Inferenzmethoden

Einheit 16

Modallogiken

- 1. Syntax & Semantik
- 2. Erweiterung des Extensionsverfahrens

• Erweiterung der Prädikatenlogik um 'Modalitäten'

- Modellierung von Schlußfolgerungen, die im Alltag verwendet werden
 - \cdot Formel F ist beweisbar
 - \cdot Ich bin sicher oder glaube, daß F gilt
 - \cdot Möglicherweise ist F gültig

- Erweiterung der Prädikatenlogik um 'Modalitäten'
 - Modellierung von Schlußfolgerungen, die im Alltag verwendet werden
 - \cdot Formel F ist beweisbar
 - \cdot Ich bin sicher oder glaube, daß F gilt
 - \cdot Möglicherweise ist F gültig
- Syntax: Prädikatenlogik + Modaloperatoren □, ⋄
 - $-\Box$, \diamond sind Meta-Operatoren, die Aussagen über Formeln treffen
 - Lesart: $\square F$: "notwendigerweise F" $\diamond F$: "möglicherweise F"

- Erweiterung der Prädikatenlogik um 'Modalitäten'
 - Modellierung von Schlußfolgerungen, die im Alltag verwendet werden
 - \cdot Formel F ist beweisbar
 - \cdot Ich bin sicher oder glaube, daß F gilt
 - \cdot Möglicherweise ist F gültig
- Syntax: Prädikatenlogik + Modaloperatoren □, ◊
 - $-\Box$, \diamond sind Meta-Operatoren, die Aussagen über Formeln treffen
 - Lesart: $\square F$: "notwendigerweise F" $\diamond F$: "möglicherweise F"
- Semantik abhängig von vorgesehener Anwendung
 - Je nachdem, ob □ als "beweisbar", "wissen", "glauben" verstanden wird
 - $-(\forall x \Box Px) \Rightarrow \Box(\exists x Px)$ ist nicht für jede Interpretation gültig

• Erweiterung der Prädikatenlogik um 'Modalitäten'

- Modellierung von Schlußfolgerungen, die im Alltag verwendet werden
 - \cdot Formel F ist beweisbar
 - \cdot Ich bin sicher oder glaube, daß F gilt
 - \cdot Möglicherweise ist F gültig

Syntax: Prädikatenlogik + Modaloperatoren □, ◊

- $-\Box$, \diamond sind Meta-Operatoren, die Aussagen über Formeln treffen
- Lesart: $\square F$: "notwendigerweise F" $\diamond F$: "möglicherweise F"

• Semantik abhängig von vorgesehener Anwendung

- Je nachdem, ob □ als "beweisbar", "wissen", "glauben" verstanden wird
- $-(\forall x \Box Px) \Rightarrow \Box(\exists x Px)$ ist nicht für jede Interpretation gültig

• Beweisverfahren:

- (Erweiterte) Sequenzenkalküle
- Konnektionsbeweiser + Transformation der Formeln in Prädikatenlogik
- Modifizierter Konnektionsbeweiser mit Präfixen für Modaloperatoren

Semantik von Modallogiken

• Interpretation von Formeln abhängig von Welten

- In der Prädikatenlogik wird eine unveränderliche Welt modelliert
- Modaloperatoren interpretieren relativ zu denkbaren Welten
 - · mögliche zukünftige Entwicklung
 - · mögliche vergangene Ereignisse
 - · mögliche Wissens- oder Glaubenszustände
 - · mathematische Theorien der Beweisbarkeit

Semantik von Modallogiken

• Interpretation von Formeln abhängig von Welten

- In der Prädikatenlogik wird eine unveränderliche Welt modelliert
- Modaloperatoren interpretieren relativ zu denkbaren Welten
 - · mögliche zukünftige Entwicklung
 - · mögliche vergangene Ereignisse
 - · mögliche Wissens- oder Glaubenszustände
 - · mathematische Theorien der Beweisbarkeit

ullet Kripke Semantik über Weltmodelle $(\mathcal{W}, \mathcal{R}, \mathcal{U}, u)$

- $-\mathcal{W}$: Menge der (denkbaren) Welten
- -R: Erreichbarkeitsrelation zwischen Welten aus \mathcal{W}
- U: Universum aller Objekte aller Welten
- $-u:\mathcal{W}\to\mathcal{P}(U):u(w) = \text{die in Welt } w \text{ existierenden Objekte}$

Semantik von Modallogiken

• Interpretation von Formeln abhängig von Welten

- In der Prädikatenlogik wird eine unveränderliche Welt modelliert
- Modaloperatoren interpretieren relativ zu denkbaren Welten
 - · mögliche zukünftige Entwicklung
 - · mögliche vergangene Ereignisse
 - · mögliche Wissens- oder Glaubenszustände
 - · mathematische Theorien der Beweisbarkeit

ullet Kripke Semantik über Weltmodelle $(\mathcal{W}, \mathcal{R}, \mathcal{U}, u)$

