Theoretische Informatik I

Einheit 3.2

Pushdown Automaten

- 1. Das Maschinenmodell
- 2. Arbeitsweise & erkannte Sprache
- 3. Beziehung zu Typ-2 Sprachen
- 4. Deterministische PDAs

Maschinenmodell für Typ-3 Sprachen

- Typ-3 Sprachen werden von NEAs akzeptiert
 - Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
 - · NEA verarbeitet pro Schritt ein Eingabesymbol

Maschinenmodell für Typ-3 Sprachen

- Typ-3 Sprachen werden von NEAs akzeptiert
 - Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
 - · NEA verarbeitet pro Schritt ein Eingabesymbol
 - Erzeugte Terminalsymbole stehen links von der aktuellen Variablen
 - · Verarbeitete Eingabesymbole führen zu aktuellem Zustand

Maschinenmodell für Typ-3 Sprachen

• Typ-3 Sprachen werden von NEAs akzeptiert

- Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
 - · NEA verarbeitet pro Schritt ein Eingabesymbol
- Erzeugte Terminalsymbole stehen links von der aktuellen Variablen
 - · Verarbeitete Eingabesymbole führen zu aktuellem Zustand
- Rechts von der aktuellen Variablen steht noch nichts
 - · Im Zustand ist nichts über unverarbeitete Eingabesymbole bekannt

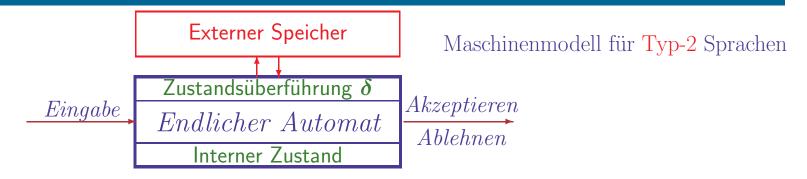
Maschinenmodell für Typ-2 Sprachen

• Typ-3 Sprachen werden von NEAs akzeptiert

- Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
 - · NEA verarbeitet pro Schritt ein Eingabesymbol
- Erzeugte Terminalsymbole stehen links von der aktuellen Variablen
 - · Verarbeitete Eingabesymbole führen zu aktuellem Zustand
- Rechts von der aktuellen Variablen steht noch nichts
 - · Im Zustand ist nichts über unverarbeitete Eingabesymbole bekannt

• Welches Maschinenmodell paßt zu Typ-2 Sprachen?

- Kontextfreie Grammatiken können $L_1 = \{0^m 1^m \mid m \in \mathbb{N}\}$ erzeugen
 - \cdot Ohne Zwischenspeicher können endliche Automaten L_1 nicht erkennen



• Typ-3 Sprachen werden von NEAs akzeptiert

- Typ-3 Grammatik erzeugt pro Schritt ein Terminalsymbol
 - · NEA verarbeitet pro Schritt ein Eingabesymbol
- Erzeugte Terminalsymbole stehen links von der aktuellen Variablen
 - · Verarbeitete Eingabesymbole führen zu aktuellem Zustand
- Rechts von der aktuellen Variablen steht noch nichts
 - · Im Zustand ist nichts über unverarbeitete Eingabesymbole bekannt

• Welches Maschinenmodell paßt zu Typ-2 Sprachen?

- Kontextfreie Grammatiken können $L_1 = \{0^m 1^m \mid m \in \mathbb{N}\}$ erzeugen
 - \cdot Ohne Zwischenspeicher können endliche Automaten L_1 nicht erkennen

Typ-2 Maschinenmodell benötigt externen Speicher

- ullet Links von der aktuellen Variablen A stehen nur erzeugte Terminalsymbole
 - Entspricht den schon verarbeiteten Eingabesymbolen des Automaten

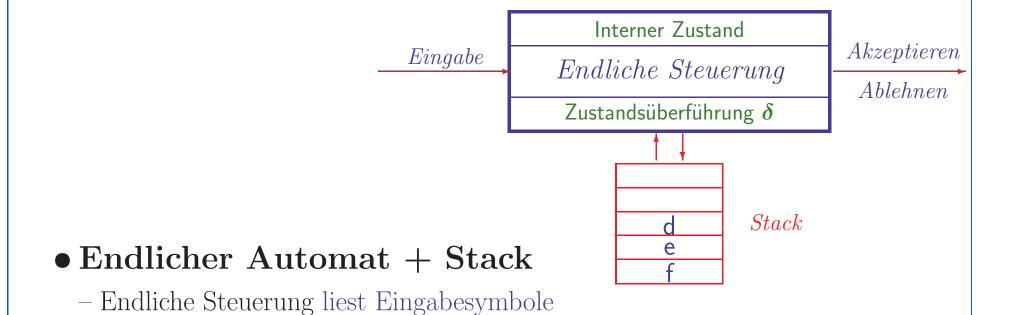
- ullet Links von der aktuellen Variablen A stehen nur erzeugte Terminalsymbole
 - Entspricht den schon verarbeiteten Eingabesymbolen des Automaten
- ullet Rechts von A können bereits Terminalsymbole stehen Abarbeitung von A schiebt weiteren Text in die Mitte
 - Bei Verarbeitung eines Eingabewortes muß der Automat Information speichern, welche Symbole am Ende des Wortes kommen müssen

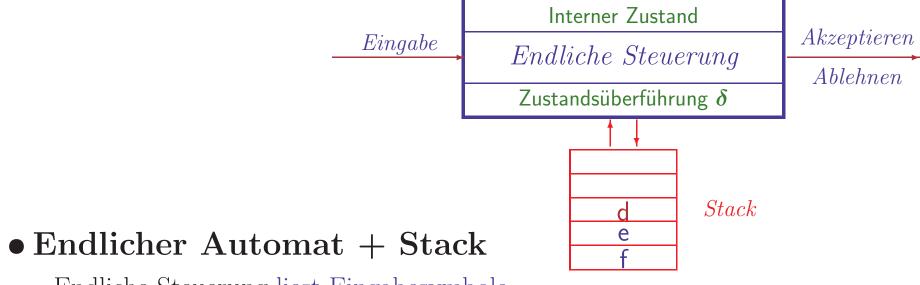
- ullet Links von der aktuellen Variablen A stehen nur erzeugte Terminalsymbole
 - Entspricht den schon verarbeiteten Eingabesymbolen des Automaten
- ullet Rechts von A können bereits Terminalsymbole stehen Abarbeitung von A schiebt weiteren Text in die Mitte
 - Bei Verarbeitung eines Eingabewortes muß der Automat Information speichern, welche Symbole am Ende des Wortes kommen müssen
- ullet Ist A komplett abgearbeitet, so "springt" die Ableitung über Terminalsymbole zur nächsten Variablen
 - Automat muß zuletzt erzeugte Information zuerst abarbeiten

Analysiere das Verhalten von Linksableitungen

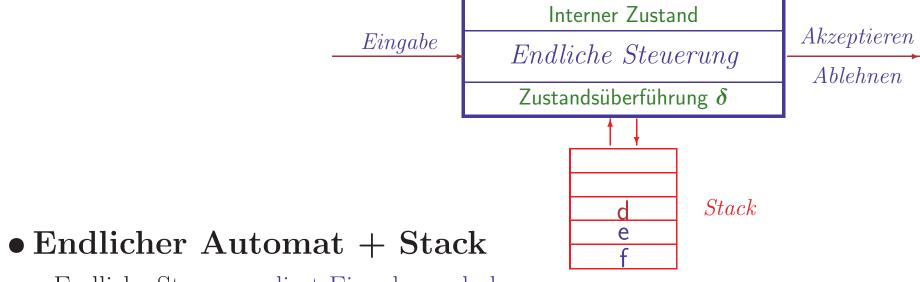
- ullet Links von der aktuellen Variablen A stehen nur erzeugte Terminalsymbole
 - Entspricht den schon verarbeiteten Eingabesymbolen des Automaten
- ullet Rechts von A können bereits Terminalsymbole stehen Abarbeitung von A schiebt weiteren Text in die Mitte
 - Bei Verarbeitung eines Eingabewortes muß der Automat Information speichern, welche Symbole am Ende des Wortes kommen müssen
- ullet Ist A komplett abgearbeitet, so "springt" die Ableitung über Terminalsymbole zur nächsten Variablen
 - Automat muß zuletzt erzeugte Information zuerst abarbeiten

Speicher des Automaten sollte ein Stack sein





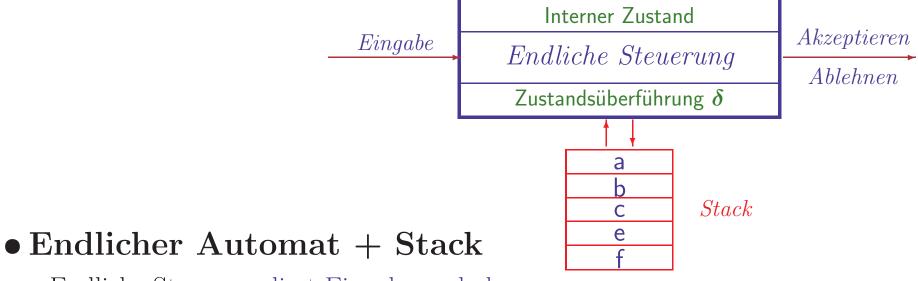
- Endliche Steuerung liest Eingabesymbole
- Gleichzeitig kann das oberste Symbol im Stack beobachtet werden



- Endliche Steuerung liest Eingabesymbole
- Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

• Eingabe und Stack wird gleichzeitig bearbeitet

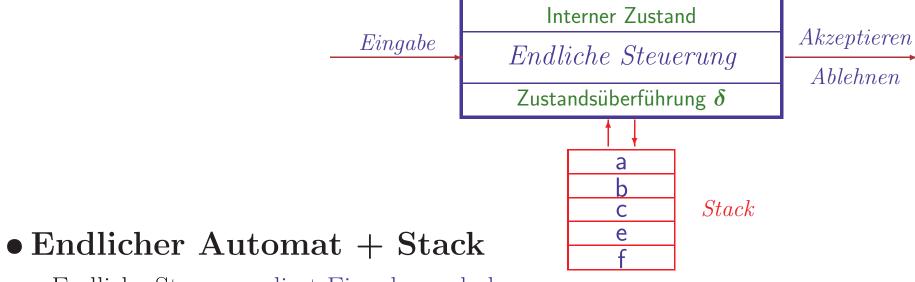
- Gelesenes Symbol wird aus Eingabe "entfernt"
- Zustand kann verändert werden



- Endliche Steuerung liest Eingabesymbole
- Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

• Eingabe und Stack wird gleichzeitig bearbeitet

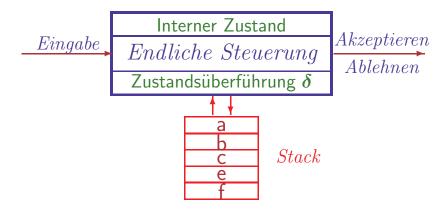
- Gelesenes Symbol wird aus Eingabe "entfernt"
- Zustand kann verändert werden
- Oberstes Stacksymbol wird durch (mehrere) neue Stacksymbole ersetzt



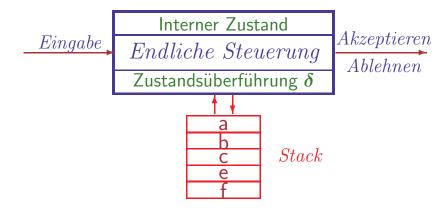
- Endliche Steuerung liest Eingabesymbole
- Gleichzeitig kann das oberste Symbol im Stack beobachtet werden

• Eingabe und Stack wird gleichzeitig bearbeitet

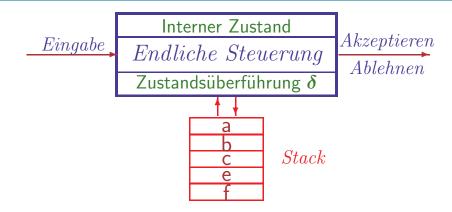
- Gelesenes Symbol wird aus Eingabe "entfernt"
- Zustand kann verändert werden
- Oberstes Stacksymbol wird durch (mehrere) neue Stacksymbole ersetzt
- Nichtdeterministische Entscheidungen und spontane ϵ -Übergänge möglich



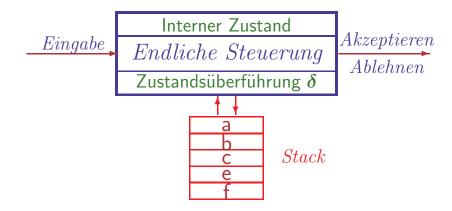
- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**



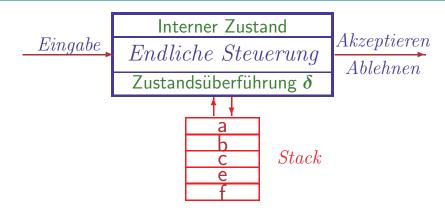
- \bullet Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**
- $\bullet \Gamma$ endliches **Stackalphabet**
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}_e(Q \times \Gamma^*)$ Überführungsfunktion (endlich)



- \bullet Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**
- $\bullet \Gamma$ endliches **Stackalphabet**
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}_e(Q \times \Gamma^*)$ Überführungsfunktion (endlich)
- $q_0 \in Q$ Startzustand
- $Z_0 \in \Gamma$ Initialsymbol des Stacks



- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**
- $\bullet \Gamma$ endliches **Stackalphabet**
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}_e(Q \times \Gamma^*)$ Überführungsfunktion (endlich)
- $q_0 \in Q$ Startzustand
- $Z_0 \in \Gamma$ Initialsymbol des Stacks
- $F \subseteq Q$ Menge von **akzeptierenden** (End-)**Zuständen**



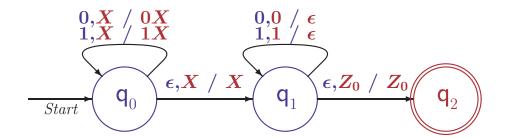
Ein Pushdown-Automat (PDA, Kellerautomat)

ist ein 7-Tupel $\boldsymbol{P}=(\boldsymbol{Q},\,\boldsymbol{\Sigma},\,\boldsymbol{\Gamma},\,\boldsymbol{\delta},\,\boldsymbol{q_0},\,\boldsymbol{Z_0},\,\boldsymbol{F})$ mit

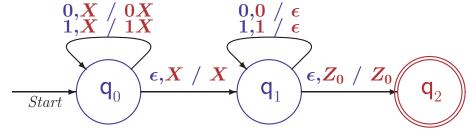
- \bullet Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**
- $\bullet \Gamma$ endliches **Stackalphabet**
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}_e(Q \times \Gamma^*)$ Überführungsfunktion (endlich)
- $q_0 \in Q$ Startzustand
- $Z_0 \in \Gamma$ Initialsymbol des Stacks
- $F \subseteq Q$ Menge von **akzeptierenden** (End-)**Zuständen**

Pushdown-Automaten sind üblicherweise nichtdeterministisch!

