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Provably Secure Signatures
.

Provably Secure Signature Schemes

e beweisbar sicher

e oft als theoretisches Modell

e One-Time-Signature
e sicher, wenn nur eine Nachricht signiert
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Provably Secure Signatures
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Lamport Signature Scheme

e One-Time-Signature
e nutzt Einwegfunktion

e einfach, aber unpraktikabel
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Provably Secure Signatures
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Lamport Signature Scheme

Kryptosystem:

P = {0,1}%, k € N* (Nachrichten)

Einwegfunktion: f:Y — Z

A = Y¥ (Signatur)

yij € Y zufillig gewshlt, 1 < i < k, j=0,1

zij="Ff(yij), 1<i<k j=0,1

K = (yij,zij:1<i<k,j=0,1); yij geheim, z ; offentlich
SIgK (X1, ooy X)) = (Vixas s Vi)

verK((xl, ...,Xk), (al, ceey ak)) = true & f(a;) = Zj x;»
1<i<k
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Provably Secure Signatures
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Lamport Signature Scheme - Beispiel

Einwegfunktion f (x) = o mod p
konkret: f(x) = 3* mod 7879

Nachricht: x = (1,1,0)

geheimer Schlissel: (zufallig)
Y1 Y2, Y3,
y1,0="5831 y20=803  y30=4285
Y11 =735  yo1 =2467 y31 = 6449

offentliche Schliissel: (aus y berechnet)
Z1,x; 22, 23 x;
710 =2000 zp0=4672 z30 = 268
2171 = 3810 221 = 4721 Z31 = 5731
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Provably Secure Signatures
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Lamport Signature Scheme - Beispiel

Signatur fur x: sigK(l, 1, 0) = (y1717y2,1,y370) = (7357 2467, 4285)

Verifikation:

3735 mod 7879 = 3810
32467 mod 7879 = 4721
34285 mod 7879 = 268
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Provably Secure Signatures
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Lamport - Sicherheit

e Sicherheit von One-Time Eigenschaft abhangig
e Nachricht 1: (1,0,1) mit Signatur (y1,1,¥2,0,¥3.1)
e Nachricht 2: (0,1,0) mit Signatur (y1,0,¥2,1,¥3,0)
o hier: geheimer Schliissel nach Verifikation vollstindig bekannt
e = fiir alle anderen Nachrichten kann Signatur gefélscht werden

o Beweis der Sicherheit (Widerspruchsbeweis)

e Bedingungen: key-only attack (vgl. one-time Eigenschaft)
e Annahme: f ist bijektive Einwegfunktion, Elemente des public
key disjunkt
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Provably Secure Signatures
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Lamport - Sicherheitsbeweis

e Angenommen, Angreifer kann existenzielle Falschung
produzieren

e — LAMPORT-FORGE(Z) mit Z public key

e Konstruiere Algorithmus, der Urbild y eines z € Z berechnet
(f: Y= 2):

LAMPORT-PREIMAGE(Z)

wahle zufallig io € {1,...,k} und jo € {0,1}
wahle zufallig public key Z = (z;j|i € {1, ..., k};j € {0,1}) mit
Zigjo = £
((x1, .-y xk), (a1, -, ak)) < LAMPORT-FORGE(Z)
if xi, = Jo
then return (aj,)
else fail
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Provably Secure Signatures
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Lamport - Sicherheitsbeweis

Wahrscheinlichkeit, dass LAMPORT-PREIMAGE ein Urbild
findet: 1/2
e d.h. LAMPORT-PREIMAGE existiert

— Widerspruch mit Einwegeigenschaft von f
e = Es kann LAMPORT-FORGE nicht geben

Schema unpraktikabel

z.B. f: Exponentiation in Restklassen, sicher mit 1024 bit

= Signaturlange = 1024- Nachrichtenlange
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Provably Secure Signatures
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Full Domain Hash

e man will auch Nachrichten beliebiger Lange effizient signieren

e Losung: Hash-Then-Sign
e Verwendung einer kryptographischen Hashfunktion
H:{0,1}* — {0,1}*
o statt der Nachricht unterschreibt man dann tatsachlich den
Hashwert

e Full Domain Hash (Bellare & Rogaway): nutzen einer
Trapdoor-Einwegpermutation um ein sicheres Signaturschema
im Random Oracle Model zu konstruieren

o Wertebereich des Random Oracle ist gleich dem
Definitionsbereich der Trapdoor-Einwegpermutation
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Provably Secure Signatures
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Full Domain Hash

