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Provably Secure Signature Schemes

• beweisbar sicher

• oft als theoretisches Modell

• One-Time-Signature
• sicher, wenn nur eine Nachricht signiert
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Lamport Signature Scheme

• One-Time-Signature

• nutzt Einwegfunktion

• einfach, aber unpraktikabel
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Lamport Signature Scheme

Kryptosystem:

• P = {0, 1}k , k ∈ N+ (Nachrichten)

• Einwegfunktion: f : Y → Z

• A = Y k (Signatur)

• yi ,j ∈ Y zufällig gewählt, 1 ≤ i ≤ k, j = 0, 1

• zi ,j = f (yi ,j), 1 ≤ i ≤ k, j = 0, 1

• K = (yi ,j , zi ,j : 1 ≤ i ≤ k, j = 0, 1); yi ,j geheim, zi ,j öffentlich

• sigK (x1, ..., xk) = (y1,x1 , ..., yk,xk
)

• verK ((x1, ..., xk), (a1, ..., ak)) = true ⇔ f (ai ) = zi ,xi
,

1 ≤ i ≤ k
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Lamport Signature Scheme - Beispiel

Einwegfunktion f (x) = αx mod p
konkret: f (x) = 3x mod 7879

Nachricht: x = (1, 1, 0)

geheimer Schlüssel: (zufällig)
y1,xj y2,xj y3,xj

y1,0 = 5831 y2,0 = 803 y3,0 = 4285
y1,1 = 735 y2,1 = 2467 y3,1 = 6449

öffentliche Schlüssel: (aus y berechnet)
z1,xj z2,xj z3,xj

z1,0 = 2009 z2,0 = 4672 z3,0 = 268
z1,1 = 3810 z2,1 = 4721 z3,1 = 5731
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Lamport Signature Scheme - Beispiel

Signatur für x : sigK (1, 1, 0) = (y1,1, y2,1, y3,0) = (735, 2467, 4285)

Verifikation:

3735 mod 7879 = 3810
32467 mod 7879 = 4721
34285 mod 7879 = 268
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Lamport - Sicherheit

• Sicherheit von One-Time Eigenschaft abhängig
• Nachricht 1: (1, 0, 1) mit Signatur (y1,1, y2,0, y3,1)
• Nachricht 2: (0, 1, 0) mit Signatur (y1,0, y2,1, y3,0)
• hier: geheimer Schlüssel nach Verifikation vollständig bekannt
• ⇒ für alle anderen Nachrichten kann Signatur gefälscht werden

• Beweis der Sicherheit (Widerspruchsbeweis)
• Bedingungen: key-only attack (vgl. one-time Eigenschaft)
• Annahme: f ist bijektive Einwegfunktion, Elemente des public

key disjunkt
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Lamport - Sicherheitsbeweis

• Angenommen, Angreifer kann existenzielle Fälschung
produzieren

• → Lamport-Forge(Z) mit Z public key

• Konstruiere Algorithmus, der Urbild y eines z ∈ Z berechnet
(f : Y → Z ):

Lamport-Preimage(z)

wähle zufällig i0 ∈ {1, ..., k} und j0 ∈ {0, 1}
wähle zufällig public key Z = (zi ,j |i ∈ {1, ..., k}; j ∈ {0, 1}) mit
zi0,j0 = z
((x1, ..., xk), (a1, ..., ak))← Lamport-Forge(Z)
if xi0 = j0

then return (ai0)
else fail
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Lamport - Sicherheitsbeweis

• Wahrscheinlichkeit, dass Lamport-Preimage ein Urbild
findet: 1/2

• d.h. Lamport-Preimage existiert

• → Widerspruch mit Einwegeigenschaft von f

• ⇒ Es kann Lamport-Forge nicht geben

• Schema unpraktikabel

• z.B. f : Exponentiation in Restklassen, sicher mit 1024 bit

• ⇒ Signaturlänge = 1024· Nachrichtenlänge
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Full Domain Hash

