Theoretische Informatik I

Einheit 2.5

- 1. Abschlusseigenschaften
- 2. Prüfen von Eigenschaften
- 3. Wann sind Sprachen nicht regulär?

Wichtige Eigenschaften formaler Sprachen

Abschlusseigenschaften

- Wie können Sprachen elegant zusammengesetzt werden?
- Erlaubt schematische Komposition von Sprachbausteinen

• Entscheidbarkeitsfragen

- Kann man bestimmte Eigenschaften automatisch testen?
- Wortproblem (Zugehörigkeit eines Wortes zur Sprache)
- Vergleiche zwischen Sprachen (nichtleer, Teilmenge, gleich, ...)

• Grenzen einer Sprachklasse

- Wie einfach strukturiert müssen die Sprachen der Klasse sein?
- Welche Sprachen gehören nicht zur Klasse?

Aus theoretischer Sicht sind das die wirklich interessanten Fragen

ABSCHLUSSEIGENSCHAFTEN, WOZU?

Zeige, dass bestimmte Operationen auf regulären Sprachen wieder zu regulären Sprachen führen

• Wiederverwendung von "Sprachmodulen"

- Schematische Komposition von
 - · Grammatiken zur Erzeugung von Sprachen
 - · Automaten zur Erkennung von Sprachen
 - · Regulären Ausdrücken

• Schematische Konstruktion ist effektiver

- Fehlerfreier Aufbau sehr komplexer Grammatiken / Automaten
- + Schematische Optimierung / Minimierung
- Konstruktion "von Hand" oft fehleranfällig

• Beispiel: Literale einer Programmiersprache

- Bilde Automaten für Tokenklassen: Zahlen, Bezeichner, Schlüsselwörter, ...
- Konstruktion liefert Automaten für alle Arten von Literalen

Abschlusseigenschaften, präzisiert

Zeige: L_1, L_2 regulär $\Rightarrow L_1$ op L_2 regulär

• Es gilt Abgeschlossenheit unter neun Operationen

– Die Vereinigung zweier regulärer Sprachen ist regulär	$\boldsymbol{L_1 \cup L_2}$
– Das Komplement einer regulären Sprache ist regulär	$\overline{m{L}}$
– Der Durchschnitt zweier regulärer Sprachen ist regulär	$\boldsymbol{L_1\cap L_2}$
– Die Differenz zweier regulärer Sprachen ist regulär	L_1-L_2
– Die Spiegelung einer regulären Sprache ist regulär	$oldsymbol{L}^R$
– Die Hülle einer regulären Sprache ist regulär	$oldsymbol{L}^*$
– Die Verkettung zweier regulärer Sprachen ist regulär	$\boldsymbol{L_1} \hspace{1em} \circ \hspace{1em} \boldsymbol{L_2}$
– Das Bild einer regulären Sprache unter Homomorphismen ist r	egulär $h(L)$
– Das Urbild " " unter Homomorphismen ist regulär	$h^{-1}(L)$

• Nachweis durch Verwendung aller Modelle

- DEA, $(\epsilon$ -)NEA, reguläre Ausdrücke, Typ-3 Grammatiken
- Modelle sind ineinander umwandelbar wähle das passendste

Abschluss unter Vereinigung, Verkettung, Hülle

Beweisführung mit regulären Ausdrücken

- $ullet L_1, L_2$ regulär $\Rightarrow L_1 \cup L_2$ regulär L_1, L_2 regulär
 - \Rightarrow Es gibt reguläre Ausdrücke E_1, E_2 mit $L_1 = L(E_1), L_2 = L(E_2)$
 - $\Rightarrow L_1 \cup L_2 = L(E_1) \cup L(E_2) = L(E_1 + E_2)$ regulär
- $ullet L_1, L_2$ regulär $\Rightarrow L_1 \circ L_2$ regulär

 L_1, L_2 regulär

- \Rightarrow Es gibt reguläre Ausdrücke E_1, E_2 mit $L_1 = L(E_1), L_2 = L(E_2)$
- $\Rightarrow L_1 \circ L_2 = L(E_1) \circ L(E_2) = L(E_1 \circ E_2)$ regulär
- ullet L regulär $\Rightarrow L^*$ regulär

 $m{L}$ regulär

- \Rightarrow Es gibt einen regulären Ausdruck E mit L = L(E)
- $\Rightarrow L^* = (L(E))^* = L(E^*)$ regulär