• Übergangsdiagramme

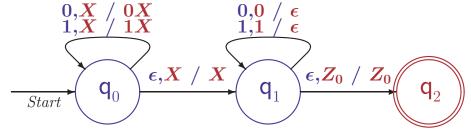


• Übergangsdiagramme



- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Für $(p, \alpha) \in \delta(q, a, X)$, $a \in \Sigma \cup \{\epsilon\}$ hat das Diagramm eine Kante $q \xrightarrow{a, X/\alpha} p$ (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit Start beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ und Γ implizit durch Diagramm bestimmt, Initialsymbol heißt Z_0

• Übergangsdiagramme

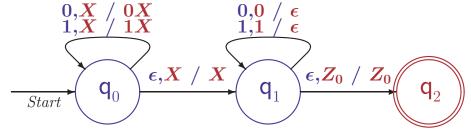


- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Für $(p, \alpha) \in \delta(q, a, X)$, $a \in \Sigma \cup \{\epsilon\}$ hat das Diagramm eine Kante $q \xrightarrow{a, X/\alpha} p$ (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit Start beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ und Γ implizit durch Diagramm bestimmt, Initialsymbol heißt Z_0

• Übergangstabellen

	Q	$\Sigma \cup \epsilon$	Γ	Resultat
\longrightarrow	q_0	0	X	$q_0,0 X$
\longrightarrow	q_0	1	X	q_0 , 1 X
\longrightarrow	q_0	ϵ	X	q_1 , X
	q_1	0	0	$q_1^{\scriptscriptstyle{\mathtt{T}}},\epsilon$
	q_1	1	1	$q_{\scriptscriptstyle 1},\epsilon$
	q_1	ϵ	Z_0	$q_2^{\scriptscriptstyle{\mathtt{T}}}, Z_0$
*	q_2^-			

• Übergangsdiagramme

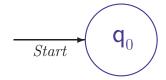


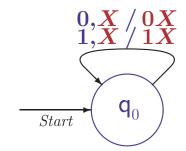
- Jeder Zustand in Q wird durch einen Knoten (Kreise) dargestellt
- Für $(p, \alpha) \in \delta(q, a, X)$, $a \in \Sigma \cup \{\epsilon\}$ hat das Diagramm eine Kante $q \xrightarrow{a, X/\alpha} p$ (mehrere Beschriftungen derselben Kante möglich)
- $-q_0$ wird durch einen mit Start beschrifteten Pfeil angezeigt
- Endzustände in F werden durch doppelte Kreise gekennzeichnet
- $-\Sigma$ und Γ implizit durch Diagramm bestimmt, Initialsymbol heißt Z_0

• Übergangstabellen

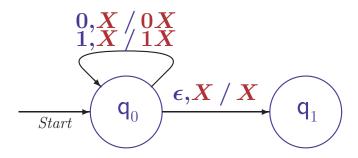
- Tabellarische Darstellung der Funktion δ
- Kennzeichnung von q_0 durch einen Pfeil
- Kennzeichnung von F durch Sterne
- $-\Sigma$, Γ und Q implizit durch die Tabelle bestimmt
- Wildcardvariablen für $a \in \Sigma \cup \{\epsilon\}, X \in \Gamma$ erlaubt

	Q	$\Sigma \cup \epsilon$	Γ	Resultat
\longrightarrow	q_0	0	X	$q_0, 0X$
\longrightarrow	q_0	1	X	$ q_0^{\circ}, 1X $
\longrightarrow	q_0	ϵ	X	q_1 , X
	q_1	0	0	q_1, ϵ
	q_1	1	1	q_1, ϵ
	q_1	ϵ	Z_0	$q_2^{\scriptscriptstyle{\mathtt{1}}}, Z_0$
*	q_2^-			





- Speichere w in q_0
 - Es wird je ein Symbol gelesen und auf den Stack gelegt
 - $\cdot \delta(q_0,a,X) = \{(q_0,aX)\} \text{ für } a \in \{0,1\}, X \in \Gamma$

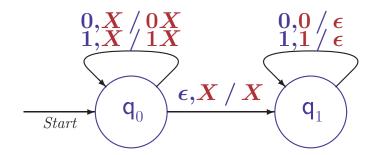


- Speichere w in q_0
 - Es wird je ein Symbol gelesen und auf den Stack gelegt

$$\delta(q_0, a, X) = \{(q_0, aX)\} \text{ für } a \in \{0, 1\}, X \in \Gamma$$

• Spontaner Wechsel "in der Mitte"

$$\cdot \ \delta(q_0, \epsilon, X) = \{(q_1, X)\} \ \text{für} \ X \in \Gamma \qquad \qquad \text{(nichtdeterministischer ϵ-Übergang)}$$



- Speichere w in q_0
 - Es wird je ein Symbol gelesen und auf den Stack gelegt

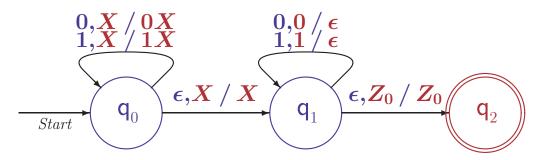
$$\delta(q_0, a, X) = \{(q_0, aX)\} \text{ für } a \in \{0, 1\}, X \in \Gamma$$

• Spontaner Wechsel "in der Mitte"

$$\cdot \ \delta(q_0, \epsilon, X) = \{(q_1, X)\} \ \text{für} \ X \in \Gamma \qquad \qquad \text{(nichtdeterministischer ϵ-Übergang)}$$

- ullet Verarbeite w^R in q_1 (w steht in umgekehrter Reihenfolge im Stack)
 - Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen

$$\delta(q_1, a, a) = \{(q_1, \epsilon)\} \text{ für } a \in \{0, 1\}$$



- Speichere w in q_0
 - Es wird je ein Symbol gelesen und auf den Stack gelegt

$$\delta(q_0, a, X) = \{(q_0, aX)\} \text{ für } a \in \{0, 1\}, X \in \Gamma$$

• Spontaner Wechsel "in der Mitte"

$$\cdot \ \delta(q_0, \epsilon, X) = \{(q_1, X)\} \ \text{für} \ X \in \Gamma \qquad \qquad \text{(nichtdeterministischer ϵ-Übergang)}$$

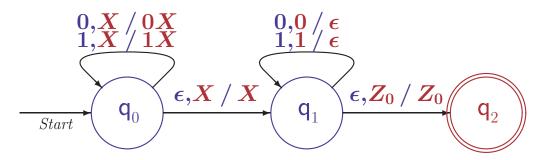
- ullet Verarbeite w^R in q_1 (w steht in umgekehrter Reihenfolge im Stack)
 - Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen

$$\delta(q_1, a, a) = \{(q_1, \epsilon)\} \text{ für } a \in \{0, 1\}$$

- "Leerer" Stack akzeptiert
 - Wenn Stack leer ist, wurde w^R in q_1 verarbeitet

$$\cdot \delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$$

(deterministischer ϵ -Übergang)



- Speichere w in q_0
 - Es wird je ein Symbol gelesen und auf den Stack gelegt

$$\delta(q_0, a, X) = \{(q_0, aX)\} \text{ für } a \in \{0, 1\}, X \in \Gamma$$

• Spontaner Wechsel "in der Mitte"

$$\cdot \ \delta(q_0, \epsilon, X) = \{(q_1, X)\} \ \text{für} \ X \in \Gamma \qquad \qquad \text{(nicht determinist is cher ϵ-\"{U}bergang)}$$

- ullet Verarbeite $oldsymbol{w}^R$ in $oldsymbol{q}_1$ (w steht in umgekehrter Reihenfolge im Stack)
 - Jedes gelesene Symbol wird dem obersten Stacksymbol verglichen

$$\delta(q_1, a, a) = \{(q_1, \epsilon)\} \text{ für } a \in \{0, 1\}$$

- "Leerer" Stack akzeptiert
 - Wenn Stack leer ist, wurde w^R in q_1 verarbeitet

$$\cdot \delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}$$

(deterministischer ϵ -Übergang)

$$P = (\{q_0, q_1, q_2\}, \{0,1\}, \{0,1,Z_0\}, \delta, q_0, Z_0, \{q_2\})$$

Generalisiere Konzept der Konfigurationsübergänge

Generalisiere Konzept der Konfigurationsübergänge

- Erweitere Begriff der Konfiguration
 - Aktueller Zustand, Inhalt des Stacks und unverarbeitete Eingabe zählt

Generalisiere Konzept der Konfigurationsübergänge

• Erweitere Begriff der Konfiguration

- Aktueller Zustand, Inhalt des Stacks und unverarbeitete Eingabe zählt
- Formal dargestellt als Tripel $\mathbf{K} = (\mathbf{q}, \mathbf{w}, \gamma) \in Q \times \Sigma^* \times \Gamma^*$

Generalisiere Konzept der Konfigurationsübergänge

- Erweitere Begriff der Konfiguration
 - Aktueller Zustand, Inhalt des Stacks und unverarbeitete Eingabe zählt
 - Formal dargestellt als Tripel $\mathbf{K} = (\mathbf{q}, \mathbf{w}, \gamma) \in Q \times \Sigma^* \times \Gamma^*$
- Modifiziere Konfigurationsübergangsrelation \vdash^*
 - Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern

Generalisiere Konzept der Konfigurationsübergänge

• Erweitere Begriff der Konfiguration

- Aktueller Zustand, Inhalt des Stacks und unverarbeitete Eingabe zählt
- Formal dargestellt als Tripel $\mathbf{K} = (\mathbf{q}, \mathbf{w}, \mathbf{\gamma}) \in Q \times \Sigma^* \times \Gamma^*$

ullet Modifiziere Konfigurationsübergangsrelation \vdash^*

– Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern

$$-(\boldsymbol{q},\boldsymbol{aw},\boldsymbol{X\beta}) \vdash (\boldsymbol{p},\boldsymbol{w},\boldsymbol{\alpha\beta}), \text{ falls } (\boldsymbol{p},\alpha) \in \delta(\boldsymbol{q},a,X)$$

$$-(\boldsymbol{q}, \boldsymbol{w}, \boldsymbol{X}\boldsymbol{\beta}) \vdash (\boldsymbol{p}, \boldsymbol{w}, \boldsymbol{\alpha}\boldsymbol{\beta}), \text{ falls } (p, \alpha) \in \delta(q, \epsilon, X)$$

(Im Zustand q ist a das erste Eingabesymbol und X oben im Stack. a wird abgearbeitet, X durch α ersetzt, der Rest bleibt stehen)

Arbeitsweise von Pushdown-Automaten

Generalisiere Konzept der Konfigurationsübergänge

• Erweitere Begriff der Konfiguration

- Aktueller Zustand, Inhalt des Stacks und unverarbeitete Eingabe zählt
- Formal dargestellt als Tripel $\mathbf{K} = (\mathbf{q}, \mathbf{w}, \gamma) \in Q \times \Sigma^* \times \Gamma^*$

■ Modifiziere Konfigurationsübergangsrelation +*

– Wechsel zwischen Konfigurationen durch Abarbeitung von Wörtern

$$-(\boldsymbol{q}, \boldsymbol{aw}, \boldsymbol{X\beta}) \vdash (\boldsymbol{p}, \boldsymbol{w}, \boldsymbol{\alpha\beta}), \text{ falls } (\boldsymbol{p}, \alpha) \in \delta(\boldsymbol{q}, a, X)$$

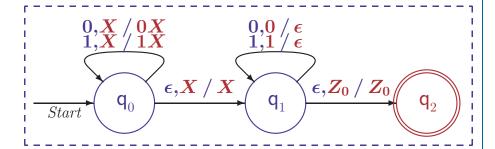
$$-(\boldsymbol{q}, \boldsymbol{w}, \boldsymbol{X}\boldsymbol{\beta}) \vdash (\boldsymbol{p}, \boldsymbol{w}, \boldsymbol{\alpha}\boldsymbol{\beta}), \text{ falls } (p, \alpha) \in \delta(q, \epsilon, X)$$

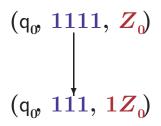
(Im Zustand q ist a das erste Eingabesymbol und X oben im Stack. a wird abgearbeitet, X durch α ersetzt, der Rest bleibt stehen)

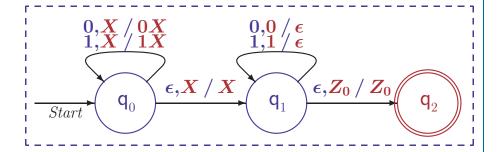
$$-K_1 \vdash^* K_2$$
, falls $K_1 = K_2$ oder es gibt eine Konfiguration K mit $K_1 \vdash K$ und $K \vdash^* K_2$

