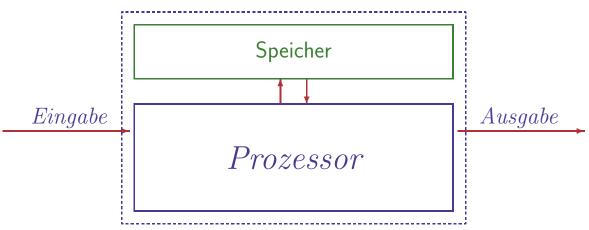
Theoretische Informatik I

Einheit 2

- 1. Deterministische endliche Automaten
- 2. Nichtdeterministische Automaten
- 3. Reguläre Ausdrücke
- 4. Grammatiken
- 5. Eigenschaften regulärer Sprachen

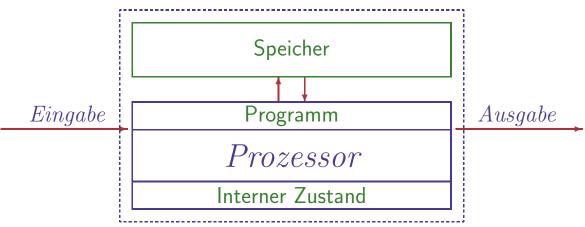
Betrachtung von außen Eingabe Black Box Ausgabe Sichtweisen von Computern

Abstrakte Maschinenarchitektur



 $Sichtweisen\ von\ Computern$

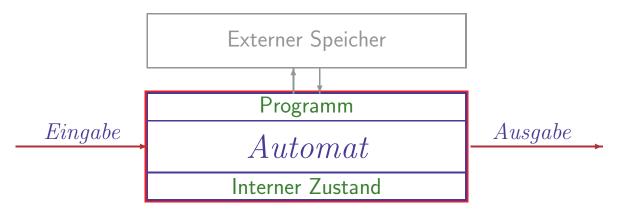
Details des Berechnungsmoduls



 $Sichtweisen\ von\ Computern$

AUTOMATEN: DAS EINFACHSTE MASCHINENMODELL

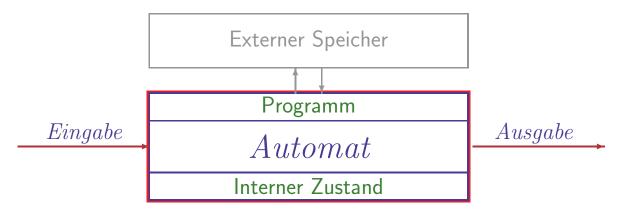
Aus der Sicht des Berechnungsmoduls



Sichtweisen von Computern

• Automaten stehen im Kern jeder Berechnung

- Schnelle, direkte Verarbeitung von Eingaben
- Keine interne Speicherung von Daten
- Speicher sind Teil der Umgebung



Sichtweisen von Computern

• Automaten stehen im Kern jeder Berechnung

- Schnelle, direkte Verarbeitung von Eingaben
- Keine interne Speicherung von Daten
- Speicher sind Teil der Umgebung

• Endliche Automaten sind leicht zu analysieren

- Jede Berechnung endet nach einer festen Anzahl von Schritten
- Keine Schleifen oder Seiteneffekte

Basismodell für viele Arten von Hard- & Software

• Steuerungsautomaten

Alle Formen rein Hardware-gesteuerter automatischer Maschinen
 Waschmaschinen, Autos, Unterhaltungselektronik, Ampelanlagen, Computerprozessoren

Basismodell für viele Arten von Hard- & Software

• Steuerungsautomaten

– Alle Formen rein Hardware-gesteuerter automatischer Maschinen Waschmaschinen, Autos, Unterhaltungselektronik, Ampelanlagen, Computerprozessoren

• Entwurf und Überprüfung digitaler Schaltungen

- Entwicklungswerkzeuge und Testsoftware beschreiben endliches Verhalten

- Steuerungsautomaten
 - Alle Formen rein Hardware-gesteuerter automatischer Maschinen
 Waschmaschinen, Autos, Unterhaltungselektronik, Ampelanlagen, Computerprozessoren
- Entwurf und Überprüfung digitaler Schaltungen
 - Entwicklungswerkzeuge und Testsoftware beschreiben endliches Verhalten
- Lexikalische Analyse in Compilern
 - Schnelle Identifizierung von Bezeichnern, Schlüsselwörtern, ...

- Steuerungsautomaten
 - Alle Formen rein Hardware-gesteuerter automatischer Maschinen
 Waschmaschinen, Autos, Unterhaltungselektronik, Ampelanlagen, Computerprozessoren
- Entwurf und Überprüfung digitaler Schaltungen
 - Entwicklungswerkzeuge und Testsoftware beschreiben endliches Verhalten
- Lexikalische Analyse in Compilern
 - Schnelle Identifizierung von Bezeichnern, Schlüsselwörtern, ...
- Textsuche in umfangreichen Dokumenten
 - Z.B. Suche nach Webseiten mithilfe von Schlüsselwörtern

- Steuerungsautomaten
 - Alle Formen rein Hardware-gesteuerter automatischer Maschinen
 Waschmaschinen, Autos, Unterhaltungselektronik, Ampelanlagen, Computerprozessoren
- Entwurf und Überprüfung digitaler Schaltungen
 - Entwicklungswerkzeuge und Testsoftware beschreiben endliches Verhalten
- Lexikalische Analyse in Compilern
 - Schnelle Identifizierung von Bezeichnern, Schlüsselwörtern, ...
- Textsuche in umfangreichen Dokumenten
 - Z.B. Suche nach Webseiten mithilfe von Schlüsselwörtern
- Software mit endlichen Alternativen
 - Kommunikationsprotokolle, Protokolle zum sicheren Datenaustausch . . .

AUTOMATEN BESCHREIBEN SPRACHEN

• Generierte Sprache

– Menge aller möglichen Ausgaben des Automaten

THEORETISCHE INFORMATIK I §2: _______ 3 _____ ENDLICHE AUTOMATEN _

AUTOMATEN BESCHREIBEN SPRACHEN

• Generierte Sprache

– Menge aller möglichen Ausgaben des Automaten

• Erkannte Sprache

- Menge aller Eingaben, die zur Ausgabe "ja" führen
- Alternativ: letzter Zustand des Automaten muß ein "Endzustand" sein

AUTOMATEN BESCHREIBEN SPRACHEN

• Generierte Sprache

– Menge aller möglichen Ausgaben des Automaten

• Erkannte Sprache

- Menge aller Eingaben, die zur Ausgabe "ja" führen
- Alternativ: letzter Zustand des Automaten muß ein "Endzustand" sein

• Sprachen endlicher Automaten sind einfach

- Nur sehr einfach strukturierte Sprachen können beschrieben werden
- Durch endliche Automaten beschreibbare Sprachen heißen **regulär**

• Automaten: erkennen von Wörtern

THEORETISCHE INFORMATIK I §2: ______4 ____ENDLICHE AUTOMATEN

• Automaten: erkennen von Wörtern

– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben

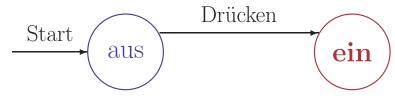
- Zustände: aus, ein

• Automaten: erkennen von Wörtern

– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben

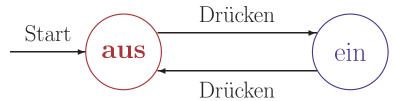
- Zustände: aus, ein - Startzustand: aus

• Automaten: erkennen von Wörtern



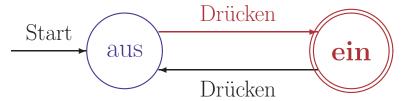
- Zustände: aus, ein Startzustand: aus
- Eingabesymbol: Drücken

• Automaten: erkennen von Wörtern



- Zustände: aus, ein Startzustand: aus
- Eingabesymbol: Drücken

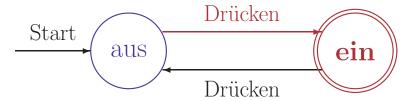
• Automaten: erkennen von Wörtern



- Zustände: aus, ein Startzustand: aus Endzustand: ein
- Eingabesymbol: Drücken
- Endzustand wird erreicht bei ungerader Anzahl von Drücken

• Automaten: erkennen von Wörtern

– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben

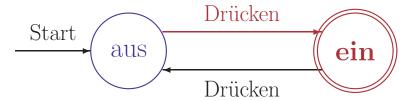


- Zustände: aus, ein Startzustand: aus Endzustand: ein
- Eingabesymbol: Drücken
- Endzustand wird erreicht bei ungerader Anzahl von Drücken

• Mathematische Mengennotation

 $-z.B.: \{ \text{Drücken}^{2i+1} | i \in \mathbb{N} \} \text{ oder } \{ w \in \{ \text{Drücken} \}^* | \exists i \in \mathbb{N}. | w | = 2i+1 \}$

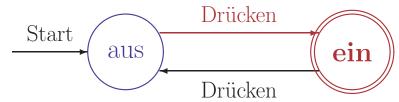
• Automaten: erkennen von Wörtern



- Zustände: aus, ein Startzustand: aus Endzustand: ein
- Eingabesymbol: Drücken
- Endzustand wird erreicht bei ungerader Anzahl von Drücken
- Mathematische Mengennotation
 - $-z.B.: \{ \text{Drücken}^{2i+1} | i \in \mathbb{N} \} \text{ oder } \{ w \in \{ \text{Drücken} \}^* | \exists i \in \mathbb{N}. | w | = 2i+1 \}$
- Reguläre Ausdrücke: algebraische Strukturen
 - z.B.: (DrückenDrücken)*Drücken

• Automaten: erkennen von Wörtern

– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben



- Zustände: aus, ein Startzustand: aus Endzustand: ein
- Eingabesymbol: Drücken
- Endzustand wird erreicht bei ungerader Anzahl von Drücken

• Mathematische Mengennotation

 $-z.B.: \{ \text{Drücken}^{2i+1} | i \in \mathbb{N} \} \text{ oder } \{ w \in \{ \text{Drücken} \}^* | \exists i \in \mathbb{N}. | w | = 2i+1 \}$

• Reguläre Ausdrücke: algebraische Strukturen

- z.B.: (DrückenDrücken)*Drücken

• Grammatiken: Vorschriften für Spracherzeugung

- $-z.B.: S \rightarrow Drücken, S \rightarrow SDrückenDrücken$
- Erzeugt nur ungerade Anzahl von Drücken-Symbolen

Theoretische Informatik I

Einheit 2.1

Deterministische Endliche Automaten

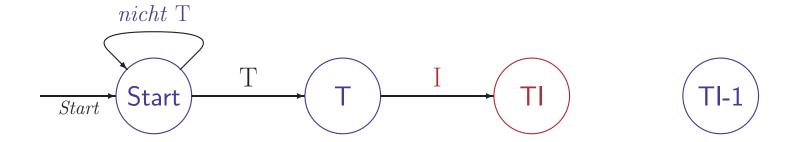
- 1. Arbeitsweise
- 2. Akzeptierte Sprache
- 3. Entwurf und Analyse
- 4. Automaten mit Ausgabe

• Endliche Anzahl von Zuständen

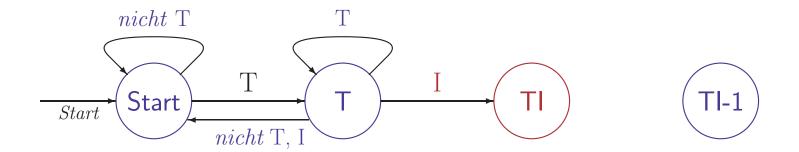
- Endliche Anzahl von Zuständen
- Ein Startzustand

- Endliche Anzahl von Zuständen
- Ein Startzustand
- Regeln für Zustandsübergänge

- Endliche Anzahl von Zuständen
- Ein Startzustand
- Regeln für Zustandsübergänge
- Eingabealphabet: $\{A,..,Z,a,..,z,..,?,!,..\}$



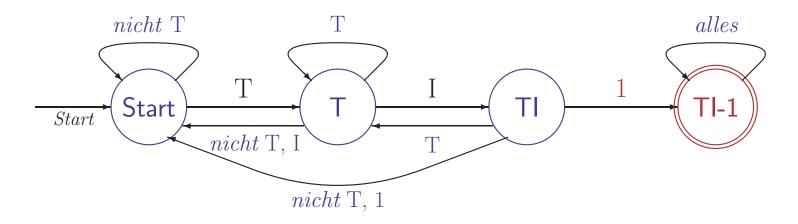
- Endliche Anzahl von Zuständen
- Ein Startzustand
- Regeln für Zustandsübergänge
- Eingabealphabet: $\{A,..,Z,a,..,z,..,?,!,..\}$



