Inferenzmethoden

${\bf Teil~IV}$

Jenseits von Prädikatenlogik

Es gibt mehr als Klassische Prädikatenlogik

• Konstruktive Logik: mehr als nur Wahrheit

- Interpretiere logische Symbole als Konstruktion eines Nachweises
- Gut verwendbar als Logik der Berechnung und Programmierung
- Ursprünglicher Name: Intuitionistische Logik

• Modallogiken: zusätzliche Quantoren \diamondsuit , \square

- Ist Gültigkeit einer Aussage möglich oder zwingend notwendig?

• Logik höherer Stufe: freie Quantifizierung

– Formeln dürfen auch über Funktionen und Prädikate quantifizieren

• ... und noch vieles mehr

- Lineare, nichtmonotone, Relevanz-, Beschreibungs-, Temporallogik, . . .
- Kombinationen: konstruktive Logik höherer Stufe, Typentheorie, ...

Lassen sich Beweisverfahren entsprechend anpassen?

Voraussetzungen für nichtklassisches Beweisen

• Normalformen sind nicht immer möglich

- In konstruktiver Logik ist jede Formel in DNF ungültig
 - · Eine Klausel müsste, für sich alleine betrachtet, gültig sein
- In linearer Logik gibt es mehrere Konjunktionsbegriffe

• Beweise müssen mehr Information enthalten

- In konstruktiver Logik enthalten Beweise algorithmische Lösungen
- In Modallogiken entstehen gesicherte Aussagen aus Möglichkeiten
- Lineare Logik beschreibt die Verarbeitung von Ressourcen

• Konnektionsmethode muß erweitert werden

- Beweissuchverfahren für Nichtnormalform-Matrizen
- Verwaltung logik-spezifischer Zusatzinformation in den Literalen und Verallgemeinerung des Komplementaritätsbegriffs
- Komplementaritätstest mit erweiterten Unifikationsverfahren

Inferenzmethoden

Einheit 14

Die Konnektionsmethode: Behandlung von Nicht-Normalform-Matrizen

- 1. Anpassung der Grundkonzepte
- 2. Verfahren für Nicht-Normalform-Matrizen
- 3. Pfadexploration auf Formelbäumen

Deduktion ohne Normalformbildung

• Normalform-Matrizen sind zu einfach

- Matrix \equiv Menge von Klauseln in α -Beziehung
- Klausel \equiv Menge von Literalen in β -Beziehung
- Im Formelbaum müssten alle α -Knoten vor den β -Knoten erscheinen
- Nur wenige Formeln werden von Normalform-Matrizen repräsentiert

• Normalisierung ist "unnatürlich"

– Oft exponentielle Aufblähung der Formel

→ Effizienzprobleme

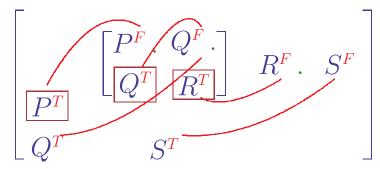
- Originalformel selten rekonstruierbar
- \mapsto Unverständliche Beweise
- Normalformtransformationen jenseits von Prädikatenlogik kaum möglich

• Erweitere Extensionsverfahren auf Formelbäume

- Verwende allgemeine Konzepte anstelle der vereinfachten Klauselform
- Matrizen sind komplexer (Mengen von Matrizen kleinerer Tiefe)
- Pfadbegriff ist feiner (Menge von Literalen in α -Beziehung)
- Aufwendigere Pfadüberprüfung sonst keine grundsätzliche Anderung

NICHT-NORMALFORM - WAS MUSS ANGEPASST WERDEN?

• Wichtige Änderungen in der Aussagenlogik

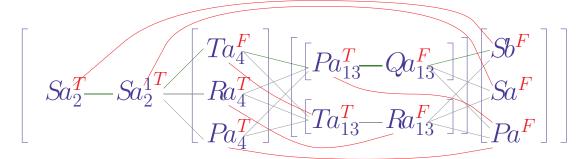


- Welche Literale gehören zum aktuellen Pfad?
- Was ist die "aktuelle Klausel"?
- Extension: Welcher Teil der Matrix kann noch konnektiert werden?
- Bereinigung: Wann ist eine "Klausel" abgeschlossen