- $-\mathcal{W}$: Menge der (denkbaren) Welten
- -R: Erreichbarkeitsrelation zwischen Welten aus \mathcal{W}
- U: Universum aller Objekte aller Welten
- $-u:\mathcal{W}\to\mathcal{P}(U):u(w)=$ die in Welt w existierenden Objekte

Eigenschaften von R bestimmen Bedeutung der Modaloperatoren

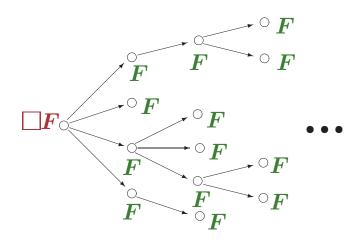
Betrachte von aktueller Welt erreichbare Welten

Inferenzmethoden 816

Modallogiken

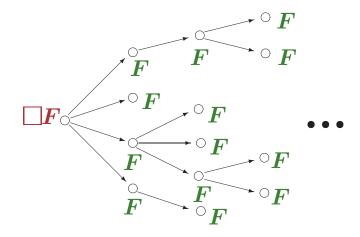
Betrachte von aktueller Welt erreichbare Welten

ullet F: F gilt in allen erreichbaren Welten

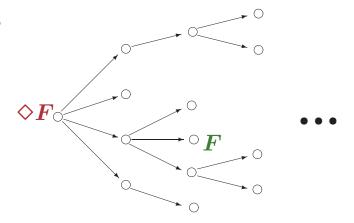


Betrachte von aktueller Welt erreichbare Welten

ullet F: F gilt in allen erreichbaren Welten

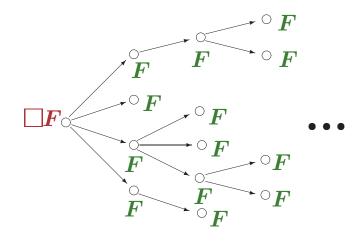


ullet F: F gilt in mindestens einer erreichbaren Welt

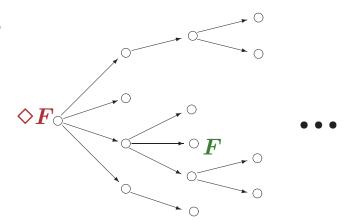


Betrachte von aktueller Welt erreichbare Welten

ullet F: F gilt in allen erreichbaren Welten



• $\diamond F$: F gilt in mindestens einer erreichbaren Welt



• F: F gilt in allen Welten

Erreichbarkeit und modale Axiome

• Allgemeine Eigenschaften aller Modallogiken

(Df)	Definition von ♦	$\Diamond F \Leftrightarrow \neg \Box \neg F$
(K)	Distributivität	$\Box(F \Rightarrow G) \Rightarrow (\Box F \Rightarrow \Box G)$
(RN)	Notwendigkeitsregel	$aus \vdash F \text{ folgt} \vdash \Box F$
(PL)		Axiome der (klassischen) Prädikatenlogik
(MP)	Modus Ponens Regel	$aus \vdash F \text{ und } \vdash F \Rightarrow G \text{ folgt } \vdash G$

Erreichbarkeit und modale Axiome

• Allgemeine Eigenschaften aller Modallogiken

(Df)	Definition von ♦	$\Diamond F \Leftrightarrow \neg \Box \neg F$
(K)	Distributivität	$\Box(F \Rightarrow G) \Rightarrow (\Box F \Rightarrow \Box G)$
(RN)	Notwendigkeitsregel	$aus \vdash F \text{ folgt} \vdash \Box F$
(PL)		Axiome der (klassischen) Prädikatenlogik
(MP)	Modus Ponens Regel	$aus \vdash F \text{ und } \vdash F \Rightarrow G \text{ folgt } \vdash G$

• Mögliche Eigenschaften der Erreichbarkeitsrelation

(D)	seriell	Für alle $w_1 \in \mathcal{W}$ gibt es ein $w_2 \in \mathcal{W}$ mit $w_1 R w_2$
(T)	reflexiv	wRw für alle Welten $w \in \mathcal{W}$
(B)	symmetrisch	$w_1 R w_2 \Rightarrow w_2 R w_1$ für alle $w_1, w_2 \in \mathcal{W}$
(4)	transitiv	$w_1 R w_2 \& w_2 R w_3 \Rightarrow w_1 R w_3 \text{ für alle } w_1, w_2, w_3 \in \mathcal{W}$
(5)	euklidisch	$w_1 R w_2 \& w_1 R w_3 \Rightarrow w_2 R w_3 \text{ oder } w_3 R w_2 \text{ für alle } w_1, w_2, w_3 \in \mathcal{W}$