Abschluss unter Komplementbildung

Beweisführung mit endlichen Automaten

ullet L regulär $\Rightarrow \overline{L}$ regulär

Komplementiere akzeptierende Zustände des erkennenden Automaten

L regulär

- \Rightarrow Es gibt einen DEA $A = (Q, \Sigma, \delta, q_0, F)$ mit L = L(A)
- $\Rightarrow \ \overline{\boldsymbol{L}} = \overline{L(A)} = \{w \in \Sigma^* \mid \hat{\delta}(q_0, w) \not\in F\} = \{w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in Q F\}$ $= L((Q, \Sigma, \delta, q_0, Q F)) \ \mathbf{regulär}$

• Beispiel: Komplementierung von (0+1)*01

- Zugehöriger DEA
- Komplementautomat erkennt
 Wörter die nicht mit 01 enden



- Regulärer Ausdruck durch Zustandseliminationsverfahren erzeugbar

Abschluss unter Durchschnitt und Differenz

• Einfache mathematische Beweise

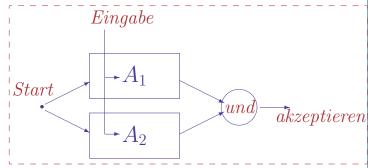
$$L_1, L_2$$
 regulär $\Rightarrow L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ regulär L_1, L_2 regulär $\Rightarrow L_1 - L_2 = L_1 \cap \overline{L_2}$ regulär

• Produktkonstruktion auf endlichen Automaten

Simultane Abarbeitung von Wörtern in beiden Automaten

L_1, L_2 regulär

 $\Rightarrow \text{ Es gibt DEAs } A_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $\text{und } A_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$ $\text{mit } L_1 = L(A_1), L_2 = L(A_2)$



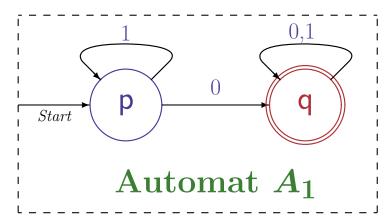
$$\Rightarrow \mathbf{L}_{1} \cap \mathbf{L}_{2} = \{ w \in \Sigma^{*} \mid \hat{\delta}_{1}(q_{0,1}, w) \in F_{1} \land \hat{\delta}_{2}(q_{0,2}, w) \in F_{2} \}$$
$$= \{ w \in \Sigma^{*} \mid (\hat{\delta}_{1}(q_{0,1}, w), \hat{\delta}_{2}(q_{0,2}, w)) \in F_{1} \times F_{2} \}$$

Konstruiere
$$A = (Q_1 \times Q_2, \Sigma, \delta, (q_{0,1}, q_{0,2}), F_1 \times F_2)$$

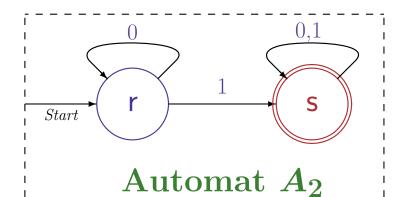
$$\operatorname{mit} \, \delta((p,q),a) = (\delta_1(p,a),\delta_2(q,a)) \ \, \operatorname{für} \, p \in Q_1, \, q \in Q_2, \, a \in \Sigma$$

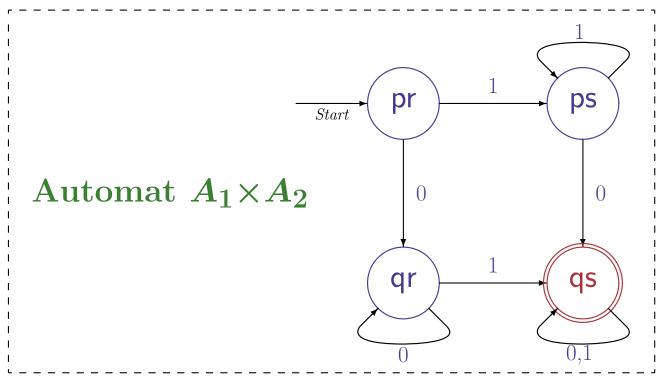
$$\Rightarrow L_1 \cap L_2 = L(A)$$
 regulär

PRODUKTKONSTRUKTION AM BEISPIEL



Theoretische Informatik I §2: _______ 7 _





Abschluss unter Spiegelung

$$L \text{ regul\"{a}r} \Rightarrow L^R = \{w_n..w_1 \mid w_1..w_n \in L\} \text{ regul\"{a}r}$$

• Beweisführung mit Automaten

- Bilde Umkehrautomaten zu $A = (Q, \Sigma, \delta, q_0, F)$ mit L=L(A)
 - · Umkehrung der Pfeile im Diagramm: $\delta^{R}(q, a) = \{q' | \delta(q', a) = q\}$
 - · q_0 wird zum akzeptierenden Zustand: $F^R = \{q_0\}$
 - · Neuer Startzustand q_0^R mit ϵ -Übergängen zu allen $q \in F$