• Keine zusätzlichen Änderungen für Prädikatenlogik

$$\begin{bmatrix} Sa_2^T & Sa_2^{1T} & \begin{bmatrix} Ta_4^F \\ Ra_4^T \\ Pa_4^T \end{bmatrix} & \begin{bmatrix} Pa_{13}^T & Qa_{13}^F \\ Ra_{13}^F \end{bmatrix} \end{bmatrix} \begin{bmatrix} Sb^F \\ Sa^F \\ Pa^F \end{bmatrix} \end{bmatrix} \begin{bmatrix} b/a_2, a/a_2^1, a/a_{13}, a/a_4 \end{bmatrix}$$

Grundkonzepte des Matrixkalküls wiederholt



• α/β -Beziehung zwischen Literalen

- $-\, {\pmb u} \! \sim_{\alpha} \! {\pmb v} \! : u \! \neq \! v$ und größter gemeinsamer Vorfahr im Formelbaum hat Typ α
- $-\mathbf{u}\sim_{\beta}\mathbf{v}$: $u\neq v$ und größter gemeinsamer Vorfahr im Formelbaum hat Typ β

• Matrix (der Tiefe n)

- Literal oder Menge von Matrizen der maximalen Tiefe n-1
- Submatrizen stehen in α bzw. β -Beziehung (gerade/ungerade Tiefe)
- Präsentation: α -Beziehungen nebeneinander, β -Beziehungen übereinander

Pfad

- (Maximale) Menge von Literalen in gegenseitiger α -Beziehung
- Implementierung verwendet induktive Definition auf Formelbaum

\bullet σ -komplementäre Konnektion

– Paar $\{X_1^T, X_2^F\}$ von Literalen, deren Formeln unter σ gleich sind

Allgemeines Extensionsverfahren: Grundkonzepte

- Aktueller (aktiver) Pfad \mathcal{P}
 - Nichtkomplementäre Menge von Literalen in gegenseitiger α -Beziehung
- ullet Offene Teilmatrix $\mathcal{M}_{\mathcal{P}}$

៌ ungenutzter Teil der Matrix

- Menge von Literalen, die zum aktuellen Pfad \mathcal{P} in α -Beziehung stehen
- Teilziel

= (Teil-)Klausel

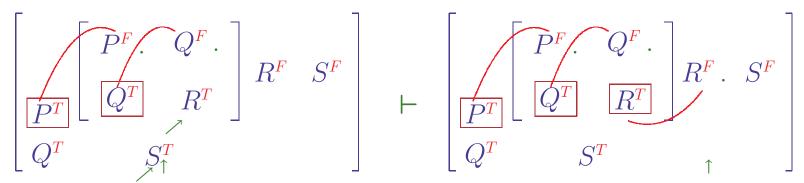
- Menge von Literalen in gegenseitiger β -Beziehung
- $-C_{\beta}(L, \mathcal{P})$: maximales Teilziel in $\mathcal{M}_{\mathcal{P}}$, das L enthält $\hat{}$ $\hat{}$ Klausel von L

ullet Aktuelles (aktives) Teilziel \mathcal{C} (zu \mathcal{P})

 $\hat{=}$ abgeschlossene Literale der aktuellen Klausel

- Teilziel, das ausschließlich aus Literalen der offenen Teilmatrix besteht
- ullet Aktives Ziel $(\mathcal{P}, \mathcal{C})$
 - Aktueller Pfad ${\mathcal P}$ und passendes aktuelles Teilziel ${\mathcal C}$
- ullet Offenes Ziel $\mathcal E$ (zu $(\mathcal P,\mathcal C)$) $\hat{}$ offene Literale der aktuellen Klausel
 - Menge der Literale der offenen Teilmatrix, die zu \mathcal{C} in β -Beziehung stehen
 - Eindeutig durch die Matrix und das aktive Ziel $(\mathcal{P}, \mathcal{C})$ bestimmt

Extensionsschritt auf Nicht-Normalform-Matrizen



↑ markiert aktuelle "Klausel"