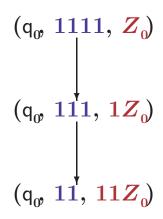
Verarbeitung von 1111

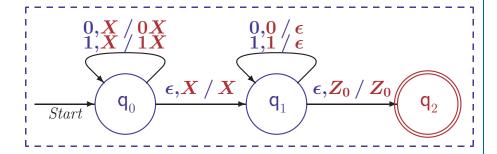
 $(q_0, 1111, Z_0)$

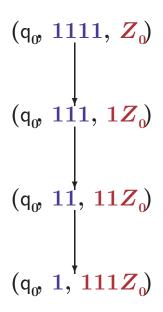


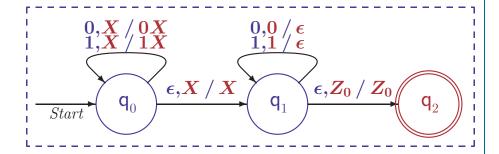


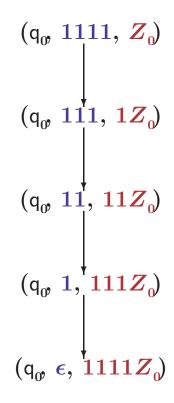


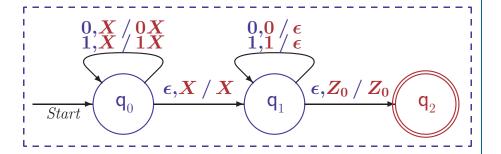


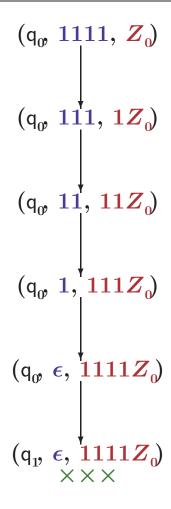


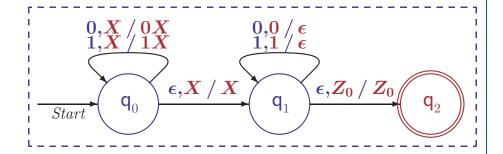


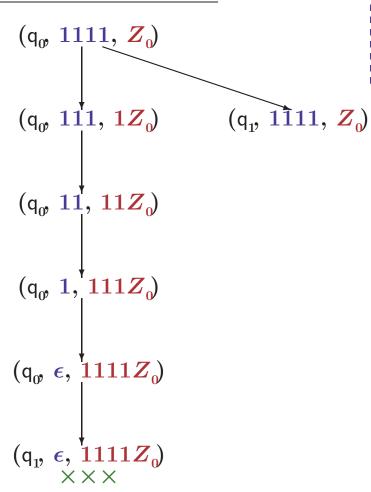


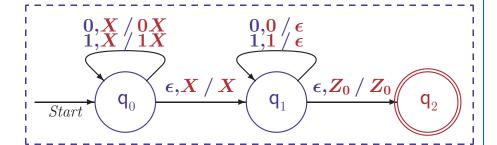


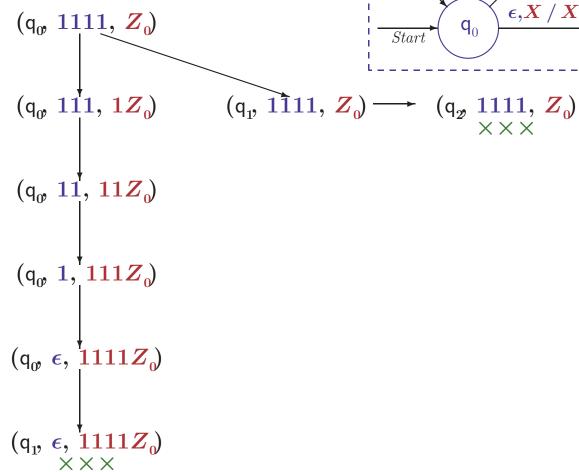


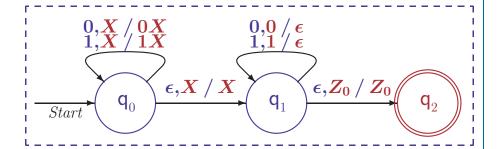






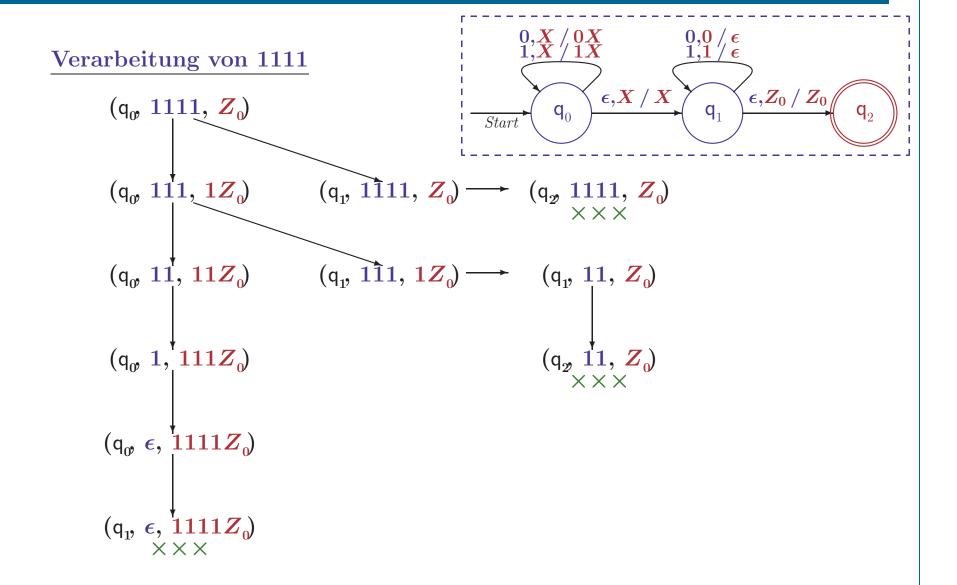




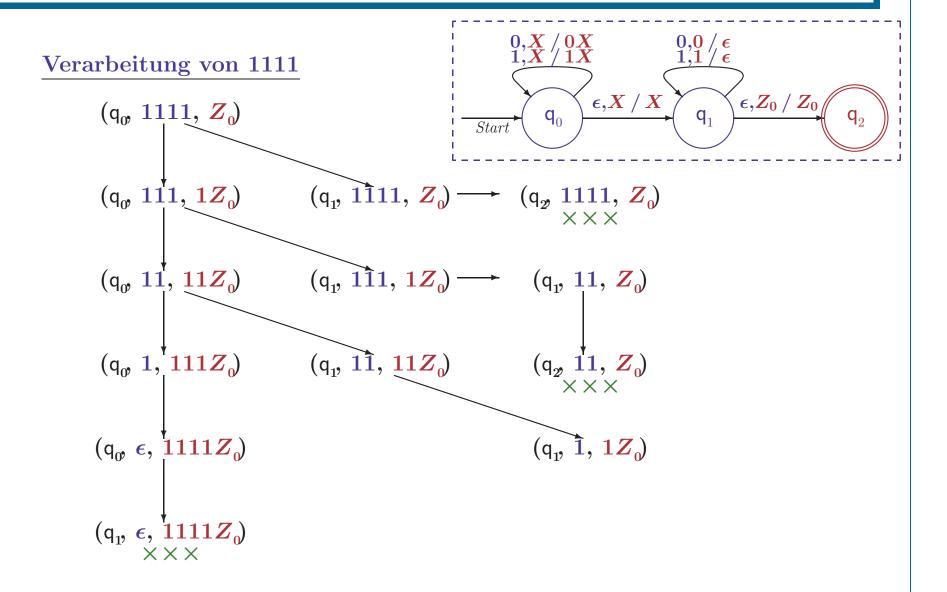


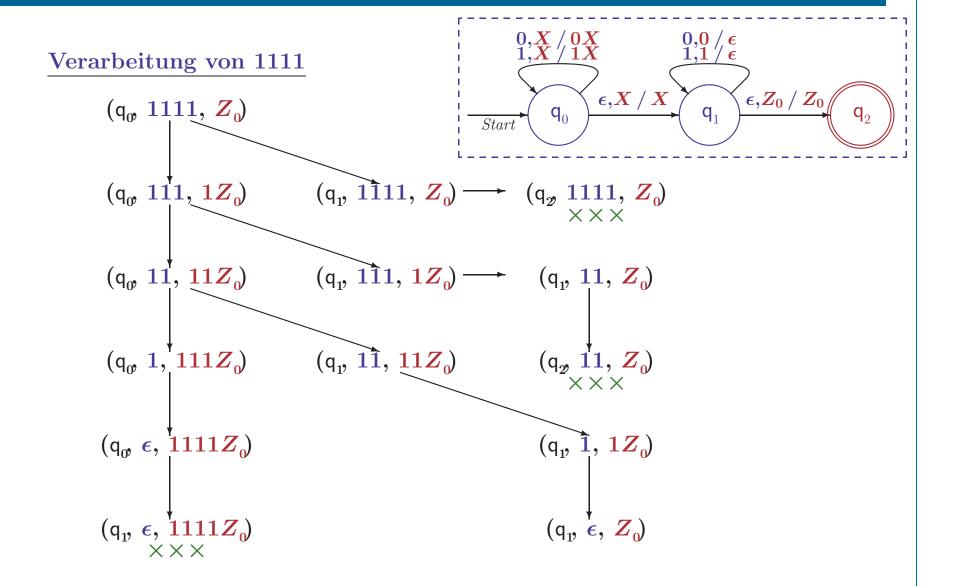
Verarbeitung von 1111 $\epsilon, X / X$ $\epsilon, Z_0 / Z_0$ $(q_0, 1111, Z_0)$ Start $(q_1, 1\overline{1}11, Z_0) \longrightarrow (q_2, 1111, Z_0) \times \times \times$ $(q_0, 111, 1Z_0)$ $(q_1, 111, 1Z_0)$ $(q_0, 11, 11Z_0)$ $(q_0, 1, 111Z_0)$ $(q_0, \epsilon, 1111Z_0)$ $(\mathsf{q}_v, \epsilon, \overset{\dagger}{1111} \overset{}{11} \overset{\phantom{\dagger$

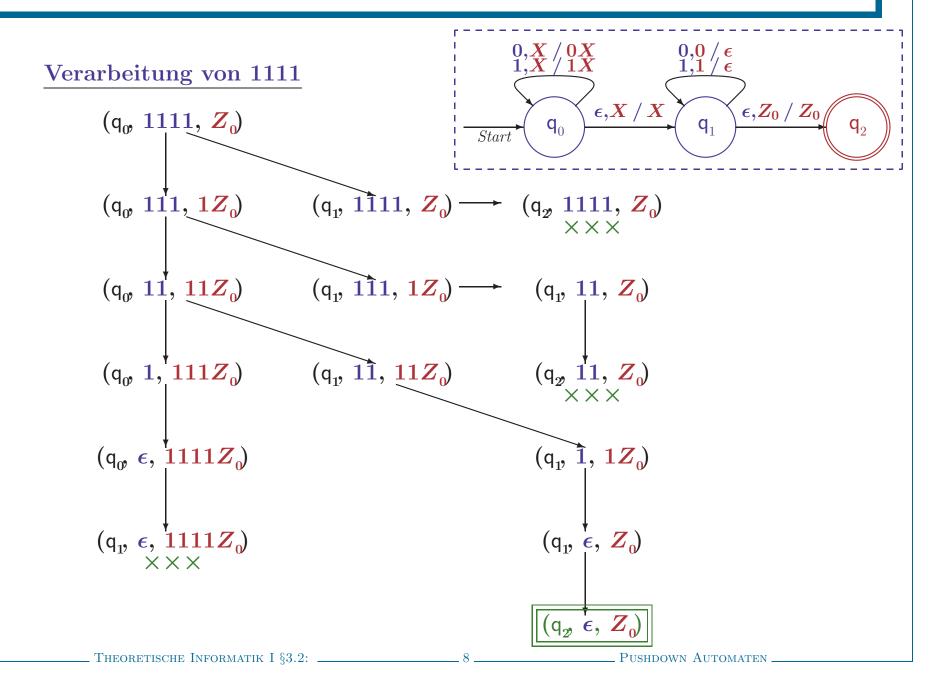
Verarbeitung von 1111 $\epsilon, X / X$ $\epsilon, Z_0 / Z_0$ $(q_0, 1111, Z_0)$ Start $(q_1, 1\overline{1}11, Z_0) \longrightarrow (q_2, 1111, Z_0) \times \times \times$ $(q_0, 111, 1Z_0)$ $(q_1, 1\overline{1}1, 1Z_0) \longrightarrow (q_1, 11, Z_0)$ $(q_0, 11, 11Z_0)$ $(q_0, 1, 111Z_0)$ $(q_0, \epsilon, 1111Z_0)$ $(\mathsf{q}_{\scriptscriptstyle 1}\!,\,\epsilon,\, \overset{\dagger}{1}1111Z_{\scriptscriptstyle 0}\!) \\ \times \times \times$