- Endliche Anzahl von Zuständen
- Ein Startzustand
- Regeln für Zustandsübergänge
- Eingabealphabet: $\{A,..,Z,a,..,z,..,?,!,..\}$

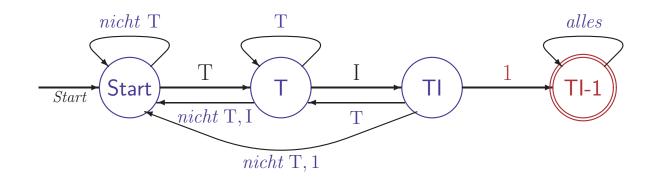


- Endliche Anzahl von Zuständen
- Ein Startzustand
- Regeln für Zustandsübergänge
- Eingabealphabet: $\{A,..,Z,a,..,z,..,?,!,..\}$
- Ein oder mehrere akzeptierende Endzustände



- Endliche Anzahl von Zuständen
- Ein Startzustand
- Regeln für Zustandsübergänge
- Eingabealphabet: $\{A,..,Z,a,..,z,..,?,!,..\}$
- Ein oder mehrere akzeptierende Endzustände

Endliche Automaten – mathematisch präzisiert

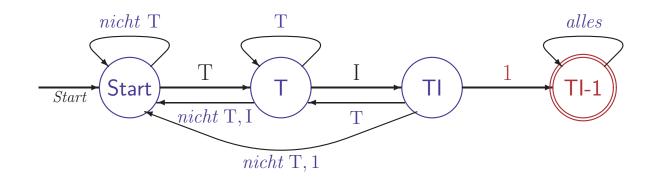


Ein Deterministischer Endlicher Automat (DEA)

ist ein 5-Tupel $\mathbf{A} = (Q, \Sigma, \delta, q_0, F)$ mit

- ullet Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ (endliches) **Eingabealphabet**

Endliche Automaten – mathematisch präzisiert

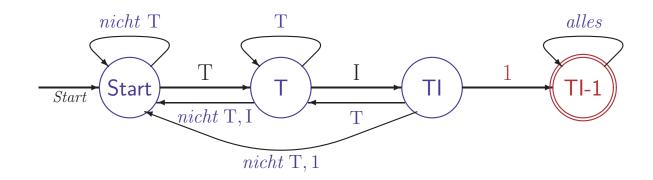


Ein Deterministischer Endlicher Automat (DEA)

ist ein 5-Tupel $\mathbf{A} = (Q, \Sigma, \delta, q_0, F)$ mit

- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ (endliches) **Eingabealphabet**
- $\delta: Q \times \Sigma \to Q$ Zustandsüberführungsfunktion

Endliche Automaten – mathematisch präzisiert



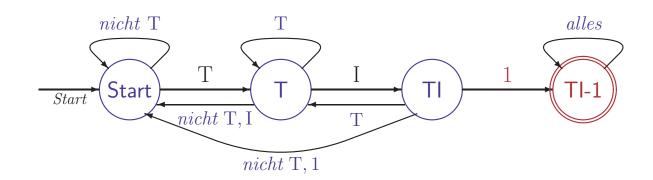
Ein Deterministischer Endlicher Automat (DEA)

ist ein 5-Tupel $\mathbf{A} = (Q, \Sigma, \delta, q_0, F)$ mit

- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ (endliches) **Eingabealphabet**
- $\delta: Q \times \Sigma \to Q$ Zustandsüberführungsfunktion
- $q_0 \in Q$ Startzustand

(Anfangszustand)

Endliche Automaten – mathematisch präzisiert



Ein Deterministischer Endlicher Automat (DEA)

ist ein 5-Tupel $\mathbf{A} = (Q, \Sigma, \delta, q_0, F)$ mit

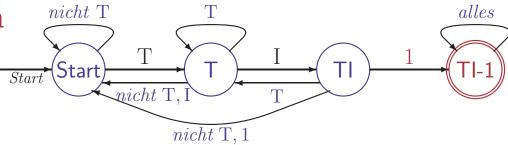
- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ (endliches) **Eingabealphabet**
- $\delta: Q \times \Sigma \to Q$ Zustandsüberführungsfunktion
- $q_0 \in Q$ Startzustand

(Anfangszustand)

• $F \subseteq Q$ Menge von akzeptierenden Zuständen

(Endzustände)

(Finale Zustände)



• Übergangsdiagramm

nicht T

Start

Start

T

T

T

T

T

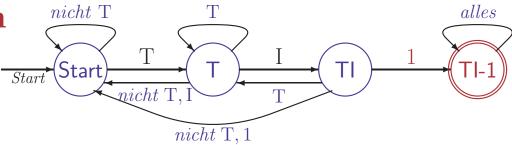
T

TI

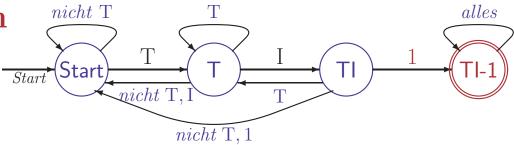
TI-1

nicht T, 1

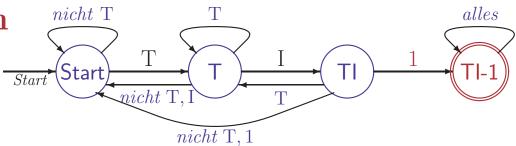
– Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt



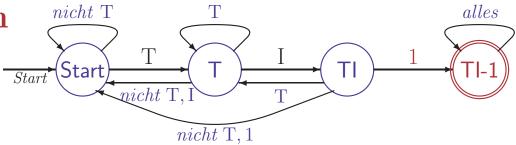
- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)



- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit *Start* beschrifteten Pfeil angezeigt

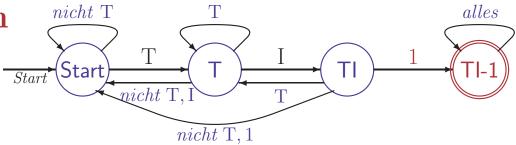


- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit *Start* beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet



- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit *Start* beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ meist implizit durch Diagramm bestimmt

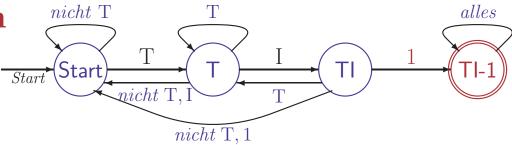
• Übergangsdiagramm



- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit *Start* beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ meist implizit durch Diagramm bestimmt

					sonst
\longrightarrow	S	T T T	S	S	S
	T	Т	Ι	S	S
	Ι	Т	S	1	S
*	1	1	1	1	1

• Übergangsdiagramm



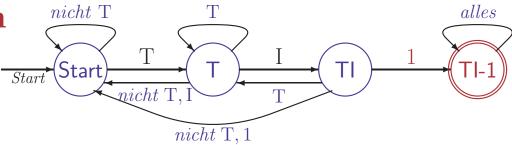
- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit *Start* beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ meist implizit durch Diagramm bestimmt

• Übergangstabelle

– Tabellarische Darstellung der Funktion δ

					sonst
\longrightarrow	S	T T T	S	S	S
	T	Т	Ι	S	S
	Ι	Т	S	1	S
*	1	1	1	1	1

• Übergangsdiagramm

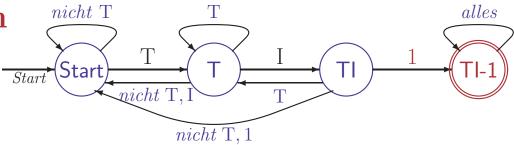


- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit *Start* beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ meist implizit durch Diagramm bestimmt

- Tabellarische Darstellung der Funktion δ
- Kennzeichnung von q_0 durch einen Pfeil

					sonst
\longrightarrow	S	T T T	S	S	S
	T	Т	Ι	S	S
	Ι	Т	S	1	S
*	1	1	1	1	1

• Übergangsdiagramm

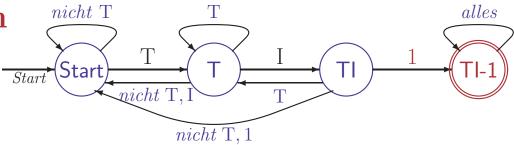


- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit *Start* beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ meist implizit durch Diagramm bestimmt

- Tabellarische Darstellung der Funktion δ
- Kennzeichnung von q_0 durch einen Pfeil
- Kennzeichnung von F durch Sterne

					sonst
\longrightarrow	S	Т	S	S	S
	T	Т	Ι	S	S
	Ι	T T T	S	1	S
*	1	1	1	1	1

• Übergangsdiagramm



- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Ist $\delta(q, a) = p$, so verläuft eine Kante von q nach p mit Beschriftung a (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit Start beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ meist implizit durch Diagramm bestimmt

- Tabellarische Darstellung der Funktion δ
- Kennzeichnung von q_0 durch einen Pfeil
- Kennzeichnung von F durch Sterne
- $-\Sigma$ und Qmeist implizit durch Tabelle bestimmt

					sonst
\longrightarrow	S	Т	S	S	S
	T	Т	Ι	S	S
	Ι	T T T	S	1	S
*	1	1	1	1	1



Anfangssituation

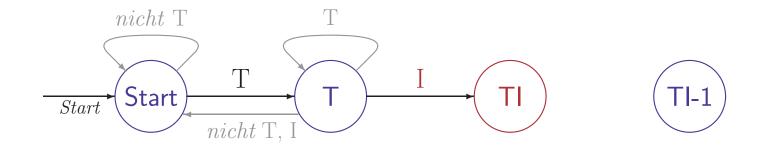
– Automat befindet sich im Startzustand q_0

Anfangssituation

– Automat befindet sich im Startzustand q_0

Arbeitschritt

- Im Zustand q lese Eingabesymbol a,
- Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p

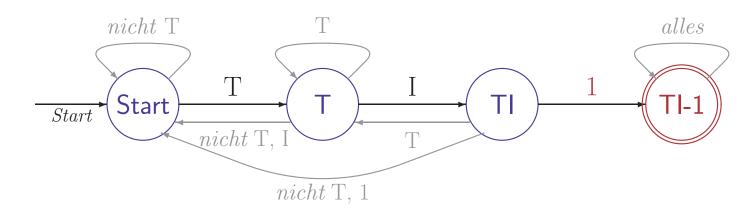


Anfangssituation

– Automat befindet sich im Startzustand q_0

• Arbeitschritt

- Im Zustand q lese Eingabesymbol a,
- Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p

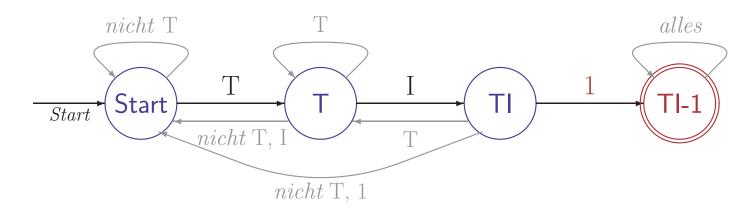


Anfangssituation

– Automat befindet sich im Startzustand q_0

• Arbeitschritt

- Im Zustand q lese Eingabesymbol a,
- Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p



Anfangssituation

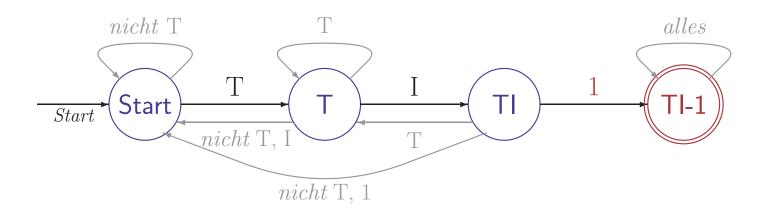
– Automat befindet sich im Startzustand q_0

• Arbeitschritt

- Im Zustand q lese Eingabesymbol a,
- Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p

• Terminierung

– Eingabewort $w = a_1..a_n$ ist komplett gelesen, Automat im Zustand q_n



Anfangssituation

– Automat befindet sich im Startzustand q_0

Arbeitschritt

- Im Zustand q lese Eingabesymbol a,
- Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p

