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Kryptosysteme haben . . .

• rechenbetonte Sicherheit (computational security)

◦ Mindestens N Rechenoperationen notwendig (N sehr groß)
◦ Kann nur auf spezifische Attacken gezeigt werden

• beweisbare Sicherheit (provable security)

◦ Reduzierung auf gut untersuchtes schweres Problem
◦ Kein direkter Beweis für Sicherheit, da nur relativ zu einem anderen

Problem

• unbedingte Sicherheit (unconditional security)

◦ Keine Bedingung an Rechenoperationen
◦ Selbst mit unbegrenzter Rechenkapazität nicht zu knacken

Untersuchung von Kryptosystemen auf unbedingte Sicherheit →
Wahrscheinlichkeitstheorie
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Definition 1: Eine diskrete Zufallsgröße X besteht aus einer endlichen
Menge X und einer auf X definierten Wahrscheinlichkeitsvertei- lung.
Die Wahrscheinlichkeit, dass die Zufallsgröße X den Wert x annimmt
wird mit Pr[X = x] bezeichnet (kurz Pr[x], falls X fest). Weiterhin
muss gelten 0 ≤ Pr[x],∀x ∈ X , und

∑

x∈X Pr[x] = 1.

Definition 2: Sei X eine Zufallsgröße definiert auf X . Dann heißt E ⊆ X

Ereignis. Die Wahrscheinlichkeit, dass X einen Wert aus E annimmt,
berechnet sich durch

∑

x∈E Pr[x].

Definition 3: Seien X und Y Zufallsgrößen auf den Mengen X bzw. Y . Die
Verbundwahrscheinlichkeit Pr[x, y] (oder Pr[x ∩ y]) ist die
Wahrscheinlichkeit, dass X den Wert x annimmt und Y den Wert y.
Die bedingte Wahrscheinlichkeit Pr[x|y] bezeichnet die Wahr-
scheinlichkeit, dass X den Wert x annimmt unter der Vorraussetzung,
dass Y den Wert y hat.
Die Zufallsgrößen X und Y heißen unabhängig, falls
Pr[x, y] = Pr[x]Pr[y] für alle x ∈ X, y ∈ Y .
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Zufallsgröße Z definiert auf Z = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

→֒ Pr[(i, j)] = 1
36 für alle (i, j) ∈ Z

Betrachte Ereignis „Summe der Augenzahlen ist 4“

→֒ S4 = {(1, 3), (2, 2), (3, 1)} dann ist Pr[S4] = 3
36 = 1

12

i S2,12 S3,11 S4,10 S5,9 S6,8 S7

Pr[Si]
1

36

1

18

1

12

1

9

5

36

1

6

Tabelle 1: Verteilung der Summen

Neue Zufallsgröße Y für Pasch oder Kein Pasch

→֒ Pr[P ] = 1
6 und Pr[K] = 5

6

→֒ Pr[P, 4] = Pr[4, P ] = 1
36

→֒ Pr[P |4] = 1
3 und Pr[4|P ] = 1

6
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• Frage: Zusammenhang zwischen Verbund- und bedingter Wahrschein-
lichkeit?

• Antwort: Ja:

Pr[x, y] = Pr[x|y]Pr[y] bzw. Pr[x, y] = Pr[y|x]Pr[x]

• Durch Umformung der Gleichungen erhält man

Satz von Bayes: Falls Pr[y] > 0, dann

Pr[x|y] =
Pr[x]Pr[y|x]

Pr[y]
.
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• Kryptosystem (P, C,K, E ,D), gewählter Schlüssel K ∈ K nur für eine
Verschlüsselung

• Wahrscheinlichkeitsverteilung auf P mit Zufallsgröße x,
a-priori-Wahrscheinlichkeit dass Klartext x auftritt Pr[x = x]

• Schlüssel K nach fester Wahrscheinlichkeit ausgewählt, also Zufallsgröße
K und Wahrscheinlichkeit, dass Schlüssel K ausgewählt wurde
Pr[K = K]

• x und K unabhängige Zufallsgrößen
• Zufallsgröße y auf C mit Pr[y = y]:

◦ Menge möglicher Chiffretexte, wenn K Schlüssel:

C(K) = {eK(x)|x ∈ P}

◦ Für alle y ∈ C gilt

Pr[y = y] =
∑

{K|y∈C(K)}

Pr[K = K]Pr[x = dK(y)]
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Es lassen sich nun folgende bedingte Wahrscheinlichkeiten für jedes y ∈ C und
x ∈ P berechnen:

• Pr[y = y|x = x]:

Pr[y = y|x = x] =
∑

{K|x=dK(y)}

Pr[K = K]

• Pr[x = x|y = y] (mittels Satz von Bayes):

Pr[x = x|y = y] =
Pr[x = x] × Pr[y = y|x = x]

Pr[y = y]

. . . oder ausführlicher . . .

