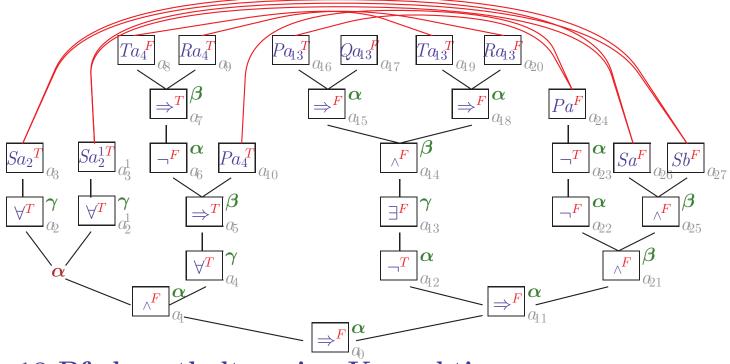
$$P^{F} \qquad Q^{F} \qquad P^{F} \qquad Q^{F}$$

$$P^{F} \qquad R^{F} \qquad P^{F} \qquad R^{F} \qquad P^{F} \qquad R^{F}$$

MATRIXBEWEIS MIT SUBSTITUTION



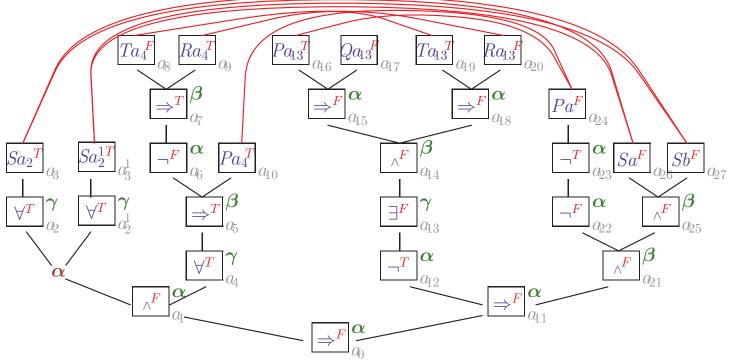
Matrixbeweis mit Substitution



• Alle 18 Pfade enthalten eine Konnektion:

$$a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{24}, \ a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{26}, \ a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{27}, \ a_{3}a_{3}^{1}a_{8}a_{19}a_{20}a_{24}, \\ a_{3}a_{3}^{1}a_{8}a_{18}a_{19}a_{26}, \ a_{3}a_{3}^{1}a_{8}a_{18}a_{19}a_{27}, \ a_{3}a_{3}^{1}a_{9}a_{16}a_{17}a_{24}, \dots a_{3}a_{3}^{1}a_{10}a_{16}a_{17}a_{24}, \dots \\ \mathcal{C} = \{ \ \{a_{3}a_{27}\}, \ \{a_{3}^{1}a_{26}\}, \ \{a_{8}a_{19}\}, \ \{a_{9}a_{20}\}, \ \{a_{10}a_{24}\}, \ \{a_{16}a_{24}\} \ \}$$

MATRIXBEWEIS MIT SUBSTITUTION

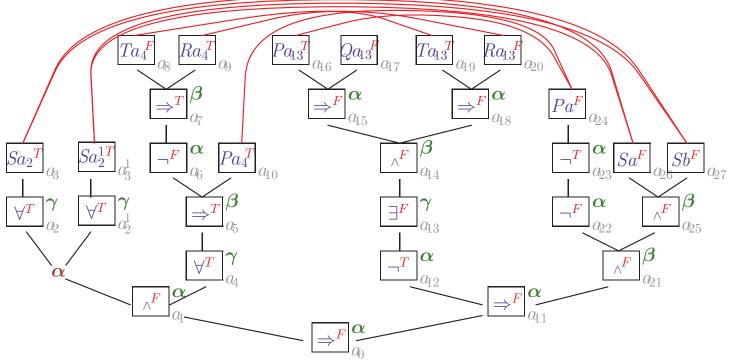


• Alle 18 Pfade enthalten eine Konnektion:

$$a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{24}, \ a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{26}, \ a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{27}, \ a_{3}a_{3}^{1}a_{8}a_{19}a_{20}a_{24}, \\ a_{3}a_{3}^{1}a_{8}a_{18}a_{19}a_{26}, \ a_{3}a_{3}^{1}a_{8}a_{18}a_{19}a_{27}, \ a_{3}a_{3}^{1}a_{9}a_{16}a_{17}a_{24}, \dots a_{3}a_{3}^{1}a_{10}a_{16}a_{17}a_{24}, \dots \\ \mathcal{C} = \{ \ \{a_{3}a_{27}\}, \ \{a_{3}^{1}a_{26}\}, \ \{a_{8}a_{19}\}, \ \{a_{9}a_{20}\}, \ \{a_{10}a_{24}\}, \ \{a_{16}a_{24}\} \ \}$$