• Terminierung

- Eingabewort $w = a_1..a_n$ ist komplett gelesen, Automat im Zustand q_n

• Ergebnis

- Eingabewort w wird akzeptiert, wenn $q_n \in F$, sonst wird w abgewiesen

- Erweiterte Überführungsfunktion $\hat{\delta}: Q \times \Sigma^* \rightarrow Q$
 - Schrittweise Abarbeitung der Eingabe mit δ von links nach rechts

- Erweiterte Überführungsfunktion $\hat{\delta}: Q \times \Sigma^* \to Q$
 - Schrittweise Abarbeitung der Eingabe mit δ von links nach rechts
 - Informal: $\hat{\delta}(q, w_1 w_2 ... w_n) = \delta(...(\delta(\delta(q, w_1), w_2), ...), w_n)$

• Erweiterte Überführungsfunktion $\hat{\delta}: Q \times \Sigma^* \rightarrow Q$

- Schrittweise Abarbeitung der Eingabe mit δ von links nach rechts
- Informal: $\hat{\delta}(q, w_1 w_2 ... w_n) = \delta(...(\delta(\delta(q, w_1), w_2), ...), w_n)$
- Mathematisch präzise Beschreibung benötigt induktive Definition

$$\hat{\boldsymbol{\delta}}(\boldsymbol{q}, \boldsymbol{w}) = \begin{cases} q & \text{falls } \boldsymbol{w} = \epsilon, \\ \delta(\hat{\delta}(\boldsymbol{q}, \boldsymbol{v}), a) & \text{falls } \boldsymbol{w} = \boldsymbol{v} \ a & \text{für ein } \boldsymbol{v} \in \Sigma^*, \ a \in \Sigma \end{cases}$$

• Erweiterte Überführungsfunktion $\hat{\delta}: Q \times \Sigma^* \rightarrow Q$

- Schrittweise Abarbeitung der Eingabe mit δ von links nach rechts
- Informal: $\hat{\delta}(q, w_1 w_2 ... w_n) = \delta(...(\delta(\delta(q, w_1), w_2), ...), w_n)$
- Mathematisch präzise Beschreibung benötigt induktive Definition

$$\hat{\boldsymbol{\delta}}(\boldsymbol{q}, \boldsymbol{w}) = \begin{cases} q & \text{falls } \boldsymbol{w} = \epsilon, \\ \delta(\hat{\delta}(\boldsymbol{q}, \boldsymbol{v}), a) & \text{falls } \boldsymbol{w} = \boldsymbol{v} \ a \text{ für ein } \boldsymbol{v} \in \Sigma^*, \ a \in \Sigma \end{cases}$$

• Von A akzeptierte Sprache

– Menge der Eingabewörter w, für die $\hat{\delta}(q_0, w)$ akzeptierender Zustand ist

• Erweiterte Überführungsfunktion $\hat{\delta}: Q \times \Sigma^* \rightarrow Q$

- Schrittweise Abarbeitung der Eingabe mit δ von links nach rechts
- Informal: $\hat{\delta}(q, w_1 w_2 ... w_n) = \delta(...(\delta(\delta(q, w_1), w_2), ...), w_n)$
- Mathematisch präzise Beschreibung benötigt induktive Definition

$$\hat{\boldsymbol{\delta}}(\boldsymbol{q}, \boldsymbol{w}) = \begin{cases} q & \text{falls } \boldsymbol{w} = \epsilon, \\ \delta(\hat{\delta}(\boldsymbol{q}, \boldsymbol{v}), \boldsymbol{a}) & \text{falls } \boldsymbol{w} = \boldsymbol{v} \boldsymbol{a} & \text{für ein } \boldsymbol{v} \in \Sigma^*, \ \boldsymbol{a} \in \Sigma \end{cases}$$

• Von A akzeptierte Sprache

– Menge der Eingabewörter w, für die $\hat{\delta}(q_0, w)$ akzeptierender Zustand ist

$$oldsymbol{L(A)} = \{w \in \Sigma^* \mid \hat{\delta}(q_0,w) \in F\}$$

• Erweiterte Überführungsfunktion $\hat{\delta}: Q \times \Sigma^* \rightarrow Q$

- Schrittweise Abarbeitung der Eingabe mit δ von links nach rechts
- Informal: $\hat{\delta}(q, w_1 w_2 ... w_n) = \delta(...(\delta(\delta(q, w_1), w_2), ...), w_n)$
- Mathematisch präzise Beschreibung benötigt induktive Definition

$$\hat{\boldsymbol{\delta}}(\boldsymbol{q}, \boldsymbol{w}) = \begin{cases} q & \text{falls } \boldsymbol{w} = \epsilon, \\ \delta(\hat{\delta}(\boldsymbol{q}, \boldsymbol{v}), \boldsymbol{a}) & \text{falls } \boldsymbol{w} = \boldsymbol{v} \boldsymbol{a} & \text{für ein } \boldsymbol{v} \in \Sigma^*, \ \boldsymbol{a} \in \Sigma \end{cases}$$

• Von A akzeptierte Sprache

– Menge der Eingabewörter w, für die $\hat{\delta}(q_0, w)$ akzeptierender Zustand ist

$$oldsymbol{L(A)} = \{w \in \Sigma^* \mid \hat{\delta}(q_0,w) \in F\}$$

– Auch: die von A erkannte Sprache

• Erweiterte Überführungsfunktion $\hat{\delta}: Q \times \Sigma^* \rightarrow Q$

- Schrittweise Abarbeitung der Eingabe mit δ von links nach rechts
- Informal: $\hat{\delta}(q, w_1 w_2 ... w_n) = \delta(...(\delta(\delta(q, w_1), w_2), ...), w_n)$
- Mathematisch präzise Beschreibung benötigt induktive Definition

$$\hat{\boldsymbol{\delta}}(\boldsymbol{q}, \boldsymbol{w}) = \begin{cases} q & \text{falls } \boldsymbol{w} = \epsilon, \\ \delta(\hat{\delta}(\boldsymbol{q}, \boldsymbol{v}), \boldsymbol{a}) & \text{falls } \boldsymbol{w} = \boldsymbol{v} \boldsymbol{a} & \text{für ein } \boldsymbol{v} \in \Sigma^*, \ \boldsymbol{a} \in \Sigma \end{cases}$$

• Von A akzeptierte Sprache

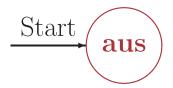
– Menge der Eingabewörter w, für die $\hat{\delta}(q_0, w)$ akzeptierender Zustand ist

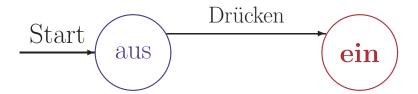
$$oldsymbol{L(A)} = \{w \in \Sigma^* \mid \hat{\delta}(q_0,w) \in F\}$$

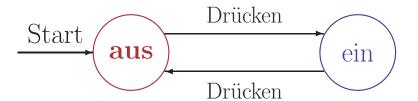
– Auch: die von A erkannte Sprache

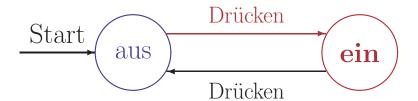
• Reguläre Sprache

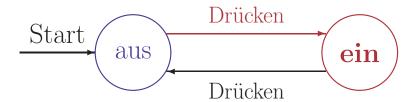
– Sprache, die von einem DEA A akzeptiert wird



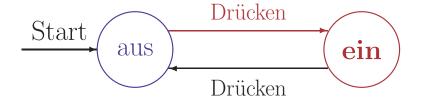








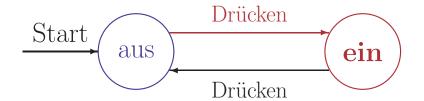
ullet Zeige: Automat A ist ein Wechselschalter



ullet Zeige: Automat A ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist A nach n-fachem Drücken ausgeschaltet

 $S_2(n)$: Ist n ungerade, so ist A nach n-fachem Drücken eingeschaltet



ullet Zeige: Automat A ist ein Wechselschalter

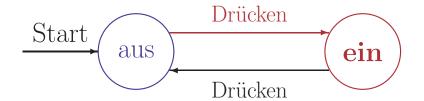
 $S_1(n)$: Ist n gerade, so ist A nach n-fachem Drücken ausgeschaltet

 $S_2(n)$: Ist n ungerade, so ist A nach n-fachem Drücken eingeschaltet

Beweis durch simultane Induktion:

Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

A ist ausgeschaltet, also gilt $S_1(0)$



ullet Zeige: Automat A ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist A nach n-fachem Drücken ausgeschaltet

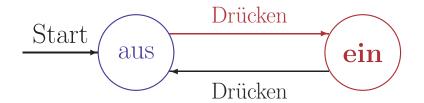
 $S_2(n)$: Ist n ungerade, so ist A nach n-fachem Drücken eingeschaltet

Beweis durch simultane Induktion:

Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

A ist ausgeschaltet, also gilt $S_1(0)$

Induktionsschritt: Es gelte $S_1(n)$ und $S_2(n)$. Betrachte n+1



ullet Zeige: Automat A ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist A nach n-fachem Drücken ausgeschaltet

 $S_2(n)$: Ist n ungerade, so ist A nach n-fachem Drücken eingeschaltet

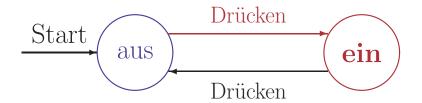
Beweis durch simultane Induktion:

Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

A ist ausgeschaltet, also gilt $S_1(0)$

Induktionsschritt: Es gelte $S_1(n)$ und $S_2(n)$. Betrachte n+1

- Falls n+1 ungerade, dann gilt $S_1(n+1)$ und n ist gerade. Wegen $S_1(n)$ war A "aus" und wechselt auf "ein". Es gilt $S_2(n+1)$



ullet Zeige: Automat A ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist A nach n-fachem Drücken ausgeschaltet

 $S_2(n)$: Ist n ungerade, so ist A nach n-fachem Drücken eingeschaltet

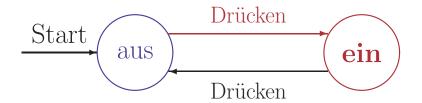
Beweis durch simultane Induktion:

Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

A ist ausgeschaltet, also gilt $S_1(0)$

Induktionsschritt: Es gelte $S_1(n)$ und $S_2(n)$. Betrachte n+1

- Falls n+1 ungerade, dann gilt $S_1(n+1)$ und n ist gerade. Wegen $S_1(n)$ war A "aus" und wechselt auf "ein". Es gilt $S_2(n+1)$
- Falls n+1 gerade, dann gilt $S_2(n+1)$ und n ist ungerade. Wegen $S_2(n)$ war A "ein" und wechselt auf "aus". Es gilt $S_1(n+1)$



ullet Zeige: Automat A ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist A nach n-fachem Drücken ausgeschaltet $S_2(n)$: Ist n ungerade, so ist A nach n-fachem Drücken eingeschaltet

Beweis durch simultane Induktion:

Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

A ist ausgeschaltet, also gilt $S_1(0)$

Induktionsschritt: Es gelte $S_1(n)$ und $S_2(n)$. Betrachte n+1

- Falls n+1 ungerade, dann gilt $S_1(n+1)$ und n ist gerade. Wegen $S_1(n)$ war A "aus" und wechselt auf "ein". Es gilt $S_2(n+1)$
- Falls n+1 gerade, dann gilt $S_2(n+1)$ und n ist ungerade. Wegen $S_2(n)$ war A "ein" und wechselt auf "aus". Es gilt $S_1(n+1)$
- ullet Es folgt: $L(A) = \{ ext{Drücken}^{2i+1} | i \in \mathbb{N} \}$

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

• Drei Zustände sind erforderlich

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

- Drei Zustände sind erforderlich
 - Zustand q_0 : A hat noch keine 0 gelesen

 1^i bleibt in q_0

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

• Drei Zustände sind erforderlich

- Zustand q_0 : A hat noch keine 0 gelesen

 1^i bleibt in q_0

- Zustand q_1 : A hat eine 0 aber noch keine 1 gelesen 1^{i_0j+1} bleibt in q_1

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

• Drei Zustände sind erforderlich

- Zustand q_0 : A hat noch keine 0 gelesen

 1^i bleibt in q_0

- Zustand q_1 : A hat eine 0 aber noch keine 1 gelesen 1^{i_0j+1} bleibt in q_1

- Zustand q_2 : A hat eine Zeichenkette 01 gelesen

 $1^i 0^j 01v$ bleibt in q_2

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

• Drei Zustände sind erforderlich

- Zustand q_0 : A hat noch keine 0 gelesen

 1^i bleibt in q_0

- Zustand q_1 : A hat eine 0 aber noch keine 1 gelesen 1^{i_0j+1} bleibt in q_1

- Zustand q_2 : A hat eine Zeichenkette 01 gelesen

 $1^i 0^j 01v$ bleibt in q_2

• Zustandsübergänge erhalten "Bedeutung"