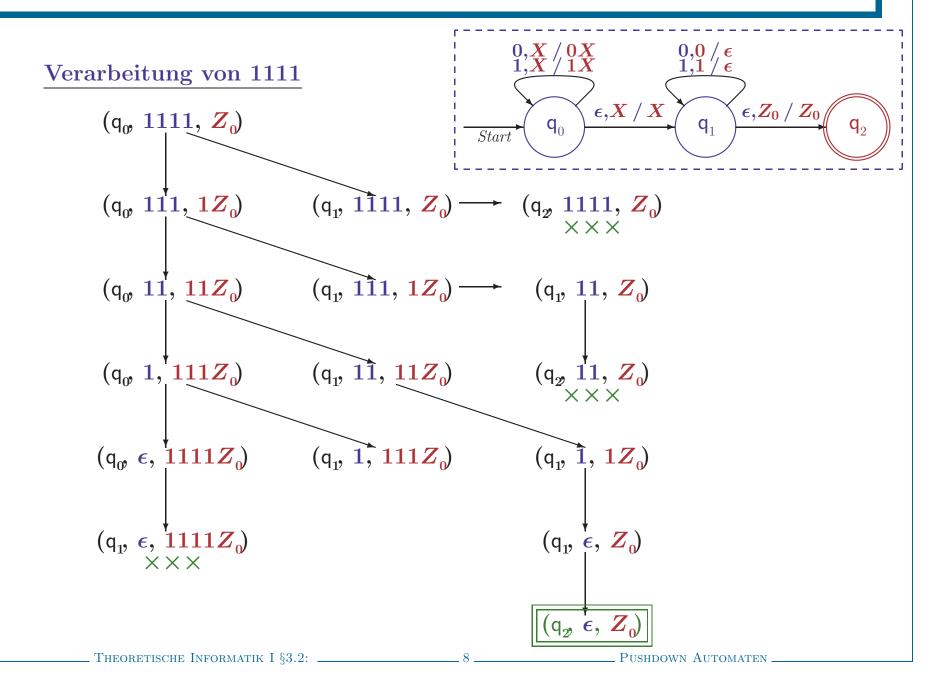


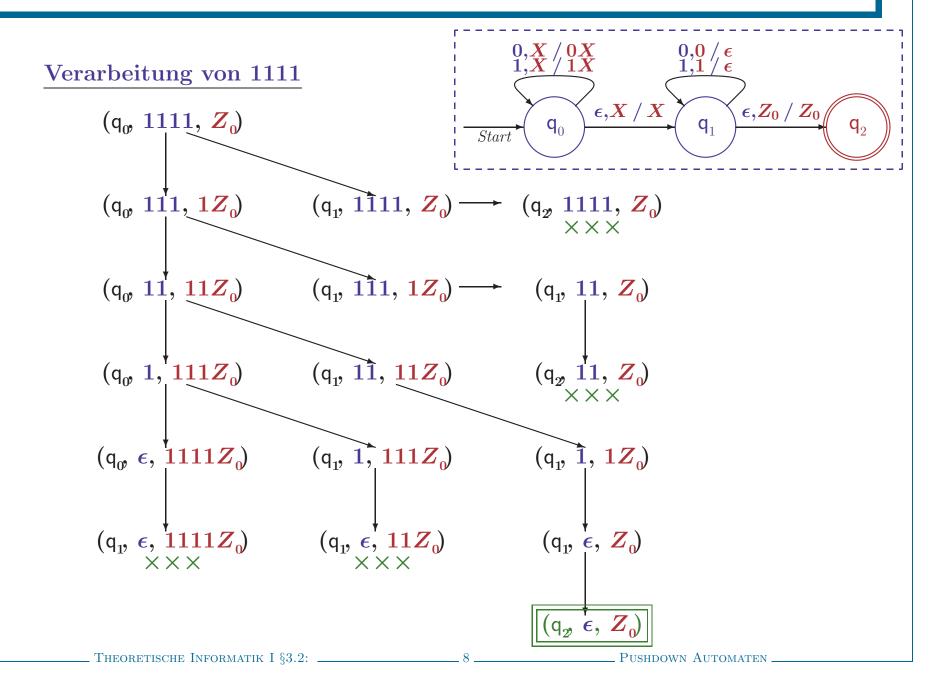
Verarbeitung von 1111 $\epsilon, X / X$ $\epsilon, Z_0 / Z_0$ $(q_0, 1111, Z_0)$ Start $(\mathsf{q}_1, 1\overline{1}11, \mathbf{Z}_0) \longrightarrow (\mathsf{q}_2, 1111, \mathbf{Z}_0) \\ \times \times \times$ $(q_0, 111, 1Z_0)$ $(q_1, 1\overline{1}1, 1Z_0) \longrightarrow (q_1, 11, Z_0)$ $(q_0, 11', 11Z_0)$ $(q_1, 11, 11Z_0)$ $(q_0, 1, 111Z_0)$ $(q_0, \epsilon, 1111Z_0)$ $(\mathsf{q}_{\scriptscriptstyle 1}\!,\,\epsilon,\, \overset{\dagger}{1}1111Z_{\scriptscriptstyle 0}\!) \\ \times \times \times$











AKZEPTIERTE SPRACHE EINES PUSHDOWN-AUTOMATEN

Zwei alternative Definitionen möglich

Zwei alternative Definitionen möglich

• Akzeptanz durch akzeptierende Endzustände

$$oldsymbol{L_F(P)} = \{\ w \in \Sigma^* \ | \ \exists q \in F. \ \exists eta \in \Gamma^*. \ (q_0, w, Z_0) \ dash^* \ (q, \epsilon, eta) \ \}$$

- Standarddefinition: Nach Abarbeitung der Eingabe entscheidet der Zustand, ob das Wort akzeptiert wird

Zwei alternative Definitionen möglich

• Akzeptanz durch akzeptierende Endzustände

$$oldsymbol{L_F(P)} = \{\ w \in \Sigma^* \ | \ \exists q \in F. \ \exists eta \in \Gamma^*. \ (q_0, w, Z_0) \ dash^* \ (q, \epsilon, eta) \ \}$$

- Standarddefinition: Nach Abarbeitung der Eingabe entscheidet der Zustand, ob das Wort akzeptiert wird
- Akzeptanz durch leeren Stack

$$oldsymbol{L_{\epsilon}(P)} = \{\ w \in \Sigma^* \ | \ \exists q \in Q. \ (q_0, w, Z_0) \ \vdash^* \ (q, \epsilon, \epsilon)\ \}$$

 Oft praktischer: Nach Abarbeitung der Eingabe sind auch alle zwischengelagerten Symbole verarbeitet

Zwei alternative Definitionen möglich

• Akzeptanz durch akzeptierende Endzustände

$$oldsymbol{L_F(P)} = \{\ w \in \Sigma^* \ | \ \exists q \in F. \ \exists eta \in \Gamma^*. \ (q_0, w, Z_0) \ dash^* \ (q, \epsilon, eta) \ \}$$

- Standarddefinition: Nach Abarbeitung der Eingabe entscheidet der Zustand, ob das Wort akzeptiert wird
- Akzeptanz durch leeren Stack

$$oldsymbol{L_{\epsilon}(P)} = \{\ w \in \Sigma^* \ | \ \exists q \in Q. \ (q_0, w, Z_0) \ \vdash^* \ (q, \epsilon, \epsilon)\ \}$$

- Oft praktischer: Nach Abarbeitung der Eingabe sind auch alle zwischengelagerten Symbole verarbeitet
- Definitionen haben verschiedene Effekte
 - Sprachen können für konkrete PDAs sehr verschieden ausfallen

Zwei alternative Definitionen möglich

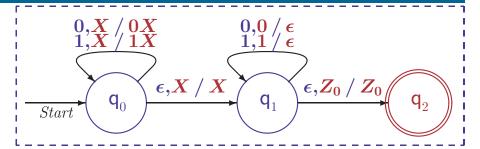
• Akzeptanz durch akzeptierende Endzustände

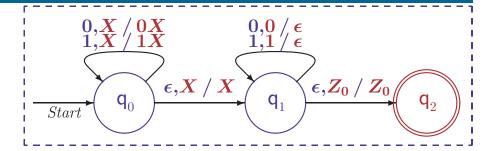
$$oldsymbol{L_F(P)} = \{\ w \in \Sigma^* \ | \ \exists q \in F. \ \exists eta \in \Gamma^*. \ (q_0, w, Z_0) \ dash^* \ (q, \epsilon, eta) \ \}$$

- Standarddefinition: Nach Abarbeitung der Eingabe entscheidet der Zustand, ob das Wort akzeptiert wird
- Akzeptanz durch leeren Stack

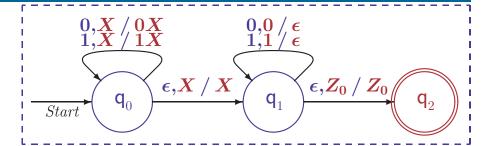
$$oldsymbol{L_{\epsilon}(P)} = \{\ w \in \Sigma^* \ | \ \exists q \in Q. \ (q_0, w, Z_0) \ \vdash^* \ (q, \epsilon, \epsilon)\ \}$$

- Oft praktischer: Nach Abarbeitung der Eingabe sind auch alle zwischengelagerten Symbole verarbeitet
- Definitionen haben verschiedene Effekte
 - Sprachen können für konkrete PDAs sehr verschieden ausfallen
- Beide Definitionen sind gleichmächtig
 - PDA kann passend zur anderen Definition umgewandelt werden

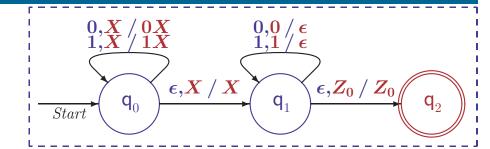




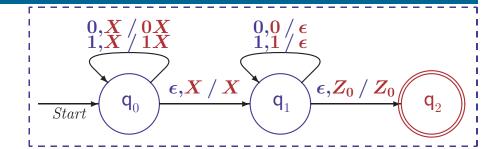
 $ullet \ L_F(P) = \{ww^R \, | \, w \in \{0,1\}^*\}$



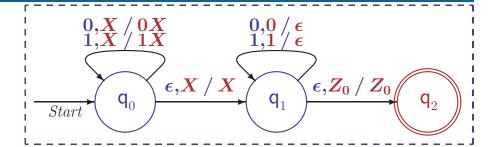
- $ullet \ L_F(P) = \{ww^R \, | \, w \in \{0,1\}^*\}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$



- $ullet \ L_F(P) = \{ww^R \, | \, w \in \{0,1\}^*\}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$
 - \subseteq : Durch strukturelle Induktion über $x = x_1..x_n$ zeige Wenn $(q_0, x, \alpha) \vdash^* (q_1, \epsilon, \alpha)$ für ein $\alpha \in \Gamma^*$, dann $x = ww^R$ für ein $w \in \{0, 1\}^*$



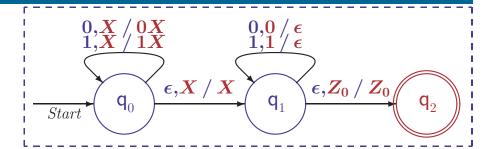
- $ullet \ L_F(P) = \{ww^R \, | \, w \in \{0,1\}^*\}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$
 - \subseteq : Durch strukturelle Induktion über $x = x_1...x_n$ zeige Wenn $(q_0,x,\alpha) \vdash^* (q_1,\epsilon,\alpha)$ für ein $\alpha \in \Gamma^*$, dann $x=ww^R$ für ein $w \in \{0,1\}^*$ Kernidee des Induktionsschrittes



- $ullet \ L_F(P) = \{ ww^R \, | \, w \in \{0,1\}^* \}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$
 - \subseteq : Durch strukturelle Induktion über $x = x_1..x_n$ zeige Wenn $(q_0,x,\alpha) \vdash^* (q_1,\epsilon,\alpha)$ für ein $\alpha \in \Gamma^*$, dann $x=ww^R$ für ein $w \in \{0,1\}^*$ Kernidee des Induktionsschrittes (Details in HMU §6.2.1)

Wenn
$$(q_0, x_1...x_n, \boldsymbol{\alpha}') \vdash^* (q_0, x_2...x_n, \boldsymbol{x_1}\boldsymbol{\alpha}') \vdash^* (q_1, x_i...x_n, \boldsymbol{\beta}\boldsymbol{x_1}\boldsymbol{\alpha}')$$

 $\vdash^* (q_1, x_n, \boldsymbol{x_1}\boldsymbol{\alpha}') \vdash^* (q_1, \epsilon, \boldsymbol{\alpha}') \text{ für } \boldsymbol{\alpha}', \boldsymbol{\beta} \in \Gamma^*,$



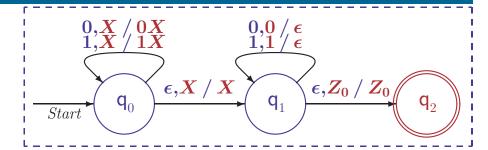
- $ullet \ L_F(P) = \{ww^R \, | \, w \in \{0,1\}^*\}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$
 - \subseteq : Durch strukturelle Induktion über $x = x_1..x_n$ zeige Wenn $(q_0,x,\alpha) \vdash^* (q_1,\epsilon,\alpha)$ für ein $\alpha \in \Gamma^*$, dann $x=ww^R$ für ein $w \in \{0,1\}^*$ Kernidee des Induktionsschrittes (Details in HMU §6.2.1)

```
Wenn (q_0,x_1..x_n,\alpha') \stackrel{*}{\vdash} (q_0,x_2..x_n,x_1\alpha') \stackrel{*}{\vdash} (q_1,x_i..x_n,\beta x_1\alpha')

\stackrel{*}{\vdash} (q_1,x_n,x_1\alpha') \stackrel{*}{\vdash} (q_1,\epsilon,\alpha') \text{ für } \alpha',\beta \in \Gamma^*,

dann folgt (q_0,x_1..x_{n-1},\alpha') \stackrel{*}{\vdash} (q_0,x_2..x_{n-1},x_1\alpha') \stackrel{*}{\vdash} \dots \stackrel{*}{\vdash} (q_1,\epsilon,x_1\alpha')

und x_1=x_n
```



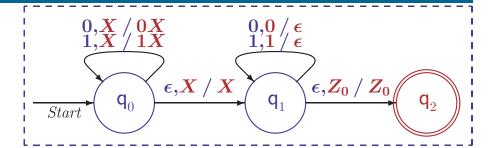
- $ullet \ L_F(P) = \{ww^R \, | \, w \in \{0,1\}^*\}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$
 - \subseteq : Durch strukturelle Induktion über $x = x_1..x_n$ zeige Wenn $(q_0, x, \alpha) \vdash^* (q_1, \epsilon, \alpha)$ für ein $\alpha \in \Gamma^*$, dann $x = ww^R$ für ein $w \in \{0, 1\}^*$ Kernidee des Induktionsschrittes (Details in HMU §6.2.1)

```
Wenn (q_0,x_1...x_n,\boldsymbol{\alpha'}) \vdash^* (q_0,x_2...x_n,x_1\boldsymbol{\alpha'}) \vdash^* (q_1,x_i...x_n,\boldsymbol{\beta}x_1\boldsymbol{\alpha'})

\vdash^* (q_1,x_n,x_1\boldsymbol{\alpha'}) \vdash^* (q_1,\epsilon,\boldsymbol{\alpha'}) \text{ für } \boldsymbol{\alpha'},\boldsymbol{\beta} \in \Gamma^*,

dann folgt (q_0,x_1...x_{n-1},\boldsymbol{\alpha'}) \vdash^* (q_0,x_2...x_{n-1},x_1\boldsymbol{\alpha'}) \vdash^* ... \vdash^* (q_1,\epsilon,x_1\boldsymbol{\alpha'})

und x_1=x_n und per Induktion x_2...x_{n-1}=vv^R für ein v \in \{0,1\}^*
```

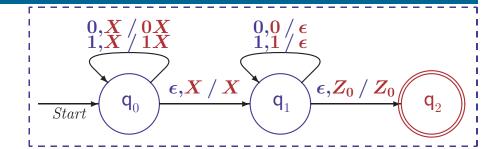


- $ullet \ L_F(P) = \{ ww^R \, | \, w \, {\in} \, \{0,1\}^* \}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$
 - \subseteq : Durch strukturelle Induktion über $x = x_1..x_n$ zeige Wenn $(q_0,x,\alpha) \vdash^* (q_1,\epsilon,\alpha)$ für ein $\alpha \in \Gamma^*$, dann $x=ww^R$ für ein $w \in \{0,1\}^*$ Kernidee des Induktionsschrittes (Details in HMU §6.2.1)

Wenn
$$(q_0,x_1...x_n,\boldsymbol{\alpha'}) \vdash^* (q_0,x_2...x_n,x_1\boldsymbol{\alpha'}) \vdash^* (q_1,x_i...x_n,\boldsymbol{\beta}x_1\boldsymbol{\alpha'})$$