• Induktiver Beweis mit regulären Ausdrücken

Sei L = L(E) für einen regulären Ausdruck

- $-\operatorname{F\"{u}r} E \in \{\emptyset, \epsilon, \mathbf{a}\} \text{ ist } L^R = L = L(E) \text{ regul\"{a}r}$
- Für $E = E_1 + E_2$ ist $L^R = (L(E_1) \cup L(E_2))^R = L(E_1)^R \cup L(E_2)^R$ regulär
- Für $E = E_1 \circ E_2$ ist $L^R = (L(E_1) \circ L(E_2))^R = L(E_2)^R \circ L(E_1)^R$ regulär
- Für $E = E_1^*$ ist $L^R = L(E_1^*)^R = (L(E_1)^R)^*$ regulär

• Beispiel: Spiegelung von $L((0+1)0^*)$

$$-L^R = L((0^*)^R(0+1)^R) = L((0^R)^*(0^R+1^R)) = L(0^*(0+1))$$

Abschluss unter Homomorphismen

L regulär, h Homomorphismus $\Rightarrow h(L)$ regulär

 $h: \Sigma^* \to \Sigma'^*$ ist **Homomorphismus**, wenn $h(v_1...v_n) = h(v_1)..h(v_n)$ - Homomorphismen sind mit endlichen (Ein-/Ausgabe) Automaten berechenbar $h(L) = \{h(w) \mid w \in L\} \subseteq \Sigma'^*$ ist das Abbild der Wörter von L unter h

• Beweis mit Grammatiken

$m{L}$ regulär

- \Rightarrow Es gibt eine Typ-3 Grammatik $G = (V, \Sigma, P, S)$ mit L = L(G)
- $\Rightarrow h(L) = h(L(G)) = \{h(v_1)..h(v_n) \in \Sigma'^* \mid S \xrightarrow{*} v_1..v_n\}$ Für $A \rightarrow a B \in P$ erzeuge Regeln $A \rightarrow a_1 B_1, B_1 \rightarrow a_2 B_2,..., B_{k-1} \rightarrow a_k B$, wobei $h(a) = a_1..a_k$ und alle B_i neue Hilfsvariablen

Sei P_h die Menge dieser Regeln und V_h die Menge ihrer Hilfsvariablen

Für
$$G_h = (V_h, \Sigma', P_h, S)$$
 gilt $A \rightarrow a B \in P \Leftrightarrow A \xrightarrow{*}_{G_h} h(a) B$ und $S \xrightarrow{*}_{G} v_1...v_n \Leftrightarrow S \xrightarrow{*}_{G_h} h(v_1)..h(v_n)$

$$\Rightarrow h(L) = \{h(v_1)..h(v_n) \in \Sigma'^* \mid S \xrightarrow{*}_{G_h} h(v_1)..h(v_n)\} = L(G_h) \text{ regulär}$$

Beweis mit regulären Ausdrücken in Hopcroft, Motwani, Ullman §4.2.3

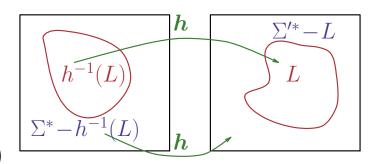
Abschluss unter inversen Homomorphismen

L regulär, h Homomorphismus $\Rightarrow h^{-1}(L)$ regulär

$$h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \} \text{ ist das }$$

Urbild der Wörter von L unter h

- z.B. Für
$$L = L((01+10)^*)$$
, $h(a) = 01$, $h(b) = 10$ ist $h^{-1}(L) = L((a+b)^*)$



Eingabe

• Beweis mit endlichen Automaten

Berechnung von h vor Abarbeitung der Wörter im Automaten

L regulär

- \Rightarrow Es gibt einen DEA $A = (Q, \Sigma', \delta, q_0, F)$ mit $L = L(A) = \{ w \in \Sigma'^* \mid \hat{\delta}(q_0, w) \in F \}$
- $\Rightarrow h^{-1}(L) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, h(w)) \in F \}$

Konstruiere $A_h = (Q, \Sigma, \delta_h, q_{o}F)$ mit $\delta_h(q, a) = \hat{\delta}(q, h(a))$

 $\Rightarrow h^{-1}(L) = \{w \in \Sigma^* \mid \hat{\delta}_h(q_0, w) \in F\} = L(A_h) \text{ regular}$

Dann gilt $\hat{\delta}_h(q, w) = \hat{\delta}(q, h(w))$ für alle $q \in Q$ und $w \in \Sigma^*$

Tests für Eigenschaften regulärer Sprachen

• Welche Eigenschaften sind automatisch prüfbar?