Erreichbarkeit und modale Axiome

• Allgemeine Eigenschaften aller Modallogiken

(Df)	Definition von ♦	$\Diamond F \Leftrightarrow \neg \Box \neg F$
(K)	Distributivität	$\Box(F \Rightarrow G) \Rightarrow (\Box F \Rightarrow \Box G)$
(RN)	Notwendigkeitsregel	$aus \vdash F \text{ folgt} \vdash \Box F$
(PL)		Axiome der (klassischen) Prädikatenlogik
(MP)	Modus Ponens Regel	$aus \vdash F \text{ und } \vdash F \Rightarrow G \text{ folgt } \vdash G$

• Mögliche Eigenschaften der Erreichbarkeitsrelation

(D)	seriell	Für alle $w_1 \in \mathcal{W}$ gibt es ein $w_2 \in \mathcal{W}$ mit $w_1 R w_2$
(T)	reflexiv	wRw für alle Welten $w \in \mathcal{W}$
(B)	symmetrisch	$w_1 R w_2 \Rightarrow w_2 R w_1$ für alle $w_1, w_2 \in \mathcal{W}$
(4)	transitiv	$w_1 R w_2 \& w_2 R w_3 \Rightarrow w_1 R w_3$ für alle $w_1, w_2, w_3 \in \mathcal{W}$
(5)	euklidisch	$w_1 R w_2 \& w_1 R w_3 \Rightarrow w_2 R w_3 \text{ oder } w_3 R w_2 \text{ für alle } w_1, w_2, w_3 \in \mathcal{W}$

ullet Durch R induzierte Axiome für \Box

(D)	seriell	$\Box F \Rightarrow \Diamond F$	"Was ich glaube, ist auch möglich"
(T)	reflexiv	$\Box F \Rightarrow F$	"Was beweisbar ist, ist auch gültig"
(B)	symmetrisch	$F \Rightarrow \Box \Diamond F$	"Ist F wahr, dann weiß man, daß F möglich ist"
(4)	transitiv	$\Box F \Rightarrow \Box \Box F$	"Ich weiß, was ich weiß"
(5)	euklidisch	$\Diamond F \Rightarrow \Box \Diamond F$	

DIE WICHTIGSTEN MODALLOGIKEN

Name	Eigenschaften von R	Axiome
K	keine	PL, Df, K
$\mathbf{K4}$	transitiv	PL, Df, K, 4
D	seriell	PL, Df, K, D
D4	seriell, transitiv	PL, Df, K, D, 4
В	symmetrisch	PL, Df, K, B
\mathbf{T}	reflexiv	PL, Df, K, T
S4	reflexiv, transitiv	PL, Df, K, T, 4
S5	reflexiv, transitiv, symmetrisch	PL, Df, K, T, B, 4 (+5)

DIE WICHTIGSTEN MODALLOGIKEN

Name	Eigenschaften von R	Axiome
K	keine	PL, Df, K
$\mathbf{K4}$	transitiv	PL, Df, K, 4
D	seriell	PL, Df, K, D
D4	seriell, transitiv	PL, Df, K, D, 4
В	symmetrisch	PL, Df, K, B
\mathbf{T}	reflexiv	PL, Df, K, T
S4	reflexiv, transitiv	PL, Df, K, T, 4
S5	reflexiv, transitiv, symmetrisch	PL, Df, K, T, B, 4 (+5)

ullet $F \Rightarrow \Box F$ gilt trotz der Notwendigkeitsregel nicht

 $\vdash F$ = "F gilt in jeder Welt $w \in \mathcal{W}$ "

 $\vdash F \Rightarrow \Box F \triangleq$ "In jeder Welt $w \in \mathcal{W}$ folgt $\Box F$ aus F"

DIE WICHTIGSTEN MODALLOGIKEN

Name	Eigenschaften von R	Axiome
K	keine	PL, Df, K
$\mathbf{K4}$	transitiv	PL, Df, K, 4
D	seriell	PL, Df, K, D
D4	seriell, transitiv	PL, Df, K, D, 4
В	symmetrisch	PL, Df, K, B
\mathbf{T}	reflexiv	PL, Df, K, T
S4	reflexiv, transitiv	PL, Df, K, T, 4
S5	reflexiv, transitiv, symmetrisch	PL, Df, K, T, B, 4 (+5)

ullet $F \Rightarrow \Box F$ gilt trotz der Notwendigkeitsregel nicht

 $\vdash F \Rightarrow \Box F \triangleq$ "In jeder Welt $w \in \mathcal{W}$ folgt $\Box F$ aus F"

Deduktionstheorem " $\vdash F$ folgt aus $\vdash E$ genau dann, wenn $\vdash E \Rightarrow F$ gilt" gilt nicht für Modallogiken (und konstruktive Logik)

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$
 - Es gelte $F \Rightarrow G$

- In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$
 - Es gelte $F \Rightarrow G$
 - Dann gilt $\neg G \Rightarrow \neg F$