Kryptosystem:

e F Familie von Trapdoor-Einwegpermutationen, so dass
f:{0,1}% = {0,1}* Vf € F, k e N*

zufillige Hashfunktion G : {0,1}" — {0,1}*

P ={0,1}* und A = {0,1}¥

K={(f,f1,G): f e F}; f! geheim, (f, G) offentlich
sigk(x) = f1(G(x)), x € {0,1}*

o verk(x,y) = true < f(y) = G(x), y = (y1, ..., yk) € {0,1}¥
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Provably Secure Signatures
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Full Domain Hash - Sicherheit

notwendige Sicherheitsbedingung:
kollisionsresistente Hashfunktion, d.h. es ist unmoglich zwei Inputs
M # M’ zu finden mit H(M) = H(M')

= FDH ist sicher im Zufallsorakel-Modell, wenn f nicht invertiert
werden kann
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Provably Secure Signatures
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Full Domain Hash

RSA basierte Implementierung:

e f~1: RSA Signierungsfunktion, z.B. decryption

f: RSA Verifizierungsfunktion, z.B. encryption

k =1024

statt Orakel G SHA-1 (liefert 160 bit message digest)
160 bit Hashwert muss zu 1024 bit aufgefiillt werden
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Undeniable Signatures
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Undeniable Signatures — Motivation

e Alice signiert Angebot, schickt es an Bob's Firma
e Alice's Konkurrent Klaus bekommt (irgendwie) die Nachricht
e Klaus verifiziert Signatur, unterbietet daraufhin das Angebot
e — Alice will verhindern, dass Klaus die Signatur verifizieren
kann
e Losung: Alice muss beim verifizieren “helfen”
e Challenge-and-response Protokoll
e Nachteil: Alice konnte (korrekte) Verifizierung verweigern
e hier: Alice kann Angebot abstreiten

e Losung: Alice kann beweisen, falls Falschung vorliegt

e Disavowal-Protokoll

e “Undeniable” (unabstreitbar), da Alice Signatur nicht
abstreiten kann

e Bei herkommlichen Signaturen "“integriert”
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Undeniable Signatures
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Undeniable Signatures

e 3 Komponenten

e Signierungsalgorithmus
e Verifikationsprotokoll
e Disavowal-Protokoll

e erstmals 1989 - Chaum, van Antwerpen
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Undeniable Signatures
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Chaum-van Antwerpen

Basiert auf multiplikativer Gruppe lber Z,

p = 2g + 1 Primzahl, so dass: g Primzahl und diskreter
Logarithmus in Z, schwer losbar
Offentlich: p, o, B
* a € Z, mit Ordnung gq
« f=a* (mod p)
Geheim: amit1<a<g-1

G sei multiplikative Untergruppe von Zg, der Ordnung q (d.h.
|G| = q, « ist generierendes Element)

P (Nachrichten) = A (Signaturen) = G
IC (Schlissel) = {(p, a, a, 3)|8 = a? (mod p)}
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Undeniable Signatures
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Chaum-van Antwerpen

e Signierung:
e Schliissel K = (p, «, a, 3), Nachricht x € G
e Signatur y = sigk(x) = x? mod p

o Verifikation:
@ Bob wahlt zufallig €1, e € Ly,
@ Bob berechnet ¢ = y® 3% mod p und schickt es an Alice
(“challenge™)
© Alice berechnet d = c@ ' modq mod p und schickt es zuriick
(“response”)
O Bob akzeptiert die Giiltigkeit g.d.w. d = x®a® (mod p)
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Undeniable Signatures
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Chaum-van Antwerpen

e p=2g+1, denn: Berechnung Inverse in G, da
P =A= G = G moglichst groB3

e Zu zeigen: Signatur giiltig = Bob akzeptiert die Signatur

e Annahme: Alice und Bob ehrlich

o ¢ mda = ene (mod p)
° (ye1662)a*1 mod g — ye1 & (mod P)
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Undeniable Signatures
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Chaum-van Antwerpen — Sicherheit

e Zu zeigen: Signatur ungliltig = Bob lehnt die Signatur ab
e (d.h., Alice kann Bob nicht dazu bringen, eine gefilschte

Signatur zu akzeptieren)

Annahme: nur Bob ehrlich

viele (g) mogliche ¢ zu jeder Signatur (vgl. e, e zufillig)

= Wahrscheinlichkeit das Alice Bob tduschen kann: 1/q

unconditional security
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Undeniable Signatures
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Chaum-van Antwerpen — Disavowal

© Bob wahlt zufillig e1, &2 € Zj,

® Bob berechnet ¢ = y*13%2 mod p und schickt es an Alice
(“challenge”)