• man will auch Nachrichten beliebiger Länge effizient signieren

• Lösung: Hash-Then-Sign

• Verwendung einer kryptographischen Hashfunktion
H : {0, 1}∗ → {0, 1}L

• statt der Nachricht unterschreibt man dann tatsächlich den
Hashwert

• Full Domain Hash (Bellare & Rogaway): nutzen einer
Trapdoor-Einwegpermutation um ein sicheres Signaturschema
im Random Oracle Model zu konstruieren

• Wertebereich des Random Oracle ist gleich dem
Definitionsbereich der Trapdoor-Einwegpermutation
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Full Domain Hash

Kryptosystem:

• F Familie von Trapdoor-Einwegpermutationen, so dass
f : {0, 1}k → {0, 1}k ,∀f ∈ F , k ∈ N+

• zufällige Hashfunktion G : {0, 1}∗ → {0, 1}k

• P = {0, 1}∗ und A = {0, 1}k

• K = {(f , f −1,G ) : f ∈ F}; f −1 geheim, (f ,G ) öffentlich

• sigK (x) = f −1(G (x)), x ∈ {0, 1}∗

• verK (x , y) = true ⇔ f (y) = G (x), y = (y1, ..., yk) ∈ {0, 1}k
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Full Domain Hash - Sicherheit

notwendige Sicherheitsbedingung:

kollisionsresistente Hashfunktion, d.h. es ist unmöglich zwei Inputs
M 6= M ′ zu finden mit H(M) = H(M ′)

⇒ FDH ist sicher im Zufallsorakel-Modell, wenn f nicht invertiert
werden kann
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Full Domain Hash

RSA basierte Implementierung:

• f −1: RSA Signierungsfunktion, z.B. decryption

• f : RSA Verifizierungsfunktion, z.B. encryption

• k = 1024

• statt Orakel G SHA-1 (liefert 160 bit message digest)

• 160 bit Hashwert muss zu 1024 bit aufgefüllt werden
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Undeniable Signatures – Motivation

• Alice signiert Angebot, schickt es an Bob’s Firma

• Alice’s Konkurrent Klaus bekommt (irgendwie) die Nachricht

• Klaus verifiziert Signatur, unterbietet daraufhin das Angebot

• → Alice will verhindern, dass Klaus die Signatur verifizieren
kann

• Lösung: Alice muss beim verifizieren “helfen”
• Challenge-and-response Protokoll

• Nachteil: Alice könnte (korrekte) Verifizierung verweigern

• hier: Alice kann Angebot abstreiten

• Lösung: Alice kann beweisen, falls Fälschung vorliegt
• Disavowal-Protokoll
• “Undeniable” (unabstreitbar), da Alice Signatur nicht

abstreiten kann
• Bei herkömmlichen Signaturen “integriert”
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Undeniable Signatures

• 3 Komponenten
• Signierungsalgorithmus
• Verifikationsprotokoll
• Disavowal-Protokoll

• erstmals 1989 - Chaum, van Antwerpen
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Chaum-van Antwerpen

• Basiert auf multiplikativer Gruppe über Zp

• p = 2q + 1 Primzahl, so dass: q Primzahl und diskreter
Logarithmus in Zp schwer lösbar

• Öffentlich: p, α, β
• α ∈ Z∗

p mit Ordnung q
• β = αa (mod p)

• Geheim: a mit 1 ≤ a ≤ q − 1

• G sei multiplikative Untergruppe von Z∗
p, der Ordnung q (d.h.

|G | = q, α ist generierendes Element)

• P (Nachrichten) = A (Signaturen) = G

• K (Schlüssel) = {(p, α, a, β)|β ≡ αa (mod p)}
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Chaum-van Antwerpen

• Signierung:
• Schlüssel K = (p, α, a, β), Nachricht x ∈ G
• Signatur y = sigK (x) = xa mod p

