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Sicherheit?

Definitionsansatze flr Sicherheit von Kryptosystemen

@ Definitionsansatze

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

Literatur

Kryptosysteme haben ...

rechenbetonte Sicherheit (computational security)

o Mindestens /N Rechenoperationen notwendig (/V sehr groR)
o Kann nur auf spezifische Attacken gezeigt werden

beweisbare Sicherheit (provable security)

o Reduzierung auf gut untersuchtes schweres Problem
o Kein direkter Beweis fiur Sicherheit, da nur relativ zu einem anderen
Problem

unbedingte Sicherheit (unconditional security)

o Keine Bedingung an Rechenoperationen
o Selbst mit unbegrenzter Rechenkapazitat nicht zu knacken

Untersuchung von Kryptosystemen auf unbedingte Sicherheit —
Wahrscheinlichkeitstheorie

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Perfekte Sicherheit

Entropie l :

Gute Schlissel

Literatur
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EinfGhrung

Sicherheit?

Definition 1:  Eine diskrete ZufallsgroRe X besteht aus einer endlichen
P Menge X und einer auf X definierten Wahrscheinlichkeitsvertei- lung.
O SHAEETS Die Wahrscheinlichkeit, dass die ZufallsgroRe X den Wert x annimmt
retiede Sohemet wird mit Pr|X = x| bezeichnet (kurz Pr|z], falls X fest). Weiterhin
muss gelten 0 < Pr(z],Vox € X,und ) _ Priz] = 1.

Entropie

Gute Schlissel

Literatur

Definition 2:  Sei X eine ZufallsgroRRe definiert auf X . Dann heil3t £/ C X

Ereignis. Die Wahrscheinlichkeit, dass X einen Wert aus £ annimmt,

berechnet sich durch ) . Pr|x].

Definition 3:  Seien X und Y ZufallsgroRen auf den Mengen X bzw. Y. Die
Verbundwahrscheinlichkeit Pr|z, y| (oder Pr|xz N y]) ist die
Wahrscheinlichkeit, dass X den Wert x annimmt und Y den Wert y.
Die bedingte Wahrscheinlichkeit Pr|z|y| bezeichnet die Wahr-
scheinlichkeit, dass X den Wert = annimmt unter der Vorraussetzung,
dass Y den Wert y hat.

Die ZufallsgroRen X und Y heiRen unabhéangig, falls
Pr|z,y] = Pr[z|Prly] furallex € X,y € Y.

| ]
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Sicherheit?

Beispiel — Wurf mit 2 Wirfeln

Wahrscheinlichkeitstheorie

@ Einflihrung

@ Satz von Bayes

Perfekte Sicherheit

Entropie

Gute Schlissel

Literatur

ZufallsgroRe Z definiert auf Z = {1,2,3,4,5,6} x {1,2,3,4,5,6}

— Pr[(i,))] = 5= firalle (¢,7) € Z

Betrachte Ereignis ,Summe der Augenzahlen ist 4*

— Sy ={(1,3),(2,2),(3,1)} dannist Pr[Sy] = % — 1—12

1 So2.12 | 53,11 | Sa,10 | Ss5,9 | Se,8 | S7
. 1 1 1 1 o 1
Pr|[S;] 36 18 12 9 36 6

Tabelle 1: Verteilung der Summen

Neue ZufallsgroRe Y fiir Pasch oder Kein Pasch

— Pr[P]=¢ und Pr[K|=2

— Pr[P,4] = Pr[4, P] =5

< Pr[P[4] = und Pr[4|P] =1

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Satz von Bayes

Srhsiiei e Frage: Zusammenhang zwischen Verbund- und bedingter Wahrschein-
Wahrscheinlichkeitstheorie o =

@ Einflihrung IIChkeIt?

® Satz von Bayes e Antwort: Ja:

Perfekte Sicherheit

Entropie PI'[QIZ, y] — Pr[x’y]Pr[y] bzw. Pr[[ﬁ, y] = Pr[y\:v]Pr[x]
Gute Schltssel

Literatur e Durch Umformung der Gleichungen erhalt man

Satz von Bayes:  Falls Pr[y] > 0, dann

Pr|z|Pr|y|z] |

Pr(z|y] = Priy]

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 8/31 :



Sicherheit?