© Alice berechnet d = c@ ! moda o p und schickt es zuriick
(“response”)

O Bob iiberpriift, dass d#£xa® (mod p)

@ Bob wahlt zufallig f1, 6 € Z,";

@ Bob berechnet C = yi3% mod p und schickt es an Alice
(“challenge™)

@ Alice berechnet D = a3t medda mod p und schickt es
zuriick (“response”)

© Bob iiberpriift, dass D#x1a” (mod p)

© Bob sieht y als Falschung an, g.d.w.
(da—®)h = (Da~?)% (mod p)
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Undeniable Signatures
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Entrusted Undeniable Signatures

e Erstmals S. Park, K. Lee, D. Won; 1995
e ‘“Liigendetektor-Problem":
o Alice schickt Dokumente mit Beschuldigungen an Zeitung
o Alice erlaubt nur Reporter Verifizierung
o Alice's Vorgesetzter Bob vermutet, dass Alice Dokumente
geschickt hat
e Bob verlangt disavowal von Alice
o Alice weigert sich = Bob kann nicht wissen, ob Alice liigt
e aber: Bob interpretiert dies als “schuldig”, kiindigt Alice
e Losung:

e Disavowal-Protokoll nur von Drittem, Gericht Carol ausfiihrbar
e Streit so “gerichtlich” schlichtbar
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Undeniable Signatures
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Entrusted Undeniable Signatures

e |dee:

o Alice verwendet zufilligen private key r - a (statt a) zur
Signierung

e Carol hat RSA private und public key

o Alice legt sich auf r fest (commitment c, Verschliisselung mit
Carol’s public key)

e — nur Carol kann Disavowal-Protokoll ausfiihren, da ihr
private key benotigt wird, um r zu berechnen
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Undeniable Signatures
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Threshold Entrusted Undeniable Signatures

Erstmals S. Kim, D. Won; 2004
“Liugendetektor-Problem” Fortsetzung:
e Bob besticht Carol (um Alice als “schuldig” zu entlarven)

e Losung:
e Nur (mind.) t von n "“Geschworenen” kénnen
Disavowal-Protokoll ausfiihren

Idee:

o Geschworene haben alle public-private-key-Paare
e Doppelte Exponentiation
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Fail-stop Signatures
°

Fail-stop Signatures

e erhohte Sicherheit gegen sehr machtige Angreifer (Moglichkeit
einer gefalschten Signatur)

e Alice kann mit hoher Wahrscheinlichkeit eine Falschung
nachweisen

e wenn eine Falschung gefunden, wird das System angehalten

e hier: van Heyst and Pedersen Signature Scheme
e One-Time Signature Scheme
e Signierungs- und Verifikationsalgorithmus, sowie proof of
forgery Algorithmus
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Fail-stop Signatures
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van Heyst and Pedersen Signature Scheme

e Primzahlen: p und g, sodass p=2g+1

e diskrete Logarithmus Problem in Z, schwer zu losen

® « € Zj Element der Ordnung q

e 1<ag<g—1,8=a* modp

® p,qg,q,f3,ap von zentraler Stelle gewahlt

® p,q,a,( sind Sffentlich; ag ist geheim (auch vor Alice)

¢ P=7Zgund A=7Zg X Zq

o K =(v1,7,a1,az, b1, by), wobei a1, ap, b1, by € Zg,
y1=a®$% mod pund o = a® 3> mod p

o (v1,72) ist offentlich, (a1, a, by, bo) ist geheim

* sigk(x) = (y1,¥2), x € Zqg,
wobei y; = a; + xby mod g und y» = a, + xb, mod g
o verk(x,y) = true & y175 = o132 (mod p),
y=y1,y) € Lq X Lgq
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Fail-stop Signatures
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Fail-stop Signatures - Sicherheit

Definition Zwei Schlissel (1,72, a1, a2, b1, ba) und
(71,75, a1, a5, by, by) sind dquivalent, wenn 1 = 7 und 72 = 5.

e g° Schliissel in jeder Aquivalenzklasse

Lemma 1 Wenn K und K’ aquivalent sind und verk(x,y) = true,
dann gilt verk/(x,y) = true.

Lemma 2 Wenn K ein Schlissel ist und y = sigk(x), dann gibt es
genau g Schlissel K’, die dquivalent zu K sind, so dass

y = sigk:(x).