- ullet $\mathcal C$ ist komplementär unter $\sigma = [b/a_2, a/a_2^1, a/a_4, a/a_{13}]$
 - $-\sigma$ ist zulässig, da keine δ -Positionen vorhanden ($\leq = <$)

MATRIXBEWEIS MIT SUBSTITUTION



• Alle 18 Pfade enthalten eine Konnektion:

$$a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{24}, \ a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{26}, \ a_{3}a_{3}^{1}a_{8}a_{16}a_{17}a_{27}, \ a_{3}a_{3}^{1}a_{8}a_{19}a_{20}a_{24}, \\ a_{3}a_{3}^{1}a_{8}a_{18}a_{19}a_{26}, \ a_{3}a_{3}^{1}a_{8}a_{18}a_{19}a_{27}, \ a_{3}a_{3}^{1}a_{9}a_{16}a_{17}a_{24}, \dots a_{3}a_{3}^{1}a_{10}a_{16}a_{17}a_{24}, \dots \\ \mathcal{C} = \{ \ \{a_{3}a_{27}\}, \ \{a_{3}^{1}a_{26}\}, \ \{a_{8}a_{19}\}, \ \{a_{9}a_{20}\}, \ \{a_{10}a_{24}\}, \ \{a_{16}a_{24}\} \ \}$$

- \mathcal{C} ist komplementär unter $\sigma = [b/a_2, a/a_2^1, a/a_4, a/a_{13}]$ – σ ist zulässig, da keine δ -Positionen vorhanden ($\triangleleft = <$)
- Die Formel ist gültig

2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

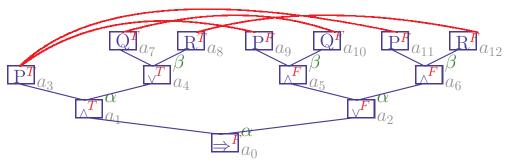
- ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur
 - Nur die Atome sind beweisrelevant
 - Pfade sind Ketten von Literalen in α -Beziehung
 - Verschiedene Pfade werden durch β -Verzweigungen getrennt

2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen

$$P^{T} \quad Q^{T} \quad P^{F} \quad P^{F}$$

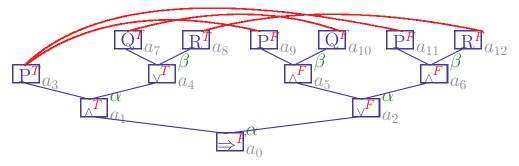
$$R^{T} \quad Q^{F} \quad R^{F}$$

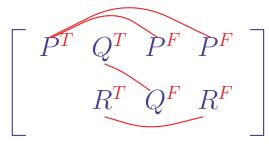
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



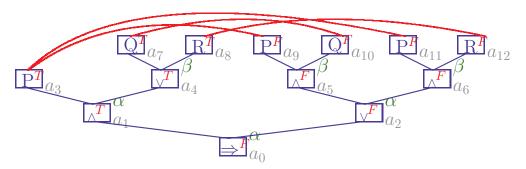


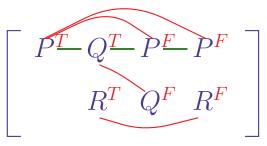
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



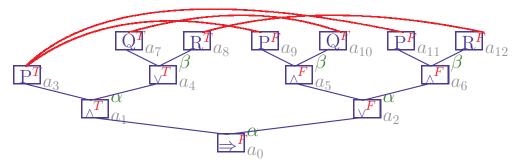


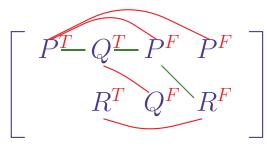
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



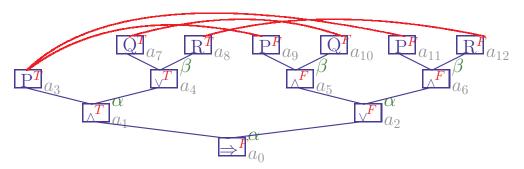


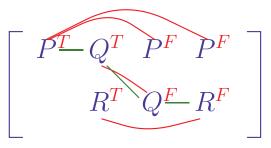
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

• Pfadüberprüfung hängt nur an α/β -Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



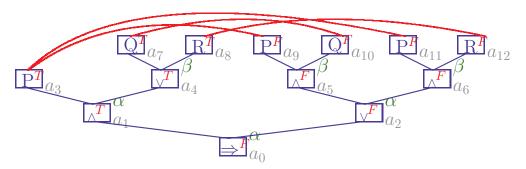


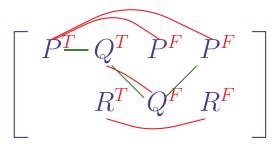
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



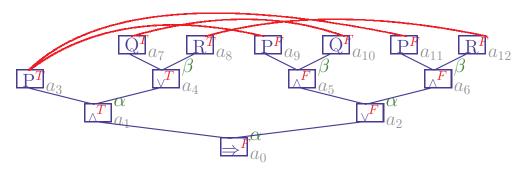


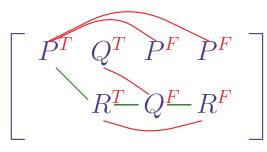
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