• Verifikation:

1 Bob wählt zufällig e1, e2 ∈ Z∗
p

2 Bob berechnet c = y e1βe2 mod p und schickt es an Alice
(“challenge”)

3 Alice berechnet d = ca−1 mod q mod p und schickt es zurück
(“response”)

4 Bob akzeptiert die Gültigkeit g.d.w. d ≡ xe1αe2 (mod p)
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Chaum-van Antwerpen

• p = 2q + 1, denn: Berechnung Inverse in G , da
P = A = G ⇒ G möglichst groß

• Zu zeigen: Signatur gültig ⇒ Bob akzeptiert die Signatur
• Annahme: Alice und Bob ehrlich
• ca−1 mod q ≡ xe1αe2 (mod p)

• (y e1βe2)a
−1 mod q ≡ xe1αe2 (mod p)
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Chaum-van Antwerpen – Sicherheit

• Zu zeigen: Signatur ungültig ⇒ Bob lehnt die Signatur ab
• (d.h., Alice kann Bob nicht dazu bringen, eine gefälschte

Signatur zu akzeptieren)
• Annahme: nur Bob ehrlich
• viele (q) mögliche c zu jeder Signatur (vgl. e1, e2 zufällig)
• ⇒ Wahrscheinlichkeit das Alice Bob täuschen kann: 1/q
• unconditional security
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Chaum-van Antwerpen – Disavowal

1 Bob wählt zufällig e1, e2 ∈ Z∗
p

2 Bob berechnet c = y e1βe2 mod p und schickt es an Alice
(“challenge”)

3 Alice berechnet d = ca−1 mod q mod p und schickt es zurück
(“response”)

4 Bob überprüft, dass d /≡xe1αe2 (mod p)

5 Bob wählt zufällig f1, f2 ∈ Z∗
p

6 Bob berechnet C = y f1βf2 mod p und schickt es an Alice
(“challenge”)

7 Alice berechnet D = C a−1 mod q mod p und schickt es
zurück (“response”)

8 Bob überprüft, dass D /≡x f1αf2 (mod p)

9 Bob sieht y als Fälschung an, g.d.w.
(dα−e2)f1 ≡ (Dα−f2)e1 (mod p)
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Entrusted Undeniable Signatures

• Erstmals S. Park, K. Lee, D. Won; 1995

• “Lügendetektor-Problem”:
• Alice schickt Dokumente mit Beschuldigungen an Zeitung
• Alice erlaubt nur Reporter Verifizierung
• Alice’s Vorgesetzter Bob vermutet, dass Alice Dokumente

geschickt hat
• Bob verlangt disavowal von Alice
• Alice weigert sich ⇒ Bob kann nicht wissen, ob Alice lügt
• aber: Bob interpretiert dies als “schuldig”, kündigt Alice

• Lösung:
• Disavowal-Protokoll nur von Drittem, Gericht Carol ausführbar
• Streit so “gerichtlich” schlichtbar
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Entrusted Undeniable Signatures

• Idee:
• Alice verwendet zufälligen private key r · a (statt a) zur

Signierung
• Carol hat RSA private und public key
• Alice legt sich auf r fest (commitment c , Verschlüsselung mit

Carol’s public key)
• → nur Carol kann Disavowal-Protokoll ausführen, da ihr

private key benötigt wird, um r zu berechnen
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Threshold Entrusted Undeniable Signatures

• Erstmals S. Kim, D. Won; 2004

• “Lügendetektor-Problem” Fortsetzung:
• Bob besticht Carol (um Alice als “schuldig” zu entlarven)

• Lösung:
• Nur (mind.) t von n “Geschworenen” können

Disavowal-Protokoll ausführen

• Idee:
• Geschworene haben alle public-private-key-Paare
• Doppelte Exponentiation
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Fail-stop Signatures