(Kontraposition)

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$

– Dann gilt $\square(\neg G \Rightarrow \neg F)$

(Kontraposition)

(RN)

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$
- Dann gilt $\Box(\neg G \Rightarrow \neg F)$
- Dann gilt $\Box \neg G \Rightarrow \Box \neg F$

(Kontraposition)

(RN)

(K, MP)

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$
- Dann gilt $\square(\neg G \Rightarrow \neg F)$
- Dann gilt $\Box \neg G \Rightarrow \Box \neg F$
- Dann gilt $\neg \Box \neg F \Rightarrow \neg \Box \neg G$

(Kontraposition)

(RN)

(K, MP)

(Kontraposition)

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$
- Dann gilt $\Box(\neg G \Rightarrow \neg F)$
- Dann gilt $\Box \neg G \Rightarrow \Box \neg F$
- Dann gilt $\neg \Box \neg F \Rightarrow \neg \Box \neg G$
- Es folgt $\Diamond F \Rightarrow \Diamond G$

(Kontraposition)

(RN)

(K, MP)

(Kontraposition)

(Df)

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$
- Dann gilt $\square(\neg G \Rightarrow \neg F)$
- Dann gilt $\Box \neg G \Rightarrow \Box \neg F$
- Dann gilt $\neg \Box \neg F \Rightarrow \neg \Box \neg G$
- Es folgt $\Diamond F \Rightarrow \Diamond G$

(Kontraposition)

(RN)

(K, MP)

(Kontraposition)

(Df)

• In K folgt $\Box F \Rightarrow \Box G$ aus $F \Rightarrow G$

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$

- Dann gilt $\square(\neg G \Rightarrow \neg F)$

- Dann gilt $\Box \neg G \Rightarrow \Box \neg F$

- Dann gilt ¬□¬F ⇒ ¬□¬G

- Es folgt $\Diamond F \Rightarrow \Diamond G$

(Kontraposition)

(RN)

(K, MP)

(Kontraposition)

(Df)

\bullet In K folgt $\Box F \Rightarrow \Box G$ aus $F \Rightarrow G$

– Aus $F \Rightarrow G$ folgt $\square(F \Rightarrow G)$ mit RN und hieraus $\square F \Rightarrow \square G$ mit K

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$

- Dann gilt $\Box(\neg G \Rightarrow \neg F)$

 $- \text{ Dann gilt } \Box \neg G \Rightarrow \Box \neg F$

- Dann gilt $\neg \Box \neg F \Rightarrow \neg \Box \neg G$

- Es folgt $\Diamond F \Rightarrow \Diamond G$

(Kontraposition)

(RN)

(K, MP)

(Kontraposition)

(Df)

\bullet In K folgt $\Box F \Rightarrow \Box G$ aus $F \Rightarrow G$

- Aus $F \Rightarrow G$ folgt $\square(F \Rightarrow G)$ mit RN und hieraus $\square F \Rightarrow \square G$ mit K
- In T gilt $F \Rightarrow \Diamond F$

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$

(Kontraposition)

- Dann gilt $\Box(\neg G \Rightarrow \neg F)$

(RN)

- Dann gilt $\Box \neg G \Rightarrow \Box \neg F$

(K, MP)

- Dann gilt $\neg \Box \neg F \Rightarrow \neg \Box \neg G$

(Kontraposition)

– Es folgt $\Diamond F \Rightarrow \Diamond G$

(Df)

\bullet In K folgt $\Box F \Rightarrow \Box G$ aus $F \Rightarrow G$

– Aus $F \Rightarrow G$ folgt $\square(F \Rightarrow G)$ mit RN und hieraus $\square F \Rightarrow \square G$ mit K

• In T gilt $F \Rightarrow \Diamond F$

- Es gilt
$$\Box \neg F \Rightarrow \neg F$$

(T)

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$

- Dann gilt $\Box(\neg G \Rightarrow \neg F)$

- Dann gilt $\Box \neg G \Rightarrow \Box \neg F$
- Dann gilt $\neg \Box \neg F \Rightarrow \neg \Box \neg G$
- Es folgt $\Diamond F \Rightarrow \Diamond G$

(Kontraposition)

(RN)

(K, MP)

(Kontraposition)

(Df)

\bullet In K folgt $\Box F \Rightarrow \Box G$ aus $F \Rightarrow G$

– Aus $F \Rightarrow G$ folgt $\square(F \Rightarrow G)$ mit RN und hieraus $\square F \Rightarrow \square G$ mit K

• In T gilt $F \Rightarrow \Diamond F$

– Es gilt $\square \neg F \Rightarrow \neg F$

(T)

– Daraus folgt $\neg \neg F \Rightarrow \neg \Box \neg F$

(Kontraposition)