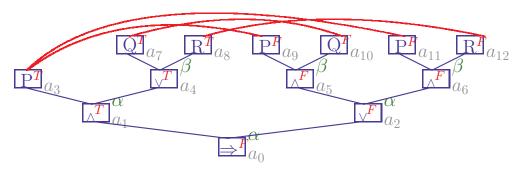


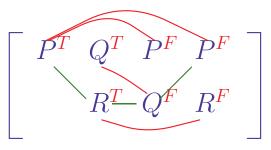
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



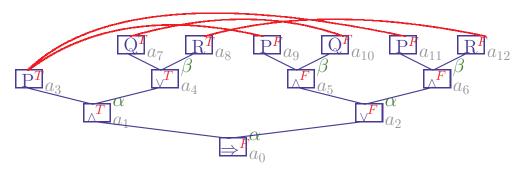


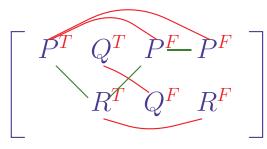
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

ullet Pfadüberprüfung hängt nur an lpha/eta-Struktur

- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen



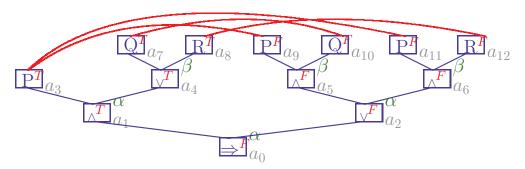


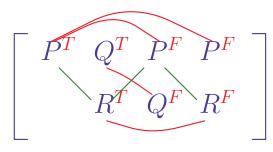
2-dimensionale Darstellung der Atome zur Veranschaulichung der Beweismethodik

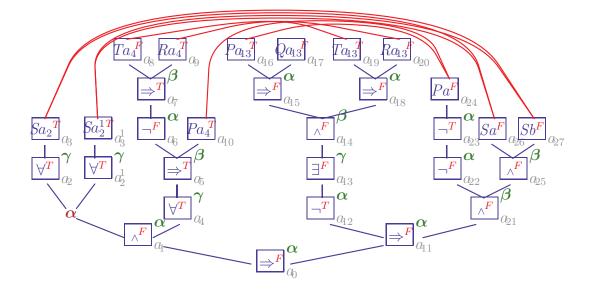
ullet Pfadüberprüfung hängt nur an α/β -Struktur

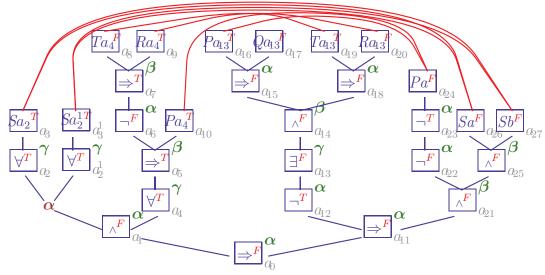
- Nur die Atome sind beweisrelevant
- Pfade sind Ketten von Literalen in α -Beziehung
- Verschiedene Pfade werden durch β -Verzweigungen getrennt

- Literale in α -Beziehung erscheinen nebeneinander
- Literale in β -Beziehung erscheinen übereinander
- Pfade sind (maximale) Ketten von Literalen, die nebeneinander stehen





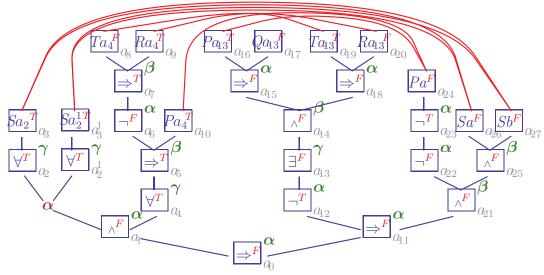




2-dimensionale Matrixstruktur zu einfach

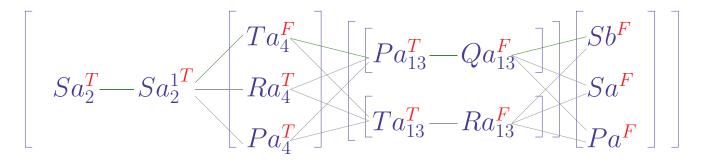
- Wechsel zwischen α/β -Knoten führt zu Schachtelung
- 2-dimensionale Darstellung verwendet Klammern
- Pfade, die eine Submatrix betreten, müssen diese komplett durchlaufen