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

® Annahmen
® Beispiel

@ Definition

® Beispielsysteme | |

Entropie

Gute Schlissel

Literatur

Perfekte Sicherheit

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 9/31 :



Annahmen

Sicherheit?

e Kryptosystem (P,C, K, E, D), gewahlter Schlussel K € K nur fur eine
Verschltsselung

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

o Annahmen e Wabhrscheinlichkeitsverteilung auf P mit ZufallsgroR3e x,

2o a-priori-Wahrscheinlichkeit dass Klartext z auftritt Pr[x = z]

® Beispielsysteme e Schliussel K nach fester Wahrscheinlichkeit ausgewahlt, also ZufallsgroRRe
Enrople K und Wahrscheinlichkeit, dass Schliissel K ausgewahlt wurde

Gute Schlissel PI‘[K — K]

Literatur

e x und K unabhéangige ZufallsgroRen
e ZufallsgroRe y auf C mit Prly = y|:

o Menge moglicher Chiffretexte, wenn K Schlissel:
C(K) ={ex(z)|z € P}

o Furalley € C qilt

Prly=yl= )  Pr[K=K][Pr[x=dg(y)]
(K|yeC(K)}

| ]
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Annahmen

Sicherheit?

Es lassen sich nun folgende bedingte Wahrscheinlichkeiten fiir jedes y € C und
x € P berechnen:

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

® Annahmen ° Pr[y — ylx - x]

® Beispiel

@ Definition

® Beispielsysteme o o o o
. Prly =ylx =z = Z Pr K = K]
Gute Schlussel {K‘x:dK (y)}

Literatur

e Pr[x = z|y = y] (mittels Satz von Bayes):

Pr(x = z] X Prly = y|x = 7]
Prly = y]

Prix =z|ly =y| =

... oder ausfuhrlicher ...

Pr(x = x| x > Pr K = K]
{Kl|r=dx (y)}
2. PrlK=K|Prlx = dg(y)
{KlyeC(K)}

Prix =z|ly =y| =

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 11/31 :



Sicherheit?

Beispiel

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

® Annahmen

P ={a,b} mit Prla] = i,Pr[b] = %

= {Kl,KQ,Kg} mit PI‘[Kl] — %,PI‘[KQ] = PI‘[K3] —

A
4
@ Beispiel a b
@ Definition . ] ] K 1 2 .
® Beispilsysteme C ={1,2,3,4} und die e, gegeben durch die Matrix | > |, | Die
Entropie Ki 3 4
Gute Schlissel .. . c c
] Wahrscheinlichkeitsverteilung auf C ist daher:
iteratur
Pr[l] = 1 Pr2] =3+ {5 =15
Pr3]=3 + 15 = 1 Pr[4] = 3
...nun lasst sich Pr|x = x|y = y| bestimmen
Prla|l] =1 Pr[b|1] =0
Prfa|2] = 1 Prb|2] = &
Pr(a|3] = 7 Pr[b|3] = 3
Prial4] =0 Prbl4] =1
. I
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Definition

Sicherheit?

Definition:  Ein Kryptosystem hat perfekte Sicherheit, falls Pr|x|y|=Pr[x] fur
alex € P,y eC.

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

© Annamen Am Beispiel:

® Beispiel

@ Definition

® Beispielsysteme Prf[a|l] =1 # Pr[a] = i Pr[b|1] = 0 # Pr[b] = %

e Pr(a2] = L # Prla] = 1 Pr[b|2] = & £ Pr[p] = 2

Gute Schlussel v 4 v 4

Literatur Pr(a|3] = # = Prfa] = Pr[b|3] = 3 = Pr[b] = 2
Pr(a|4] =0 # Prla] = 1 Pr(b|4] =1 # Pr[b] = 2

— Dieses Kryptosystem erflllt die Vorraussetzung fiir perfekte Sicherheit nur
fir den Chiffretext y = 3, daher insgesamt keine perfekte Sicherheit.

Satz: Sei (P,C, I, &, D) ein Kryptosystem mit |KC| = |C| = |P|. Dann bietet
es perfekte Sicherheit, gdw. jeder Schlissel mit gleicher Wahr-
scheinlichkeit |%| benutzt wird und Vo € P,y € C ein eindeutiger
Schlussel K existiert, so dass ex () = .

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 13/31 :



Sicherheit?

Beispiele flr perfekt sichere Kryptosysteme

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

® Annahmen
® Beispiel
@ Definition

@ Beispielsysteme

Entropie

Gute Schlissel

Literatur

1.