- Ist die Sprache eines Automaten leer?
- Zugehörigkeit: Ist ein Wort w Element der Sprache eines Automaten?
- Äquivalenz: Beschreiben zwei Automaten dieselbe Sprache? Gleiche Fragestellung für Grammatiken und reguläre Ausdrücke

• Wechsel der Repräsentation ist effektiv

- $-NEA \mapsto DEA$: Teilmengenkonstruktion (exponentielle Aufblähung möglich)
- $-\epsilon$ -NEA \mapsto DEA: Hüllenbildung + Teilmengenkonstruktion
- DEA $\mapsto \epsilon$ -NEA/NEA: Modifikation der Präsentation (Mengenklammern)
- DEA \mapsto RA: R_{ij}^k -Methode oder Zustandselimination
- $-RA \mapsto \epsilon$ -NEA: induktive Konstruktion von Automaten
- DEA → Typ-3 Grammatik: Regeln für Überführungsschritte einführen
- Typ-3 Grammatik → NEA: Überführungstabelle codiert Regeln

• Es reicht, Tests für ein Modell zu beschreiben

Prüfe, ob eine reguläre Sprache leer ist

• Nichttriviales Problem

- Automaten: Gibt es überhaupt einen akzeptierenden Pfad?
- Reguläre Ausdrücke: Wird mindestens ein einziges Wort charakterisiert?
- Grammatiken: Wird überhaupt ein Wort aus dem Startzustand erzeugt?

• Erreichbarkeitstest für DEA $A=(Q, \Sigma, \delta, q_0, F)$

- Wegen $\hat{\delta}(q_0, \epsilon) = q_0$ ist q_0 in 0 Schritten erreichbar
- -q in k Schritten erreichbar, $\delta(q,a)=q' \Rightarrow q'$ in k+1 Schritten erreichbar
- $-L(A)=\emptyset \Leftrightarrow \text{kein } q \in F \text{ in } |Q| \text{ Schritten erreichbar}$

• Induktive Analyse für reguläre Ausdrücke

$$-L(\emptyset) = \emptyset, \quad L(\epsilon) \neq \emptyset, \quad L(a) \neq \emptyset$$

$$-L((E))=\emptyset \Leftrightarrow L(E)=\emptyset$$

$$-L(E + F) = \emptyset \iff L(E) = \emptyset \land L(F) = \emptyset$$

$$-L(oldsymbol{E} \circ oldsymbol{F}) = \emptyset \iff L(oldsymbol{E}) = \emptyset \lor L(oldsymbol{F}) = \emptyset$$

$$-L(E^*)\neq\emptyset$$
,

keine Anderung

Vereinigung von Elementen

Elemente beider Sprachen nötig

 ϵ gehört immer zu $L(E^*)$

Test auf Zugehörigkeit

• Unterschiedlich schwierig je nach Repräsentation

- Automaten: Gibt es einen akzeptierenden Pfad für das Wort w?
- Reguläre Ausdrücke: Wird w von der Charakterisierung erfasst?
- Grammatiken: Kann w aus dem Startzustand erzeugt werden?

• Abarbeitung durch DEA $A=(Q, \Sigma, \delta, q_0, F)$

- Bestimme $q := \hat{\delta}(q_0, w)$ und teste $q \in F$
- Maximal |w| + |F| Arbeitsschritte

Test für andere Repräsentationen durch Umwandlung in DEA

Test auf Äquivalenz von Sprachen

• Wann sind zwei reguläre Sprachen gleich?

- Nichttrivial, da Beschreibungsformen sehr verschieden sein können
 - · Verschiedene Automaten, Grammatiken, Ausdrücke, Mischformen, ...

• Gibt es eine "kanonische" Repräsentation?

- z.B. · Transformiere alles in deterministische endliche Automaten
 - · Erzeuge Standardversion mit kleinstmöglicher Anzahl von Zuständen
- Äquivalenztest prüft dann, ob der gleiche Standardautomat erzeugt wird

• Wie standardisiert man Automaten?

- Entferne Zustände, die vom Startzustand unerreichbar sind
- Fasse Zustände zusammen, die für alle Wörter "äquivalent" sind
 - · Es führen exakt dieselben Wörter zu akzeptierenden Zuständen
- Ergibt minimalen äquivalenten Automaten

ÄQUIVALENZTEST FÜR ZUSTÄNDE

• Aquivalenz der Zustände p und q ($p \cong q$)

- Für alle Wörter $w \in \Sigma^*$ gilt $\hat{\delta}(p, w) \in F \iff \hat{\delta}(q, w) \in F$
- Die Wörter müssen nicht zum gleichen Zustand führen

• Positives Prüfverfahren schwierig

- Man muss alle Wörter überprüfen, die von einem Zustand ausgehen
- Man kann sich auf Wörter der maximalen Länge |Q| beschränken
- Besser: Nichtäquivalente (unterscheidbare) Zustände identifizieren