 $\vdash^* (q_1,x_n,x_1\boldsymbol{\alpha'}) \vdash^* (q_1,\epsilon,\boldsymbol{\alpha'}) \text{ für } \boldsymbol{\alpha'},\boldsymbol{\beta} \in \Gamma^*,$
dann folgt $(q_0,x_1...x_{n-1},\boldsymbol{\alpha'}) \vdash^* (q_0,x_2...x_{n-1},x_1\boldsymbol{\alpha'}) \vdash^* ... \vdash^* (q_1,\epsilon,x_1\boldsymbol{\alpha'})$
und $x_1=x_n$ und per Induktion $x_2...x_{n-1}=vv^R$ für ein $v \in \{0,1\}^*$

 $ullet L_\epsilon(P)=\emptyset$

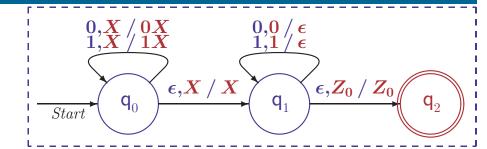


- $ullet \ L_F(P) = \{ ww^R \, | \, w \, {\in} \, \{0,1\}^* \}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$
 - \subseteq : Durch strukturelle Induktion über $x = x_1..x_n$ zeige Wenn $(q_0, x, \alpha) \vdash^* (q_1, \epsilon, \alpha)$ für ein $\alpha \in \Gamma^*$, dann $x = ww^R$ für ein $w \in \{0, 1\}^*$ Kernidee des Induktionsschrittes (Details in HMU §6.2.1)

Wenn
$$(q_0,x_1...x_n,\boldsymbol{\alpha'}) \vdash^* (q_0,x_2...x_n,x_1\boldsymbol{\alpha'}) \vdash^* (q_1,x_i...x_n,\boldsymbol{\beta}x_1\boldsymbol{\alpha'})$$

 $\vdash^* (q_1,x_n,x_1\boldsymbol{\alpha'}) \vdash^* (q_1,\epsilon,\boldsymbol{\alpha'}) \text{ für } \boldsymbol{\alpha'},\boldsymbol{\beta} \in \Gamma^*,$
dann folgt $(q_0,x_1...x_{n-1},\boldsymbol{\alpha'}) \vdash^* (q_0,x_2...x_{n-1},x_1\boldsymbol{\alpha'}) \vdash^* ... \vdash^* (q_1,\epsilon,x_1\boldsymbol{\alpha'})$
und $x_1=x_n$ und per Induktion $x_2...x_{n-1}=vv^R$ für ein $v \in \{0,1\}^*$

 $ullet L_{\epsilon}(P) = \emptyset$ weil Z_0 nie gelöscht wird



- $ullet \ L_F(P) = \{ ww^R \, | \, w \, {\in} \, \{0,1\}^* \}$
 - \supseteq : Durch strukturelle Induktion zeige, daß für jedes Wort w gilt $(q_0, ww^R, Z_0) \vdash^* (q_0, w^R, w^R, Z_0) \vdash (q_1, w^R, w^R, Z_0) \vdash^* (q_1, \epsilon, Z_0) \vdash (q_2, \epsilon, Z_0)$
 - \subseteq : Durch strukturelle Induktion über $x = x_1..x_n$ zeige Wenn $(q_0,x,\alpha) \vdash^* (q_1,\epsilon,\alpha)$ für ein $\alpha \in \Gamma^*$, dann $x=ww^R$ für ein $w \in \{0,1\}^*$ Kernidee des Induktionsschrittes (Details in HMU §6.2.1)

Wenn $(q_0,x_1...x_n,\boldsymbol{\alpha'}) \vdash^* (q_0,x_2...x_n,x_1\boldsymbol{\alpha'}) \vdash^* (q_1,x_i...x_n,\boldsymbol{\beta}x_1\boldsymbol{\alpha'})$ $\vdash^* (q_1,x_n,x_1\boldsymbol{\alpha'}) \vdash^* (q_1,\epsilon,\boldsymbol{\alpha'}) \text{ für } \boldsymbol{\alpha'},\boldsymbol{\beta} \in \Gamma^*,$ dann folgt $(q_0,x_1...x_{n-1},\boldsymbol{\alpha'}) \vdash^* (q_0,x_2...x_{n-1},x_1\boldsymbol{\alpha'}) \vdash^* ... \vdash^* (q_1,\epsilon,x_1\boldsymbol{\alpha'})$ und $x_1=x_n$ und per Induktion $x_2...x_{n-1}=vv^R$ für ein $v \in \{0,1\}^*$

• $L_{\epsilon}(P) = \emptyset$ weil Z_0 nie gelöscht wird Modifikation von P: Ändere Kantenbeschriftung von q_1 nach q_2 in $\epsilon, \mathbb{Z}_0 / \epsilon$ Für den resultierenden PDA P' gilt: $L_{\epsilon}(P') = L_F(P) = \{ww^R \mid w \in \{0, 1\}^*\}$

WICHTIGE ERKENNTNISSE ZU AUSSAGEN ÜBER KONFIGURATIONSÜBERGÄNGE IN BEWEISEN

ullet Ungelesene Eingaben können ignoriert werden Gilt (q,xw,lpha) dash (p,yw,eta) dann gilt auch

(q,x,lpha) $dash ^*$ (p,y,eta) für alle $w\in \Sigma^*$

Dagegen kann es von Bedeutung sein, ob im Stack hinter α etwas steht

Wichtige Erkenntnisse zu Aussagen über Konfigurationsübergänge in Beweisen

ullet Ungelesene Eingaben können ignoriert werden Gilt $(q,xw,lpha) \ dash (p,yw,eta)$ dann gilt auch

$$(q,x,lpha)$$
 $\stackrel{*}{dash}$ (p,y,eta) für alle $w\in\Sigma^*$

Dagegen kann es von Bedeutung sein, ob im Stack hinter α etwas steht

- Beweis durch Induktion über Anzahl der Konfigurationsschritte
- Kernargument: $(q, ayw, X\beta) \vdash (p, yw, \gamma\beta)$ verlangt $(p, \gamma) \in \delta(q, a, X)$ also $(q, ay, X\beta) \vdash (p, y, \gamma\beta)$

Wichtige Erkenntnisse zu Aussagen über Konfigurationsübergänge in Beweisen

ullet Ungelesene Eingaben können ignoriert werden Gilt $(q,xw,lpha) \ dash \ (p,yw,eta)$ dann gilt auch $(q,x,lpha) \ dash \ (p,y,eta)$ für alle $w \in \Sigma^*$

Dagegen kann es von Bedeutung sein, ob im Stack hinter α etwas steht

- Beweis durch Induktion über Anzahl der Konfigurationsschritte
- Kernargument: $(q,ayw,X\beta) \vdash (p,yw,\gamma\beta)$ verlangt $(p,\gamma) \in \delta(q,a,X)$ also $(q,ay,X\beta) \vdash (p,y,\gamma\beta)$
- ullet Erweiterung von Eingabe oder Stack ändert nichts Gilt (q,x,lpha) dash (p,y,eta) dann gilt auch $(q,xw,lpha\gamma)$ $dash (p,yw,eta\gamma)$ für alle $w\in\Sigma^*,\ \gamma\in\Gamma^*$

Weder w noch γ werden bei der Verarbeitung angesehen

Wichtige Erkenntnisse zu Aussagen ÜBER KONFIGURATIONSÜBERGÄNGE IN BEWEISEN

• Ungelesene Eingaben können ignoriert werden Gilt $(q,xw,\alpha) \vdash^* (p,yw,\beta)$ dann gilt auch $(q,x,lpha) \quad dash ^* \quad (p,y,eta) \quad ext{ für alle } w \in \Sigma^*$

Dagegen kann es von Bedeutung sein, ob im Stack hinter α etwas steht

- Beweis durch Induktion über Anzahl der Konfigurationsschritte
- Kernargument: $(q, ayw, X\beta) \vdash (p, yw, \gamma\beta)$ verlangt $(p, \gamma) \in \delta(q, a, X)$ also $(q, ay, X\beta) \vdash (p, y, \gamma\beta)$
- Erweiterung von Eingabe oder Stack ändert nichts Gilt (q,x,α) $\stackrel{*}{\vdash}$ (p,y,β) dann gilt auch $(q,\!xw,\!lpha\gamma) \; dash^* \; (p,\!yw,\!eta\gamma) \; ext{für alle} \; w \in \Sigma^*, \; \gamma \in \Gamma^*$

Weder w noch γ werden bei der Verarbeitung angesehen

- Beweis durch Induktion über Anzahl der Konfigurationsschritte
- Kernargument: $(q,aw,X\gamma) \vdash (p,w,\beta\gamma)$, falls $(p,\beta) \in \delta(q,a,X)$ was hinter a bzw. X kommt, bleibt unangetastet

ERKENNEN MIT LEEREM STACK IST OFT EINFACHER

Konstruiere PDA für korrekte Klammerausdrücke

Erkennen mit leerem Stack ist oft einfacher

Konstruiere PDA für korrekte Klammerausdrücke

- Rahmenbedingungen an Eingabewörter
 - Anzahl geöffneter und geschlossener Klammern muß gleich sein
 - In keinen Anfangssegment dürfen mehr (als) vorkommen

ERKENNEN MIT LEEREM STACK IST OFT EINFACHER

Konstruiere PDA für korrekte Klammerausdrücke

• Rahmenbedingungen an Eingabewörter

- Anzahl geöffneter und geschlossener Klammern muß gleich sein
- In keinen Anfangssegment dürfen mehr (als) vorkommen

• Zähle Überschuß geöffneter Klammern im Stack

- Jedes (erhöht die Anzahl, jedes) erniedrigt sie
-) ist nicht erlaubt, wenn der Stackboden erreicht ist
- Am Ende des Wortes wird der Stackboden entfernt

Erkennen mit leerem Stack ist oft einfacher

Konstruiere PDA für korrekte Klammerausdrücke

- Rahmenbedingungen an Eingabewörter
 - Anzahl geöffneter und geschlossener Klammern muß gleich sein
 - In keinen Anfangssegment dürfen mehr (als) vorkommen
- Zähle Überschuß geöffneter Klammern im Stack
 - Jedes (erhöht die Anzahl, jedes) erniedrigt sie
 -) ist nicht erlaubt, wenn der Stackboden erreicht ist
 - Am Ende des Wortes wird der Stackboden entfernt

• Setze
$$P_1 = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset)$$
mit $\delta(q, (, X) = \{(q, 1X)\}$

$$\delta(q,), 1) = \{(q, \epsilon)\}$$

$$\delta(q, \epsilon, Z_0) = \{(q, \epsilon)\}$$
Start
$$q_0$$

Zu jedem PDA $P_{\epsilon} = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$ kann ein PDA P_F konstruiert werden mit $L_\epsilon(P_\epsilon) = L_F(P_F)$

Zu jedem PDA $P_{\epsilon}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_{\epsilon}(P_{\epsilon})=L_F(P_F)$

Zu jedem PDA $P_{\epsilon}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_{\epsilon}(P_{\epsilon})=L_F(P_F)$

- Bei leerem Stack wechsele in einen Endzustand
 - Neues Initialsymbol X_0 markiert unteres Ende des Stacks von P_F

Zu jedem PDA $P_{\epsilon}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_{\epsilon}(P_{\epsilon})=L_F(P_F)$

- Neues Initialsymbol X_0 markiert unteres Ende des Stacks von P_F
- Neuer Anfangszustand p_0 für P_F schreibt Initialsymbol von P_ϵ auf Stack

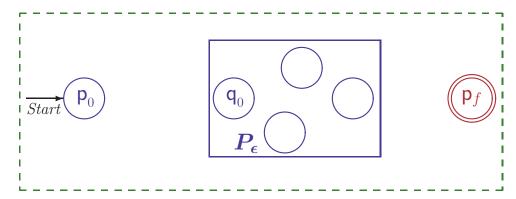
Zu jedem PDA $P_{\epsilon}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_{\epsilon}(P_{\epsilon})=L_F(P_F)$

- Neues Initialsymbol X_0 markiert unteres Ende des Stacks von P_F
- Neuer Anfangszustand p_0 für P_F schreibt Initialsymbol von P_ϵ auf Stack
- Neuer Endzustand p_f , in den bei "leerem" Stack gewechselt wird

Zu jedem PDA $P_{\epsilon}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_{\epsilon}(P_{\epsilon})=L_F(P_F)$

- Neues Initialsymbol X_0 markiert unteres Ende des Stacks von P_F
- Neuer Anfangszustand p_0 für P_F schreibt Initialsymbol von P_ϵ auf Stack
- Neuer Endzustand p_f , in den bei "leerem" Stack gewechselt wird

$$\bullet \ P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$



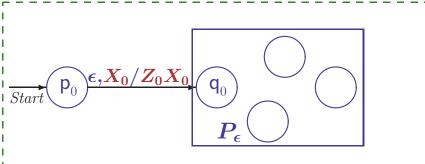
Zu jedem PDA $P_\epsilon=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_\epsilon(P_\epsilon)=L_F(P_F)$

• Bei leerem Stack wechsele in einen Endzustand

- Neues Initialsymbol X_0 markiert unteres Ende des Stacks von P_F
- Neuer Anfangszustand p_0 für P_F schreibt Initialsymbol von P_ϵ auf Stack
- Neuer Endzustand p_f , in den bei "leerem" Stack gewechselt wird

$$ullet P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

 $-\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}$



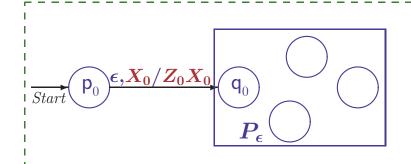
Zu jedem PDA $P_{\epsilon}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_{\epsilon}(P_{\epsilon})=L_F(P_F)$

- Neues Initialsymbol X_0 markiert unteres Ende des Stacks von P_F
- Neuer Anfangszustand p_0 für P_F schreibt Initialsymbol von P_ϵ auf Stack
- Neuer Endzustand p_f , in den bei "leerem" Stack gewechselt wird

$$ullet P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

$$-\delta_F(p_0,\epsilon,X_0) = \{(q_0,Z_0X_0)\}\$$

$$-\delta_F(q,a,X) = \delta(q,a,X)$$
 für alle $q \in Q, X \in \Gamma$



Zu jedem PDA $P_{\epsilon}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_{\epsilon}(P_{\epsilon})=L_F(P_F)$