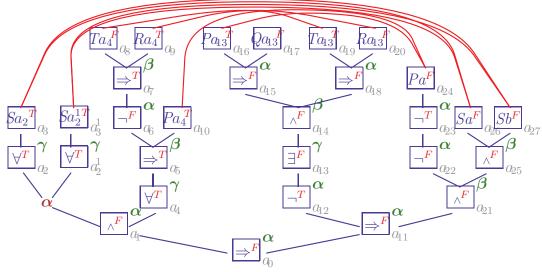
$$\begin{bmatrix} Sa_2^T & Sa_2^{1T} & \begin{bmatrix} Ta_4^F \\ Ra_4^T \\ Pa_4^T \end{bmatrix} \begin{bmatrix} Pa_{13}^T & Qa_{13}^F \\ Ta_{13}^T & Ra_{13}^F \end{bmatrix} \begin{bmatrix} Sb^F \\ Sa^F \\ Pa^F \end{bmatrix} \end{bmatrix}$$



2-dimensionale Matrixstruktur zu einfach

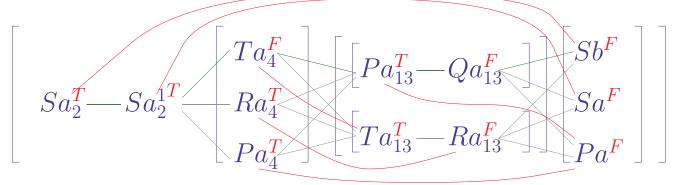
- Wechsel zwischen α/β -Knoten führt zu Schachtelung
- 2-dimensionale Darstellung verwendet Klammern
- Pfade, die eine Submatrix betreten, müssen diese komplett durchlaufen





2-dimensionale Matrixstruktur zu einfach

- Wechsel zwischen α/β -Knoten führt zu Schachtelung
- 2-dimensionale Darstellung verwendet Klammern
- Pfade, die eine Submatrix betreten, müssen diese komplett durchlaufen



Matrixdarstellung einer Formel präzisiert

- Einfache Matrizen (Normalform-Matrizen)
 - Literal: atomare Formel mit Polarität positives Literal: Polarität T negatives Literal: Polarität F
 - **Klausel**: endliche Mengen $c = \{L_1, \ldots, L_k\}$ von Literalen Horn-Klausel: Klausel mit höchstens einem negativen Literal
 - Matrix: endliche Menge $M = \{c_1, \ldots, c_n\}$ von Klauseln Horn-Matrix: Menge von Horn-Klauseln

Matrixdarstellung einer Formel präzisiert

• Einfache Matrizen (Normalform-Matrizen)

- Literal: atomare Formel mit Polarität positives Literal: Polarität T negatives Literal: Polarität F
- **Klausel**: endliche Mengen $c = \{L_1, \ldots, L_k\}$ von Literalen Horn-Klausel: Klausel mit höchstens einem negativen Literal
- **Matrix**: endliche Menge $M = \{c_1, \ldots, c_n\}$ von Klauseln Horn-Matrix: Menge von Horn-Klauseln

• Allgemeine Matrizen

- Matrix der Tiefe 0: Literal L
- Matrix der Tiefe n+1: endliche Menge $M = \{M_1, \ldots, M_i\}$ von Matrizen der maximalen Tiefe n
- Klauseln sind Matrizen der Tiefe 1

LESARTEN VON MATRIZEN

• Allgemein:

- Ein Literal repräsentiert sich selbst
- Eine Klausel repräsentiert eine Menge von Literalen in β -Beziehung
- Eine Matrix repräsentiert eine Menge von Klauseln in α -Beziehung
 - Tiefe 2n-1: Menge von Matrizen in β -Beziehung
 - · Tiefe 2n: Menge von Matrizen in α -Beziehung

LESARTEN VON MATRIZEN

• Allgemein:

- Ein Literal repräsentiert sich selbst
- Eine Klausel repräsentiert eine Menge von Literalen in β -Beziehung
- Eine Matrix repräsentiert eine Menge von Klauseln in α -Beziehung
 - · Tiefe 2n-1: Menge von Matrizen in β -Beziehung
 - · Tiefe 2n: Menge von Matrizen in α -Beziehung

• Negative Repräsentation:

- Ein Literal X^T repräsentiert X, X^F repräsentiert $\neg X$
- Eine Klausel repräsentiert die Disjunktion ihrer Literale
- Eine Matrix repräsentiert die Konjunktion ihrer Klauseln
- Gut für indirekte Beweisführung (Tableaux, Prolog, ...)

LESARTEN VON MATRIZEN

• Allgemein:

- Ein Literal repräsentiert sich selbst
- Eine Klausel repräsentiert eine Menge von Literalen in β -Beziehung
- Eine Matrix repräsentiert eine Menge von Klauseln in α -Beziehung
 - · Tiefe 2n-1: Menge von Matrizen in β -Beziehung
 - Menge von Matrizen in α -Beziehung · Tiefe 2n:

• Negative Repräsentation:

- Ein Literal X^T repräsentiert X, X^F repräsentiert $\neg X$
- Eine Klausel repräsentiert die Disjunktion ihrer Literale
- Eine Matrix repräsentiert die Konjunktion ihrer Klauseln
- Gut für indirekte Beweisführung (Tableaux, Prolog, ...)