• In K folgt $\Diamond F \Rightarrow \Diamond G$ aus $F \Rightarrow G$

- Es gelte $F \Rightarrow G$
- Dann gilt $\neg G \Rightarrow \neg F$

- Dann gilt $\Box(\neg G \Rightarrow \neg F)$

- Dann gilt $\Box \neg G \Rightarrow \Box \neg F$
- Dann gilt $\neg \Box \neg F \Rightarrow \neg \Box \neg G$
- Es folgt $\Diamond F \Rightarrow \Diamond G$

(Kontraposition)

(RN)

(K, MP)

(Kontraposition)

(Df)

\bullet In K folgt $\Box F \Rightarrow \Box G$ aus $F \Rightarrow G$

– Aus $F \Rightarrow G$ folgt $\square(F \Rightarrow G)$ mit RN und hieraus $\square F \Rightarrow \square G$ mit K

• In T gilt $F \Rightarrow \Diamond F$

- Es gilt $\Box \neg F \Rightarrow \neg F$

(T)

– Daraus folgt $\neg \neg F \Rightarrow \neg \Box \neg F$

(Kontraposition)

– Es folgt $F \Rightarrow \Diamond F$

(PL, Df)

Modifikationen analog zur Konstruktiven Logik

Inferenzmethoden 816

7

Modallogiken

Modifikationen analog zur Konstruktiven Logik

- Erweitere Matrixcharakterisierung der Gültigkeit
 - -F ist gültig gdw. alle Pfade durch F komplementär

Modifikationen analog zur Konstruktiven Logik

- Erweitere Matrixcharakterisierung der Gültigkeit
 - -F ist gültig gdw. alle Pfade durch F komplementär
 - Betrachtung von Nichtnormalform-Matrizen erforderlich

Modifikationen analog zur Konstruktiven Logik

- Erweitere Matrixcharakterisierung der Gültigkeit
 - -F ist gültig gdw. alle Pfade durch F komplementär
 - Betrachtung von Nichtnormalform-Matrizen erforderlich
 - Erweiterter Komplementaritätsbegriff erforderlich
 - · Unifizierbarkeit der konnektierten Terme
 - · Erreichbarkeit beider Literale bei Einschränkungen an Regelreihenfolge

Modifikationen analog zur Konstruktiven Logik

- Erweitere Matrixcharakterisierung der Gültigkeit
 - -F ist gültig gdw. alle Pfade durch F komplementär
 - Betrachtung von Nichtnormalform-Matrizen erforderlich
 - Erweiterter Komplementaritätsbegriff erforderlich
 - · Unifizierbarkeit der konnektierten Terme
 - · Erreichbarkeit beider Literale bei Einschränkungen an Regelreihenfolge

• Erweitertes Beweissuchverfahren

– Uniformes Pfadüberprüfungsverfahren für Nichtnormalform-Matrizen

Modifikationen analog zur Konstruktiven Logik

- Erweitere Matrixcharakterisierung der Gültigkeit
 - -F ist gültig gdw. alle Pfade durch F komplementär
 - Betrachtung von Nichtnormalform-Matrizen erforderlich
 - Erweiterter Komplementaritätsbegriff erforderlich
 - · Unifizierbarkeit der konnektierten Terme
 - · Erreichbarkeit beider Literale bei Einschränkungen an Regelreihenfolge

• Erweitertes Beweissuchverfahren

- Uniformes Pfadüberprüfungsverfahren für Nichtnormalform-Matrizen
- Erweiterter Komplementaritätstest
 - · Termunifikation liefert Substitution σ_Q von γ -Variablen durch Terme
 - · Präfixunifikation liefert Substitution σ_M für modale Präfixe

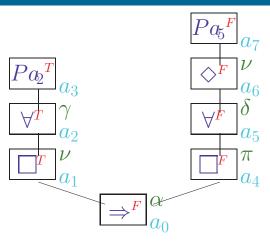
Modifikationen analog zur Konstruktiven Logik

- Erweitere Matrixcharakterisierung der Gültigkeit
 - -F ist gültig gdw. alle Pfade durch F komplementär
 - Betrachtung von Nichtnormalform-Matrizen erforderlich
 - Erweiterter Komplementaritätsbegriff erforderlich
 - · Unifizierbarkeit der konnektierten Terme
 - · Erreichbarkeit beider Literale bei Einschränkungen an Regelreihenfolge

• Erweitertes Beweissuchverfahren

- Uniformes Pfadüberprüfungsverfahren für Nichtnormalform-Matrizen
- Erweiterter Komplementaritätstest
 - · Termunifikation liefert Substitution σ_Q von γ -Variablen durch Terme
 - · Präfixunifikation liefert Substitution σ_M für modale Präfixe
- Substitutionen codieren Einschränkungen an Reihenfolge der Regeln
- Eigenschaften von R codiert in Bedingungen an Zulässigkeit von σ_M