• Table-Filling Algorithmus

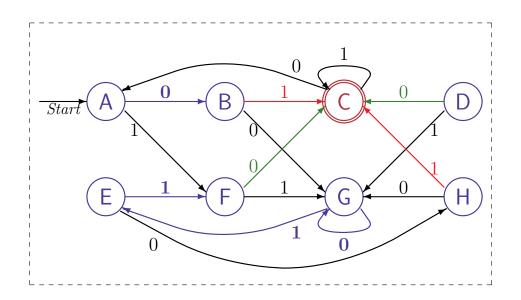
Markiere Unterscheidbarkeit von Zuständen in Tabelle

- $p \not\cong q$, falls $p \in F$ und $q \notin F$
- Iteration: $p \not\cong q$, falls $\delta(p, a) \not\cong \delta(q, a)$ für ein $a \in \Sigma$

In jeder Iteration werden nur noch ungeklärte Paare überprüft

Nach maximal |Q| Iterationen sind alle Unterschiede bestimmt

AQUIVALENZTEST AM BEISPIEL



	Α	В	С	D	Е	F	G	Н
А	\	X	X	X		×	X	X
В	X	\	X	X	X	X	X	
С	X	X	\	X	X	X	X	X
D	X	X	X	\	X		X	X
Е		X	X	X	\	X	X	X
F	X	X	X		X	\	X	X
G	X	X	X	X	X	X	\	X
H	×		×	X	×	×	×	\

Tabelle der Unterschiede

- 1. Unterscheide akzeptierende Zustände (C) von allen anderen
- 2a. Eingabesymbol 0: Nur D und F führen zu akzeptierenden Zuständen
- 2b. Eingabesymbol 1: Nur B und H führen zu akzeptierenden Zuständen
- 3. Uberprüfe Nachfolger von {A,E}, {A,G}, {B,H}, {D,F} und {E,G}.
- 4. Uberprüfung von {A,E}, {B,H} und {D,F} gibt keine Unterschiede

Aquivalenklassen sind {A,E}, {B,H}, {D,F}, {C} und {G}

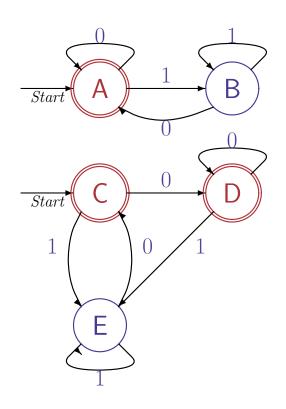
ÄQUIVALENZTEST FÜR SPRACHEN

• Prüfverfahren

- Standardisiere Beschreibungsform in zwei disjunkte DEAs A_1 und A_2
- Vereinige Automaten zu $A = (Q_1 \cup Q_2 \cup \{q'\}, \Sigma, \delta_1 \cup \delta_2, q', F_1 \cup F_2)$ A enthält A_1 und A_2 als unabhängige Teile
- Bilde Äquivalenzklassen von A und teste ob $q_{0,1}$ und $q_{0,2}$ äquivalent sind

• Zwei DEAs für $L(\epsilon + (0+1)^*0)$)

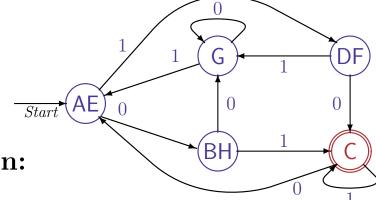
- Äquivalenklassen sind {A,C,D} (alle Endzustände)und {B,E} (alle Nicht-Endzustände)
- Da A und C äquivalent sind,
 sind die Automaten äquivalent



MINIMIERUNG ENDLICHER AUTOMATEN

Konstruiere äquivalenten DEA mit minimaler Menge von Zuständen

- Entferne überflüssige Zustände
 - -q ist überflüssig, wenn $\hat{\delta}(q_0, w) \neq q$ für alle Wörter $w \in \Sigma^*$
 - Reduziere Q zu Menge der erreichbaren Zustände (Verfahren auf Folie 11)
- Fasse äquivalente Zustände zusammen
 - Bestimme Menge der Aquivalenzklassen von Q
 - Setze Q' als Menge der Äquivalenzklassen von Q
 - Setze $\delta'(S, a)$ als Aquivalenzklasse von $\delta(q, a)$ für ein beliebiges $q \in S$ Wohldefiniert, da alle Nachfolger äquivalenter Zustände äquivalent sind



Anwendung auf Beispielautomaten:

• Resultierender Automat ist minimal

EINE ALGEBRAISCHE CHARAKTERISIERUNG REGULÄRER SPRACHEN

• Automaten teilen Sprachen in Aquivalenzklassen

- Wörter, die zum gleichen Zustand führen, sind ununterscheidbar
- Wörter, die zu äquivalenten Zuständen führen, sind ununterscheidbar Jede Fortsetzung der Wörter führt zum "gleichen" Ergebnis $\hat{\delta}(q_0, u) \cong \hat{\delta}(q_0, v)$ bedeutet $\hat{\delta}(q_0, u w) \in F \iff \hat{\delta}(q_0, v w) \in F$ für alle $w \in \Sigma^*$

• Äquivalenzklassen hängen nur von der Sprache ab

- Für $L \subseteq \Sigma^*$ definiere Äquivalenzrelation \sim_L auf Σ^* :
 - $\cdot u \sim_L v \equiv u w \in L \Leftrightarrow v w \in L \text{ gilt für alle } w \in \Sigma^*$
- Die Äquivalenzklasse eines Wortes v ist $[v]_L = \{u \in \Sigma^* \mid u \sim_L v\}$
- $-\Sigma^*/L$ bezeichnet die Menge der Äquivalenzklassen modulo \sim_L
 - Für $L = \{0^n 1^m \mid n, m \in \mathbb{N}\}$ ist $\Sigma^*/L = \{[\epsilon]_L, [1]_L, [10]_L\}$
 - Für $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ ist $\Sigma^*/L = \{ [\epsilon]_L, [0]_L, [1]_L, [00]_L, [01]_L, [000]_L, [001]_L, \ldots \}$

Reguläre Sprachen haben nur endlich viele Äquivalenzklassen

DER SATZ VON MYHILL/NERODE

Eine Sprache L ist regulär, g.d.w Σ^*/L endlich ist

Beweis

 \Rightarrow : Es sei L eine reguläre Sprache

Dann gibt es einen minimalen DEA $A = (Q, \Sigma, \delta, q_0, F)$ mit L = L(A)

Da A minimal ist, gilt für beliebige Wörter $u, v \in \Sigma^*$

$$\hat{\delta}(q_0, u) = \hat{\delta}(q_0, v) \Leftrightarrow (\hat{\delta}(q_0, u \, w) \in F \iff \hat{\delta}(q_0, v \, w) \in F) \text{ für alle } w \in \Sigma^*$$

$$\Leftrightarrow (u \, w \in L \iff v \, w \in L) \text{ für alle } w \in \Sigma^* \iff u \sim_L v$$

Damit ist $|\Sigma^*/L|$ (der Index von L) gleich der Anzahl der Zustände in A

 \Leftarrow : Es sei Σ^*/L endlich.

Konstruiere einen DEA $A = (\Sigma^*/L, \Sigma, \delta, [\epsilon]_L, F)$

mit $\delta([u]_L, a) = [u \, a]_L$ für alle $a \in \Sigma$ und $F = \{[v]_L \mid v \in L\}$

 δ ist wohldefiniert, weil $u \, a \sim_L v \, a$ für alle $a \in \Sigma$ gilt, wenn $u \sim_L v$

und es gilt $w \in L(A) \iff \hat{\delta}([\epsilon]_L, w) \in F \iff [w]_L \in F \iff w \in L$

Grenzen regulärer Sprachen

Wie zeigt man, dass eine Sprache L nicht regulär ist?

• Direkter Nachweis

- Zeige, dass kein endlicher Automat genau die Wörter von L erkennt
- Sprache muss unendlich sein und komplizierte Struktur haben
 (Anzahl der Äquivalenzklassen muss unendlich sein)
- Technisches Hilfsmittel: Pumping Lemma

• Verwendung der Abschlusseigenschaften

- Zeige, dass Regularität von L dazu führen würde, dass eine als nichtregulär bekannte Sprache regulär sein müsste
- Häufige Technik: (inverse) Homomorphismen

Das Pumping Lemma für reguläre Sprachen

• Warum ist $\{0^n1^n \mid n \in \mathbb{N}\}$ nicht regulär?

- Ein DEA muss alle Nullen beim Abarbeiten zählen und dann vergleichen
- Für n>|Q| muss ein Zustand von A doppelt benutzt worden sein
- Eine δ -Schleife mit k Zuständen bedeutet, dass A auch $0^{n+k}1^n$ akzeptiert

• Allgemeine Version: Pumping Lemma

Für jede reguläre Sprache $L \in \mathcal{L}_3$ gibt es eine Zahl $n \in \mathbb{N}$, so dass jedes Wort $w \in L$ mit Länge $|w| \ge n$ zerlegt werden kann in w = x y z mit den Eigenschaften

- (1) $y\neq\epsilon$,
- $(2) |xy| \le n \text{ und}$
- (3) für alle $k \in \mathbb{N}$ ist $x y^k z \in L$