• Positive Repräsentation:

- Ein Literal X^T repräsentiert $\neg X$, X^F repräsentiert X
- Eine Klausel repräsentiert die Konjunktion ihrer Literale
- Eine Matrix repräsentiert die Disjunktion ihrer Klauseln
- Gut für direkte Beweisführung (Sequenzenkalkül,...)

• Mengenschreibweise:

- Mit Polarität: $\{\{P^{F}\}, \{P^{T}, Q^{F}\}, \{Q^{T}, R^{F}\}, \{R^{T}\}\}$

• Mengenschreibweise:

- Mit Polarität: $\{\{P^{F}\}, \{P^{T}, Q^{F}\}, \{Q^{T}, R^{F}\}, \{R^{T}\}\}$
- Positive Repräsentation: $\{\{P\}, \{\neg P, Q\}, \{\neg Q, R\}, \{\neg R\}\}$

• Mengenschreibweise:

- Mit Polarität: $\{\{P^{F}\}, \{P^{T}, Q^{F}\}, \{Q^{T}, R^{F}\}, \{R^{T}\}\}$
- Positive Repräsentation: $\{\{P\}, \{\neg P, Q\}, \{\neg Q, R\}, \{\neg R\}\}$
- Kurzschreibweise: $\{\{P\}, \{\overline{P}, Q\}, \{\overline{Q}, R\}, \{\overline{R}\}\}$

• Mengenschreibweise:

- Mit Polarität: $\{\{P^{F}\}, \{P^{T}, Q^{F}\}, \{Q^{T}, R^{F}\}, \{R^{T}\}\}$
- Positive Repräsentation: $\{\{P\}, \{\neg P, Q\}, \{\neg Q, R\}, \{\neg R\}\}$
- $\{\{P\}, \{\overline{P}, Q\}, \{\overline{Q}, R\}, \{\overline{R}\}\}$ - Kurzschreibweise:

• 2-dimensionale Matrixformen:

$$P^{T} \quad Q^{T} \quad R^{T}$$

$$P^{F} \quad Q^{F} \quad R^{F}$$

• Mengenschreibweise:

- Mit Polarität: $\{\{P^{F}\}, \{P^{T}, Q^{F}\}, \{Q^{T}, R^{F}\}, \{R^{T}\}\}$

- Positive Repräsentation: $\{\{P\}, \{\neg P, Q\}, \{\neg Q, R\}, \{\neg R\}\}$

- Kurzschreibweise: $\{\{P\}, \{\overline{P}, Q\}, \{\overline{Q}, R\}, \{\overline{R}\}\}$

• 2-dimensionale Matrixformen:

$$\begin{bmatrix} P^{\mathbf{T}} & Q^{\mathbf{T}} & R^{\mathbf{T}} \\ P^{\mathbf{F}} & Q^{\mathbf{F}} & R^{\mathbf{F}} \end{bmatrix} \begin{bmatrix} \neg P & \neg Q & \neg R \\ P & Q & R \end{bmatrix}$$

• Gedrehte Repräsentation als Prolog Programm

R.

Q :- R.

P := Q.

:- P?

$$\begin{bmatrix} R^T \\ Q^T & R^F \\ P^T & Q^F \\ P^F \end{bmatrix}$$

Viele Beweissysteme verarbeiten nur Normalformen

Viele Beweissysteme verarbeiten nur Normalformen

- Formeln werden auf Normalform gebracht
 - Quantoren werden eliminiert
 - \cdot δ -Variablen werden durch "Skolemfunktionen" ersetzt
 - $\cdot \gamma$ -Variablen bleiben unverändert
 - Verbleibende Formel wird auf DNF (positiv) oder KNF (negativ) gebracht

Viele Beweissysteme verarbeiten nur Normalformen

• Formeln werden auf Normalform gebracht

- Quantoren werden eliminiert
 - \cdot δ -Variablen werden durch "Skolemfunktionen" ersetzt
 - $\cdot \gamma$ -Variablen bleiben unverändert
- Verbleibende Formel wird auf DNF (positiv) oder KNF (negativ) gebracht

• Vorteil: einfachere Beweisverfahren

- Unkomplizierte Struktur, leicht zu verarbeiten

Viele Beweissysteme verarbeiten nur Normalformen

• Formeln werden auf Normalform gebracht

- Quantoren werden eliminiert
 - \cdot δ -Variablen werden durch "Skolemfunktionen" ersetzt
 - $\cdot \gamma$ -Variablen bleiben unverändert
- Verbleibende Formel wird auf DNF (positiv) oder KNF (negativ) gebracht

• Vorteil: einfachere Beweisverfahren

– Unkomplizierte Struktur, leicht zu verarbeiten

• Nachteile: Entstellung der Formel

- Oft exponentielle Aufblähung
- Originalformel selten rekonstruierbar
- Erzeugung von Tableaux- oder Sequenzenbeweisen nahezu unmöglich
- Verfahren lassen sich schlecht auf andere Logiken verallgemeinern