Modale Präfixe

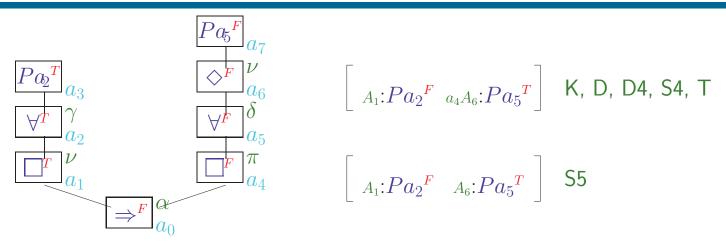


- Weise Positionen modale Typen zu
 - **Typ** $\boldsymbol{\nu}$: \square^T , \diamondsuit^F
 - **Typ** $\boldsymbol{\pi}$: \square^F , \diamondsuit^T

Variablen

Konstante

Modale Präfixe



• Weise Positionen modale Typen zu

 $-\operatorname{\mathbf{Typ}}\; \boldsymbol{\nu}:\; \Box^T,\; \diamondsuit^F$

Variablen

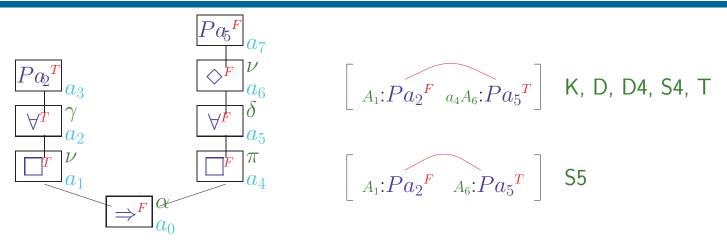
 $-\operatorname{\mathbf{Typ}}\;\boldsymbol{\pi}\colon\;\Box^F,\;\;\diamondsuit^T$

Konstante

• Bestimme Präfix eines Atoms P

- Liste der modalen Positionen zwischen Wurzel und P
- Letzte modale Position vor P für Logik S5

Modale Präfixe



• Weise Positionen modale Typen zu

 $-\operatorname{\mathbf{Typ}}\,\boldsymbol{\nu}\colon\,\Box^T,\,\,\diamondsuit^F$

Variablen

 $-\operatorname{\mathbf{Typ}}\;\boldsymbol{\pi}\colon\;\Box^F,\;\;\diamondsuit^T$

Konstante

• Bestimme Präfix eines Atoms P

- Liste der modalen Positionen zwischen Wurzel und P
- Letzte modale Position vor P für Logik S5

ullet Definiere modale Substitution σ_M

- Abbildung von ν -Positionen in Strings über modalen Positionen
- $-\sigma_M$ induziert Reduktionsordnung \sqsubseteq_M auf modalen Positionen: Ist $\sigma_M(u) = v_1...v_n$ dann gilt $v_i \sqsubseteq_M u$ für jede π -Position v_i

- ullet Komplementarität unter $\sigma = (\sigma_Q, \sigma_M)$
 - Terme konnektierter Literale sind unter σ_Q unifizierbar, Präfixe unter σ_M

Inferenzmethoden §16.

Mona

- ullet Komplementarität unter $\sigma = (\sigma_Q, \sigma_M)$
 - Terme konnektierter Literale sind unter σ_Q unifizierbar, Präfixe unter σ_M
- $\bullet \sigma_Q$: Ersetze quantifizierte γ -Variablen durch Terme
 - Termunifikation versucht Terme konnektierter Atome gleich zu machen

Inferenzmethoden §16.

Modallogiken

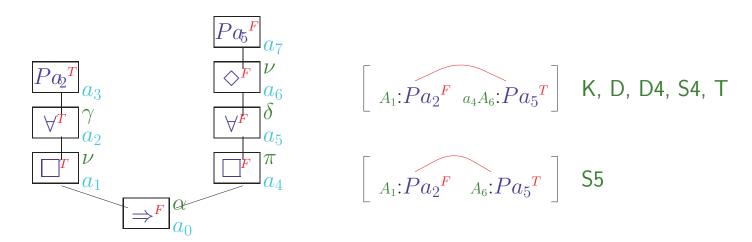
- ullet Komplementarität unter $\sigma = (\sigma_Q, \sigma_M)$
 - Terme konnektierter Literale sind unter σ_Q unifizierbar, Präfixe unter σ_M
- $\bullet \sigma_Q$: Ersetze quantifizierte γ -Variablen durch Terme
 - Termunifikation versucht Terme konnektierter Atome gleich zu machen
- σ_M : Ersetze φ -Variablen durch Strings
 - Präfixunifikation versucht Präfixe konnektierter Atome gleich zu machen