• Aussage ist wechselseitig konstruktiv

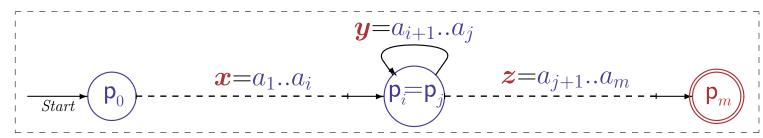
- Die Zahl n kann zu jeder regulären Sprache L bestimmt werden
- Die Zerlegung w = x y z kann zu jedem Wort $w \in L$ bestimmt werden

Beweis des Pumping Lemmas

Für jede Sprache $L \in \mathcal{L}_3$ gibt es ein $n \in \mathbb{N}$, so dass jedes $w \in L$ mit $|w| \ge n$ zerlegbar ist in w = x y z mit den Eigenschaften (1) $y \ne \epsilon$, (2) $|x y| \le n$ und (3) für alle $k \in \mathbb{N}$ ist $x y^k z \in L$

• Beweis mit Automaten

- Sei L regulär und $A = (Q, \Sigma, \delta, q_0, F)$ ein DEA mit L = L(A)
- Wähle n=|Q|. Betrachte $w=a_1..a_m$ mit $|w|\geq n$ und $p_i:=\hat{\delta}(q_0,a_1..a_i)$
- Dann gibt es i, j mit $0 \le i < j \le n$ und $p_i = p_j$ (Schubfachprinzip)
- Zerlege w in w = x y z mit $x = a_1..a_i$, $y = a_{i+1}..a_j$ und $z = a_{j+1}..a_m$



- Per Konstruktion gilt $y \neq \epsilon$, $|xy| \leq n$ und $\hat{\delta}(p_i, y^k) = p_i$ für alle $k \in \mathbb{N}$
- Also $\hat{\delta}(q_0, x \, y^k \, z) = \hat{\delta}(p_i, y^k \, z) = \hat{\delta}(p_i, y \, z) = \hat{\delta}(q_0, x \, y \, z) = \hat{\delta}(q_0, w) \in F$

Anwendungen des Pumping Lemmas

$L_1 = \{0^m 1^m \mid m \in \mathbb{N}\}$ ist nicht regulär

• Verwende Umkehrung des Pumping Lemmas

Eine Sprache L ist nicht regulär, wenn es kein $n \in \mathbb{N}$ gibt, so dass jedes $w \in L$ mit $|w| \ge n$ zerlegbar ist in w = x y z mit den Eigenschaften (1) $y \ne \epsilon$, (2) $|x y| \le n$ und (3) für alle $k \in \mathbb{N}$ ist $x y^k z \in L$

Umformulierung: Ziehe Negation in die Bedingungen hinein

L ist nicht regulär, wenn es für jedes $n \in \mathbb{N}$ ein $w \in L$ mit $|w| \ge n$ gibt so dass für jede Zerlegung w = x y z mit den Eigenschaften (1) $y \ne \epsilon$ und (2) $|x y| \le n$ ein $k \in \mathbb{N}$ existiert mit $x y^k z \notin L$

ullet Kontrapositionsbeweis für $L_1 \not\in \mathcal{L}_3$

- Sei $n \in \mathbb{N}$ beliebig. Wir wählen $w = 0^m 1^m$ für ein m > n
- Sei w = x y z eine beliebige Zerlegung mit $y \neq \epsilon$ und $|x y| \leq n$ Dann gilt $x=0^i$, $y=0^j$ $z=0^{m-i-j}1^m$ für ein $j\neq 0$ und $i+j\leq n$.
- Wir wählen k=0. Dann ist $x y^0 z = 0^{m-j} 1^m \notin L_1$
- Aufgrund des Pumping Lemmas kann L_1 also nicht regulär sein.

Anwendungen des Pumping Lemmas II

$$L_2 = \{w \in \{1\}^* \mid |w| \text{ ist Primzahl}\} \not\in \mathcal{L}_3$$

• Beweis

- Sei n ∈ \mathbb{N} beliebig.
- Wir wählen $w = 1^p$ für eine Primzahl p > n+1
- Sei w = x y z eine beliebige Zerlegung mit $y \neq \epsilon$ und $|x y| \leq n$ Dann gilt $x=1^i$, $y=1^j$ $z=1^{p-i-j}$ für ein $j\neq 0$ und $i+j\leq n$.
- Wir wählen k=p-j. Dann ist $x y^k z = 1^i 1^{j(p-j)} 1^{p-i-j} = 1^{i+j(p-j)+p-i-j} = 1^{(j+1)(p-j)} \notin L_2$
- Aufgrund des Pumping Lemmas kann L_2 also nicht regulär sein.