Pr[x = x|y = y] =

Pr[x = x] ×
∑

{K|x=dK(y)}

Pr[K = K]

∑

{K|y∈C(K)}

Pr[K = K]Pr[x = dK(y)]
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P = {a, b} mit Pr[a] = 1
4 ,Pr[b] = 3

4

K = {K1, K2, K3} mit Pr[K1] = 1
2 ,Pr[K2] = Pr[K3] = 1

4

C = {1, 2, 3, 4} und die eKi
gegeben durch die Matrix

a b
K1 1 2
K2 2 3
K3 3 4

Die

Wahrscheinlichkeitsverteilung auf C ist daher:

Pr[1] = 1

8
Pr[2] = 3

8
+ 1

16
= 7

16

Pr[3] = 3

16
+ 1

16
= 1

4
Pr[4] = 3

16

. . . nun lässt sich Pr[x = x|y = y] bestimmen

Pr[a|1] = 1 Pr[b|1] = 0

Pr[a|2] = 1

7
Pr[b|2] = 6

7

Pr[a|3] = 1

4
Pr[b|3] = 3

4

Pr[a|4] = 0 Pr[b|4] = 1
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Definition: Ein Kryptosystem hat perfekte Sicherheit, falls Pr[x|y]=Pr[x] für
alle x ∈ P, y ∈ C.

Am Beispiel:

Pr[a|1] = 1 6= Pr[a] = 1

4
Pr[b|1] = 0 6= Pr[b] = 3

4

Pr[a|2] = 1

7
6= Pr[a] = 1

4
Pr[b|2] = 6

7
6= Pr[b] = 3

4

Pr[a|3] = 1

4
= Pr[a] = 1

4
Pr[b|3] = 3

4
= Pr[b] = 3

4

Pr[a|4] = 0 6= Pr[a] = 1

4
Pr[b|4] = 1 6= Pr[b] = 3

4

→֒ Dieses Kryptosystem erfüllt die Vorraussetzung für perfekte Sicherheit nur
für den Chiffretext y = 3, daher insgesamt keine perfekte Sicherheit.

Satz: Sei (P, C,K, E ,D) ein Kryptosystem mit |K| = |C| = |P|. Dann bietet
es perfekte Sicherheit, gdw. jeder Schlüssel mit gleicher Wahr-
scheinlichkeit 1

|K| benutzt wird und ∀x ∈ P, y ∈ C ein eindeutiger

Schlüssel K existiert, so dass eK(x) = y.
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1. Exemplarisch (nach [1])

a b c

K1 0 1 2
K2 1 2 0
K3 2 0 1

|K| = |C| = |P| = 3

Pr[Ki] = 1

3

a 0

b 1

c 2

2. One-Time Pad (Beispielrealisierung)

• n ∈ Z, n ≥ 1 und P = C = K = (Z2)
n

• x = (x1, . . . , xn), K = (K1, . . . , Kn), y = (y1, . . . , yn)
• eK(x) = (x1 + K1, . . . , xn + Kn) mod 2 (entspricht ⊗)

• dK(y) = (y1 + K1, . . . , yn + Kn) mod 2 (entspricht ⊗)

• Sicherheit begründet durch:

◦ Zufälligkeit (unvorhersagbar!) der Schlüssel
◦ Geheimhaltung der Schlüssel
◦ Schlüssel nur einmal benutzen
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Klartext 0 1 1 1 0 0 1 0
Schlüssel 1 1 1 0 1 0 1 0

Chiffretext 1 0 0 1 1 0 0 0

Schlüssel 1 1 1 0 1 0 1 0
Klartext 0 1 1 1 0 0 1 0

• Angriffsmöglichkeiten:

◦ Ausspähen des Schlüssels bei nicht geheimen Schlüsselaustausch
◦ Kein ausreichend zufälliger Schlüssel
◦ Mehrfachverwendung des Schlüssels (Differenz der Chiffre-

texte = Differenz der Klartexte)

• Nachteile:

◦ Schlüssellänge und -anzahl
◦ Zufälligkeit der Schlüssel
◦ Synchronisationsproblem bei verschollenen Nachrichten
◦ Kollisionssproblem bei gleichzeitigen Nachrichten A↔B
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• Ursprung in der Thermodynamik, Bedeutung Unordnungsgrad =̂ große
Unordnung = hohe Entropie

• Informationstheorie: Ungewissheit über einen Versuchsausgang, (mittlerer)
Informationsgehalt einer Nachricht

Definition: Sei X eine diskrete Zufallsgröße, die die Werte einer endlichen
Menge X annimmt. Dann ist die Entropie von X definiert als die Größe

H(X) = −
∑

x∈X

Pr[x] log 2Pr[x]

Anmerkung 1: Da log2 y undefiniert für y = 0, aber lim
y→∞

y log2 y = 0 kann

Pr[x] = 0 für einige x angenommen werden.

Anmerkung 2: Wenn |X| = n und Pr[x] = 1
n
,∀n ∈ X , dann ist

H(X) = log2 n.
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P = {a, b} mit Pr[a] = 1
4 ,Pr[b] = 3

4

K = {K1, K2, K3} mit Pr[K1] = 1
2 ,Pr[K2] = Pr[K3] = 1

4

C = {1, 2, 3, 4} mit Pr[1] = 1
8 ,Pr[2] = 7

16 ,Pr[3] = 1
4 ,Pr[4] = 3

16

H(X) = −
∑

x∈X

Pr[x] log 2Pr[x]

H(P) = −

(

1

4
log2

1

4
+

3

4
log2

3

4

)

H(P) ≈ 0,81

H(K) = 1,5

H(C) ≈ 1,85
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Satz: Sei X eine Zufallsgröße mit einer Wahrscheinlichkeitsverteilung, die die
Werte p1, . . . , pn(pi > 0, 1 ≤ i ≤ n) annimmt. Dann gilt
H(X) ≤ log2 n mit Gleichheit gdw. pi = 1

n
, 1 ≤ i ≤ n.

Folgerung: Die maximale Entropie H(X) beträgt log2 n.

Satz: H(X,Y) ≤ H(X) + H(Y), mit Gleichheit gdw. X und Y

unabhängige Zufallsgrößen sind.

Definition (a): Seien X und Y zwei Zufallsgrößen. Dann erhält man für jeden
Wert y aus Y eine (bedingte) Wahrscheinlichkeitsverteilung auf X . Die
zugehörige Zufallsgröße wird mit (X|y) bezeichnet. Offensichtlich gilt

H(X|y) = −
∑

x

Pr[x|y] log 2Pr[x|y]
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Definition (b): Die bedingte Entropie H(X|Y) ist das gewichtete Mittel
(bezüglich der Wahrscheinlichkeiten der Pr[y]) der Entropien (X|y)
über allen möglichen Werten von y. Sie wird wie folgt berechnet

H(X|Y) = −
∑

y

∑

x

Pr[y]Pr[x|y] log 2Pr[x|y]

Satz: H(X,Y) = H(Y) + H(X|Y)

Folgerung: H(X|Y) ≤ H(X) mit Gleichheit gdw. X und Y unabhängig.
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Es existiert ein fundamentaler Zusammenhang zwischen den Entropien der
einzelnen Komponenten eines Kryptosystems. Die bedingte Entropie H(K|C)
heißt Schlüsselmehrdeutigkeit (key equivocation) und ist ein Maß dafür, wieviel
Information über den Schlüssel durch den Chiffretext offengelegt wird. Es gilt
hierbei folgender

Satz: Sei (P, C,K, E ,D) ein Kryptosystem. Dann gilt

H(K|C) = H(K) + H(P) − H(C)

Am Beispiel:

H(K) = 1,5 , H(P) ≈ 0,81 , H(C) ≈ 1,85

H(K|C) = 1,5 + 0,81 − 1,85 = 0,46
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• Annahmen: Eve

◦ hört Chiffretext ab
◦ weiß, dass Klartext eine „natürliche“ Sprache
◦ hat Wissen um Verschlüsselungsmethode
◦ hat unbegrenzte Rechenressourcen

• Eve kann einige Schlüssel verwerfen (Klartext ist unbrauchbar)
• Verbleibende „mögliche“ Schlüssel unterteilt in

◦ Korrekter Schlüssel
◦ Falsche Schlüssel

Beispiel:

• Sprache Englisch, Chiffretext WNAJW, Methode Verschiebungschiffre
• nur zwei „sinnvolle“ Klartexte möglich: RIVER und ARENA

