Inferenzmethoden

Einheit 13

Zahlen und Induktion

- 1. Axiomatische Induktionsbehandlung
- 2. Induktion mit Theoriekonnektionen
- 3. Induktionslose Induktion

Induktion

Essentiell für mathematische Beweisführung

• Ermöglicht Schlüsse über unendliche Konzepte

- Aussagen über beliebige Zahlen, Listen, Bäume, Graphen, Mengen, . . .
- Eigenschaften von Programmen (unabhängig von der konkreten Eingabe)

• Grundform: schrittweise Induktion über N

- Gilt P(0) und folgt aus P(x) immer P(x+1), so gilt P für alle Zahlen
- Ubertragbar auf Listen, Bäume, Strings als strukturelle Induktion

• Allgemeine Form: strukturelle Induktion

- Für Konzepte mit aufwendigerer rekursiver Definition
- Gilt P([]) und folgt P(a.l) aus P(l) für jedes a, so gilt P für alle Listen
- Gilt $P(\epsilon)$ und folgt P(wa) aus P(w) für jedes a, so gilt P für alle Strings

• Erweiterung: wohlfundierte Induktion

- Reduktion des Problems mit wohlfundierter Ordnung ≻
- Folgt P(x) wenn P(y) für alle $x \succ y$ gilt, so gilt P für alle Elemente
- Wichtig, wenn Beweisargument "Rückwärtssprünge" macht

Axiomatische Definition natürlicher Zahlen

• Fest definierte Prädikats- und Funktionssymbole

- -N(x): x ist eine natürliche Zahl
- 0: Konstante Null
- -x': Postfix-Anwendung der Nachfolgerfunktion auf x

• Induktionsaxiome für natürliche Zahlen

 $N(0) \\ \forall x[N(x)\Rightarrow N(x')] \\ \forall x[N(x)\Rightarrow x'\neq 0] \\ \forall xy[N(x)\land N(y)\Rightarrow (x'\dot=y'\Rightarrow x\dot=y)] \\ P[0/x] \land \forall y[N(y)\Rightarrow (P[y/x]\Rightarrow P[y'/x])] \\ \Rightarrow \forall x(N(x)\Rightarrow P) \\ \\ \text{Erzeugungsaxiom für Null} \\ \text{Eindeutigkeitsaxiom für Null} \\ \text{Eindeutigkeitsaxiom für Nachfolger} \\ \text{Induktionsschema} \\ \text{für jedes Prädikat zu instantiieren} \\ \\ \text{Fig. 1} \\ \text{Fig. 2} \\ \text{Fig. 2} \\ \text{Fig. 2} \\ \text{Fig. 2} \\ \text{Fig. 3} \\ \text{Fig. 2} \\ \text{Fig. 3} \\ \text{Fig. 3} \\ \text{Fig. 4} \\ \text{Fig. 6} \\ \text{Fig. 6$

$$\begin{array}{lll} x & Induktions variable \\ P[0/x] & Induktions an fang \\ [N(y) \Rightarrow (P[y/x] \Rightarrow P[y'/x])] & Induktions schluß \\ P[y/x] & Induktion shypothese \\ P[y'/x] & Induktion skonklusion \end{array}$$

Axiomatische Induktionsbehandlung

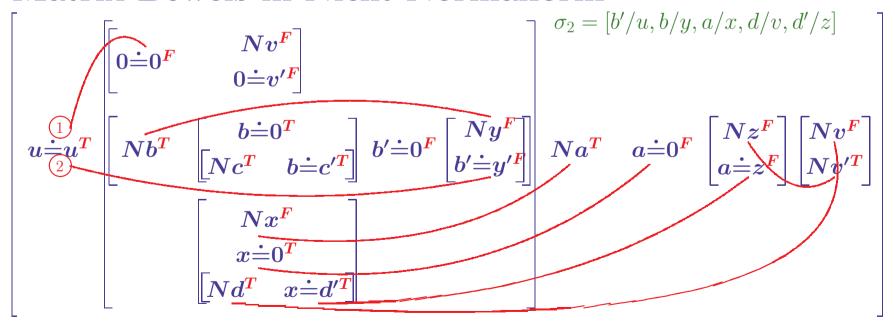
Hinzunahme von Induktionsaxiomen zur Formel

• Beispiel: $x \neq 0 \Rightarrow \exists z (Nz \land x = z')$

Ergänze Gleichheits- und Zahlenaxiome; instantiiere Induktionsschema $\forall u \ u \dot= u$