Nachweis von $L \notin \mathcal{L}_3$ mit Abschlusseigenschaften

• Anwendung des Pumping Lemmas ist oft mühsam

- Beweis für $L_3 = \{(m)^m \mid m \in \mathbb{N}\} \not\in \mathcal{L}_3$ identisch mit dem von L_1
- Beweis für $L_4 = \{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\} \notin \mathcal{L}_3$ ähnlich $(\#_1(w))$ ist die Anzahl der Einsen in w)

• Verwende Umkehrung der Abschlusseigenschaften

$$\overline{L} \not\in \mathcal{L}_{3} \Rightarrow L \not\in \mathcal{L}_{3} \qquad L^{R} \not\in \mathcal{L}_{3} \Rightarrow L \not\in \mathcal{L}_{3}
h(L) \not\in \mathcal{L}_{3} \Rightarrow L \not\in \mathcal{L}_{3} \qquad h^{-1}(L) \not\in \mathcal{L}_{3} \Rightarrow L \not\in \mathcal{L}_{3}
L \cup L' \not\in \mathcal{L}_{3} \wedge L' \in \mathcal{L}_{3} \Rightarrow L \not\in \mathcal{L}_{3} \qquad L \cap L' \not\in \mathcal{L}_{3} \wedge L' \in \mathcal{L}_{3} \Rightarrow L \not\in \mathcal{L}_{3}
L \cap L' \not\in \mathcal{L}_{3} \wedge L' \in \mathcal{L}_{3} \Rightarrow L \not\in \mathcal{L}_{3} \qquad L' \cap L \not\in \mathcal{L}_{3} \Rightarrow L \not\in \mathcal{L}_{3} \qquad \vdots$$

• Anwendungsbeispiele

$$L_3 \not\in \mathcal{L}_3$$
: Wähle Homomorphismus $h:\{(,)\} \rightarrow \{0,1\}$ mit $h(()=0,h())=1$
Dann ist $h(L_3)=\{0^m1^m\mid m\in\mathbb{N}\}=L_1\not\in \mathcal{L}_3$
 $L_4\not\in \mathcal{L}_3$: Es gilt $L_4\cap L(0^*\circ 1^*)=L_1\not\in \mathcal{L}_3$

DEAs können korrekte Klammerausdrücke nicht erkennen!

Eigenschaften regulärer Sprachen im Rückblick

Abschlusseigenschaften

- Operationen \cup , \cap , $\bar{}$, -, $\bar{}$, $\bar{}$, $\bar{}$, $\bar{}$, $\bar{}$, h, h^{-1} erhalten Regularität von Sprachen
- Verwendbar zum Nachweis von Regularität oder zur Widerlegung

• Automatische Prüfungen

- Man kann testen ob eine reguläre Sprache leer ist
- Man kann testen ob ein Wort zu einer regulären Sprache gehört
- Man kann testen ob zwei reguläre Sprachen gleich sind

• Minimierung von Automaten

– Ein Automat kann minimiert werden, indem man äquivalente Zustände zusammenlegt und unerreichbare Zustände entfernt

• Pumping Lemma

- Wiederholt man einen bestimmten Teil ausreichend großer Wörter einer regulären Sprache beliebig oft, so erhält man immer ein Wort der Sprache
- Verwendbar zur Widerlegung von Regularität

Zusammenfassung: Reguläre Sprachen

• Drei Modelle

- Endliche Automaten (DEA, NEA, ϵ -NEA) erkennen Wörter einer Sprache
- Reguläre Ausdrücke beschreiben Struktur der Wörter
- (Typ 3) Grammatiken erzeugen Wörter einer regulären Sprache

• Alle drei Modelle sind äquivalent

- $-\epsilon$ -NEA \mapsto DEA: Teilmengenkonstruktion
- DEA → Typ-3 Grammatik: Verwandle Uberführungsfunktion in Regeln
- Typ-3 Grammatik → NEA: Verwandle Regeln in Überführungsfunktion
- DEA → Reguläre Ausdrücke: Erzeuge Ausdrücke für Verarbeitungspfade oder eliminiere Zustände in RA Automaten
- Reguläre Ausdrücke → NEA: Iterative Konstruktion von Automaten

• Wichtige Eigenschaften von \mathcal{L}_3

- Abgeschlossen unter \cup , \cap , $\overline{}$, $\overline{}$, $\overline{}$, $\overline{}$, \circ , $\overline{}$, h, h^{-1}
- Entscheidbarkeit des Wortproblems und Gleichheit von Sprachen
- Endliche Automaten können automatisch minimiert werden
- Nachweis der Nichtregularität von Sprachen mit dem Pumping Lemma