Exemplarisch (nach [1])

a b C
— il = Ic] =P =3
1 0 1 2
Ko |1 ]2]0 Prif] — 1
Kz |2 0] 1 Kil =5

One-Time Pad (Beispielrealisierung)

ne€Z,n>lundP =C=K=(Z)"
r=(x1,...,Tn), K =(K1,...,K,),y

€K($) = (371 + Kl, S -+ K ) mod 2 (entspricht &)
dK<y) —= <y1+K1,...,yn—|—K ) mod 2 (entspricht ®)
Sicherheit begrtindet durch:

= (Y1, Yn)

o Zufélligkeit (unvorhersagbar!) der Schlitssel
o Geheimhaltung der Schltssel
o Schltssel nur einmal benutzen

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Sicherheit?

One-Time Pad — Beispiel

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

® Annahmen
® Beispiel
@ Definition

@ Beispielsysteme

Entropie

Gute Schlissel

Literatur

Klartext 0 1 1 1 O O 1 0
Schlussel 1 1 1 0 1 0 1 O
Chiffretext | 1 O O 1 1 0 O O
Schlussel 1 1 1 0 1 0 1 O
Klartext 0 1 1 1 O O 1 0

Angriffsmdglichkeiten:

O

O

@)

Ausspéhen des Schlissels bei nicht geheimen Schltisselaustausch
Kein ausreichend zufalliger Schlissel

Mehrfachverwendung des Schltssels (Differenz der Chiffre-

texte = Differenz der Klartexte)

Nachtelile:

O O O O

Schlussellange und -anzahl

Zufalligkeit der Schltssel

Synchronisationsproblem bei verschollenen Nachrichten
Kollisionssproblem bei gleichzeitigen Nachrichten A<—B

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Sicherheit?

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

@ Definition

@ Beispiel 1 1
® Eigenschaften I I

Gute Schlissel

Literatur

Entropie
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Definition

Sicherheit?

e Ursprung in der Thermodynamik, Bedeutung Unordnungsgrad = grof3e
Unordnung = hohe Entropie

o e Informationstheorie: Ungewissheit Uiber einen Versuchsausgang, (mittlerer)
® Definition Informationsgehalt einer Nachricht

® Beispiel

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

® Eigenschaften

Definition:  Sei X eine diskrete ZufallsgroR3e, die die Werte einer endlichen
Menge X annimmt. Dann ist die Entropie von X definiert als die GrofRe

Gute Schlissel

Literatur

H(X) =— Z Pr|z]|log s Pr|z]

reX

Anmerkung 1:  Da log, y undefiniert fir y = 0, aber lim ylog, y = 0 kann
y— 00

Pr|x| = 0 fur einige  angenommen werden.

Anmerkung 2:  Wenn | X| = nund Pr[z] = £,Vn € X, dann ist
H(X) = log, n.

|
: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 17/31 :




Beispiel
:;C:em:it-?r — P = {a,b} mit Pr[a] = %,Pr[b] = %
Perfekt.eSicherheit IC — {K17 KQ, KB} mlt Pr[Kl] — %, PI‘[KQ] p— PI‘[KB] — i
-l C={1,2,34 mitPr[l] = 1, Pr[2] = L, Pr[3] = 1, Prj4] = 2
Gute Schliissel H(X) —— z PI’[Q}'] log QPI‘[ZE]
Literatur reX

1 1 3 3

Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 18/31 :



Entropieeigenschaften |

ot Satz: Sei X eine ZufallsgroBe mit einer Wahrscheinlichkeitsverteilung, die die
Wabhrscheinlichkeitstheorie Werte p17 o ’pn (]?Z > 07 1 § ’I, S n) annlmmt Dann gllt
H(X) < log, n mit Gleichheit gdw. p; = +,1 < i < n.

mn

Perfekte Sicherheit

Entropie

® Definition

o Beispiel Folgerung:  Die maximale Entropie H (X) betragt log, n.

® Eigenschaften

Gute Schlissel

Satzz H(X,Y) < H(X) + H(Y), mit Gleichheit gdw. X und Y
unabhangige Zufallsgréf3en sind.