Erzeugung zweidimensionaler Matrizen

• Schrittweisen Erzeugung beim Parsen der Formel

$$lpha \; \mapsto \; egin{bmatrix} lpha_1 \; lpha_2 \end{bmatrix} \quad eta \; \mapsto \; egin{bmatrix} eta_1 \ eta_2 \end{bmatrix} \quad \gamma \; \mapsto \; \gamma(a_i^j) \quad \delta \; \mapsto \; \delta(a_i) \end{pmatrix}$$

Erzeugung zweidimensionaler Matrizen

• Schrittweisen Erzeugung beim Parsen der Formel

• Zusammenfassung "gleichartiger" Teilmatrizen

$$egin{bmatrix} egin{bmatrix} egin{bmatrix} M_1M_2 & M_3 \end{bmatrix} & \mapsto & egin{bmatrix} M_1 & M_2 & M_3 \end{bmatrix} \ egin{bmatrix} egin{bmatrix} M_1 & M_2 & M_3 & M_4 \end{bmatrix} \ egin{bmatrix} egin{bmatrix} M_1 & M_2 & M_3 \\ M_2 & M_3 \end{bmatrix} & \mapsto & egin{bmatrix} M_1 & M_3 \\ M_2 & M_3 \end{bmatrix} \ \end{pmatrix} \ egin{bmatrix} egin{bmatrix} M_1 & M_2 \\ M_2 & M_3 \end{bmatrix}$$

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

Ergänze Typ der Wurzel

$$[\quad ((\mathbf{P} \Rightarrow \mathbf{Q}) \Rightarrow \alpha(\neg \mathbf{Q} \Rightarrow \neg \mathbf{P}))^{\mathbf{F}} \quad]$$

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

Erzeuge α -Matrix

$$\left[(P \Rightarrow Q)^{T} (\neg Q \Rightarrow \neg P)^{F} \right]$$

$$(\neg Q \Rightarrow \neg P)^F$$

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

Erzeuge α -Submatrix

$$\left[\begin{array}{c} (P \Rightarrow_{\beta} Q)^{T} \\ \end{array} \quad \left[\neg Q^{T} \quad \neg P^{F} \right] \right]$$

$$\neg \mathsf{Q}^T \quad \neg \mathsf{P}^F$$

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

 α -Zusammenfassung

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

Erzeuge β -Submatrix

$$\begin{bmatrix} P^F \\ Q^T \end{bmatrix} \qquad \neg Q_{\alpha}^T \qquad \neg P_{\alpha}^F \qquad \end{bmatrix}$$

 $\bullet \ \mathbf{Matrix} \ \mathbf{f\"{u}r} \ ((\mathtt{P} \Rightarrow \mathtt{Q}) \Rightarrow (\lnot \mathtt{Q} \Rightarrow \lnot \mathtt{P}))^{F}$

$$\mathbb{P}^F$$
 $\neg \mathbb{Q}_{\alpha}^T$ $\neg \mathbb{P}_{\alpha}^F$ \mathbb{Q}^T

 α -Zusammenfassung

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

Erzeuge α -Submatrizen und fasse zusammen

• Matrix für
$$((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$$

$$\mathbf{P}^{F}$$
 \mathbf{Q}^{F} \mathbf{P}^{T} \mathbf{Q}^{T}

• Matrix für $((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^F$

• Matrix für $(\forall x Px \Rightarrow Qx) \Rightarrow ((\forall x Px) \Rightarrow (\forall x Qx))^F$

$$\begin{bmatrix} Px_2^F & Px_1^T & Qa_1^F \\ Qx_2^T & \end{bmatrix}$$

 $\bullet \ \mathbf{Matrix} \ \mathbf{f\"{u}r} \ ((\mathtt{P} \Rightarrow \mathtt{Q}) \Rightarrow (\lnot \mathtt{Q} \Rightarrow \lnot \mathtt{P}))^{F}$

• Matrix für $(\forall x Px \Rightarrow Qx) \Rightarrow ((\forall x Px) \Rightarrow (\forall x Qx))^F$

$$Px_2^F$$
 Px_1^T Qa_1^F Qx_2^T

• Matrix für $\neg(\forall x Px) \lor (Pa \land Pb)^F$ $(\mu=2)$

$$\begin{bmatrix} & Px_1^T & Px_2^T & Pa^F \\ & & Pb^F \end{bmatrix}$$

• Pfad durch eine Matrix

- Tiefe 2, $M = \{c_1, ..., c_n\}$: Menge von Literalen $\{L_1, ..., L_n\}$ mit $L_i \in c_i$
- Tiefe 2n, $M = \{M_1, ..., M_n\}$: Vereinigung $p_1 \cup ... \cup p_n$ mit p_i Pfad durch M_i
- Tiefe 2n+1, $M = \{M_1, ..., M_n\}$: einer der Pfade p_i durch eines der M_i

• Pfad durch eine Matrix

- Tiefe 2, $M = \{c_1, ..., c_n\}$: Menge von Literalen $\{L_1, ..., L_n\}$ mit $L_i \in c_i$
- Tiefe 2n, $M = \{M_1, ..., M_n\}$: Vereinigung $p_1 \cup ... \cup p_n$ mit p_i Pfad durch M_i
- Tiefe 2n+1, $M = \{M_1, ..., M_n\}$: einer der Pfade p_i durch eines der M_i