Lemma 3 Wenn K ein Schliissel ist, y = sigk(x) und
verk(x',y") = true, wobei x’ # x, dann gibt es hochstens einen zu
K &quivalenten Schliissel K’, so dass y = sigks(x) und

y' = sigir(x').
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Fail-stop Signatures
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Fail-stop Signatures - Sicherheit

Folgerung:
e zu einer giiltigen Signatur y fiir x gibt es g mogliche
Schlussel, die x ebenfalls mit y signieren wiirden

e aber fiir jedes x” # x liefern diese g Schliissel g verschiedene
Signaturen fiir x’

Theorem Wenn sigk(x) = y gegeben und x’ # x, dann kann Oscar
sigik(x") mit einer Wahrscheinlichkeit von 1/q berechnen.

= unbedingte Sicherheit
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Fail-stop Signatures
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Fail-stop Signatures - Proof of forgery

e zu einer Signatur y fiir Nachricht x kann Oscar die Signatur
y" von Alice fiir x' nicht berechnen

e vorstellbar: Oscar kann gefalschte Signatur y” # sigx(x’)
berechnen, die verifiziert werden kann

e Alice kann mit Wahrscheinlichkeit 1 — 1/q beweisen, dass es
eine Falschung ist

e proof of forgery: ag = log, 3 (nur der zentralen Stelle
bekannt)

e Annahme, dass Alice den diskreten Logarithmus nicht
berechen kann
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Fail-stop Signatures
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Fail-stop Signatures - Proof of forgery

Annahme: Paar (x’,y"), so dass verk(x’,y") = true und y" # sigk(x’)
7175 =l B4 (mod p), ¥ = (1, 14)
Alice berechnet eigene Signatur fiir x": y' = (y{,¥3)
7175 = a1 (mod p)
¥ B4 = @@ (mod p)
8 =a® mod p eingesetzt:
ot Faoys = qyitays (mod p)
Y1+ aoys = y1 + a0y, (mod q)
yi' = y1 = ao(y; — y3') (mod q)

ys#£ys (mod q), da y” gefalscht, folglich ex. (y5 — y5)~! (mod q)
und ag lasst sich leicht berechnen:
a0 = loga8 = (' = y1)(y3 = v3') ™" (mod q)
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Group Signatures

Group Signatures

e Erstmals Chaum, van Heyst; 1991

e Motivation:

e Firma mit vielen Rechnern und Netzwerkdruckern
Ein Drucker in jeder Abteilung
Nur Mitarbeiter einer Abteilung diirfen “Abteilungsdrucker”
nutzen
— Drucker muss "Mitgliedschaft” des Nutzers sicherstellen
— Wahrung der Privatsphare: ldentitat des Nutzers geheim
— aber: Bei libermaBiger Nutzung Offenlegung der Identitat
um Rechnung auszustellen

e Losung:
e Nur Gruppenmitglieder konnen Nachrichten signieren
e Empfanger kann Signatur als giiltige Signatur der Gruppe
verifizieren ohne Mitglied zu kennen
o Im Streitfall kann Signatur “gedffnet” werden (ldentitét des
Signierers feststellbar)
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Ring Signatures

Ring Signatures

e Vereinfachung Group Signatures

e Moglichkeit eine Gruppe von moglichen Unterzeichnern zu
spezifizieren ohne die ldentitat des eigentlichen Unterzeichners
offen zu legen

e keine Manager, keine Koordination
e keine vorherbestimmten Gruppen

e einzige Annahme: jedes Mitglied hat einen offentlichen
Schlissel eines Standard Signatur Schemas

e Unterzeichner wahlt eine beliebige Gruppe mit moglichen
Unterzeichnern

e Signatur berechnen mit eigenem geheimen Schliissel und den
anderen offenlichen Schliisseln

e kein Einverstandnis der Anderen notwendig
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Zusammenfassun;

Provably Secure Signatures

Group Signatures

Short Group Signatures

Blind Signatures

Unanticipated Signatures

Undeniable Signatures

Convertible Undeniable Signatures
Designated Confirmer Signatures
Nominative Signatures

Convertible Nominative Signatures
Entrusted Undeniable Signatures
Threshold Entrusted Undeniable Sig.
Zero-Knowledge Undeniable Signatures
Zero-Knowledge Nominative Signatures
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Noch mehr Protokolle fiir Digitale Signaturen

Ring Signatures

Deniable Ring Signatures

Short Ring Signatures

Threshold Ring Signatures
General Access Ring Signatures
Identity-based Ring Signatures
Identity-based Threshold Ring Sig.
Separable Ring Signatures
Linkable Ring Signatures
Verifiable Ring Signatures
Accountable Ring Signatures
Bilinear Ring Signatures

Bilinear Threshold Ring Signatures
Fail-stop Signatures
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