Literatur

Definition (a):  Seien X und Y zwei ZufallsgréRen. Dann erhalt man flr jeden
Wert y aus Y eine (bedingte) Wahrscheinlichkeitsverteilung auf X . Die
zugehorige ZufallsgroRe wird mit (X|y) bezeichnet. Offensichtlich gilt

H(X|y) = ZPr [z|y] log o Pr[z]y]

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 19/31 :



Entropieeigenschatften Il

TR Definition (b):  Die bedingte Entropie H (X|Y) ist das gewichtete Mittel
AR (beziiglich der Wahrscheinlichkeiten der Pr|y]) der Entropien (X|y)
uber allen mdglichen Werten von y. Sie wird wie folgt berechnet

Perfekte Sicherheit

Entropie

R H(X|Y)=-) ) Pr[yPr[z|y]log,Prlz|y]
Gute Schlussel Yy xT

Literatur

Satzz H(X,Y)=H(Y)+ HX|Y)

Folgerung: H(X]|Y) < H(X) mit Gleichheit gdw. X und Y unabhangig.

Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 20/ 31 :



Sicherheit?

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

@ Schliisselmehrdeutigkeit
® Schlisselkandidaten

® Spracheigenschaften
@ Eliminierung falscher
Schlissel

® Produktkryptosysteme

Literatur

Gute Schlissel

Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Sicherheit?

Schltisselmehrdeutigkeit

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

® Schlusselmehrdeutigkeit
® Schlusselkandidaten

® Spracheigenschaften
® Eliminierung falscher
Schlussel

® Produktkryptosysteme

Literatur

Es existiert ein fundamentaler Zusammenhang zwischen den Entropien der
einzelnen Komponenten eines Kryptosystems. Die bedingte Entropie H(K|C)
heil3t Schltiisselmehrdeutigkeit (key equivocation) und ist ein Mal3 daflr, wieviel
Information Gber den Schlitissel durch den Chiffretext offengelegt wird. Es gilt
hierbei folgender

Satz: Sei (P,C, K, &, D) ein Kryptosystem. Dann gilt

H(K|C) = H(K) + H(P) — H(C)

Am Beispiel:
HK)=15 , HP)=081 , H(C)~1,85

HK|C)=1,5+0,81 — 1,85 = 0,46

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 22 /31 :



Sicherheit?

Schliisselkandidaten

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

® Schlusselmehrdeutigkeit
® Schlusselkandidaten

® Spracheigenschaften
® Eliminierung falscher
Schlussel

® Produktkryptosysteme

Literatur

e Annahmen: Eve

o hort Chiffretext ab

o weil3, dass Klartext eine ,nattrliche” Sprache

o hat Wissen um Verschlisselungsmethode

o hat unbegrenzte Rechenressourcen
e Eve kann einige Schltssel verwerfen (Klartext ist unbrauchbar)
e \erbleibende ,mdgliche“ Schltissel unterteilt in

o Korrekter Schlissel

o Falsche SchlUssel
Beispiel:
e Sprache Englisch, Chiffretext WNAJW, Methode Verschiebungschiffre
e nur zwei ,sinnvolle” Klartexte moglich: RIVER und ARENA

— mogliche Schlissel F (5) und W (22)

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Sicherheit?

Untersuchung von Spracheigenschaften

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

® Schlusselmehrdeutigkeit
® Schlusselkandidaten

® Spracheigenschaften
@ Eliminierung falscher
Schlussel

® Produktkryptosysteme

Literatur

Ziel: Anzahl falscher Schllissel eingrenzen

e Entropie (pro Buchstabe) einer nattrlichen Sprache (/) misst die
durchschnittliche Information pro Buchstabe in einem ,sinnvollen®

naturlichsprachigem Text

e n-Gram: Wort der Lange n Uber einem Alphabet, P™ ZufallsgroRe mit
Wahrscheinlichkeitsverteilung aller n-Gramme eines Klartextes

Definition:  Sei L eine natirliche Sprache. Die Entropie von L ist definiert als

die Grolde

H; =

lim

T— 00 n

und die Redundanz von L ist definiert durch

Rp =1

Hr,
log, |P|

H(P")

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Beispiel

Sicherheit?

e L ist englische Sprache
e Durch Untersuchungen: 1,0 < H;, < 1,5 also rund 1,25
e Redundanz:

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlussel ]_ 25
® Schliisselmehrdeutigkeit RL — 1 — o ~ () 734
e Schiusselkandidaten 10g2 26 7

® Spracheigenschaften
@ Eliminierung falscher
Schlussel

— ca. 75% der englischen Sprache redundant

® Produktkryptosysteme

Literatur

Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 25/31 :



Sicherheit?