 \overline{P} markiert Literale des **aktuellen Pfades** \overline{P}

 \nearrow markiert Literale des offenen Ziels ${\cal E}$

. markiert abgeschlossene Teilpfade

1. Wähle ein Literal L des zu $(\mathcal{P},\mathcal{C})$ offenen Ziels \mathcal{E}

markiert mit /

2. Erweitere den aktuellen Pfad ${\cal P}$ um L

markiere mit Box L

- 3. Wähle ein mit L konnektiertes Literal \bar{L} der offenen Teilmatrix Vermerke Alternativen in Alternativenmenge
- 4. Wähle Teilmenge $\mathcal C$ der zu $\bar L$ in β -Beziehung stehenden Literale, die mit dem aktuellen Pfad $\mathcal P$ konnektiert sind, und eine Substitution ρ , welche die mit σ modifizierten Konnektionen komplementär macht markiere mit .
 - Erweitere σ mit ρ ; vermerke alternative Teilmengen und Substitutionen
 - Breche den Extensionsschritt ab, falls es keine solche Teilmenge gibt

Extensionsbeweis auf Nicht-Normalform Matrizen

$$\begin{bmatrix} P^F & Q^F \\ Q^T & R^T \\ Q^T & S^T \end{bmatrix} & R^F & S^F \\ P^T & Q^T & R^T \end{bmatrix} & R^F & S^F \\ P^T & Q^T & R^T \\ P^T & Q^T & R^T \end{bmatrix} & R^F & S^F \\ P^T & Q^T & R^T \\ P^T & Q^T & R^T \end{bmatrix} & R^F & S^F \\ P^T & Q^T & R^T \\ P^T & Q^T & R^T \end{bmatrix} & R^F & R^F & R^F \\ P^T & Q^T & R^T \end{bmatrix} & R^F & R^F & R^F \\ P^T & Q^T & R^T \end{bmatrix} & R^F & R^F & R^F \\ P^T & Q^T & R^T \end{bmatrix} & R^F & R^F & R^F \\ P^T & Q^T & R^T \end{bmatrix} & R^F & R^F & R^F \\ P^T & Q^T & R^T \end{bmatrix} & R^F & R^F & R^F \\ P^T & Q^T & R^T \end{bmatrix} & R^F & R^F & R^F \\ P^T & Q^T & R^T \end{bmatrix} & R^F & R^F & R^F \\ P^T & R^T & R^T \\ P^T & R^$$

Ein uniformes Verfahren für Formelbäume

• CP₁-ähnliches Beweisverfahren ist kompliziert

- Trickreiche Erweiterung des klauselbasierten Verfahrens → Bibel 1987
- Schwer als korrekt und vollständig zu beweisen

• 2-D Matrizen sind nur eine Illustration

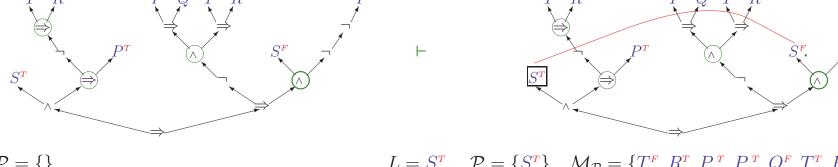
- Markierungen \uparrow , \nearrow L, . sind nur optische Hilfsmittel
- Implementiertes Verfahren verarbeitet Verwaltungsvariablen
 für aktuelle Pfade, offene Ziele, offene Teilmatrix, Konnektionen, etc

• Beschreibe Prozedur mit Formelbaumkonzepten

- Herleitung des Verfahrens direkt aus dem Charakterisierungstheorem
- Korrektheit und Vollständigkeit "leicht" zu beweisen
- Methodik auch jenseits von Prädikatenlogik erster Stufe anwendbar

Details in Fachaufsätzen auf der Veranstaltungswebseite

Reformulierung des Extensionsschritts



$$\mathcal{P} = \{\}$$

$$L = S^{T}, \quad \mathcal{P} = \{S^{T}\}, \quad \mathcal{M}_{\mathcal{P}} = \{T^{F}, R^{T}, P_{1}^{T}, P_{2}^{T}, Q^{F}, T^{T}, R^{F}, S^{F}, P^{F}\}$$

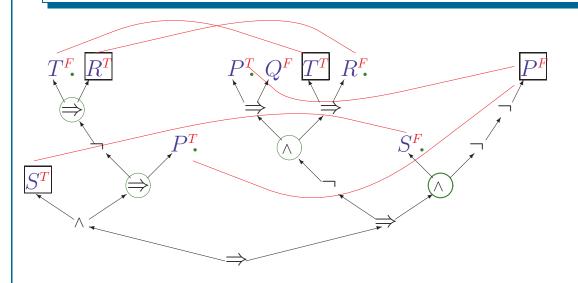
$$\bar{L} = S^{F}, \quad C_{\beta}(\bar{L}) = \{S^{F}, P^{F}\}, \quad \mathcal{C} = \{S^{F}\}$$