- $\wedge \quad \forall v \ (N(v) \Rightarrow N(v'))$
- $\{ [0 \neq 0 \Rightarrow \exists v (Nv \land 0 = v')] \land \forall b [Nb \Rightarrow ((b \neq 0 \Rightarrow \exists c (Nc \land b = c')) \Rightarrow (b' \neq 0 \Rightarrow \exists y (Ny \land b' = y')))]$ $\Rightarrow \forall x [Nx \Rightarrow (x \neq 0 \Rightarrow \exists d (Nd \land x = d'))] \}$
- $\Rightarrow \forall a[Na \Rightarrow (a \neq 0 \Rightarrow \exists z(Nz \land a = z'))]$

• Matrix-Beweis in Nicht-Normalform



SUCHENTSCHEIDUNGEN FÜR INDUKTIONSBEWEISE

Automatisierung von Induktionsbeweisen schwierig

• Zusätzliche Alternativen bei der Beweisführung

- 1. Ist es nötig, einen Induktionsbeweis zu führen?
- 2. Ist eine Verallgemeinerung der zu beweisenden Aussage nötig?
- 3. Welche Teilformel ist als Induktionsformel auszuwählen?
- 4. Welche Variable der Induktionsformel soll die Induktionsvariable sein?
- 5. Muß eine geschachtelte Induktion durchgeführt werden?

• Ergibt Suchraum von beträchtlichem Ausmaß

- Fragen 1,2 nur vom menschlichem Systembenutzer zu entscheiden
- Induktionsformel muß engen Zusammenhang zum Beweisziel haben (\mapsto 3)
- Anzahl der möglichen Induktionsvariablen (echte Alternativen) ist klein
- Geschachtelte Induktionen nur, wenn weitere Variablen im Induktionsschluß

• Stärkere heuristische Steuerung möglich

- Strukturanalyse liefert Menge revelanter (Theorie-)Konnektionen

Heuristische Steuerung von Induktionsbeweisen

Verfeinere Matrixcharaktisierung für Induktionsschritt

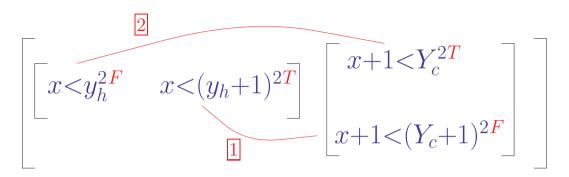
- ullet Induktionsschritt $P[y/x] \Rightarrow P[y'/x]$ ist gerichtet
 - -P[y'/x] muß aus P[y/x] arithmetisch folgen
 - Gerichtete Konnektionen mit Theorieimplikationen ersetzen Unifikatoren
- ullet P[y'/x] ist strukturell ähnlich zu P[y/x]
 - Teilformeln von P[y'/x] entsprechen denen von P[y/x]
 - "Orthogonale" Konnektionen zwischen diesen Teilformeln reichen aus
- ullet $P[y/x] \Rightarrow P[y'/x]$ kann Fallanalyse benötigen
 - z.B. bei $\exists y_h \ x \ge y_h^2 \land x < (y_h + 1)^2 \Rightarrow \exists y \ x + 1 \ge y^2 \land x + 1 < (y + 1)^2$ muß $x + 1 \ge (y_h + 1)^2$ und $x + 1 < (y_h + 1)^2$ unterschieden werden
 - Erlaube verschiedene (Teil-)Beweise unter verschiedenen Constraints
 - Disjunktion aller Constraints muß allgemeingültig sein
 - Constraints sollten dynamisch erzeugt werden

ERWEITERUNG I: GERICHTETE KONNEKTIONEN

- Theorie implikation $\Rightarrow_{\mathcal{T}}$
 - Implikation die in der Theorie $\mathcal T$ gültig ist
- Gerichtete σ -komplementäre Konnektion (L^T, L'^F)
 - Es gilt $\sigma(L) = \sigma(L')$ oder $\sigma(L) \Rightarrow_{\mathcal{T}} \sigma(L')$
 - Richtung geht immer von Polarität T nach F
- ullet Unäre σ -komplementäre Konnektion L^T oder L'^F
 - Es gilt $\sigma(L) \Rightarrow_{\mathcal{T}} \mathsf{False}$ bzw. True $\Rightarrow_{\mathcal{T}} \sigma(L')$
 - Gültigkeit folgt alleine aus der Theorie, ohne Gegenliteral