- ullet Komplementarität unter $oldsymbol{\sigma}=(\sigma_Q,\sigma_M)$
 - Terme konnektierter Literale sind unter σ_Q unifizierbar, Präfixe unter σ_M
- $\bullet \sigma_Q$: Ersetze quantifizierte γ -Variablen durch Terme
 - Termunifikation versucht Terme konnektierter Atome gleich zu machen
- σ_M : Ersetze φ -Variablen durch Strings
 - Präfixunifikation versucht Präfixe konnektierter Atome gleich zu machen
- ullet Zulässigkeit von (σ_Q, σ_M)
 - Gesamte Reduktionsordnung $\triangleleft := (< \cup \sqsubseteq_Q \cup \sqsubseteq_M)^+$ ist azyklisch
 - Kommt eine δ -Position v in $\sigma_Q(u)$ vor, so gilt $|\sigma_M(pre_v)| \leq |\sigma_M(pre_u)|$ $(|\sigma_M(pre_v)| \leq |\sigma_M(pre_u)| \leq |\sigma_M(pre_v)| + 1$ für T und D)
 - $-\sigma_M(a_i)$ hat maximal (T), genau (D), mindestens (D4) Länge 1

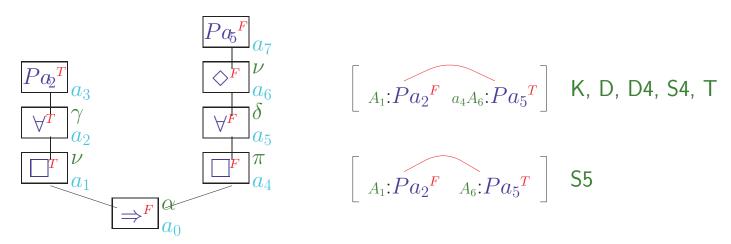
- ullet Komplementarität unter $oldsymbol{\sigma}=(\sigma_Q,\sigma_M)$
 - Terme konnektierter Literale sind unter σ_Q unifizierbar, Präfixe unter σ_M
- $\bullet \sigma_Q$: Ersetze quantifizierte γ -Variablen durch Terme
 - Termunifikation versucht Terme konnektierter Atome gleich zu machen
- σ_M : Ersetze φ -Variablen durch Strings
 - Präfixunifikation versucht Präfixe konnektierter Atome gleich zu machen
- ullet Zulässigkeit von (σ_Q, σ_M)
 - Gesamte Reduktionsordnung $\triangleleft := (< \cup \sqsubseteq_Q \cup \sqsubseteq_M)^+$ ist azyklisch
 - Kommt eine δ -Position v in $\sigma_Q(u)$ vor, so gilt $|\sigma_M(pre_v)| \leq |\sigma_M(pre_u)|$ $(|\sigma_M(pre_v)| \leq |\sigma_M(pre_u)| \leq |\sigma_M(pre_v)| + 1$ für T und D)
 - $-\sigma_M(a_i)$ hat maximal (T), genau (D), mindestens (D4) Länge 1
- ullet Modale Multiplizität $\mu_M(a_i)$
 - Anzahl der Kopien des ν -Knotens im Baum

- ullet Komplementarität unter $\sigma = (\sigma_Q, \sigma_M)$
 - Terme konnektierter Literale sind unter σ_Q unifizierbar, Präfixe unter σ_M
- $\bullet \sigma_Q$: Ersetze quantifizierte γ -Variablen durch Terme
 - Termunifikation versucht Terme konnektierter Atome gleich zu machen
- $\bullet \sigma_M$: Ersetze φ -Variablen durch Strings
 - Präfixunifikation versucht Präfixe konnektierter Atome gleich zu machen
- ullet Zulässigkeit von (σ_Q, σ_M)
 - Gesamte Reduktionsordnung $\triangleleft := (< \cup \sqsubseteq_Q \cup \sqsubseteq_M)^+$ ist azyklisch
 - Kommt eine δ -Position v in $\sigma_Q(u)$ vor, so gilt $|\sigma_M(pre_v)| \leq |\sigma_M(pre_u)|$ $(|\sigma_M(pre_v)| \leq |\sigma_M(pre_u)| \leq |\sigma_M(pre_v)| + 1$ für T und D)
 - $-\sigma_M(a_i)$ hat maximal (T), genau (D), mindestens (D4) Länge 1
- ullet Modale Multiplizität $\mu_M(a_i)$
 - Anzahl der Kopien des ν -Knotens im Baum

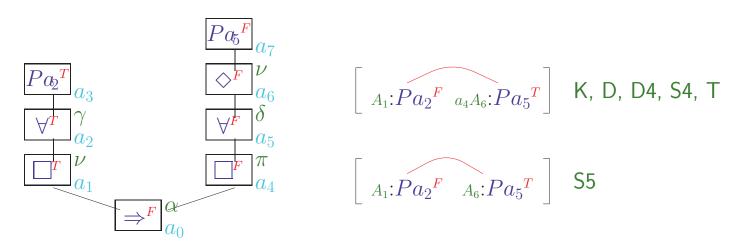
Eine modale Formel F ist gültig, wenn es eine Multiplizität $\mu = (\mu_Q, \mu_M)$, eine zulässige Substitution $\sigma = (\sigma_Q, \sigma_M)$ und eine Menge \mathcal{C} von σ -komplementären Konnektionen gibt, so daß jeder Pfad durch F eine Konnektion aus \mathcal{C} enthält