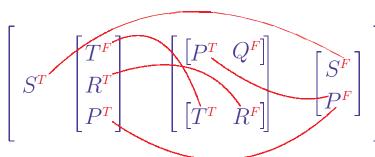
$$\mathcal{E} = \{S^{T}, T^{F}, R^{T}, P_{1}^{T}, P_{2}^{T}, Q^{F}, T^{T}, R^{F}, S^{F}, P^{F}\}$$

$$\mathcal{E} = \{P^{F}\}$$

- 1. Wähle ein Literal L des zu $(\mathcal{P},\mathcal{C})$ offenen Ziels \mathcal{E}
- 2. Erweitere den aktuellen Pfad \mathcal{P} um L
- 3. Wähle ein mit L konnektiertes Literal \bar{L} der offenen Teilmatrix Vermerke Alternativen in Alternativenmenge
- 4. Wähle Teilmenge $\mathcal C$ der Literale von $C_{\beta}(\bar L,\mathcal P)$, die mit dem aktuellen Pfad $\mathcal P$ konnektiert sind, und eine Substitution ρ , welche die mit σ modifizierten Konnektionen komplementär macht
 - Erweitere σ mit ρ und vermerke alternative Teilmengen und Substitutionen
 - Breche den Extensionsschritt ab, falls es keine solche Teilmenge gibt

Extensionsbeweis auf Formelbäumen am Beispiel





Start	$\mathcal{P} = \{\}$ $\mathcal{C} = \{\}$ $\mathcal{E} = \{S^{T}, T^{F}, R^{T}, P_{1}^{T}, P_{2}^{T}, Q^{F}, T^{T}, R^{F}, S^{F}, P^{F}\}$
Erster Schritt	$L = S^{T}, \ \mathcal{P} = \{S^{T}\}, \ \mathcal{M}_{\mathcal{P}} = \{T^{F}, R^{T}, P_{1}^{T}, P_{2}^{T}, Q^{F}, T^{T}, R^{F}, S^{F}, P^{F}\}$ $\bar{L} = S^{F}, \ C_{\beta}(\bar{L}) = \{S^{F}, P^{F}\}, \ \mathcal{C} = \{S^{F}\}, \ \mathcal{E} = \{P^{F}\}$
	$\bar{L} = S^{F}, C_{\beta}(\bar{L}) = \{S^{F}, P^{F}\}, C = \{S^{F}\}, \mathcal{E} = \{P^{F}\}$
Zweiter Schritt	
	$\bar{L} = P_2^T$, $C_{\beta}(\bar{L}) = \{P_2^T, T^T, R^F\}$, $C = \{P_2^T\}$, $\mathcal{E} = \{T^T, R^F\}$
Dritter Schritt	$L = T^{T}, \ \mathcal{P} = \{S^{T}, P^{F}, T^{T}\}, \ \mathcal{M}_{\mathcal{P}} = \{T^{F}, R^{T}, P_{1}^{T}, R^{F}\}$
	$\bar{L} = T^{F}, C_{\beta}(\bar{L}) = \{T^{F}, R^{T}, P^{T}\}, C = \{T^{F}, P^{T}\}, \mathcal{E} = \{R^{T}\}$
Vierter Schritt	$L = R^{\mathbf{T}}, \ \mathcal{P} = \{S^{\mathbf{T}}, P^{\mathbf{F}}, T^{\mathbf{T}}, R^{\mathbf{T}}\}, \ \mathcal{M}_{\mathcal{P}} = \{R^{\mathbf{F}}\}$
	$\bar{L} = R^{F}, C_{\beta}(\bar{L}) = \{R^{F}\}, \mathcal{C} = \{R^{F}\}, \mathcal{E} = \{\}$