Eine Formel F ist gültig in einer Theorie \mathcal{T} , wenn es eine Multiplizität μ , eine zulässige Substitution σ und eine Menge \mathcal{C} von (bezüglich \mathcal{T}) σ -komplementären gerichteten Konnektionen gibt, so daß jeder Pfad durch F eine Konnektion aus \mathcal{C} enthält

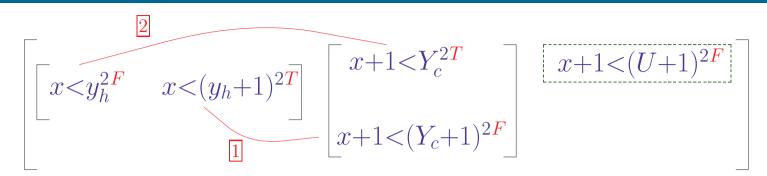
ERWEITERUNG II: ORTHOGONALE KONNEKTIONEN



- ullet (Bezüglich x) Orthogonale Formel $F \equiv H \Rightarrow C$
 - Formel für die entweder $C=H[\rho(x)/x]$ oder $H=C[\rho(x)/x]$ gilt für eine Substitution ρ
 - H und C haben dieselbe Struktur
- Orthogonale Konnektion (L^T, L'^F) in $F \equiv H \Rightarrow C$
 - $-(L^T, L'^F)$ ist eine gerichtete Konnektion
 - -L hat in H dieselbe relative Position wie L' in C

Eine orthogonale Formel F ist gültig (in \mathcal{T}), wenn es eine zulässige Substitution σ gibt, so daß alle orthogonalen Konnektionen in F σ -komplementär sind

ERWEITERUNG III: CONSTRAINTS (1)



- ullet Formel F ist σ -komplementär unter Constraint c
 - Jeder Pfad durch F und c ist σ -komplementär
 - Der Constraint $x+1<(U+1)^{2F}$ macht den Induktionsschritt gültig
- \bullet $\{c_1, ..., c_n\}$ vollständige Menge von Constraints
 - $-\forall x_1...x_k \ c_1 \lor ... \lor c_n$ gültig, wobei $x_1...x_k$ alle freien Variablen der c_i
 - $\{ x+1 < (U+1)^{2F}, x+1 < (U+1)^{2T} \}$ wäre vollständig

Eine Formel F ist gültig, wenn es eine vollständige Menge von Constraints $\{c_1,...,c_n\}$ und eine zulässige Substitution σ gibt, so daß F unter jedem Constraint c_i σ -komplementär ist

ERWEITERUNG III: CONSTRAINTS (2)

Wenn alle orthogonalen Konnektionen in einer orthogonalen Formel F unter einem atomaren Constraint c^j komplementär sind, dann ist F komplementär unter dem Constraint $(c^1 \wedge ... \wedge c^k)$

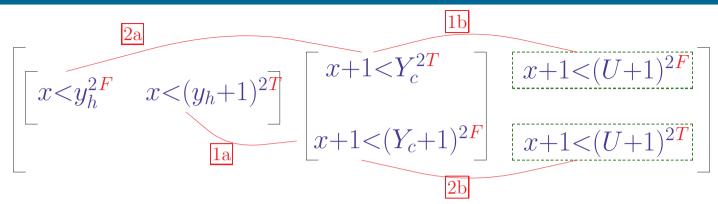
ullet Konnektion (L^T, L'^F) komplementär unter c^j

- $-(L^T, L'^F)$ oder (c^j, L'^F) oder (L^T, c^j) ist komplementär
- Jede Konnektion kann auf diese Art komplementär gemacht werden

• Constraints liefern iterative Beweismethode

- Überprüfe orthogonale Konnektionen
- Extrahiere atomaren Constraint c^j aus nichtkomplementärer Konnektion
- -F wird komplementär unter $\mathbf{c} = (c^1 \wedge ... \wedge c^k)$
- Prüfe Komplementärität von F unter $\neg c$

Induktionsbeweis für das Integerquadratwurzelproblem



- Erster Teilbeweis mit orthogonalen Konnektionen
 - 1a Theorieunifikation mit Rewriting liefert $\sigma_1 = [y_h + 1/Y_c]$
 - Ib Zweite Konnektion nicht komplementär \rightarrow Constraint $x+1<(y_h+1)^{2F}$
- Zweiter Teilbeweis unter Constraint $x+1<(y_h+1)^{2T}$
 - Коппекtion mit Constraint ergibt $\sigma_2 = [y_h/Y_c]$ durch Unifikation
 - 2a Instantiierte zweite Konnektion ist komplementär in der Arithmetik
- Beweis beschreibt implizit einen Algorithmus