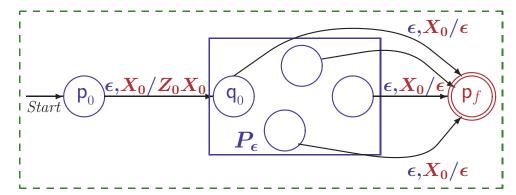
• Bei leerem Stack wechsele in einen Endzustand

- Neues Initialsymbol X_0 markiert unteres Ende des Stacks von P_F
- Neuer Anfangszustand p_0 für P_F schreibt Initialsymbol von P_ϵ auf Stack
- Neuer Endzustand p_f , in den bei "leerem" Stack gewechselt wird

$ullet P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$

$$-\delta_F(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}\$$

- $-\delta_F(q,a,X) = \delta(q,a,X)$ für alle $q \in Q, X \in \Gamma$
- $-\delta_F(q,\epsilon,X_0) = \{(p_f,\epsilon)\}$ für alle $q \in Q$



Zu jedem PDA $P_{\epsilon}=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\emptyset)$ kann ein PDA P_F konstruiert werden mit $L_{\epsilon}(P_{\epsilon})=L_F(P_F)$

• Bei leerem Stack wechsele in einen Endzustand

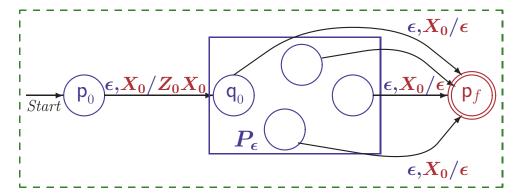
- Neues Initialsymbol X_0 markiert unteres Ende des Stacks von P_F
- Neuer Anfangszustand p_0 für P_F schreibt Initialsymbol von P_ϵ auf Stack
- Neuer Endzustand p_f , in den bei "leerem" Stack gewechselt wird

$ullet P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$

$$-\delta_F(p_0,\epsilon,X_0) = \{(q_0,Z_0X_0)\}\$$

$$-\delta_F(q,a,X) = \delta(q,a,X)$$
 für alle $q \in Q, X \in \Gamma$

$$-\delta_F(q,\epsilon,X_0) = \{(p_f,\epsilon)\}$$
 für alle $q \in Q$



Korrektheitsbeweis durch Detailanalyse

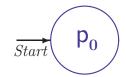
• Gegeben
$$P_{\epsilon} = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset)$$
mit $\delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\}$

$$\delta(q,), 1) = \{(q, \epsilon)\}$$

$$\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$$
Start

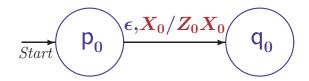
$$\begin{array}{l} \bullet \text{ Gegeben } P_{\epsilon} = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset) \\ \text{mit } \delta(q, (, \boldsymbol{X}) = \{(q, \boldsymbol{1}\boldsymbol{X})\} \\ \delta(q,), 1) = \{(q, \epsilon)\} \\ \delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\} \end{array}$$

ullet Äquivalenter PDA P_F mit Endzuständen ist $(\{p_0,q,p_f\},\{(,)\},\{X_0,Z_0,1\},\delta_F,p_0,X_0,\{p_f\})$



$$\begin{array}{l} \bullet \text{ Gegeben } P_{\epsilon} = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset) \\ \text{mit } \delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\} \\ \delta(q,), 1) = \{(q, \epsilon)\} \\ \delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\} \end{array}$$

ullet Äquivalenter PDA P_F mit Endzuständen ist $\{\{p_0,q,p_f\},\{(,)\},\{X_0,Z_0,1\},\delta_F,p_0,X_0,\{p_f\}\}\}$ mit $lackbrace{\delta_F(p_0,\epsilon,X_0)}=\{(q,Z_0X_0)\}$

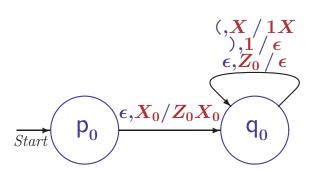


$$\begin{array}{l} \bullet \text{ Gegeben } P_{\epsilon} = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset) \\ \text{mit } \delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\} \\ \delta(q,), 1) = \{(q, \epsilon)\} \\ \delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\} \end{array}$$

ullet Äquivalenter PDA P_F mit Endzuständen ist

$$(\{p_0,q,p_f\},\{(,)\},\{X_0,Z_0,1\},\delta_F,p_0,X_0,\{p_f\})$$

$$egin{aligned} \min \ oldsymbol{\delta_F}(oldsymbol{p_0}, & oldsymbol{\epsilon}, & oldsymbol{X_0}) = \{(oldsymbol{q}, & oldsymbol{Z_0} oldsymbol{X_0}) \} \ oldsymbol{\delta_F}(oldsymbol{q}, (, oldsymbol{X}) = \{(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{1}) \} \ oldsymbol{\delta_F}(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{Z_0}) = \{(oldsymbol{q}, oldsymbol{\epsilon}) \} \end{aligned}$$

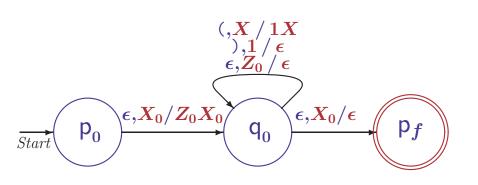


$$\begin{array}{l} \bullet \text{ Gegeben } P_{\epsilon} = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset) \\ \text{mit } \delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\} \\ \delta(q,), 1) = \{(q, \epsilon)\} \\ \delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\} \end{array}$$

ullet Äquivalenter PDA P_F mit Endzuständen ist

$$(\{p_0,q,p_f\},\{(,)\},\{X_0,Z_0,1\},\delta_F,p_0,X_0,\{p_f\})$$

$$egin{aligned} \min \ oldsymbol{\delta_F}(oldsymbol{p_0}, oldsymbol{\epsilon}, oldsymbol{X_0}) &= \{(oldsymbol{q}, oldsymbol{Z_0} oldsymbol{X_0}) \} \ oldsymbol{\delta_F}(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{Z_0}), oldsymbol{1}) &= \{(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{\delta}) \} \ oldsymbol{\delta_F}(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{Z_0}) &= \{(oldsymbol{q}, oldsymbol{\epsilon}) \} \ oldsymbol{\delta_F}(oldsymbol{q}, oldsymbol{\epsilon}, oldsymbol{X_0}) &= \{(oldsymbol{q}, oldsymbol{\epsilon}) \} \end{aligned}$$



Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

• Im Endzustand leere den Stack

– Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird

Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

- Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird
- Neues Initialsymbol X_0 für P_{ϵ} verhindert irrtümliches Leeren des Stacks

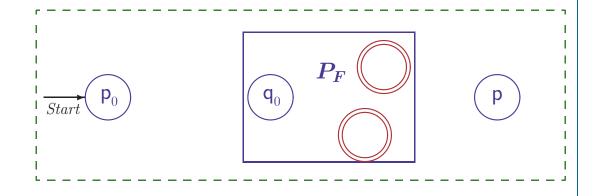
Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

- Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird
- Neues Initialsymbol X_0 für P_{ϵ} verhindert irrtümliches Leeren des Stacks
- Neuer Anfangszustand p_0 für P_{ϵ} schreibt Initialsymbol von P_F auf Stack

Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

- Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird
- Neues Initialsymbol X_0 für P_{ϵ} verhindert irrtümliches Leeren des Stacks
- Neuer Anfangszustand p_0 für P_{ϵ} schreibt Initialsymbol von P_F auf Stack

$$ullet P_\epsilon = (Q \cup \{p_0,p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_\epsilon, p_0, X_0, \emptyset)$$

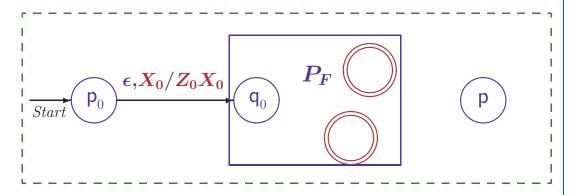


Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

- Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird
- Neues Initialsymbol X_0 für P_{ϵ} verhindert irrtümliches Leeren des Stacks
- Neuer Anfangszustand p_0 für P_{ϵ} schreibt Initialsymbol von P_F auf Stack

$$ullet P_\epsilon = (Q \cup \{p_0,p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_\epsilon, p_0, X_0, \emptyset)$$

$$- \delta_{\epsilon}(p_0, \epsilon, X_0) = \{ (q_0, Z_0 X_0) \}$$



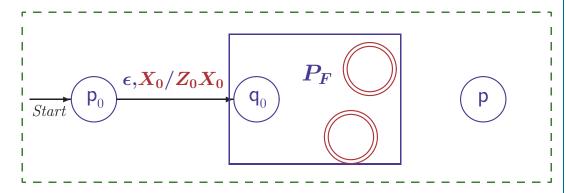
Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

• Im Endzustand leere den Stack

- Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird
- Neues Initialsymbol X_0 für P_{ϵ} verhindert irrtümliches Leeren des Stacks
- Neuer Anfangszustand p_0 für P_{ϵ} schreibt Initialsymbol von P_F auf Stack

$ullet P_\epsilon = (Q \cup \{p_0,p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_\epsilon, p_0, X_0, \emptyset)$

- $\delta_{\epsilon}(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}\$
- $-\delta_{\epsilon}(q,a,X) = \delta(q,a,X)$ für alle $q \in Q, X \in \Gamma$



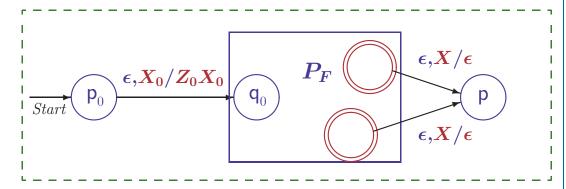
Zu jedem PDA $P_F=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann ein PDA P_ϵ konstruiert werden mit $L_F(P_F)=L_\epsilon(P_\epsilon)$

• Im Endzustand leere den Stack

- Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird
- Neues Initialsymbol X_0 für P_{ϵ} verhindert irrtümliches Leeren des Stacks
- Neuer Anfangszustand p_0 für P_{ϵ} schreibt Initialsymbol von P_F auf Stack

$ullet P_\epsilon = (Q \cup \{p_0,p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_\epsilon, p_0, X_0, \emptyset)$

- $\delta_{\epsilon}(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}\$
- $-\delta_{\epsilon}(q,a,X) = \delta(q,a,X)$ für alle $q \in Q, X \in \Gamma$
- $-\delta_{\epsilon}(q,\epsilon,X) = \{(p,\epsilon)\}$ für alle $q \in F$



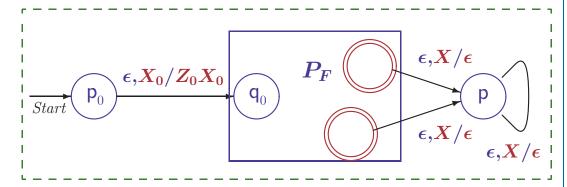
Zu jedem PDA $P_F = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ kann ein PDA P_{ϵ} konstruiert werden mit $L_F(P_F) = L_{\epsilon}(P_{\epsilon})$

• Im Endzustand leere den Stack

- Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird
- Neues Initialsymbol X_0 für P_{ϵ} verhindert irrtümliches Leeren des Stacks
- Neuer Anfangszustand p_0 für P_{ϵ} schreibt Initialsymbol von P_F auf Stack

$ullet P_\epsilon = (Q \cup \{p_0,p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_\epsilon, p_0, X_0, \emptyset)$

- $-\delta_{\epsilon}(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}\$
- $-\delta_{\epsilon}(q,a,X) = \delta(q,a,X)$ für alle $q \in Q, X \in \Gamma$
- $-\delta_{\epsilon}(q,\epsilon,X) = \{(p,\epsilon)\}$ für alle $q \in F$
- $-\delta_{\epsilon}(p,\epsilon,X) = \{(p,\epsilon)\}$ für alle $X \in \Gamma \cup \{X_0\}$



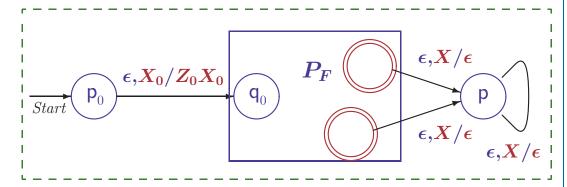
Zu jedem PDA $P_F = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ kann ein PDA P_{ϵ} konstruiert werden mit $L_F(P_F) = L_{\epsilon}(P_{\epsilon})$

• Im Endzustand leere den Stack

- Neuer Stacklösch-Zustand p, in den von Endzuständen gewechselt wird
- Neues Initialsymbol X_0 für P_{ϵ} verhindert irrtümliches Leeren des Stacks
- Neuer Anfangszustand p_0 für P_{ϵ} schreibt Initialsymbol von P_F auf Stack

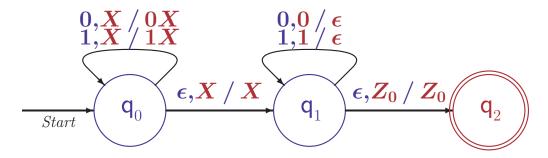
$ullet P_{\epsilon} = (Q \cup \{p_0,p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_{\epsilon}, p_0, X_0, \emptyset)$

- $-\delta_{\epsilon}(p_0, \epsilon, X_0) = \{(q_0, Z_0 X_0)\}\$
- $-\delta_{\epsilon}(q,a,X) = \delta(q,a,X)$ für alle $q \in Q, X \in \Gamma$
- $-\delta_{\epsilon}(q,\epsilon,X) = \{(p,\epsilon)\}$ für alle $q \in F$
- $-\delta_{\epsilon}(p,\epsilon,X) = \{(p,\epsilon)\}$ für alle $X \in \Gamma \cup \{X_0\}$