Eliminierung falscher Schltissel

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

® Schlusselmehrdeutigkeit
® Schlusselkandidaten

® Spracheigenschaften
® Eliminierung falscher
Schlussel

® Produktkryptosysteme

Literatur

Redundanz

e (Qibt Aufschluss Uber effektive Codierungsmaoglichkeit
e erlaubt Anzahl falscher Schlissl zu minimieren

Satz: Sei (P,C, K, E,D) ein Kryptosystem mit |C| = |P| und
gleichwahrscheinlicher Schliisselverteilung. R, sei die Redundanz der
zu Grunde liegenden Sprache. Mit gegebenen Chiffretext der Lange n,
mit 1 hinreichend grof3, erfullt die erwartete Anzahl falscher Schltssel s,,
die Formel

_ K]

Sp > ——— — 1
HRE

Definition:  Die Eindeutigkeitsdistanz eines Kryptosystems ist definiert durch
den Wert n, bezeichnet als ng, bei dem die Anzahl erwarteter falscher
Schlussel Null wird. D.h. die durchschnittliche Menge an Chiffretext, die
ein Angreifer bendtigt, um den Schltissel eindeutig zu bestimmen.

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 26 /31 :



Eindeutigkeitsdistanz — Beispiel

Sicherheit?

e 3, = 0in Gleichung (letzter Satz) setzen und nach n umformen ergibt

Wahrscheinlichkeitstheorie

Perfekte Sicherheit lOg2 | IC |
. nn ~
Entropie 0
RL ].0g2 | 73 |

Gute Schlissel

® Schlusselmehrdeutigkeit

e Schllsselkandidaten e Kryptosystem Substitutions-Chiffre: |P| = 26 und || = 26!, Ry = 0,75

® Spracheigenschaften
® Eliminierung falscher

Schlussel 88 74

@ Produktkryptosysteme n ~ ~ 25
0.75 - 47

Literatur

— Ein Chiffretext der Lange 25 ermdoglicht (normalerweise) eine eindeutige
Entschltisselung.

Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie 27131 :



Sicherheit?

Produktkryptosysteme

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

® Schlusselmehrdeutigkeit
® Schlusselkandidaten

® Spracheigenschaften
® Eliminierung falscher
Schlussel

® Produktkryptosysteme

Literatur

Idee: Verknupfen zweier Kryptosysteme zur Erh6hung der Sicherheit

endomorphe Kryptosysteme notwendig (P = C)
Sl — (7)7 7)7 Kla 817 Dl)
So = (P, P,Ks,E,Ds)

< Produkt: S1 X So = (P, P, K1 x Ko,E,D)

Schltussel K hat die Form (K1, K3) mit K1 € K1, K5 € Ko
Verschliisselungsfunktion: d(, x,)(y) = dk, (dk,(y))
Entschliisselungsfunktion: ek, i) (%) = ek, (ex, (7))

Beachte umgekehrte Schlisselfolge:

d(K13K2> (e(K17K2) (CIZ)) — d(Kl,KQ) (6K2 (eKl (:U)))

— dKl (dK2 <€K2 (eKl(
= dKl (eKl (SC))

=X

X

)

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Sicherheit?

Eigenschaften von Produktkryptosystemen

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

® Schlusselmehrdeutigkeit
® Schlusselkandidaten

® Spracheigenschaften
® Eliminierung falscher
Schlussel

® Produktkryptosysteme

Literatur

Assoziativitat: S7 X (So x S3) = (57 x S3) x S3 gilt fur alle Kryptosysteme

Kommutierende Kryptosysteme: S; X Sy = S5 x Sy gilt nicht fur alle

Krytosysteme

Idempotenz: S x S = S? =S
— falls nicht idempotent Chance fur héhere Sicherheit durch multiple
lterationen (DES = S19)

Beachte: S, Sy idempotent und kommutierend = S; X S5 ebenso

(Sl XSQ) X (Sl XSQ) :Sl X (SQ XSl) XSQ

251X(Sl><52)><52
:(51X51>X(SQ><S2)
251XSQ

: Kryptographie und Datensicherheit — §2 Datensicherheit und Shannons Theorie
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Sicherheit?

Literatur

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlissel

Literatur
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