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

• Drei Zustände sind erforderlich

- Zustand q_0 : A hat noch keine 0 gelesen

 1^i bleibt in q_0

- Zustand q_1 : A hat eine 0 aber noch keine 1 gelesen 1^{i_0j+1} bleibt in q_1

- Zustand q_2 : A hat eine Zeichenkette 01 gelesen

 $1^i 0^j 01v$ bleibt in q_2

• Zustandsübergänge erhalten "Bedeutung"

- Zustand q_0 : Mit 1 bleibe in q_0 , sonst wechsele nach q_1

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

• Drei Zustände sind erforderlich

- Zustand q_0 : A hat noch keine 0 gelesen

 1^i bleibt in q_0

- Zustand q_1 : A hat eine 0 aber noch keine 1 gelesen

 $1^i 0^{j+1}$ bleibt in q_1

- Zustand q_2 : A hat eine Zeichenkette 01 gelesen

 $1^i 0^j 01v$ bleibt in q_2

• Zustandsübergänge erhalten "Bedeutung"

- Zustand q_0 : Mit 1 bleibe in q_0 , sonst wechsele nach q_1
- Zustand q_1 : Mit 0 bleibe in q_1 , sonst wechsele nach q_2

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

• Drei Zustände sind erforderlich

- Zustand q_0 : A hat noch keine 0 gelesen

 1^i bleibt in q_0

- Zustand q_1 : A hat eine 0 aber noch keine 1 gelesen 1^{i_0j+1} bleibt in q_1

- Zustand q_2 : A hat eine Zeichenkette 01 gelesen

 $1^i 0^j 01v$ bleibt in q_2

• Zustandsübergänge erhalten "Bedeutung"

- Zustand q_0 : Mit 1 bleibe in q_0 , sonst wechsele nach q_1
- Zustand q_1 : Mit 0 bleibe in q_1 , sonst wechsele nach q_2
- Zustand q_2 : Bleibe bei jeder Eingabe in q_2 , Endzustand

Entwerfe Automaten für $L = \{u01v \mid u, v \in \{0, 1\}^*\}$

• Drei Zustände sind erforderlich

- Zustand q_0 : A hat noch keine 0 gelesen

 1^i bleibt in q_0

- Zustand q_1 : A hat eine 0 aber noch keine 1 gelesen 1^{i_0j+1} bleibt in q_1

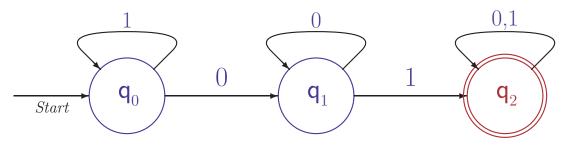
- Zustand q_2 : A hat eine Zeichenkette 01 gelesen

 $1^i 0^j 01v$ bleibt in q_2

• Zustandsübergänge erhalten "Bedeutung"

- Zustand q_0 : Mit 1 bleibe in q_0 , sonst wechsele nach q_1
- Zustand q_1 : Mit 0 bleibe in q_1 , sonst wechsele nach q_2
- Zustand q_2 : Bleibe bei jeder Eingabe in q_2 , Endzustand

• Zugehöriger DEA mit Alphabet $\Sigma = \{0, 1\}$



Zeige
$$L(A) = L = \{u01v \mid u, v \in \{0, 1\}^*\}$$

- \bullet Zeige durch strukturelle Induktion über w:
 - $-\,\hat{\delta}(q_0,w)=q_0 \;\;\Leftrightarrow\;\; ext{es gibt ein } i\!\in\!\mathbb{N} ext{ mit } w=1^i$

$$\frac{1}{Start}$$
 q_0 0 q_1 1 q_2

ZEIGE
$$L(A) = L = \{u01v \mid u, v \in \{0, 1\}^*\}$$

- ullet Zeige durch strukturelle Induktion über w:
 - $-\hat{\delta}(q_0, w) = q_0 \Leftrightarrow \text{ es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0$ und $w = 1^i$ für i = 0

ZEIGE
$$L(A) = L = \{u01v \mid u, v \in \{0, 1\}^*\}$$

- ullet Zeige durch strukturelle Induktion über w:
 - $-\hat{\delta}(q_0, w) = q_0 \iff \text{es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0 \text{ und } w = 1^i \text{ für } i = 0$ Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:

$$\frac{1}{Start}$$
 q_0 0 q_1 1 q_2

- $-\hat{\delta}(q_0, w) = q_0 \iff \text{es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0 \text{ und } w = 1^i \text{ für } i = 0$ Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - · Es gelte $\hat{\delta}(q_0, w) = q_0$. Dann ist $\hat{\delta}(q_0, u) = q_0$ und $\delta(q_0, a) = q_0$. Es folgt a = 1 und per Annahme $u = 1^i$ für ein i, also $w = 1^{i+1}$.

ZEIGE
$$L(A) = L = \{u01v \mid u, v \in \{0, 1\}^*\}$$

- $-\hat{\delta}(q_0, w) = q_0 \iff \text{es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0$ und $w = 1^i$ für i = 0 $\sqrt{1}$ Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - · Es gelte $\hat{\delta}(q_0, w) = q_0$. Dann ist $\hat{\delta}(q_0, u) = q_0$ und $\delta(q_0, a) = q_0$. Es folgt a = 1 und per Annahme $u = 1^i$ für ein i, also $w = 1^{i+1}$.
 - · Es gelte $w=1^i$. Dann ist a=1 und $u=1^{i-1}$. Mit der Induktionsannahme folgt $\hat{\delta}(q_0,w)=\delta(\hat{\delta}(q_0,u),a)=\delta(q_0,a)=q_0$

- $-\hat{\delta}(q_0, w) = q_0 \iff \text{es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0 \text{ und } w = 1^i \text{ für } i = 0$ Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - · Es gelte $\hat{\delta}(q_0, w) = q_0$. Dann ist $\hat{\delta}(q_0, u) = q_0$ und $\delta(q_0, a) = q_0$. Es folgt a = 1 und per Annahme $u = 1^i$ für ein i, also $w = 1^{i+1}$.
 - · Es gelte $w=1^i$. Dann ist a=1 und $u=1^{i-1}$. Mit der Induktionsannahme folgt $\hat{\delta}(q_0,w)=\delta(\hat{\delta}(q_0,u),a)=\delta(q_0,a)=q_0$
- $-\,\hat{\delta}(q_0,w)=q_1 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j\in \mathbb{N} \; ext{mit}\; w=1^i0^{j+1}$ analog
- $-\,\hat{\delta}(q_0,w)=q_2 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j\in \mathbb{N},\; v\in \Sigma^* \; ext{mit}\; w=1^i0^{j+1}\overline{1v}$

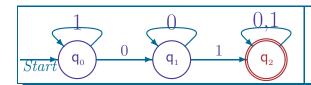
- $-\hat{\delta}(q_0, w) = q_0 \iff \text{es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0 \text{ und } w = 1^i \text{ für } i = 0$ Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - · Es gelte $\hat{\delta}(q_0, w) = q_0$. Dann ist $\hat{\delta}(q_0, u) = q_0$ und $\delta(q_0, a) = q_0$. Es folgt a = 1 und per Annahme $u = 1^i$ für ein i, also $w = 1^{i+1}$.
 - · Es gelte $w=1^i$. Dann ist a=1 und $u=1^{i-1}$. Mit der Induktionsannahme folgt $\hat{\delta}(q_0,w)=\delta(\hat{\delta}(q_0,u),a)=\delta(q_0,a)=q_0$
- $-\,\hat{\delta}(q_0,w)=q_1 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j\!\in\!\mathbb{N}\; ext{mit}\; w=1^i0^{j+1}$ analog
- $-\,\hat{\delta}(q_0,w)=q_2 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j$ \in $\mathbb{N},\;v$ \in $\Sigma^* \; ext{mit}\; w=1^i0^{j+1}1v$
- ullet Zeige: $w\in L$ \iff es gibt $i,j\in\mathbb{N},\ v\in\Sigma^*$ mit $w=1^i0^j01v$
 - \Rightarrow Für $w \in L$ gibt es $u, v \in \Sigma^*$ mit w = u01v

ullet Zeige durch strukturelle Induktion über w:

- $-\hat{\delta}(q_0, w) = q_0 \iff \text{es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0 \text{ und } w = 1^i \text{ für } i = 0$ Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - · Es gelte $\hat{\delta}(q_0, w) = q_0$. Dann ist $\hat{\delta}(q_0, u) = q_0$ und $\delta(q_0, a) = q_0$. Es folgt a = 1 und per Annahme $u = 1^i$ für ein i, also $w = 1^{i+1}$.
 - · Es gelte $w = 1^i$. Dann ist a = 1 und $u = 1^{i-1}$. Mit der Induktionsannahme folgt $\hat{\delta}(q_0, w) = \delta(\hat{\delta}(q_0, u), a) = \delta(q_0, a) = q_0$
- $-\,\hat{\delta}(q_0,w)=q_1 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j\!\in\!\mathbb{N}\; ext{mit}\; w=1^i0^{j+1}$ analog
- $-\,\hat{\delta}(q_0,w)=q_2 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j$ \in $\mathbb{N},\;v$ \in $\Sigma^* \; ext{mit}\; w=1^i0^{j+1}1v$

ullet Zeige: $w\in L$ \iff es gibt $i,j\in\mathbb{N},\ v\in\Sigma^*$ mit $w=1^i0^j01v$

 \Rightarrow Für $w \in L$ gibt es $u, v \in \Sigma^*$ mit w = u01vWenn u nicht die Form 1^i0^j hat, dann folgt in u eine 1 auf eine 0.

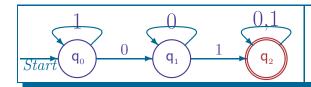


ullet Zeige durch strukturelle Induktion über w:

- $-\hat{\delta}(q_0, w) = q_0 \iff \text{es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0$ und $w = 1^i$ für i = 0Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - · Es gelte $\hat{\delta}(q_0, w) = q_0$. Dann ist $\hat{\delta}(q_0, u) = q_0$ und $\delta(q_0, a) = q_0$. Es folgt a = 1 und per Annahme $u = 1^i$ für ein i, also $w = 1^{i+1}$.
 - · Es gelte $w = 1^i$. Dann ist a = 1 und $u = 1^{i-1}$. Mit der Induktionsannahme folgt $\hat{\delta}(q_0, w) = \delta(\hat{\delta}(q_0, u), a) = \delta(q_0, a) = q_0$
- $-\,\hat{\delta}(q_0,w)=q_1 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j\!\in\!\mathbb{N}\; ext{mit}\; w=1^i0^{j+1}$ analog
- $-\,\hat{\delta}(q_0,w)=q_2 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j$ \in $\mathbb{N},\;v$ \in $\Sigma^* \; ext{mit}\; w=1^i0^{j+1}1v$

ullet Zeige: $w\in L$ \iff es gibt $i,j\in\mathbb{N},\ v\in\Sigma^*$ mit $w=1^i0^j01v$

 \Rightarrow Für $w \in L$ gibt es $u, v \in \Sigma^*$ mit w = u01vWenn u nicht die Form 1^i0^j hat, dann folgt in u eine 1 auf eine 0. Das erste solche Vorkommen von 01 liefert die gewünschte Zerlegung $\sqrt{}$



ullet Zeige durch strukturelle Induktion über w:

- $-\hat{\delta}(q_0, w) = q_0 \iff \text{es gibt ein } i \in \mathbb{N} \text{ mit } w = 1^i$ Basisfall $w = \epsilon$: Per Definition ist $\hat{\delta}(q_0, \epsilon) = q_0$ und $w = 1^i$ für i = 0 $\sqrt{1}$ Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - · Es gelte $\hat{\delta}(q_0, w) = q_0$. Dann ist $\hat{\delta}(q_0, u) = q_0$ und $\delta(q_0, a) = q_0$. Es folgt a = 1 und per Annahme $u = 1^i$ für ein i, also $w = 1^{i+1}$.
 - · Es gelte $w = 1^i$. Dann ist a = 1 und $u = 1^{i-1}$. Mit der Induktionsannahme folgt $\hat{\delta}(q_0, w) = \delta(\hat{\delta}(q_0, u), a) = \delta(q_0, a) = q_0$
- $-\,\hat{\delta}(q_0,w)=q_1 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j\!\in\!\mathbb{N}\; ext{mit}\; w=1^i0^{j+1}$ analog
- $-\,\hat{\delta}(q_0,w)=q_2 \;\;\Leftrightarrow\;\; ext{es gibt}\; i,j$ \in $\mathbb{N},\;v$ \in $\Sigma^* \; ext{mit}\; w=1^i0^{j+1}1v$

ullet Zeige: $w\in L$ \iff es gibt $i,j\in\mathbb{N},\ v\in\Sigma^*$ mit $w=1^i0^j01v$