Beweisbarkeit algorithmisch

- Beweisbarkeit von $(\mathcal{P}, \mathcal{C})$ (bezüglich F)
 - Alle Pfade, die $\mathcal{P} \cup \{v\}$ für ein Literal $v \in \mathcal{E}$ erweitern, sind komplementär unter einer Substitution σ
 - Entspricht Gültigkeit der verbleibenden Teilmatrix
- Satz: F gültig g.d.w. aktives Ziel (\emptyset,\emptyset) beweisbar ... für eine Multiplizität μ und eine zulässige Substitution σ Beweis des Satzes stützt sich auf das Charakterisierungstheorem
- Satz: Ein aktives Ziel $(\mathcal{P}, \mathcal{C})$ ist beweisbar g.d.w.
 - (1) Das offene Ziel \mathcal{E} ist leer, oder
 - (2) Für ein $L \in \mathcal{E}$ ist $(\mathcal{P}, \mathcal{C} \cup \{L\})$ beweisbar und es gibt eine komplementäre Konnektion $\{L, \bar{L}\}$ mit $\bar{L} \in \mathcal{P}$, oder $\bar{L} \sim_{\alpha} \mathcal{P} \cup \{L\} \text{ und } (\mathcal{P} \cup \{L\}, \{\bar{L}\}) \text{ beweisbar}$

Grundlage für Beschreibung des Extensionsverfahrens auf Formelbäumen

Das uniforme Pfadsuchverfahren (funktional)

```
\bullet prove (F, n)
             = \begin{cases} \text{provable}(\emptyset, \emptyset, []) \\ \text{wobei } \mu, \mathcal{CON} = (n, \text{connections}(F^{\mu})) \\ \text{prove}(F, n+1) \end{cases}
                                                                                                                                                                                                             falls dies erfolgreich ist
                                                                                                                                                                                                              sonst
ullet provable(\mathcal{P},\mathcal{C},\sigma)
             = \begin{cases} \text{check-extension}(\mathcal{E}, \sigma) \\ \text{wobei } \mathcal{E} = \{ v \in F \mid v \sim_{\alpha} \mathcal{P} \land v \sim_{\beta} \mathcal{C} \} \end{cases}
                                                                                                                                                                                                              falls \mathcal{E}\neq\emptyset
                                                                                                                                                                                                              sonst
• check-extension(\mathcal{E}, \sigma)
             = \begin{cases} \text{check-connections}(\mathcal{D}, A, \sigma) & \textit{falls dies erfolgressive} \\ \text{wobei } A \in \mathcal{E} \text{ beliebig, und} \\ \mathcal{D} = \{\bar{A} \in F \mid \{A, \bar{A}\} \in \mathcal{CON} \land (\bar{A} \in \mathcal{P} \lor \bar{A} \sim_{\alpha} (\mathcal{P} \cup \{A\}))\} \\ \text{check-extension}(\{v \in \mathcal{E} | v \sim_{\alpha} A\}, \sigma) & \textit{sonst (und } \mathcal{E} \neq \emptyset) \end{cases}
                                                                                                                                                                                                             falls dies erfolgreich ist
• check-connections(\mathcal{D}, A, \sigma)
                                                                                                                                                                  falls dies erfolgreich ist
                                provable(\mathcal{P}, \mathcal{C} \cup \{A\}, \sigma_2)
            = \begin{cases} \text{wobei } \bar{A} \in \mathcal{D} \text{ beliebig, } \sigma_1 = \text{unify-check}(A, \bar{A}, F^{\mu}, \sigma) \\ \text{und } \sigma_2 = \begin{cases} \sigma_1 & falls \ \bar{A} \in \mathcal{P} \\ \text{provable}(\mathcal{P} \cup \{A\}, \{\bar{A}\}, \sigma_1) & sonst \end{cases} \\ \text{check-connections}(\mathcal{D} - \{\bar{A}\}, A, \sigma) & sonst \ (und \ \mathcal{D} \neq \emptyset) \end{cases}
```

Korrektheit & Vollständigkeit

Eine Formel F ist genau dann prädikatenlogisch gültig, wenn prove(F,1) mit einer geeigneten Unifikations- und Zulässigkeitsprüfung unify-check erfolgreich terminiert

\bullet prove (F,1) beweist F oder terminiert nicht

- Ist F gültig, so liefert prove (F, 1) eine zulässige Substitution, die alle Pfade komplementär macht
- Ist F nicht gültig, so wird die Multiplizität unendlich oft erhöht

• Korrektheitsbeweis durch simultane Induktion

- Abgestützt auf die Sätze über Beweisbarkeit aktiver Ziele

• Implementierung in funktionaler/logischer Sprache

- Rekursive Verwaltung der Alternativen durch den Compiler
- Imperative Implementierung erfordert höheren Verwaltungsaufwand und ist fehleranfälliger