• Konnektionen, Komplementarität wie zuvor

 Zulässigkeitsbedingung der Substitution am Formelbaum zu prüfen oder bei Normalisierung in Skolemfunktionen codiert

• Pfad durch eine Matrix

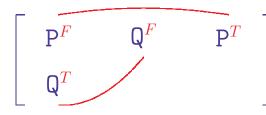
- Tiefe 2, $M = \{c_1, ..., c_n\}$: Menge von Literalen $\{L_1, ..., L_n\}$ mit $L_i \in c_i$
- Tiefe 2n, $M = \{M_1, ..., M_n\}$: Vereinigung $p_1 \cup ... \cup p_n$ mit p_i Pfad durch M_i
- Tiefe 2n+1, $M = \{M_1, ..., M_n\}$: einer der Pfade p_i durch eines der M_i

• Konnektionen, Komplementarität wie zuvor

 Zulässigkeitsbedingung der Substitution am Formelbaum zu prüfen oder bei Normalisierung in Skolemfunktionen codiert

Beispielbeweise

$$((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^{F}$$



• Pfad durch eine Matrix

- Tiefe 2, $M = \{c_1, ..., c_n\}$: Menge von Literalen $\{L_1, ..., L_n\}$ mit $L_i \in c_i$
- Tiefe 2n, $M = \{M_1, ..., M_n\}$: Vereinigung $p_1 \cup ... \cup p_n$ mit p_i Pfad durch M_i
- Tiefe 2n+1, $M = \{M_1, ..., M_n\}$: einer der Pfade p_i durch eines der M_i

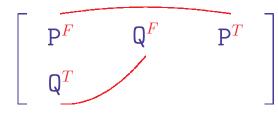
• Konnektionen, Komplementarität wie zuvor

 Zulässigkeitsbedingung der Substitution am Formelbaum zu prüfen oder bei Normalisierung in Skolemfunktionen codiert

• Beispielbeweise

$$((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^{F}$$

$$(\forall x Px \Rightarrow Qx) \Rightarrow ((\forall x Px) \Rightarrow (\forall x Qx))^{F}$$



$$\begin{bmatrix} Px_2^F & Px_1^T & Qa_1^F \\ Qx_2^T & & \end{bmatrix}$$

• Pfad durch eine Matrix

- Tiefe 2, $M = \{c_1, ..., c_n\}$: Menge von Literalen $\{L_1, ..., L_n\}$ mit $L_i \in c_i$
- Tiefe 2n, $M = \{M_1, ..., M_n\}$: Vereinigung $p_1 \cup ... \cup p_n$ mit p_i Pfad durch M_i
- Tiefe 2n+1, $M = \{M_1, ..., M_n\}$: einer der Pfade p_i durch eines der M_i

• Konnektionen, Komplementarität wie zuvor

 Zulässigkeitsbedingung der Substitution am Formelbaum zu prüfen oder bei Normalisierung in Skolemfunktionen codiert

• Beispielbeweise

$$((P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P))^{F}$$

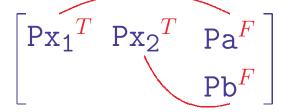
$$(\forall \mathbf{x} \mathbf{P} \mathbf{x} \Rightarrow \mathbf{Q} \mathbf{x}) \Rightarrow ((\forall \mathbf{x} \mathbf{P} \mathbf{x}) \Rightarrow (\forall \mathbf{x} \mathbf{Q} \mathbf{x}))^{F}$$

$$\neg(\forall x P x) \lor (Pa \land Pb)^F \quad (\mu=2)$$

$$oxed{egin{pmatrix} oxed{\mathsf{P}}^F & oxed{\mathsf{Q}}^F & oxed{\mathsf{P}}^T \ oxed{\mathsf{Q}}^T & oxed{\mathsf$$

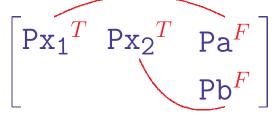
$$\begin{bmatrix} \operatorname{Px_1}^T & \operatorname{Px_2}^T & \operatorname{Pa}^F \end{bmatrix}$$

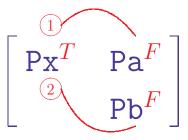
$$\neg(\forall x P x) \lor (P a \land P b)^{F}$$



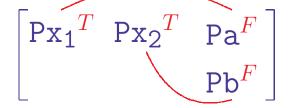
$$\neg(\forall x Px) \lor (Pa \land Pb)^{F}$$

- Kurzform: Indizierte Konnektion
 - Konnektion mit Index für Klauselkopie
 - Effizientere Codierung durch kleinere Matrix
 - Bezug zur Originalformel besser erkennbar