Entscheidungsprozeduren für die Arithmetik

• Notwendig für praktische Beweisführung

- Arithmetisches Schließen taucht fast überall auf
- Arithmetische Aussagen tauchen in vielen Erscheinungsformen auf

$$x+1 < y \land 0 < t \Rightarrow (x+1)*t < y*t$$
 entspricht $x < y \land 0 < t \Rightarrow x*t < y*t$ und $x < y \land 0 \le t \Rightarrow x*(t+1) < y*(t+1)$ und $x+1 \le y \land 0 < t \Rightarrow x*t < y*t$

- Formale Beweise simpler arithmetischer Aussagen sind nicht leicht "Wenn drei ganze Zahlen sich jeweils um maximal 1 unterscheiden, dann sind zwei von ihnen gleich"

• Formale Arithmetik ist unentscheidbar

- Theorie ist gleichmächtig mit Theorie der berechenbaren Funktionen
- Allgemeine Arithmetik ist nicht einmal vollständig axiomatisierbar Entscheidungsprozeduren sind nur für eingeschränkte Arithmetik möglich

Arith: Induktionsfreie Arithmetik

Entscheide arithmetische Probleme der Theorie A

• Syntax: elementar-arithmetische Formeln

- Terme aufgebaut aus ganzzahligen Konstanten, Variablen und +, -, * Andersartige Terme werden als Konstanten betrachtet
- Atomare Formeln: $t_1 \rho t_2$, wobei t_i Terme, $\rho \in \{<, \leq, >, \geq, =, \neq\}$
- Formeln aufgebaut aus atomaren Formen mit \neg , \land , \lor und \Rightarrow
- Variablen sind implizit all-quantifiziert

• Semantik charakterisiert durch Axiome

- 1. Gleichheitsaxiome mit eingeschränkter Substitutivität
- 2. Axiome der Konstantenarithmetik
- 3. Ringaxiome der ganzen Zahlen
- 4. Axiome der diskreten linearen Ordnung
- 5. Definitionsaxiome für Ordnungsrelationen und Ungleichheiten
- 6. Monotonieaxiome

• A ist als entscheidbar bekannt

– Mathematischer Beweis liefert ein ineffizientes Entscheidungsverfahren

Arith: Arbeitsweise

Ausgangsformel: $A_1 \wedge \ldots \wedge A_n \Rightarrow C_1 \vee \ldots \vee C_m \quad (A_i, C_i \text{ atomar})$

- 1. Normalisiere Formel für Widerspruchsbeweis
 - Ziel ist Widerlegung von $A_1, \ldots, A_n, \neg C_1, \ldots, \neg C_m$
- 2. Entferne Literale ohne atomare arithmetische Formeln
 - Ersetze Teilterme, die nicht die Syntax von \mathcal{A} erfüllen, durch Variablen
- 3. Transformiere Ungleichungen $x\neq y$ in $x\geq y+1 \vee y\geq x+1$
 - Erzeuge DNF und betrachte alle Klauseln separat
- 4. Transformiere Terme in monadische lineare Polynome $(c+u_i)$
 - Transformiere zunächst alle Komparanden in Standardpolynome
 - Ersetze nicht-konstante Anteile der Polynome durch neue Variablen
- 5. Konvertiere Literale in Ungleichungen der Gestalt $u_i \ge c + u_i$ (u_i) ist eine Variable oder die Zahl 0
- 6. Erzeuge den Ordnungsgraphen der Klausel
 - Ein Knoten für jede Variablen oder Konstante;
 - Eine Kante $u_i \xrightarrow{c} u_j$ repräsentiert $u_i \ge c + u_j$
- 7. Teste Existenz positiver Zyklen im Graph (Standardalgorithmus)
 - Positive Zyklen entsprechen einer widersprüchlichen Klausel

Arith Arbeitsweise: Beispiel 1

Beweise
$$x+1 < y^2 \Rightarrow x < y^2$$

- 1. Erzeuge Formel für Widerspruchsbeweis: $x+1 < y^2$, $\neg(x < y^2)$ Nach Auflösung der Negation $x+1 < y^2$, $x \ge y^2$
- 2. Entferne Literale ohne atomare arithmetische Formeln
- 3. Transformiere Ungleichungen $x\neq y$ in $x\geq y+1$ $\forall y\geq x+1$
- 4. Transformiere Terme in monadische lineare Polynome x+1<u, x \geq u
- 5. Konvertiere in Ungleichungen der Gestalt $u_i \ge c + u_j$ $u \ge 2 + x, \ x \ge 0 + u$
- 6. Erzeuge den Ordnungsgraphen der Klausel 2
- 7. Standardalgorithmus findet positiven Zyklus im Graphen Ausgangsformel war gültig