- \Rightarrow Für $w \in L$ gibt es $u, v \in \Sigma^*$ mit w = u01vWenn u nicht die Form 1^i0^j hat, dann folgt in u eine 1 auf eine 0. Das erste solche Vorkommen von 01 liefert die gewünschte Zerlegung $\sqrt{}$
- ullet Es folgt $w \in L \;\;\Leftrightarrow\;\; \hat{\delta}(q_0,w) = q_2 \in F \;\;\Leftrightarrow\;\; w \in L(A)$

- Konfiguration: 'Gesamtzustand' von Automaten
 - Mehr als $q \in Q$: auch die noch unverarbeitete Eingabe zählt
 - Formal dargestellt als Tupel $\mathbf{K} = (\mathbf{q}, \mathbf{w}) \in Q \times \Sigma^*$

• Konfiguration: 'Gesamtzustand' von Automaten

- Mehr als $q \in Q$: auch die noch unverarbeitete Eingabe zählt
- Formal dargestellt als Tupel $\mathbf{K} = (\mathbf{q}, \mathbf{w}) \in Q \times \Sigma^*$
- \bullet Konfigurationsübergangsrelation \vdash^*
 - Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern

• Konfiguration: 'Gesamtzustand' von Automaten

- Mehr als $q \in Q$: auch die noch unverarbeitete Eingabe zählt
- Formal dargestellt als Tupel $\mathbf{K} = (\mathbf{q}, \mathbf{w}) \in Q \times \Sigma^*$

\bullet Konfigurationsübergangsrelation \vdash^*

- Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern
- $-(\boldsymbol{q},\boldsymbol{a}\boldsymbol{w}) \vdash (\boldsymbol{p},\boldsymbol{w}), \text{ falls } \delta(q,a) = p$

• Konfiguration: 'Gesamtzustand' von Automaten

- Mehr als $q \in Q$: auch die noch unverarbeitete Eingabe zählt
- Formal dargestellt als Tupel $\mathbf{K} = (\mathbf{q}, \mathbf{w}) \in Q \times \Sigma^*$

\bullet Konfigurationsübergangsrelation \vdash^*

- Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern
- $-(\boldsymbol{q},\boldsymbol{a}\boldsymbol{w}) \vdash (\boldsymbol{p},\boldsymbol{w}), \text{ falls } \delta(q,a) = p$
- $-\mathbf{K_1} \vdash^* \mathbf{K_2}$, falls $K_1 = K_2$ oder

es gibt eine Konfiguration K mit $K_1 \vdash K$ und $K \vdash^* K_2$

• Konfiguration: 'Gesamtzustand' von Automaten

- Mehr als $q \in Q$: auch die noch unverarbeitete Eingabe zählt
- Formal dargestellt als Tupel $\mathbf{K} = (\mathbf{q}, \mathbf{w}) \in Q \times \Sigma^*$

\bullet Konfigurationsübergangsrelation \vdash^*

- Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern
- $-(\boldsymbol{q},\boldsymbol{a}\boldsymbol{w}) \vdash (\boldsymbol{p},\boldsymbol{w}), \text{ falls } \delta(q,a) = p$
- $-\mathbf{K_1} \vdash^* \mathbf{K_2}$, falls $K_1 = K_2$ oder es gibt eine Konfiguration K mit $K_1 \vdash K$ und $K \vdash^* K_2$

• Akzeptierte Sprache

– Menge der Eingaben, für die ⊢ zu akzeptierendem Zustand führt

• Konfiguration: 'Gesamtzustand' von Automaten

- Mehr als $q \in Q$: auch die noch unverarbeitete Eingabe zählt
- Formal dargestellt als Tupel $\mathbf{K} = (\mathbf{q}, \mathbf{w}) \in Q \times \Sigma^*$

\bullet Konfigurationsübergangsrelation \vdash^*

- Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern
- $-(\boldsymbol{q},\boldsymbol{a}\boldsymbol{w}) \vdash (\boldsymbol{p},\boldsymbol{w}), \text{ falls } \delta(q,a) = p$
- $-\mathbf{K_1} \vdash^* \mathbf{K_2}$, falls $K_1 = K_2$ oder es gibt eine Konfiguration K mit $K_1 \vdash K$ und $K \vdash^* K_2$

• Akzeptierte Sprache

– Menge der Eingaben, für die \vdash^* zu akzeptierendem Zustand führt

$$oldsymbol{L(A)} = \{w \in \Sigma^* \mid \exists p \in F. \; (q_0,w) \; dash^* \; (p,\epsilon) \}$$

• Konfiguration: 'Gesamtzustand' von Automaten

- Mehr als $q \in Q$: auch die noch unverarbeitete Eingabe zählt
- Formal dargestellt als Tupel $\mathbf{K} = (\mathbf{q}, \mathbf{w}) \in Q \times \Sigma^*$

\bullet Konfigurationsübergangsrelation \vdash^*

- Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern
- $-(\boldsymbol{q},\boldsymbol{a}\boldsymbol{w}) \vdash (\boldsymbol{p},\boldsymbol{w}), \text{ falls } \delta(q,a) = p$
- $-\mathbf{K_1} \vdash^* \mathbf{K_2}$, falls $K_1 = K_2$ oder es gibt eine Konfiguration K mit $K_1 \vdash K$ und $K \vdash^* K_2$

• Akzeptierte Sprache

– Menge der Eingaben, für die \vdash^* zu akzeptierendem Zustand führt

$$oldsymbol{L(A)} = \{w \in \Sigma^* \mid \exists p \in F. \; (q_0,w) \; dash^* \; (p,\epsilon) \}$$

Für DEAs weniger intuitiv, aber leichter zu verallgemeinern

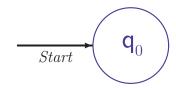
Codiere Anzahl der gelesener 0/1 im Zustand

$$q_0 = (\text{gerade}, \text{gerade})$$
 $q_1 = (\text{gerade}, \text{ungerade})$

$$q_2 = (ungerade, gerade)$$
 $q_3 = (ungerade, ungerade)$

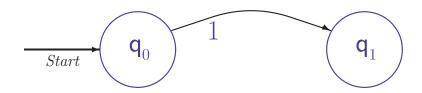
Codiere Anzahl der gelesener 0/1 im Zustand

 $q_0 = (\text{gerade}, \text{gerade})$ $q_1 = (\text{gerade}, \text{ungerade})$



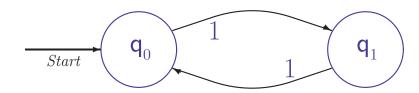
Codiere Anzahl der gelesener 0/1 im Zustand

 $q_0 = (\text{gerade}, \text{gerade})$ $q_1 = (\text{gerade}, \text{ungerade})$



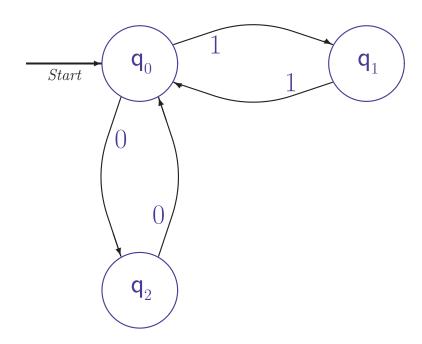
Codiere Anzahl der gelesener 0/1 im Zustand

 $q_0 = (\text{gerade}, \text{gerade})$ $q_1 = (\text{gerade}, \text{ungerade})$



Codiere Anzahl der gelesener 0/1 im Zustand

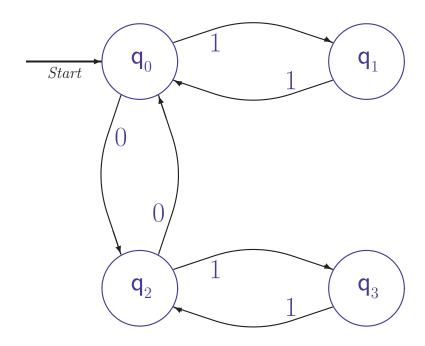
 $q_0 = (\text{gerade}, \text{gerade})$ $q_1 = (\text{gerade}, \text{ungerade})$



Codiere Anzahl der gelesener 0/1 im Zustand

 $q_0 = (\text{gerade}, \text{gerade})$ $q_1 = (\text{gerade}, \text{ungerade})$

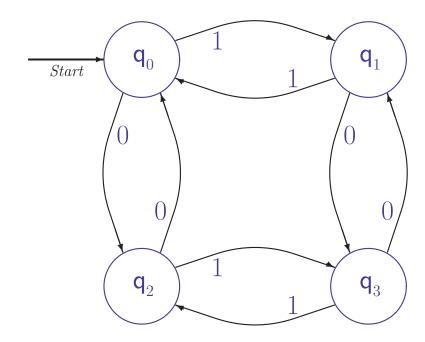
 $q_2 = \text{(ungerade, gerade)} \quad q_3 = \text{(ungerade, ungerade)}$



Codiere Anzahl der gelesener 0/1 im Zustand

 $q_0 = (\text{gerade}, \text{gerade})$ $q_1 = (\text{gerade}, \text{ungerade})$

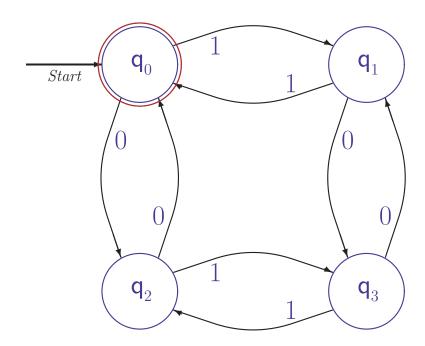
 $q_2 = \text{(ungerade, gerade)} \quad q_3 = \text{(ungerade, ungerade)}$



Codiere Anzahl der gelesener 0/1 im Zustand

 $q_0 = (\text{gerade}, \text{gerade})$ $q_1 = (\text{gerade}, \text{ungerade})$

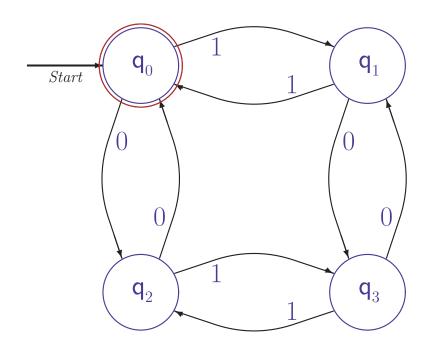
 $q_2 = \text{(ungerade, gerade)} \quad q_3 = \text{(ungerade, ungerade)}$



Codiere Anzahl der gelesener 0/1 im Zustand

 $q_0 = (\text{gerade}, \text{gerade})$ $q_1 = (\text{gerade}, \text{ungerade})$

 $q_2 = (ungerade, gerade)$ $q_3 = (ungerade, ungerade)$



Korrektheit: gegenseitige strukturelle Induktion

- Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:
 - $(1) \ (\boldsymbol{q}_0,\boldsymbol{w}\,\boldsymbol{v}) \, \stackrel{*}{\vdash} (\boldsymbol{q}_0,\boldsymbol{v}) \ \Leftrightarrow \ \text{es gilt } \boldsymbol{g}_0(\boldsymbol{w}) \text{ und } \boldsymbol{g}_1(\boldsymbol{w})$
 - $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

• Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:

```
(1) \quad (q_0, w \ v) \stackrel{*}{\vdash} (q_0, v) \quad \Leftrightarrow \quad \text{es gilt } g_0(w) \text{ und } g_1(w)
```

(2)
$$(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$$

$$(3) (q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$$

$$(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

• Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:

- $(1) \quad (q_0, w \ v) \stackrel{*}{\vdash} (q_0, v) \quad \Leftrightarrow \quad \text{es gilt } g_0(w) \text{ und } g_1(w)$
- (2) $(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$
- (3) $(q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$
- $(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

• Basisfall $w = \epsilon$:

- Per Definition gilt $(q_0, v) \stackrel{*}{\vdash} (q_0, v)$ und $g_0(w)$ und $g_1(w)$

- Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:
 - $(1) \quad (q_0, w \ v) \stackrel{*}{\vdash} (q_0, v) \quad \Leftrightarrow \quad \text{es gilt } g_0(w) \text{ und } g_1(w)$
 - (2) $(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$
 - (3) $(q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$
 - $(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

- Basisfall $w = \epsilon$:
 - Per Definition gilt $(q_0, v) \stackrel{*}{\vdash} (q_0, v)$ und $g_0(w)$ und $g_1(w)$

1

- Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - (1) Es gelte $(q_0, w v) \vdash^* (q_0, v)$.

- Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:
 - $(1) \ (\boldsymbol{q}_0,\boldsymbol{w}\,\boldsymbol{v}) \, \stackrel{*}{\vdash} \, (\boldsymbol{q}_0,\boldsymbol{v}) \ \Leftrightarrow \ \text{es gilt } \boldsymbol{g}_0(\boldsymbol{w}) \text{ und } \boldsymbol{g}_1(\boldsymbol{w})$
 - (2) $(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$
 - (3) $(q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$
 - $(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

- Basisfall $w = \epsilon$:
 - Per Definition gilt $(q_0, v) \stackrel{*}{\vdash} (q_0, v)$ und $g_0(w)$ und $g_1(w)$

V

- ullet Schrittfall w=ua für ein $u\in\Sigma^*, a\in\Sigma$:
 - (1) Es gelte $(q_0, w v) \vdash^* (q_0, v)$.

Dann gilt $(q_0, u \, a \, v) \stackrel{*}{\vdash} (p, a \, v) \vdash (q_0, v)$ für einen Zustand p.

- Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:
 - $(1) \quad (\boldsymbol{q}_0,\boldsymbol{w}\,\boldsymbol{v}) \, \stackrel{*}{\vdash} \, (\boldsymbol{q}_0,\boldsymbol{v}) \quad \Leftrightarrow \quad \text{es gilt } \boldsymbol{g}_0(\boldsymbol{w}) \, \text{ und } \boldsymbol{g}_1(\boldsymbol{w})$
 - (2) $(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$
 - (3) $(q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$
 - $(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

- Basisfall $w = \epsilon$:
 - Per Definition gilt $(q_0, v) \stackrel{*}{\vdash} (q_0, v)$ und $g_0(w)$ und $g_1(w)$

 $\sqrt{}$

- Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - (1) Es gelte $(q_0, w v) \vdash^* (q_0, v)$.

Dann gilt $(q_0, u \, a \, v) \stackrel{*}{\vdash} (p, a \, v) \vdash (q_0, v)$ für einen Zustand p.

Falls a = 0, dann ist $p = q_2$ und nach (3) folgt $u_0(u)$ und $g_1(u)$.

- Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:
 - $(1) \quad (\boldsymbol{q}_0,\boldsymbol{w}\,\boldsymbol{v}) \, \stackrel{*}{\vdash} \, (\boldsymbol{q}_0,\boldsymbol{v}) \quad \Leftrightarrow \quad \text{es gilt } \boldsymbol{g}_0(\boldsymbol{w}) \, \text{ und } \boldsymbol{g}_1(\boldsymbol{w})$
 - (2) $(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$
 - (3) $(q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$
 - $(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

- Basisfall $w = \epsilon$:
 - Per Definition gilt $(q_0, v) \stackrel{*}{\vdash} (q_0, v)$ und $g_0(w)$ und $g_1(w)$

v

- Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - (1) Es gelte $(q_0, w v) \vdash^* (q_0, v)$.

Dann gilt $(q_0, u \, a \, v) \stackrel{*}{\vdash} (p, a \, v) \vdash (q_0, v)$ für einen Zustand p.

Falls a = 0, dann ist $p = q_2$ und nach (3) folgt $u_0(u)$ und $g_1(u)$.

Für w = ua folgt somit $g_0(w)$ und $g_1(w)$.

• Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:

- $(1) \ (\boldsymbol{q}_0,\boldsymbol{w}\,\boldsymbol{v}) \, \stackrel{*}{\vdash} \, (\boldsymbol{q}_0,\boldsymbol{v}) \ \Leftrightarrow \ \text{es gilt } \boldsymbol{g}_0(\boldsymbol{w}) \text{ und } \boldsymbol{g}_1(\boldsymbol{w})$
- (2) $(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$
- (3) $(q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$
- $(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

• Basisfall $w = \epsilon$:

- Per Definition gilt $(q_0, v) \vdash^* (q_0, v)$ und $g_0(w)$ und $g_1(w)$

 $\sqrt{}$

• Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:

(1) Es gelte $(q_0, w v) \vdash^* (q_0, v)$.

Dann gilt $(q_0, u \, a \, v) \stackrel{*}{\vdash} (p, a \, v) \vdash (q_0, v)$ für einen Zustand p.

Falls a = 0, dann ist $p = q_2$ und nach (3) folgt $u_0(u)$ und $g_1(u)$.

Für w = ua folgt somit $g_0(w)$ und $g_1(w)$.

Fall a=1 analog. Gegenrichtung durch Umkehrung des Arguments. (2), (3), (4) analog.

• Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:

- $(1) \ (\boldsymbol{q}_0,\boldsymbol{w}\,\boldsymbol{v}) \, \stackrel{*}{\vdash} \, (\boldsymbol{q}_0,\boldsymbol{v}) \ \Leftrightarrow \ \text{es gilt } \boldsymbol{g}_0(\boldsymbol{w}) \text{ und } \boldsymbol{g}_1(\boldsymbol{w})$
- (2) $(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$
- (3) $(q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$
- $(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

• Basisfall $w = \epsilon$:

- Per Definition gilt $(q_0, v) \stackrel{*}{\vdash} (q_0, v)$ und $g_0(w)$ und $g_1(w)$

 $\sqrt{}$

• Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:

(1) Es gelte $(q_0, w v) \vdash^* (q_0, v)$.

Dann gilt $(q_0, u \, a \, v) \stackrel{*}{\vdash} (p, a \, v) \vdash (q_0, v)$ für einen Zustand p.

Falls a = 0, dann ist $p = q_2$ und nach (3) folgt $u_0(u)$ und $g_1(u)$.

Für w = ua folgt somit $g_0(w)$ und $g_1(w)$.

 $\sqrt{}$

Fall a=1 analog. Gegenrichtung durch Umkehrung des Arguments. (2), (3), (4) analog.

$$ullet$$
 Es folgt $w\in L(A) \Leftrightarrow (q_0,w) \stackrel{*}{dash} (q_0,\epsilon)$

- Zeige simultan für alle Wörter $w, v \in \{0, 1\}^*$:
 - $(1) \quad (q_0, w \, v) \, \stackrel{*}{\vdash} \, (q_0, v) \quad \Leftrightarrow \quad \text{es gilt } g_0(w) \text{ und } g_1(w)$
 - (2) $(q_0, w v) \stackrel{*}{\vdash} (q_1, v) \Leftrightarrow \text{ es gilt } g_0(w) \text{ und } u_1(w)$
 - (3) $(q_0, w v) \stackrel{*}{\vdash} (q_2, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } g_1(w)$
 - $(4) (q_0, w v) \stackrel{*}{\vdash} (q_3, v) \Leftrightarrow \text{ es gilt } u_0(w) \text{ und } u_1(w)$

 $g_0(w) = w$ hat gerade Anzahl von Nullen, $u_0(w) = w$ hat ungerade Anzahl von Nullen, ...

- Basisfall $w = \epsilon$:
 - Per Definition gilt $(q_0, v) \stackrel{*}{\vdash} (q_0, v)$ und $g_0(w)$ und $g_1(w)$

 $\sqrt{}$

- Schrittfall w = ua für ein $u \in \Sigma^*, a \in \Sigma$:
 - (1) Es gelte $(q_0, w v) \vdash^* (q_0, v)$.

Dann gilt $(q_0, u \, a \, v) \stackrel{*}{\vdash} (p, a \, v) \vdash (q_0, v)$ für einen Zustand p.

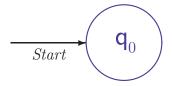
Falls a = 0, dann ist $p = q_2$ und nach (3) folgt $u_0(u)$ und $g_1(u)$.

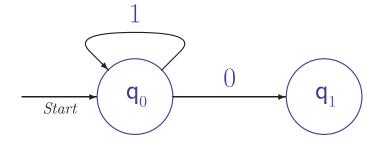
Für w = ua folgt somit $g_0(w)$ und $g_1(w)$.

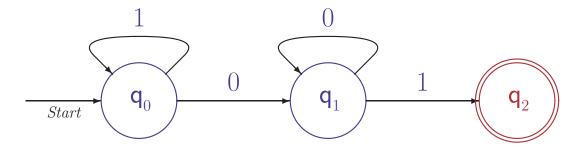
Fall a=1 analog. Gegenrichtung durch Umkehrung des Arguments. (2), (3), (4) analog.

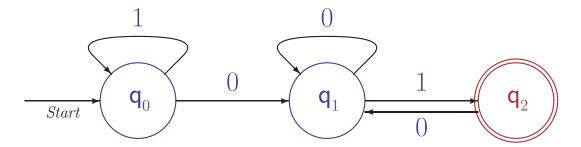
ullet Es folgt $w\in L(A) \Leftrightarrow (q_0,w) \stackrel{*}{dash} (q_0,\epsilon)$

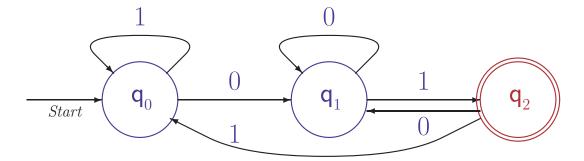
$$\Leftrightarrow g_0(w) \text{ und } g_1(w) \Leftrightarrow w \in L$$