→֒ mögliche Schlüssel F (5) und W (22)
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Ziel: Anzahl falscher Schlüssel eingrenzen

• Entropie (pro Buchstabe) einer natürlichen Sprache (HL) misst die
durchschnittliche Information pro Buchstabe in einem „sinnvollen“
natürlichsprachigem Text

• n-Gram: Wort der Länge n über einem Alphabet, Pn Zufallsgröße mit
Wahrscheinlichkeitsverteilung aller n-Gramme eines Klartextes

Definition: Sei L eine natürliche Sprache. Die Entropie von L ist definiert als
die Größe

HL = lim
n→∞

H(Pn)

n

und die Redundanz von L ist definiert durch

RL = 1 −
HL

log2 |P|
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• L ist englische Sprache
• Durch Untersuchungen: 1,0 ≤ HL ≤ 1,5 also rund 1,25
• Redundanz:

RL = 1 −
1,25

log2 26
≈ 0,734

→֒ ca. 75% der englischen Sprache redundant
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Redundanz

• gibt Aufschluss über effektive Codierungsmöglichkeit
• erlaubt Anzahl falscher Schlüssl zu minimieren

Satz: Sei (P, C,K, E ,D) ein Kryptosystem mit |C| = |P| und
gleichwahrscheinlicher Schlüsselverteilung. RL sei die Redundanz der
zu Grunde liegenden Sprache. Mit gegebenen Chiffretext der Länge n,
mit n hinreichend groß, erfüllt die erwartete Anzahl falscher Schlüssel sn

die Formel

sn ≥
|K|

|P|nRL

− 1

Definition: Die Eindeutigkeitsdistanz eines Kryptosystems ist definiert durch
den Wert n, bezeichnet als n0, bei dem die Anzahl erwarteter falscher
Schlüssel Null wird. D.h. die durchschnittliche Menge an Chiffretext, die
ein Angreifer benötigt, um den Schlüssel eindeutig zu bestimmen.
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• sn = 0 in Gleichung (letzter Satz) setzen und nach n umformen ergibt

n0 ≈
log2|K|

RL log2 |P|

• Kryptosystem Substitutions-Chiffre: |P| = 26 und |K| = 26!, RL = 0,75

n0 ≈
88,4

0,75 · 4,7
≈ 25

→֒ Ein Chiffretext der Länge 25 ermöglicht (normalerweise) eine eindeutige
Entschlüsselung.



Produktkryptosysteme

Sicherheit?

Wahrscheinlichkeitstheorie

Perfekte Sicherheit

Entropie

Gute Schlüssel

• Schlüsselmehrdeutigkeit

• Schlüsselkandidaten

• Spracheigenschaften

• Eliminierung falscher
Schlüssel

• Produktkryptosysteme

Literatur

Kryptographie und Datensicherheit – §2 Datensicherheit und Shannons Theorie 28 / 31

• Idee: Verknüpfen zweier Kryptosysteme zur Erhöhung der Sicherheit
• endomorphe Kryptosysteme notwendig (P = C)

S1 = (P,P,K1, E1,D1)
S2 = (P,P,K2, E2,D2)

→֒ Produkt: S1 × S2 = (P,P,K1 ×K2, E ,D)

• Schlüssel K hat die Form (K1, K2) mit K1 ∈ K1, K2 ∈ K2

• Verschlüsselungsfunktion: d(K1,K2)(y) = dK1
(dK2

(y))
• Entschlüsselungsfunktion: e(K1,K2)(x) = eK2

(eK1
(x))

• Beachte umgekehrte Schlüsselfolge:

d(K1,K2)(e(K1,K2)(x)) = d(K1,K2)(eK2
(eK1

(x)))

= dK1
(dK2

(eK2
(eK1

(x))))

= dK1
(eK1

(x))

= x
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• Assoziativität: S1 × (S2 ×S3) = (S1 ×S2)×S3 gilt für alle Kryptosysteme
• Kommutierende Kryptosysteme: S1 × S2 = S2 × S1 gilt nicht für alle

Krytosysteme
• Idempotenz: S × S = S2 = S

→֒ falls nicht idempotent Chance für höhere Sicherheit durch multiple
Iterationen (DES = S16)

• Beachte: S1, S2 idempotent und kommutierend ⇒ S1 × S2 ebenso

(S1 × S2) × (S1 × S2) = S1 × (S2 × S1) × S2

= S1 × (S1 × S2) × S2

= (S1 × S1) × (S2 × S2)

= S1 × S2
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