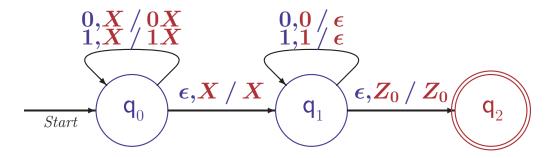
Korrektheitsbeweis durch Detailanalyse

Umwandlung eines L_F -PDA in einen L_ϵ -PDA

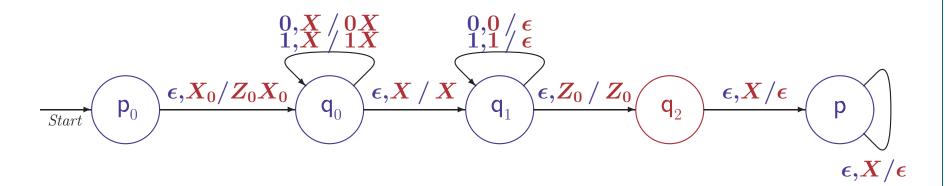


• $P_F = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})$ mit δ wie oben erkennt $\{ww^R \mid w \in \{0, 1\}^*\}$ mit Endzustand

Umwandlung eines L_F -PDA in einen L_ϵ -PDA



- $P_F = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})$ mit δ wie oben erkennt $\{ww^R \mid w \in \{0, 1\}^*\}$ mit Endzustand
- ullet Äquivalenter PDA P_ϵ mit leerem Stack ist $(\{p_0,q_0,q_1,q_2,p\},\{0,1\},\{0,1,Z_0,X_0\},\delta_\epsilon,p_0,X_0,\{p\})$



SIND PDAS WIRKLICH MASCHINEN FÜR TYP-2 SPRACHEN?

$$\mathcal{L}_2 = \mathcal{L}_{PDA} = \{ L \mid \exists P : PDAs. \ L = L_{\epsilon}(P) \}$$

SIND PDAS WIRKLICH MASCHINEN FÜR TYP-2 SPRACHEN?

$$\mathcal{L}_2 = \mathcal{L}_{PDA} = \{ L \mid \exists P : PDAs. \ L = L_{\epsilon}(P) \}$$

• Konfigurationsübergänge $\hat{=}$ Linksableitungen

$$\mathcal{L}_2 = \mathcal{L}_{PDA} = \{ L \mid \exists P : \text{PDAs. } L = L_{\epsilon}(P) \}$$

- Konfigurationsübergänge $\hat{=}$ Linksableitungen
 - $-(q_0, xy, Z_0) \vdash^* (q, y, A\alpha)$ bedeutet, daß P nach Verarbeitung von x im Zustand q ist und noch y und den Stack $A\alpha$ zu verarbeiten hat $A\alpha$ muß gespeichert und beim Lesen von y komplett abgearbeitet werden

$$\mathcal{L}_2 = \mathcal{L}_{PDA} = \{ L \mid \exists P : \text{PDAs. } L = L_{\epsilon}(P) \}$$

• Konfigurationsübergänge $\hat{=}$ Linksableitungen

- $-(q_0, xy, Z_0) \vdash^* (q, y, A\alpha)$ bedeutet, daß P nach Verarbeitung von x im Zustand q ist und noch y und den Stack $A\alpha$ zu verarbeiten hat $A\alpha$ muß gespeichert und beim Lesen von y komplett abgearbeitet werden
- Linksableitung $S \xrightarrow{*} xA \alpha \xrightarrow{*} xy$ erzeugt aus dem Startsymbol zuerst das Wort $xA \alpha$ umd muß dann y aus $A \alpha$ ableiten

$$\mathcal{L}_2 = \mathcal{L}_{PDA} = \{ L \mid \exists P : \text{PDAs. } L = L_{\epsilon}(P) \}$$

• Konfigurationsübergänge $\hat{=}$ Linksableitungen

- $-(q_0, xy, Z_0) \vdash^* (q, y, A\alpha)$ bedeutet, daß P nach Verarbeitung von x im Zustand q ist und noch y und den Stack $A\alpha$ zu verarbeiten hat $A\alpha$ muß gespeichert und beim Lesen von y komplett abgearbeitet werden
- Linksableitung $S \xrightarrow{*} xA \alpha \xrightarrow{*} xy$ erzeugt aus dem Startsymbol zuerst das Wort $xA \alpha$ umd muß dann y aus $A \alpha$ ableiten

• Grammatik — Pushdown-Automat

- PDA muß Linksableitung auf Stack simulieren
- Erzeugte linke Terminalteilwörter müssen mit Teil der Eingabe verglichen werden, um nächste Variable freizulegen

$$\mathcal{L}_2 = \mathcal{L}_{PDA} = \{ L \mid \exists P : PDAs. \ L = L_{\epsilon}(P) \}$$

• Konfigurationsübergänge \(\hat{\hat{e}} \) Linksableitungen

- $-(q_0, xy, Z_0) \vdash^* (q, y, A\alpha)$ bedeutet, daß P nach Verarbeitung von xim Zustand q ist und noch y und den Stack $A \alpha$ zu verarbeiten hat $A \alpha$ muß gespeichert und beim Lesen von y komplett abgearbeitet werden
- Linksableitung $S \xrightarrow{*} xA \alpha \xrightarrow{*} xy$ erzeugt aus dem Startsymbol zuerst das Wort $xA\alpha$ umd muß dann y aus $A\alpha$ ableiten

• Grammatik — Pushdown-Automat

- PDA muß Linksableitung auf Stack simulieren
- Erzeugte linke Terminalteilwörter müssen mit Teil der Eingabe verglichen werden, um nächste Variable freizulegen

• Pushdown-Automat — Grammatik

- Grammatik muß Abarbeitung von Symbolen des Stacks simulieren
- Regeln beschreiben wie PDA bei Abarbeitung des Stacksymbols Xmit δ Zwischenwörter im Stack auf- und schließlich wieder abbaut

Zu jeder kontextfreien Grammatik $G = (V, T, P_G, S)$ kann ein PDA P konstruiert werden mit $L(G) = L_{\epsilon}(P)$

Zu jeder kontextfreien Grammatik $G=(V,T,P_G,S)$ kann ein PDA P konstruiert werden mit $L(G)=L_{\epsilon}(P)$

ullet Stack simuliert Linksableitungen von G

- Beginne mit Startsymbol von G
- $-A \in V$ wird im Stack durch rechte Seite β einer Regel $A \rightarrow \beta$ ersetzt
- $-a \in T$ wird vom Stack entfernt, wenn es als Eingabe erscheint, um im Stack die nächsten Variable einer Linksableitung freizulegen

Zu jeder kontextfreien Grammatik $G=(V,T,P_G,S)$ kann ein PDA P konstruiert werden mit $L(G)=L_{\epsilon}(P)$

ullet Stack simuliert Linksableitungen von G

- Beginne mit Startsymbol von G
- $-A \in V$ wird im Stack durch rechte Seite β einer Regel $A \rightarrow \beta$ ersetzt
- $-a \in T$ wird vom Stack entfernt, wenn es als Eingabe erscheint, um im Stack die nächsten Variable einer Linksableitung freizulegen
- Generierter PDA $P = (\{q\}, T, V \cup T, \delta, q, S, \emptyset)$
 - $-\delta(q,\epsilon,A) = \{(q,\beta) \mid A \rightarrow \beta \in P_G\}$ für alle $A \in V$

$$-\delta(q,a,a) = \{(q,\epsilon)\}$$
 für alle $a \in T$

Zu jeder kontextfreien Grammatik $G = (V, T, P_G, S)$ kann ein PDA P konstruiert werden mit $L(G) = L_{\epsilon}(P)$

• Stack simuliert Linksableitungen von G

- Beginne mit Startsymbol von G
- $-A \in V$ wird im Stack durch rechte Seite β einer Regel $A \rightarrow \beta$ ersetzt
- $-a \in T$ wird vom Stack entfernt, wenn es als Eingabe erscheint, um im Stack die nächsten Variable einer Linksableitung freizulegen
- Generierter PDA $P = (\{q\}, T, V \cup T, \delta, q, S, \emptyset)$
 - $-\delta(q,\epsilon,A) = \{(q,\beta) \mid A \rightarrow \beta \in P_G\}$ für alle $A \in V$
 - $-\delta(q,a,a) = \{(q,\epsilon)\}\$ für alle $a \in T$
- ullet Korrektheitsbeweis $L(G) = L_{\epsilon}(P)$ (Details folgen)
 - Zeige: (\subseteq) Wenn $S = x_1 A_1 \alpha_1 \dots \longrightarrow_L x_m A_m \alpha_m \longrightarrow_L w \in T^*$ dann gibt es für alle i ein y_i mit $w = x_i y_i$ und $(q, w, S) \vdash^* (q, y_i, A_i \alpha_i)$
 - (\supseteq) Wenn $(q, w, X) \stackrel{*}{\vdash} (q, \epsilon, \epsilon)$ dann $X \stackrel{*}{\longrightarrow} w$

Wenn $S = x_1 A_1 \alpha_1 ... \longrightarrow_L x_m A_m \alpha_m \longrightarrow_L w \in T^* (x_i \in T^*, A_i \in V)$ dann gibt es für alle i ein y_i mit $w = x_i y_i$ und $(q, w, S) \vdash^* (q, y_i, A_i \alpha_i)$

 \bullet Beweis durch Induktion über $i \le m$

- \bullet Beweis durch Induktion über $i \leq m$
- ullet Basisfall i=1: $S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$

- ullet Beweis durch Induktion über $i \le m$
- ullet Basisfall $i=1\colon S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$
 - Es folgt $S = A_1$ und $x_1 = \alpha_1 = \epsilon$, also muß $y_1 = w$ gewählt werden

- Beweis durch Induktion über $i \leq m$
- ullet Basisfall i=1: $S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$
 - Es folgt $S = A_1$ und $x_1 = \alpha_1 = \epsilon$, also muß $y_1 = w$ gewählt werden
 - $-(q, w, S) \stackrel{*}{\vdash} (q, w, S)$ gilt mit 0 Konfigurationsübergängen

- Beweis durch Induktion über $i \leq m$
- ullet Basisfall i=1: $S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$
 - Es folgt $S = A_1$ und $x_1 = \alpha_1 = \epsilon$, also muß $y_1 = w$ gewählt werden
 - $-(q, w, S) \stackrel{*}{\vdash} (q, w, S)$ gilt mit 0 Konfigurationsübergängen
- ullet Induktionsschritt: $S..\longrightarrow_{L} x_{i}A_{i}lpha_{i}\longrightarrow_{L} x_{i+1}A_{i+1}lpha_{i+1}\stackrel{*}{\longrightarrow} w$

- Beweis durch Induktion über $i \leq m$
- ullet Basisfall i=1: $S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$
 - Es folgt $S = A_1$ und $x_1 = \alpha_1 = \epsilon$, also muß $y_1 = w$ gewählt werden
 - $-(q, w, S) \stackrel{*}{\vdash} (q, w, S)$ gilt mit 0 Konfigurationsübergängen
- ullet Induktionsschritt: $S..\longrightarrow_{L} x_{i}A_{i}lpha_{i}\longrightarrow_{L} x_{i+1}A_{i+1}lpha_{i+1}\stackrel{*}{\longrightarrow} w$
 - $-x_i A_i \alpha_i \longrightarrow_L x_{i+1} A_{i+1} \alpha_{i+1}$ verlangt $A_i \longrightarrow \beta \in P_G$ für ein β , wobei $\beta \alpha_i = x A_{i+1} \alpha_{i+1}$ für ein $x \in T^*$ und $x_{i+1} = x_i x \subseteq w$.

- Beweis durch Induktion über $i \leq m$
- ullet Basisfall i=1: $S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$
 - Es folgt $S = A_1$ und $x_1 = \alpha_1 = \epsilon$, also muß $y_1 = w$ gewählt werden
 - $-(q, w, S) \stackrel{*}{\vdash} (q, w, S)$ gilt mit 0 Konfigurationsübergängen
- ullet Induktionsschritt: $S..\longrightarrow_{L} x_{i}A_{i}lpha_{i}\longrightarrow_{L} x_{i+1}A_{i+1}lpha_{i+1}\stackrel{*}{\longrightarrow} w$
 - $-x_i A_i \alpha_i \longrightarrow_L x_{i+1} A_{i+1} \alpha_{i+1}$ verlangt $A_i \longrightarrow \beta \in P_G$ für ein β , wobei $\beta \alpha_i = x A_{i+1} \alpha_{i+1}$ für ein $x \in T^*$ und $x_{i+1} = x_i x \subseteq w$.
 - Per Konstruktion gilt dann $(q,\beta) \in \delta(q,\epsilon,A_i)$ und mit der Induktionsannahme folgt $(q,w,S) \stackrel{*}{\vdash} (q,y_i,A_i\alpha_i) \vdash (q,y_i,xA_{i+1}\alpha_{i+1})$

- ullet Beweis durch Induktion über $i \le m$
- ullet Basisfall i=1: $S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$
 - Es folgt $S = A_1$ und $x_1 = \alpha_1 = \epsilon$, also muß $y_1 = w$ gewählt werden
 - $-(q, w, S) \stackrel{*}{\vdash} (q, w, S)$ gilt mit 0 Konfigurationsübergängen
- ullet Induktionsschritt: $S..\longrightarrow_{L} x_{i}A_{i}lpha_{i}\longrightarrow_{L} x_{i+1}A_{i+1}lpha_{i+1}\stackrel{*}{\longrightarrow} w$
 - $-x_i A_i \alpha_i \longrightarrow_L x_{i+1} A_{i+1} \alpha_{i+1}$ verlangt $A_i \longrightarrow \beta \in P_G$ für ein β , wobei $\beta \alpha_i = x A_{i+1} \alpha_{i+1}$ für ein $x \in T^*$ und $x_{i+1} = x_i x \subseteq w$.
 - Per Konstruktion gilt dann $(q,\beta) \in \delta(q,\epsilon,A_i)$ und mit der Induktionsannahme folgt $(q,w,S) \stackrel{*}{\vdash} (q,y_i,A_i\alpha_i) \vdash (q,y_i,xA_{i+1}\alpha_{i+1})$
 - Wegen $x_{i+1} = x_i x \subseteq w = x_i y_i$ kann y_i zerlegt werden in $x y_{i+1}$ und der PDA arbeitet x ab: $(q, y_i, x A_{i+1} \alpha_{i+1}) \stackrel{*}{\vdash} (q, y_{i+1}, A_{i+1} \alpha_{i+1})$