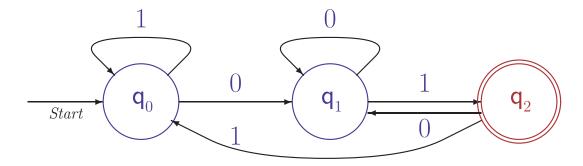






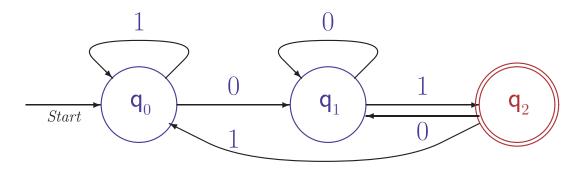


• Erkenne Strings, die mit 01 enden

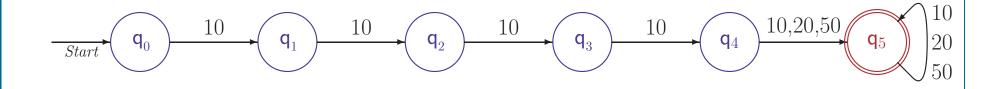


• 50c Kaffeeautomat

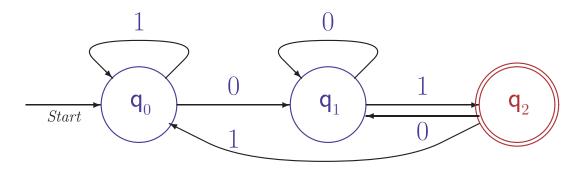
• Erkenne Strings, die mit 01 enden



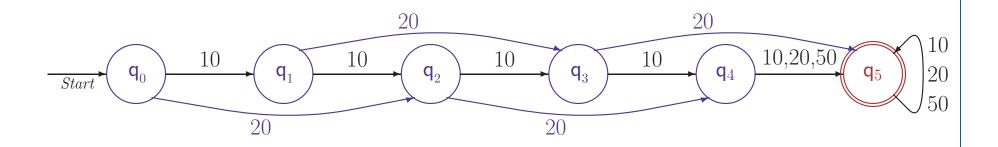
• 50c Kaffeeautomat



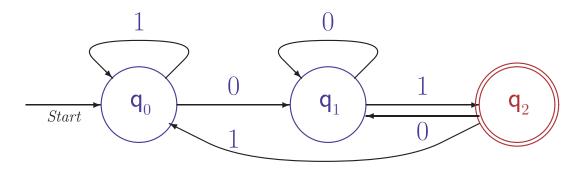
• Erkenne Strings, die mit 01 enden



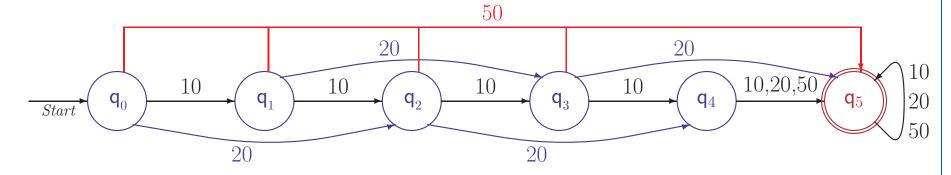
• 50c Kaffeeautomat



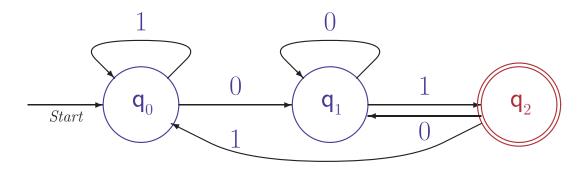
• Erkenne Strings, die mit 01 enden



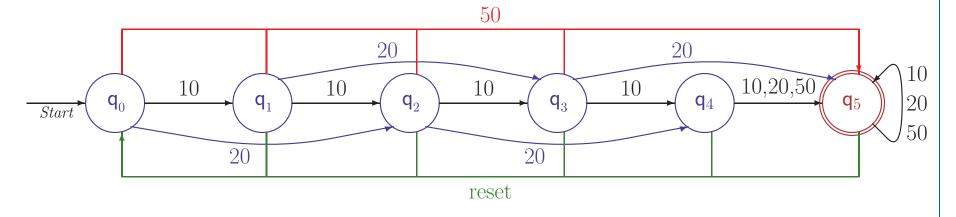
• 50c Kaffeeautomat

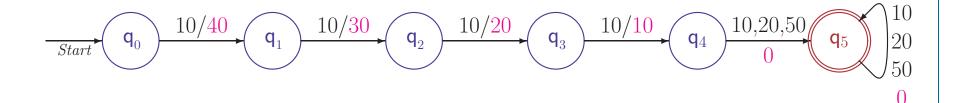


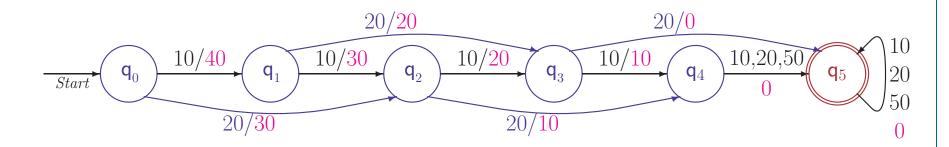
• Erkenne Strings, die mit 01 enden

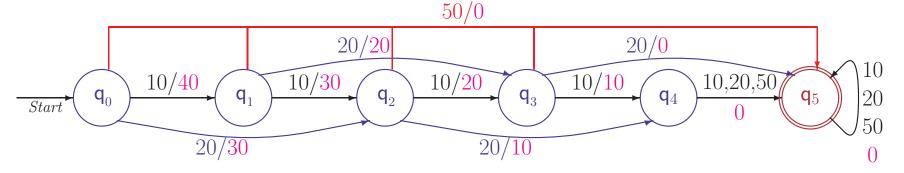


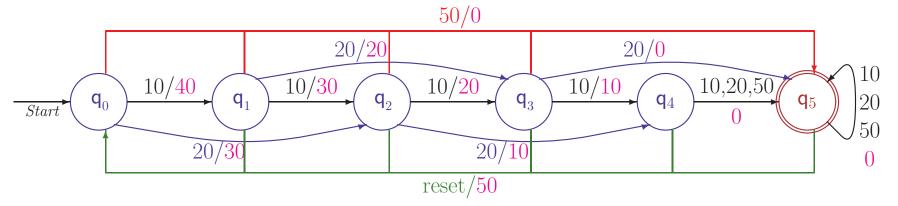
• 50c Kaffeeautomat



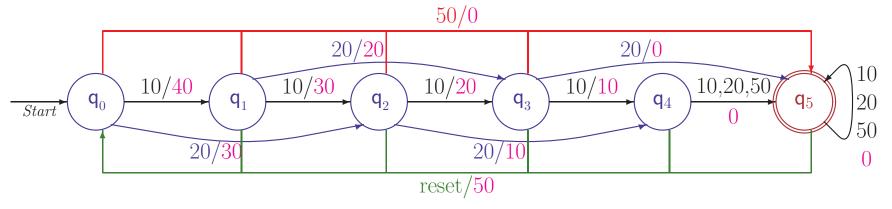






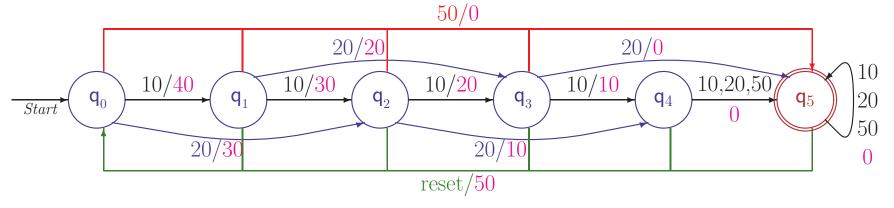


• 50c Kaffeeautomat mit Restbetragsanzeige



– Münzeinwurf führt zu Zustandsänderung und erzeugt Ausgabe

• 50c Kaffeeautomat mit Restbetragsanzeige

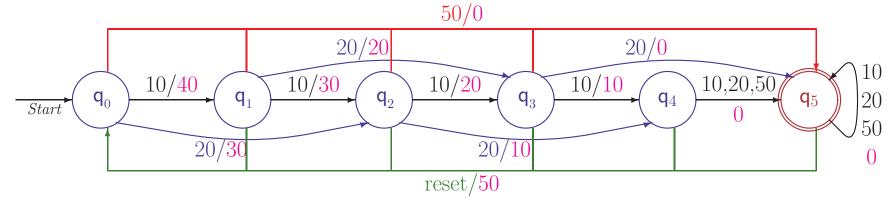


- Münzeinwurf führt zu Zustandsänderung und erzeugt Ausgabe

• Formalisierungen von Automaten mit Ausgabe

- Mealy-Automaten: Ausgabefunktion abhängig von Eingabe & Zustand
- Moore-Automaten: Ausgabefunktion nur von Zustand abhängig

• 50c Kaffeeautomat mit Restbetragsanzeige

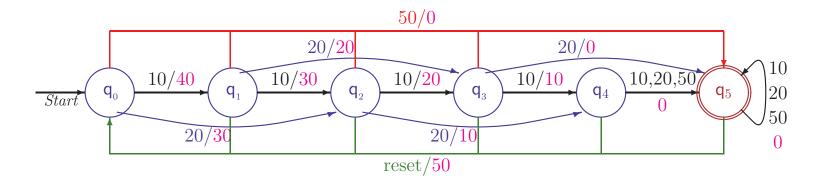


- Münzeinwurf führt zu Zustandsänderung und erzeugt Ausgabe

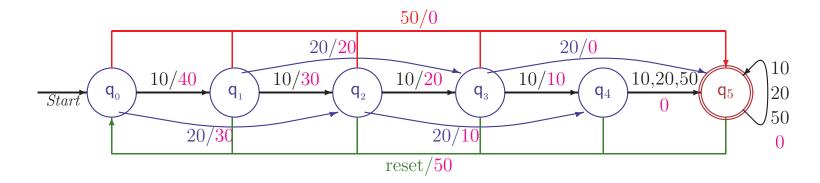
• Formalisierungen von Automaten mit Ausgabe

- Mealy-Automaten: Ausgabefunktion abhängig von Eingabe & Zustand
- Moore-Automaten: Ausgabefunktion nur von Zustand abhängig

Beide Modelle sind äquivalent

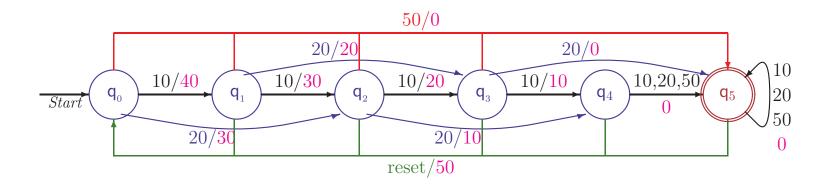


$$\mathbf{M} = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$
 mit



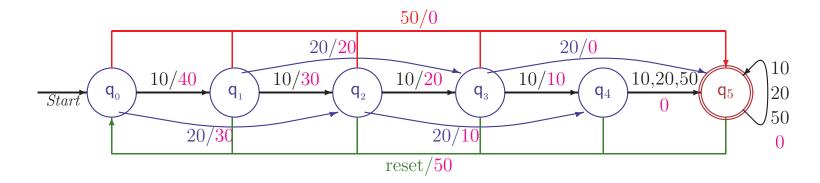
$$\mathbf{M} = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$
 mit

- \bullet Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ (endliches) **Eingabealphabet**
- $\bullet \Delta$ (endliches) **Ausgabealphabet**



$$\mathbf{M} = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$
 mit

- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ (endliches) **Eingabealphabet**
- $\bullet \Delta$ (endliches) **Ausgabealphabet**
- $\delta: Q \times \Sigma \to Q$ Zustandsüberführungsfunktion
- $\lambda: Q \times \Sigma \to \Delta$ Ausgabefunktion



$$\mathbf{M} = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$$
 mit

- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ (endliches) **Eingabealphabet**
- $\bullet \Delta$ (endliches) **Ausgabealphabet**
- $\delta: Q \times \Sigma \to Q$ Zustandsüberführungsfunktion
- $\lambda: Q \times \Sigma \to \Delta$ Ausgabefunktion
- $q_0 \in Q$ Startzustand

ullet Anfangssituation: Automat im Startzustand q_0

- ullet Anfangssituation: Automat im Startzustand q_0
- Arbeitschritt
 - Im Zustand q lese Eingabesymbol a,
 - Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p
 - Bestimme $x = \lambda(q,a)$ und gebe dieses Symbol aus

- ullet Anfangssituation: Automat im Startzustand q_0
- Arbeitschritt
 - Im Zustand q lese Eingabesymbol a,
 - Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p
 - Bestimme $x = \lambda(q,a)$ und gebe dieses Symbol aus
- Terminierung: Eingabewort $w = a_1..a_n$ ist komplett gelesen

- Anfangssituation: Automat im Startzustand q_0
- Arbeitschritt
 - Im Zustand q lese Eingabesymbol a,
 - Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p
 - Bestimme $x = \lambda(q,a)$ und gebe dieses Symbol aus
- Terminierung: Eingabewort $w = a_1..a_n$ ist komplett gelesen
- Ausgabewort: Verkettung der ausgegebenen Symbole $x_1...x_n$

- Anfangssituation: Automat im Startzustand q_0
- Arbeitschritt
 - Im Zustand q lese Eingabesymbol a,
 - Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p
 - Bestimme $x = \lambda(q,a)$ und gebe dieses Symbol aus
- **Terminierung:** Eingabewort $w = a_1..a_n$ ist komplett gelesen
- Ausgabewort: Verkettung der ausgegebenen Symbole $x_1...x_n$
- Erweiterte Ausgabefunktion $\hat{\lambda}: Q \times \Sigma^* \to \Delta^*$
 - Schrittweise Erzeugung der Ausgabe mit Abarbeitung der Eingabe

Arbeitsweise von Mealy-Automaten analog zu Deas

- ullet Anfangssituation: Automat im Startzustand q_0
- Arbeitschritt
 - Im Zustand q lese Eingabesymbol a,
 - Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p
 - Bestimme $x = \lambda(q,a)$ und gebe dieses Symbol aus
- **Terminierung:** Eingabewort $w = a_1..a_n$ ist komplett gelesen
- Ausgabewort: Verkettung der ausgegebenen Symbole $x_1...x_n$
- Erweiterte Ausgabefunktion $\hat{\lambda}: Q \times \Sigma^* \to \Delta^*$
 - Schrittweise Erzeugung der Ausgabe mit Abarbeitung der Eingabe
 - Formal: Induktive Definition

$$\hat{\boldsymbol{\lambda}}(\boldsymbol{q}, \boldsymbol{w}) = \begin{cases} \epsilon & \text{falls } \boldsymbol{w} = \epsilon, \\ \hat{\lambda}(\boldsymbol{q}, \boldsymbol{v}) \circ \lambda(\hat{\delta}(\boldsymbol{q}, \boldsymbol{v}), \boldsymbol{a}) & \text{falls } \boldsymbol{w} = \boldsymbol{v} \boldsymbol{a} \text{ für ein } \boldsymbol{a} \in \Sigma \end{cases}$$