• erhöhte Sicherheit gegen sehr mächtige Angreifer (Möglichkeit
einer gefälschten Signatur)

• Alice kann mit hoher Wahrscheinlichkeit eine Fälschung
nachweisen

• wenn eine Fälschung gefunden, wird das System angehalten

• hier: van Heyst and Pedersen Signature Scheme
• One-Time Signature Scheme
• Signierungs- und Verifikationsalgorithmus, sowie proof of

forgery Algorithmus
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van Heyst and Pedersen Signature Scheme

• Primzahlen: p und q, so dass p = 2q + 1

• diskrete Logarithmus Problem in Zp schwer zu lösen

• α ∈ Z∗
p Element der Ordnung q

• 1 ≤ a0 ≤ q − 1, β = αa0 mod p

• p, q, α, β, a0 von zentraler Stelle gewählt

• p, q, α, β sind öffentlich; a0 ist geheim (auch vor Alice)

• P = Zq und A = Zq × Zq

• K = (γ1, γ2, a1, a2, b1, b2), wobei a1, a2, b1, b2 ∈ Zq,

γ1 = αa1βa2 mod p und γ2 = αb1βb2 mod p

• (γ1, γ2) ist öffentlich, (a1, a2, b1, b2) ist geheim

• sigK (x) = (y1, y2), x ∈ Zq,

wobei y1 = a1 + xb1 mod q und y2 = a2 + xb2 mod q

• verK (x , y) = true ⇔ γ1γ
x
2 ≡ αy1βy2 (mod p),

y = (y1, y2) ∈ Zq × Zq

Markus Gusowski, Andrea Hentschke Seminar Kryptographie und Datensicherheit



Provably Secure Signatures Undeniable Signatures Fail-stop Signatures Group Signatures Ring Signatures Zusammenfassung

Fail-stop Signatures - Sicherheit

Definition Zwei Schlüssel (γ1, γ2, a1, a2, b1, b2) und
(γ′1, γ

′
2, a

′
1, a

′
2, b

′
1, b

′
2) sind äquivalent, wenn γ1 ≡ γ′1 und γ2 ≡ γ′2.

• q2 Schlüssel in jeder Äquivalenzklasse

Lemma 1 Wenn K und K ′ äquivalent sind und verK (x , y) = true,
dann gilt verK ′(x , y) = true.

Lemma 2 Wenn K ein Schlüssel ist und y = sigK (x), dann gibt es
genau q Schlüssel K ′, die äquivalent zu K sind, so dass
y = sigK ′(x).

Lemma 3 Wenn K ein Schlüssel ist, y = sigK (x) und
verK (x ′, y ′) = true, wobei x ′ 6= x , dann gibt es höchstens einen zu
K äquivalenten Schlüssel K ′, so dass y = sigK ′(x) und
y ′ = sigK ′(x ′).
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Fail-stop Signatures - Sicherheit

Folgerung:

• zu einer gültigen Signatur y für x gibt es q mögliche
Schlüssel, die x ebenfalls mit y signieren würden

• aber für jedes x ′ 6= x liefern diese q Schlüssel q verschiedene
Signaturen für x ′

Theorem Wenn sigK (x) = y gegeben und x ′ 6= x , dann kann Oscar
sigK (x ′) mit einer Wahrscheinlichkeit von 1/q berechnen.