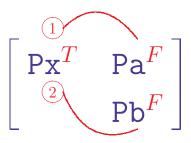




$$\neg(\forall \mathtt{x}\mathtt{P}\mathtt{x}) \lor (\mathtt{P}\mathtt{a} \land \mathtt{P}\mathtt{b})^{F}$$

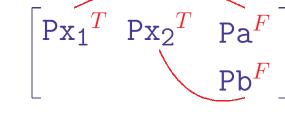


- Kurzform: Indizierte Konnektion
 - Konnektion mit Index für Klauselkopie
 - Effizientere Codierung durch kleinere Matrix
 - Bezug zur Originalformel besser erkennbar

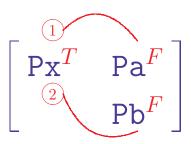


- Indizierte Matrix:
 - Matrix M mit indizierter Paarung
 - Expandierte Form: erweiterte Form mit expliziten Kopien von Klauseln
 - Pfade durch M: Pfade durch expandiente Form von M

$$\neg(\forall \mathtt{x}\mathtt{P}\mathtt{x}) \lor (\mathtt{P}\mathtt{a} \land \mathtt{P}\mathtt{b})^{F}$$



- Kurzform: Indizierte Konnektion
 - Konnektion mit Index für Klauselkopie
 - Effizientere Codierung durch kleinere Matrix
 - Bezug zur Originalformel besser erkennbar



- Indizierte Matrix:
 - Matrix M mit indizierter Paarung
 - Expandierte Form: erweiterte Form mit expliziten Kopien von Klauseln
 - Pfade durch M: Pfade durch expandiente Form von M
- Aufspannende (indizierte) Paarung:
 - Jeder Pfad (durch die indizierte Matrix) enthält eine Konnektion
 - $-\sigma$ -komplementäre aufspannende indizierte Paarungen beweisen Gültigkeit

Matrixcharakterisierung logischer Gültigkeit

Eine Formel F (in Matrixform) ist gültig, wenn es eine zulässige Substitution σ und eine Menge $\mathcal C$ von indizierten σ -komplementären Konnektionen gibt, so daß jeder Pfad durch F eine Konnektion aus $\mathcal C$ enthält

BEWEISSUCHE IM MATRIXKALKÜL

Suche	nach	kompl	lementären	aufspan	nenden	indizierten	Paarung	en

BEWEISSUCHE IM MATRIXKALKÜL

Suche nach komplementären aufspannenden indizierten Paarungen

• Aufbau der Datenstruktur

- Annotierter Formelbaum mit Polaritäten und Typen
- Identifikation aller möglichen Konnektionen

Suche nach komplementären aufspannenden indizierten Paarungen

• Aufbau der Datenstruktur

- Annotierter Formelbaum mit Polaritäten und Typen
- Identifikation aller möglichen Konnektionen

Pfadexploration

- Prüfe ob jeder Pfad durch F mindestens eine Konnektion enthält
- Konnektionenorientiertes Verfahren streicht Gruppen überprüfter Pfade

Suche nach komplementären aufspannenden indizierten Paarungen

• Aufbau der Datenstruktur

- Annotierter Formelbaum mit Polaritäten und Typen
- Identifikation aller möglichen Konnektionen

Pfadexploration

- Prüfe ob jeder Pfad durch F mindestens eine Konnektion enthält
- Konnektionenorientiertes Verfahren streicht Gruppen überprüfter Pfade

Unifikation

- Bestimme Substitution σ , die alle Konnektionen komplementär macht
- Überprüfe Zulässigkeit der Substitution
- Integriere in Pfadexploration

Suche nach komplementären aufspannenden indizierten Paarungen

• Aufbau der Datenstruktur

- Annotierter Formelbaum mit Polaritäten und Typen
- Identifikation aller möglichen Konnektionen

Pfadexploration

- Prüfe ob jeder Pfad durch F mindestens eine Konnektion enthält
- Konnektionenorientiertes Verfahren streicht Gruppen überprüfter Pfade

Unifikation

- Bestimme Substitution σ , die alle Konnektionen komplementär macht
- Überprüfe Zulässigkeit der Substitution
- Integriere in Pfadexploration

• Multiplizitätsbestimmung

– Wo nötig, erhöhe Multiplizität von γ -Knoten dynamisch

Suche nach komplementären aufspannenden indizierten Paarungen

• Aufbau der Datenstruktur

- Annotierter Formelbaum mit Polaritäten und Typen
- Identifikation aller möglichen Konnektionen

Pfadexploration

- Prüfe ob jeder Pfad durch F mindestens eine Konnektion enthält
- Konnektionenorientiertes Verfahren streicht Gruppen überprüfter Pfade

Unifikation

- Bestimme Substitution σ , die alle Konnektionen komplementär macht
- Überprüfe Zulässigkeit der Substitution
- Integriere in Pfadexploration

• Multiplizitätsbestimmung

– Wo nötig, erhöhe Multiplizität von γ -Knoten dynamisch

• Rücktransformation

- Erzeuge Tableaux-/Sequenzenbeweis aus Matrixbeweis