• Einziger Pfad $\{a_3a_7\}$ durch Konnektion abgedeckt



- \bullet Einziger Pfad $\{a_3a_7\}$ durch Konnektion abgedeckt
- ullet Terme gleich unter $oldsymbol{\sigma}_Q = [a_5/a_2]$
 - Induzierte Reduktionsordnung $a_5 \sqsubseteq_Q a_2$



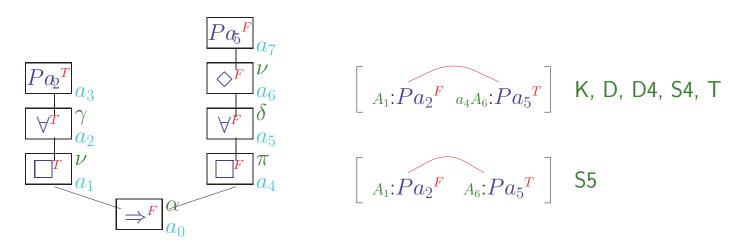
- \bullet Einziger Pfad $\{a_3a_7\}$ durch Konnektion abgedeckt
- ullet Terme gleich unter $\sigma_Q = [a_5/a_2]$
 - Induzierte Reduktionsordnung $a_5 \sqsubseteq_Q a_2$
- Drei allgemeinste Unifikatoren

$$-\sigma_{M_1} = [a_4 A_6 / A_1] -\sigma_{M_2} = [a_4 / A_1, \varepsilon / A_6]$$

$$-\sigma_{M_3} = [a_4/A_1, a_4/A_6]$$

 $-\sigma_{M_1} = [a_4 A_6 / A_1]$ zulässig für D4 und S4 zulässig für S4 und T zulässig für für S5

- $-\sigma_{M_1}$ und σ_{M_2} verletzt Längenbedingung für D
- $-\sigma_{M_1}$ verletzt Bedingung an δ -Positionen für T, σ_{M_2} für D4



- \bullet Einziger Pfad $\{a_3a_7\}$ durch Konnektion abgedeckt
- ullet Terme gleich unter $\sigma_Q = [a_5/a_2]$
 - Induzierte Reduktionsordnung $a_5 \sqsubseteq_Q a_2$
- Drei allgemeinste Unifikatoren

$$-\sigma_{M_1} = [a_4 A_6/A_1]$$

$$-\sigma_{M_2} = [a_4/A_1, \varepsilon/A_6]$$

$$-\sigma_{M_3} = [a_4/A_1, a_4/A_6]$$

zulässig für D4 und S4 zulässig für S4 und T zulässig für für S5

- $-\sigma_{M_1}$ und σ_{M_2} verletzt Längenbedingung für D
- $-\sigma_{M_1}$ verletzt Bedingung an δ -Positionen für T, σ_{M_2} für D4
- Die Formel ist gültig in D4, T, S4, S5 aber nicht in D

- Pfadüberprüfungsverfahren bleibt unverändert
 - Nicht-Normalform-Verfahren aus Einheit 14

- Pfadüberprüfungsverfahren bleibt unverändert
 - Nicht-Normalform-Verfahren aus Einheit 14
- Komplementaritätstest unify_check wird erweitert
 - Bekanntes Termunifikationsverfahren
 - Präfixunifikationsverfahren mit Logik-spezifischen Regeln
 - Überprüfung der Zulässigkeit

• Pfadüberprüfungsverfahren bleibt unverändert

- Nicht-Normalform-Verfahren aus Einheit 14

• Komplementaritätstest unify_check wird erweitert

- Bekanntes Termunifikationsverfahren
- Präfixunifikationsverfahren mit Logik-spezifischen Regeln
- Überprüfung der Zulässigkeit

• Anwendbar auf D, D4, T, S4, S5

- Regeln für Präfixunifikation in K, K4 vorhanden
- Matrixcharakterisierung für K, K4, B formal noch nicht abgesichert

- Pfadüberprüfungsverfahren bleibt unverändert
 - Nicht-Normalform-Verfahren aus Einheit 14
- Komplementaritätstest unify_check wird erweitert
 - Bekanntes Termunifikationsverfahren
 - Präfixunifikationsverfahren mit Logik-spezifischen Regeln
 - Überprüfung der Zulässigkeit
- Anwendbar auf D, D4, T, S4, S5
 - Regeln für Präfixunifikation in K, K4 vorhanden
 - Matrixcharakterisierung für K, K4, B formal noch nicht abgesichert

Weitere Details in Literatur auf Webseite