⇒ unbedingte Sicherheit
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Fail-stop Signatures - Proof of forgery

• zu einer Signatur y für Nachricht x kann Oscar die Signatur
y ′ von Alice für x ′ nicht berechnen

• vorstellbar: Oscar kann gefälschte Signatur y ′′ 6= sigK (x ′)
berechnen, die verifiziert werden kann

• Alice kann mit Wahrscheinlichkeit 1− 1/q beweisen, dass es
eine Fälschung ist

• proof of forgery: a0 = logαβ (nur der zentralen Stelle
bekannt)

• Annahme, dass Alice den diskreten Logarithmus nicht
berechen kann
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Fail-stop Signatures - Proof of forgery

Annahme: Paar (x ′, y ′′), so dass verK (x ′, y ′′) = true und y ′′ 6= sigK (x ′)

γ1γ
x′

2 ≡ αy ′′1 βy ′′2 (mod p), y ′′ = (y ′′1 , y ′′2 )

Alice berechnet eigene Signatur für x ′: y ′ = (y ′1, y
′
2)

γ1γ
x′

2 ≡ αy ′1 βy ′2 (mod p)

αy ′′1 βy ′′2 ≡ αy ′1 βy ′2 (mod p)

β = αa0 mod p eingesetzt:

αy ′′1 +a0y
′′
2 ≡ αy ′1+a0y

′
2 (mod p)

y ′′1 + a0y
′′
2 ≡ y ′1 + a0y

′
2 (mod q)

y ′′1 − y ′1 ≡ a0(y
′
2 − y ′′2 ) (mod q)

y ′2 /≡y ′′2 (mod q), da y ′′ gefälscht, folglich ex. (y ′2 − y ′′2 )−1 (mod q)
und a0 lässt sich leicht berechnen:

a0 = logαβ = (y ′′1 − y ′1)(y
′
2 − y ′′2 )−1 (mod q)
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Group Signatures

• Erstmals Chaum, van Heyst; 1991

• Motivation:
• Firma mit vielen Rechnern und Netzwerkdruckern
• Ein Drucker in jeder Abteilung
• Nur Mitarbeiter einer Abteilung dürfen “Abteilungsdrucker”

nutzen
• → Drucker muss “Mitgliedschaft” des Nutzers sicherstellen
• → Wahrung der Privatsphäre: Identität des Nutzers geheim
• → aber: Bei übermäßiger Nutzung Offenlegung der Identität

um Rechnung auszustellen

• Lösung:
• Nur Gruppenmitglieder können Nachrichten signieren
• Empfänger kann Signatur als gültige Signatur der Gruppe

verifizieren ohne Mitglied zu kennen
• Im Streitfall kann Signatur “geöffnet” werden (Identität des

Signierers feststellbar)
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Ring Signatures

• Vereinfachung Group Signatures

• Möglichkeit eine Gruppe von möglichen Unterzeichnern zu
spezifizieren ohne die Identität des eigentlichen Unterzeichners
offen zu legen

• keine Manager, keine Koordination

• keine vorherbestimmten Gruppen

• einzige Annahme: jedes Mitglied hat einen öffentlichen
Schlüssel eines Standard Signatur Schemas

• Unterzeichner wählt eine beliebige Gruppe mit möglichen
Unterzeichnern

• Signatur berechnen mit eigenem geheimen Schlüssel und den
anderen öffenlichen Schlüsseln

• kein Einverständnis der Anderen notwendig
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Noch mehr Protokolle für Digitale Signaturen

Provably Secure Signatures Ring Signatures
Group Signatures Deniable Ring Signatures
Short Group Signatures Short Ring Signatures
Blind Signatures Threshold Ring Signatures
Unanticipated Signatures General Access Ring Signatures
Undeniable Signatures Identity-based Ring Signatures
Convertible Undeniable Signatures Identity-based Threshold Ring Sig.
Designated Confirmer Signatures Separable Ring Signatures
Nominative Signatures Linkable Ring Signatures
Convertible Nominative Signatures Verifiable Ring Signatures
Entrusted Undeniable Signatures Accountable Ring Signatures
Threshold Entrusted Undeniable Sig. Bilinear Ring Signatures
Zero-Knowledge Undeniable Signatures Bilinear Threshold Ring Signatures
Zero-Knowledge Nominative Signatures Fail-stop Signatures

Markus Gusowski, Andrea Hentschke Seminar Kryptographie und Datensicherheit



Quellen
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