Arbeitsweise von Mealy-Automaten analog zu Deas

- Anfangssituation: Automat im Startzustand q_0
- Arbeitschritt
 - Im Zustand q lese Eingabesymbol a,
 - Bestimme $\delta(q,a)=p$ und wechsele in neuen Zustand p
 - Bestimme $x = \lambda(q,a)$ und gebe dieses Symbol aus
- **Terminierung:** Eingabewort $w = a_1..a_n$ ist komplett gelesen
- Ausgabewort: Verkettung der ausgegebenen Symbole $x_1...x_n$
- Erweiterte Ausgabefunktion $\hat{\lambda}: Q \times \Sigma^* \to \Delta^*$
 - Schrittweise Erzeugung der Ausgabe mit Abarbeitung der Eingabe
 - Formal: Induktive Definition

$$\hat{\boldsymbol{\lambda}}(\boldsymbol{q}, \boldsymbol{w}) = \begin{cases} \epsilon & \text{falls } \boldsymbol{w} = \epsilon, \\ \hat{\lambda}(\boldsymbol{q}, \boldsymbol{v}) \circ \lambda(\hat{\delta}(\boldsymbol{q}, \boldsymbol{v}), \boldsymbol{a}) & \text{falls } \boldsymbol{w} = \boldsymbol{v} \boldsymbol{a} \text{ für ein } \boldsymbol{a} \in \Sigma \end{cases}$$

ullet Von M berechnete Funktion: $f_M(w) = \hat{\lambda}(q_0, w)$

• Addition von Bitpaaren von rechts nach links

• Addition von Bitpaaren von rechts nach links

- Eingabealphabet $\Sigma = \{0, 1\} \times \{0, 1\}$
- Ausgabealphabet $\Delta = \{0, 1\}$

- Addition von Bitpaaren von rechts nach links
 - Eingabealphabet $\Sigma = \{0, 1\} \times \{0, 1\}$
 - Ausgabealphabet $\Delta = \{0, 1\}$
- Zwei Zustände sind erforderlich

• Addition von Bitpaaren von rechts nach links

- Eingabealphabet $\Sigma = \{0, 1\} \times \{0, 1\}$
- Ausgabealphabet $\Delta = \{0, 1\}$

• Zwei Zustände sind erforderlich

- Zustand q_0 : A kann Addition zweier Bits direkt ausführen

• Addition von Bitpaaren von rechts nach links

- Eingabealphabet $\Sigma = \{0, 1\} \times \{0, 1\}$
- Ausgabealphabet $\Delta = \{0, 1\}$

• Zwei Zustände sind erforderlich

- Zustand q_0 : A kann Addition zweier Bits direkt ausführen
- Zustand q_1 : A hat bei Addition einen Übertrag zu berücksichtigen

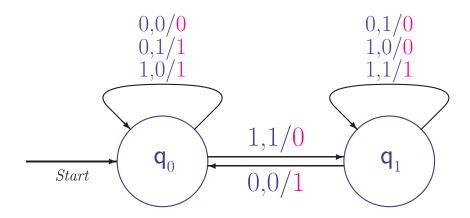
• Addition von Bitpaaren von rechts nach links

- Eingabealphabet $\Sigma = \{0, 1\} \times \{0, 1\}$
- Ausgabealphabet $\Delta = \{0, 1\}$

• Zwei Zustände sind erforderlich

- Zustand q_0 : A kann Addition zweier Bits direkt ausführen
- Zustand q_1 : A hat bei Addition einen Übertrag zu berücksichtigen

• Zugehöriger Mealy-Automat



Gegenseitige Simulation ist möglich

Gegenseitige Simulation ist möglich

- ullet Jede Funktion f ist als Menge beschreibbar
 - $-\operatorname{graph}(f) = \{(w, v) \mid f(w) = v\}$
 - $-\operatorname{graph}^*(f) = \{(w_1, v_1)..(w_n, v_n) \mid f(w_1..w_n) = v_1..v_n\}$

Gegenseitige Simulation ist möglich

- ullet Jede Funktion f ist als Menge beschreibbar
 - $-\operatorname{graph}(f) = \{(w, v) | f(w) = v\}$
 - $-\operatorname{graph}^*(f) = \{(w_1, v_1)..(w_n, v_n) \mid f(w_1..w_n) = v_1..v_n\}$
 - DEAs können Graphen berechneter Funktionen akzeptieren

Satz: f Mealy-berechenbar \Leftrightarrow graph*(f) reguläre Sprache

Gegenseitige Simulation ist möglich

ullet Jede Funktion f ist als Menge beschreibbar

- $-\operatorname{graph}(f) = \{(w, v) | f(w) = v\}$
- $-\operatorname{graph}^*(f) = \{(w_1, v_1)..(w_n, v_n) \mid f(w_1..w_n) = v_1..v_n\}$
- DEAs können Graphen berechneter Funktionen akzeptieren

Satz: f Mealy-berechenbar \Leftrightarrow graph*(f) reguläre Sprache

ullet Jede Sprache L ist als Funktion beschreibbar

$$-\boldsymbol{\chi_L(w)} = \begin{cases} 1 & \text{falls } w \in L, \\ 0 & \text{sonst} \end{cases}$$

charakteristische Funktion von L

Gegenseitige Simulation ist möglich

• Jede Funktion f ist als Menge beschreibbar

- $-\operatorname{graph}(f) = \{(w, v) \mid f(w) = v\}$
- $-\operatorname{graph}^*(f) = \{(w_1, v_1)..(w_n, v_n) \mid f(w_1..w_n) = v_1..v_n\}$
- DEAs können Graphen berechneter Funktionen akzeptieren

Satz: f Mealy-berechenbar \Leftrightarrow graph*(f) reguläre Sprache

ullet Jede Sprache L ist als Funktion beschreibbar

$$-\chi_{L}(w) = \begin{cases} 1 & \text{falls } w \in L, \\ 0 & \text{sonst} \end{cases}$$
 charakteristische Funktion von L

- Charakteristische Funktionen akzeptierter Sprachen sind berechenbar

Satz: L regulär $\Leftrightarrow \chi_L$ "Mealy-berechenbar"

• f Mealy-berechenbar \Leftrightarrow graph*(f) regulär

• f Mealy-berechenbar \Leftrightarrow graph*(f) regulär

$$-\operatorname{Zu} M = (Q, \Sigma, \Delta, \delta, \lambda, q_0) \text{ konstruiere } A = (Q \cup \{q_f\}, \Sigma \times \Delta, \delta', q_0, Q)$$

$$\operatorname{mit} \delta'(q, (a, b)) = \begin{cases} \delta(q, a) & \text{falls } \lambda(q, a) = b, \\ q_f & \text{sonst} \end{cases}$$

• f Mealy-berechenbar \Leftrightarrow graph*(f) regulär

- $-\operatorname{Zu} M = (Q, \Sigma, \Delta, \delta, \lambda, q_0) \text{ konstruiere } A = (Q \cup \{q_f\}, \Sigma \times \Delta, \delta', q_0, Q)$ $\operatorname{mit} \delta'(q, (a, b)) = \begin{cases} \delta(q, a) & \text{falls } \lambda(q, a) = b, \\ q_f & \text{sonst} \end{cases}$
- Dann $f_M(w_1..w_n) = v_1..v_n$ genau dann, wenn $(w_1, v_1)..(w_n, v_n) \in L(A)$

- f Mealy-berechenbar \Leftrightarrow graph*(f) regulär
 - $-\operatorname{Zu} M = (Q, \Sigma, \Delta, \delta, \lambda, q_0) \text{ konstruiere } A = (Q \cup \{q_f\}, \Sigma \times \Delta, \delta', q_0, Q)$ $\operatorname{mit} \delta'(q, (a, b)) = \begin{cases} \delta(q, a) & \text{falls } \lambda(q, a) = b, \\ q_f & \text{sonst} \end{cases}$
 - Dann $f_M(w_1..w_n) = v_1..v_n$ genau dann, wenn $(w_1, v_1)..(w_n, v_n) \in L(A)$
- ullet L regulär $\Leftrightarrow \chi_L$ "Mealy-berechenbar"

• f Mealy-berechenbar \Leftrightarrow graph*(f) regulär

- $-\operatorname{Zu} M = (Q, \Sigma, \Delta, \delta, \lambda, q_0) \text{ konstruiere } A = (Q \cup \{q_f\}, \Sigma \times \Delta, \delta', q_0, Q)$ $\operatorname{mit} \delta'(q, (a, b)) = \begin{cases} \delta(q, a) & \text{falls } \lambda(q, a) = b, \\ q_f & \text{sonst} \end{cases}$
- Dann $f_M(w_1..w_n) = v_1..v_n$ genau dann, wenn $(w_1, v_1)..(w_n, v_n) \in L(A)$

ullet L regulär $\Leftrightarrow \chi_L$ "Mealy-berechenbar"

$$-\operatorname{Zu} A = (Q, \Sigma, \delta, q_0, F) \text{ konstruiere } M = (Q, \Sigma, \{0,1\}, \delta, \lambda, q_0)$$

$$\operatorname{mit} \lambda(q, a) = \begin{cases} 1 & \text{falls } \delta(q, a) \in F, \\ 0 & \text{sonst} \end{cases}$$

• f Mealy-berechenbar \Leftrightarrow graph*(f) regulär

- $-\operatorname{Zu} M = (Q, \Sigma, \Delta, \delta, \lambda, q_0) \text{ konstruiere } A = (Q \cup \{q_f\}, \Sigma \times \Delta, \delta', q_0, Q)$ $\operatorname{mit} \delta'(q, (a, b)) = \begin{cases} \delta(q, a) & \text{falls } \lambda(q, a) = b, \\ q_f & \text{sonst} \end{cases}$
- Dann $f_M(w_1..w_n) = v_1..v_n$ genau dann, wenn $(w_1, v_1)..(w_n, v_n) \in L(A)$

ullet L regulär $\Leftrightarrow \chi_L$ "Mealy-berechenbar"

- $-\operatorname{Zu} A = (Q, \Sigma, \delta, q_0, F) \text{ konstruiere } M = (Q, \Sigma, \{0,1\}, \delta, \lambda, q_0)$ $\operatorname{mit} \lambda(q, a) = \begin{cases} 1 & \text{falls } \delta(q, a) \in F, \\ 0 & \text{sonst} \end{cases}$
- Dann ist $w \in L(A)$ genau dann, wenn $f_M(w) = v1$ für ein $v \in \{0, 1\}^*$ $\chi_L(w)$ ist das letzte Ausgabesymbol von $f_M(w)$

• f Mealy-berechenbar \Leftrightarrow graph*(f) regulär

- $-\operatorname{Zu} M = (Q, \Sigma, \Delta, \delta, \lambda, q_0)$ konstruiere $A = (Q \cup \{q_f\}, \Sigma \times \Delta, \delta', q_0, Q)$ $\operatorname{mit} \, \boldsymbol{\delta}'(\boldsymbol{q},(\boldsymbol{a},\boldsymbol{b})) = \left\{ \begin{array}{l} \delta(\boldsymbol{q},\boldsymbol{a}) & \text{falls } \lambda(\boldsymbol{q},\boldsymbol{a}) = \boldsymbol{b}, \\ \boldsymbol{q}_f & \text{sonst} \end{array} \right.$
- Dann $f_M(w_1..w_n) = v_1..v_n$ genau dann, wenn $(w_1, v_1)..(w_n, v_n) \in L(A)$

• L regulär $\Leftrightarrow \chi_L$ "Mealy-berechenbar"

- Zu $A = (Q, \Sigma, \delta, q_0, F)$ konstruiere $M = (Q, \Sigma, \{0,1\}, \delta, \lambda, q_0)$ $\operatorname{mit} \lambda(q, a) = \begin{cases} 1 & \text{falls } \delta(q, a) \in F, \\ 0 & \text{sonst} \end{cases}$
- Dann ist $w \in L(A)$ genau dann, wenn $f_M(w) = v1$ für ein $v \in \{0, 1\}^*$ $\chi_L(w)$ ist das letzte Ausgabesymbol von $f_M(w)$

Mehr zu Automaten mit Ausgabe im Buch von Vossen & Witt