Arith Arbeitsweise: Beispiel 2

Beweise
$$z-1<(x+y)^2 \land (x+y)^2 < z+1 \Rightarrow z=(x+y)^2$$

- 1. Erzeuge Beweisklausel: $z-1<(x+y)^2$, $(x+y)^2< z+1$, $z\neq (x+y)^2$
- 2. Entferne Literale ohne atomare arithmetische Formeln
- 3. Transformiere Ungleichungen $x\neq y$ in $x\geq y+1$ $\forall y\geq x+1$

1.
$$z-1<(x+y)^2$$
, $(x+y)^2< z+1$, $z<(x+y)^2$

2.
$$z-1<(x+y)^2$$
, $(x+y)^2, $z>(x+y)^2$$

4. Transformiere Terme in monadische lineare Polynome

$$1. z-1 < u, u < z+1, z < u$$

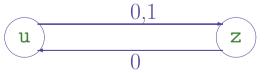
$$2. z-1 < u, u < z+1, z > u$$

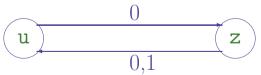
5. Konvertiere in Ungleichungen der Gestalt $u_i \ge c + u_j$

$$1. u \ge 0+z, z \ge 0+u, u \ge 1+z$$

$$2. u \ge 0+z, z \ge 0+u, z \ge 1+u$$

6. Erzeuge die Ordnungsgraphen der Klauseln





7. Standardalgorithmus findet je einen positiven Zyklus

Ausgangsformel war gültig

Andere Arten der Induktionsbehandlung

• Verwendung von wohlfundierter Induktion

- $-P[0/x] \land \forall y[N(y) \Rightarrow (P[y/x] \Rightarrow P[y'/x])] \Rightarrow \forall x(N(x) \Rightarrow P)$
- Standardinduktion führt zu einfach strukturierter Beweisführung
- $-\forall x(N(x) \Rightarrow \forall y[N(y) \Rightarrow (x \succ y \Rightarrow P[y/x])] \Rightarrow F) \Rightarrow F$
- Vollständige Induktion liefert elegantere Beweise, gleiche Beweisstärke
- Ordnung ≻ muß wohlfundiert sein

Konnektionsschemata f ür Induktion

- Das Extensionsverfahren mit Axiomen ist nicht vollständig Für Induktionsbeweise gilt kein Schnitteliminationssatz)
- Gegenstück zur Induktionsregel des Sequenzenkalküls erforderlich
- Unterstützung durch arithmetische Theoriekonnektionen

• Definition von Zahlen in Logik zweiter Stufe

- Kein Induktionsschema erforderlich
- Eleganter und vollständig, aber schwerer zu automatisieren Schnittelimination gilt für definierte Konzepte

Induktionslose Induktion mit Rewriting

ullet Bedeutung von $\forall xF$ beschränkt auf Zahlen

- Nur Grundterme, die Zahlen darstellen (0, 0', 0",...), einzusetzen
- Logischer Allquantor gilt uneingeschränkt für alle Terme
- "Beweise" Aussagen durch Termersetzung mit vollständigem Regelsystem

• Superpositions beweise für $s_1 = t_1, ..., s_n = t_n \implies s = t$

- Erzeuge vollständiges Regelsystem \mathcal{R} für $s_1=t_1,\ldots,s_n=t_n$
- Zeige, daß Vervollständigung mit s=t das System $\mathcal R$ nicht erweitert
- -s=t muß bereits ableitbar gewesen sein
- Nur Terme aus zur Verfügung stehenden Symbolen werden betrachtet

$$\vdash 0+x=x \land y'+z=(y+z)' \Rightarrow \forall uvw(u+v)+w=u+(v+w)$$

- Regeln: $0+x \to x$, $y'+z \to (y+z)'$ liefern $(u+v)+w \to u+(v+w)$
- Erweitertes Regelsystem ist 'Quasi-reduzierbar'

• Quasi-Reduzierbarkeit (aufwendig) entscheidbar

– Es gibt einfache hinreichende syntaktische Bedingungen an Form der Regeln