- ullet Beweis durch Induktion über $i \le m$
- ullet Basisfall i=1: $S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$
 - Es folgt $S = A_1$ und $x_1 = \alpha_1 = \epsilon$, also muß $y_1 = w$ gewählt werden
 - $-(q, w, S) \stackrel{*}{\vdash} (q, w, S)$ gilt mit 0 Konfigurationsübergängen
- ullet Induktionsschritt: $S..\longrightarrow_{L} x_{i}A_{i}lpha_{i}\longrightarrow_{L} x_{i+1}A_{i+1}lpha_{i+1}\stackrel{*}{\longrightarrow} w$
 - $-x_i A_i \alpha_i \longrightarrow_L x_{i+1} A_{i+1} \alpha_{i+1}$ verlangt $A_i \longrightarrow \beta \in P_G$ für ein β , wobei $\beta \alpha_i = x A_{i+1} \alpha_{i+1}$ für ein $x \in T^*$ und $x_{i+1} = x_i x \subseteq w$.
 - Per Konstruktion gilt dann $(q,\beta) \in \delta(q,\epsilon,A_i)$ und mit der Induktionsannahme folgt $(q,w,S) \stackrel{*}{\vdash} (q,y_i,A_i\alpha_i) \vdash (q,y_i,xA_{i+1}\alpha_{i+1})$
 - Wegen $x_{i+1} = x_i x \subseteq w = x_i y_i$ kann y_i zerlegt werden in xy_{i+1} und der PDA arbeitet x ab: $(q, y_i, xA_{i+1}\alpha_{i+1}) \stackrel{*}{\vdash} (q, y_{i+1}, A_{i+1}\alpha_{i+1})$
- ullet Schlußfolgerung: $S=x_1A_1lpha_1...\longrightarrow_L x_{m+1}A_{m+1}lpha_{m+1}=w$

- Beweis durch Induktion über $i \le m$
- ullet Basisfall i=1: $S=x_1A_1lpha_1\stackrel{*}{\longrightarrow} w$
 - Es folgt $S = A_1$ und $x_1 = \alpha_1 = \epsilon$, also muß $y_1 = w$ gewählt werden
 - $-(q, w, S) \stackrel{*}{\vdash} (q, w, S)$ gilt mit 0 Konfigurationsübergängen
- Induktionsschritt: $S.. \longrightarrow_{L} x_{i}A_{i}\alpha_{i} \longrightarrow_{L} x_{i+1}A_{i+1}\alpha_{i+1} \stackrel{*}{\longrightarrow} w$
 - $-x_i A_i \alpha_i \longrightarrow_{\tau} x_{i+1} A_{i+1} \alpha_{i+1}$ verlangt $A_i \longrightarrow \beta \in P_G$ für ein β , wobei $\beta \alpha_i = x A_{i+1} \alpha_{i+1}$ für ein $x \in T^*$ und $x_{i+1} = x_i x \subseteq w$.
 - Per Konstruktion gilt dann $(q,\beta) \in \delta(q,\epsilon,A_i)$ und mit der Induktionsannahme folgt $(q, w, S) \vdash^* (q, y_i, A_i \alpha_i) \vdash (q, y_i, xA_{i+1}\alpha_{i+1})$
 - Wegen $x_{i+1} = x_i x \subseteq w = x_i y_i$ kann y_i zerlegt werden in $x y_{i+1}$ und der PDA arbeitet x ab: $(q, y_i, xA_{i+1}\alpha_{i+1}) \vdash (q, y_{i+1}, A_{i+1}\alpha_{i+1})$
- ullet Schlußfolgerung: $S=x_1A_1lpha_1...\longrightarrow_{\iota} x_{m+1}A_{m+1}lpha_{m+1}=w$
 - Wegen $w \in T^*$ folgt $x_{m+1} = w$ und $A_{m+1} = \alpha_{m+1} = y_{m+1} = \epsilon$
 - Also $(q, w, S) \stackrel{*}{\vdash} (q, \epsilon, \epsilon)$, d.h. $w \in L_{\epsilon}(P)$

Für alle $X \in V$ gilt: wenn $(q, w, X) \stackrel{*}{\vdash} (q, \epsilon, \epsilon)$ dann $X \stackrel{*}{\longrightarrow} w$

• Beweis durch Induktion über Länge der PDA Berechnung

- Beweis durch Induktion über Länge der PDA Berechnung
- ullet Basisfall: $(q, w, X) \vdash (q, \epsilon, \epsilon)$

- Beweis durch Induktion über Länge der PDA Berechnung
- Basisfall: $(q, w, X) \vdash (q, \epsilon, \epsilon)$
 - Es folgt $X \rightarrow \epsilon \in P_G$ und $w = \epsilon$, also $X \xrightarrow{*} w$

- Beweis durch Induktion über Länge der PDA Berechnung
- Basisfall: $(q, w, X) \vdash (q, \epsilon, \epsilon)$
 - Es folgt $X \rightarrow \epsilon \in P_G$ und $w = \epsilon$, also $X \xrightarrow{*} w$
- ullet Induktionsschritt: $(q,w,X) \ dash^{n+1} \ (q,\epsilon,\epsilon)$

- Beweis durch Induktion über Länge der PDA Berechnung
- Basisfall: $(q, w, X) \vdash (q, \epsilon, \epsilon)$
 - Es folgt $X \rightarrow \epsilon \in P_G$ und $w = \epsilon$, also $X \xrightarrow{*} w$
- ullet Induktionsschritt: $(q,w,X) \ dash^{n+1} \ (q,\epsilon,\epsilon)$
 - Da X oben im Stack steht, muß der erste Schritt die Form $(q,w,X) \; \vdash \; (q,w,Y_1..Y_k) \; \text{ für ein } \; X {\longrightarrow} Y_1..Y_k \in P_G \; \text{ haben } \; \; (Y_i {\in} V {\cup} T)$

- Beweis durch Induktion über Länge der PDA Berechnung
- Basisfall: $(q, w, X) \vdash (q, \epsilon, \epsilon)$
 - Es folgt $X \rightarrow \epsilon \in P_G$ und $w = \epsilon$, also $X \xrightarrow{*} w$
- ullet Induktionsschritt: $(q,w,X) \ dash^{n+1} \ (q,\epsilon,\epsilon)$
 - Da X oben im Stack steht, muß der erste Schritt die Form $(q,w,X) \; \vdash \; (q,w,Y_1..Y_k) \; \; \text{für ein} \; \; X {\longrightarrow} Y_1..Y_k \in P_G \; \; \text{haben} \quad (Y_i {\in} V {\cup} T)$
 - Dann gibt eine Zerlegung $w = w_1..w_k$ mit $(q, w_1w_2..w_k, Y_1Y_2..Y_k) \vdash^* (q, w_2..w_k, Y_2..Y_k) \vdash^* (q, \epsilon, \epsilon)$

- Beweis durch Induktion über Länge der PDA Berechnung
- Basisfall: $(q, w, X) \vdash (q, \epsilon, \epsilon)$
 - Es folgt $X \rightarrow \epsilon \in P_G$ und $w = \epsilon$, also $X \xrightarrow{*} w$
- ullet Induktionsschritt: $(q,w,X) \ dash^{n+1} \ (q,\epsilon,\epsilon)$
 - Da X oben im Stack steht, muß der erste Schritt die Form $(q,w,X) \; \vdash \; (q,w,Y_1..Y_k) \; \; \text{für ein} \; \; X {\longrightarrow} Y_1..Y_k \in P_G \; \; \text{haben} \quad (Y_i {\in} V {\cup} T)$
 - Dann gibt eine Zerlegung $w = w_1..w_k$ mit $(q, w_1w_2..w_k, Y_1Y_2..Y_k) \vdash^* (q, w_2..w_k, Y_2..Y_k) \vdash^* (q, \epsilon, \epsilon)$
 - Es folgt $(q, w_i w_{i+1}..w_k, Y_i) \vdash^* (q, w_{i+1}..w_k, \epsilon)$ also $(q, w_i, Y_i) \vdash^* (q, \epsilon, \epsilon)$

- Beweis durch Induktion über Länge der PDA Berechnung
- Basisfall: $(q, w, X) \vdash (q, \epsilon, \epsilon)$
 - Es folgt $X \rightarrow \epsilon \in P_G$ und $w = \epsilon$, also $X \xrightarrow{*} w$
- ullet Induktionsschritt: $(q,w,X) \ dash^{n+1} \ (q,\epsilon,\epsilon)$
 - Da X oben im Stack steht, muß der erste Schritt die Form $(q,w,X) \; \vdash \; (q,w,Y_1..Y_k) \; \; \text{für ein} \; \; X {\longrightarrow} Y_1..Y_k \in P_G \; \; \text{haben} \quad (Y_i {\in} V {\cup} T)$
 - Dann gibt eine Zerlegung $w = w_1..w_k$ mit $(q, w_1w_2..w_k, Y_1Y_2..Y_k) \vdash^* (q, w_2..w_k, Y_2..Y_k) \vdash^* (q, \epsilon, \epsilon)$
 - Es folgt $(q, w_i w_{i+1}..w_k, Y_i) \vdash^* (q, w_{i+1}..w_k, \epsilon)$ also $(q, w_i, Y_i) \vdash^* (q, \epsilon, \epsilon)$
 - Per Induktionsannahme folgt $Y_i \xrightarrow{*} w_i$ für alle i also $X \longrightarrow Y_1...Y_k \xrightarrow{*} w_1...w_k = w$

- Beweis durch Induktion über Länge der PDA Berechnung
- Basisfall: $(q, w, X) \vdash (q, \epsilon, \epsilon)$
 - Es folgt $X \rightarrow \epsilon \in P_G$ und $w = \epsilon$, also $X \xrightarrow{*} w$
- ullet Induktionsschritt: $(q,w,X) \ dash^{n+1} \ (q,\epsilon,\epsilon)$
 - Da X oben im Stack steht, muß der erste Schritt die Form $(q,w,X) \; \vdash \; (q,w,Y_1..Y_k) \; \; \text{für ein} \; \; X {\longrightarrow} Y_1..Y_k \in P_G \; \; \text{haben} \quad (Y_i {\in} V {\cup} T)$
 - Dann gibt eine Zerlegung $w = w_1..w_k$ mit $(q, w_1w_2..w_k, Y_1Y_2..Y_k) \vdash^* (q, w_2..w_k, Y_2..Y_k) \vdash^* (q, \epsilon, \epsilon)$
 - Es folgt $(q, w_i w_{i+1}..w_k, Y_i) \vdash^* (q, w_{i+1}..w_k, \epsilon)$ also $(q, w_i, Y_i) \vdash^* (q, \epsilon, \epsilon)$
 - Per Induktionsannahme folgt $Y_i \xrightarrow{*} w_i$ für alle i also $X \longrightarrow Y_1...Y_k \xrightarrow{*} w_1...w_k = w$
- $\bullet \text{ Es folgt } L_{\epsilon}(P) {=} \{w \mid (q,w,S) \stackrel{*}{\vdash} (q,\epsilon,\epsilon)\} {\subseteq} \{w \mid S \overset{*}{\longrightarrow} w\} {=} L(G)$

$$ullet G_7 = (\{E,I\}, \; \{a,b,c,0,1,+,*,(,)\}, \; P_G, \; E) \ ext{mit } P_G = \{\; E
ightarrow I \; | \; E+E \; | \; E*E \; | \; (E) \ I
ightarrow a \; | \; b \; | \; c \; | \; Ia \; | \; Ib \; | \; Ic \; | \; I0 \; | \; I1 \; \}$$

- $ullet G_7 = (\{E,I\}, \; \{a,b,c,0,1,+,*,(,)\}, \; P_G, \; E) \ ext{mit } P_G = \{\; E
 ightarrow I \; | \; E+E \; | \; E*E \; | \; (E) \ I
 ightarrow a \; | \; b \; | \; c \; | \; Ia \; | \; Ib \; | \; Ic \; | \; I0 \; | \; I1 \; \}$
- ullet Erzeuge $P=(\{q\},T,V\cup T,\delta,q,E,\emptyset)$ mit $V{=}\{E,I\}$ und $T{=}\{a,b,0,1,+,*,(,)\}$

- $ullet G_7 = (\{E,I\}, \; \{a,b,c,0,1,+,*,(,)\}, \; P_G, \; E) \ ext{mit } P_G = \{\; E
 ightarrow I \; | \; E+E \; | \; E*E \; | \; (E) \ I
 ightarrow a \; | \; b \; | \; c \; | \; Ia \; | \; Ib \; | \; Ic \; | \; I0 \; | \; I1 \; \}$
- Erzeuge $P=(\{q\},T,V\cup T,\delta,q,E,\emptyset)$ mit $V=\{E,I\}$ und $T=\{a,b,0,1,+,*,(,)\}$ $-\delta(q,\epsilon,E)=\{(q,I),(q,E+E),(q,E*E),(q,(E))\}$

- $ullet G_7 = (\{E,I\}, \; \{a,b,c,0,1,+,*,(,)\}, \; P_G, \; E)$ mit $P_G = \{\; E
 ightarrow I \; | \; E+E \; | \; E*E \; | \; (E)$ $I
 ightarrow a \; | \; b \; | \; c \; | \; Ia \; | \; Ib \; | \; Ic \; | \; I0 \; | \; I1 \; \}$

- $ullet G_7 = (\{E,I\}, \; \{a,b,c,0,1,+,*,(,)\}, \; P_G, \; E)$ mit $P_G = \{\; E
 ightarrow I \; | \; E+E \; | \; E*E \; | \; (E)$ $I
 ightarrow a \; | \; b \; | \; c \; | \; Ia \; | \; Ib \; | \; Ic \; | \; I0 \; | \; I1 \; \}$
- Erzeuge $P = (\{q\}, T, V \cup T, \delta, q, E, \emptyset)$ mit $V = \{E, I\}$ und $T = \{a, b, 0, 1, +, *, (,)\}$ $-\delta(q, \epsilon, E) = \{(q, I), (q, E + E), (q, E * E), (q, (E))\}$ $-\delta(q, \epsilon, I) = \{(q, a), (q, b), (q, c), (q, Ia), (q, Ib), (q, Ic), (q, I0), (q, I1)\}$ $-\delta(q, a, a) = \{(q, \epsilon)\} - \delta(q, +, +) = \{(q, \epsilon)\}$ $-\delta(q, b, b) = \{(q, \epsilon)\} - \delta(q, *, *) = \{(q, \epsilon)\}$ $-\delta(q, c, c) = \{(q, \epsilon)\} - \delta(q, (, () = \{(q, \epsilon)\}$ $-\delta(q, 0, 0) = \{(q, \epsilon)\} - \delta(q,)) = \{(q, \epsilon)\}$ $-\delta(q, 1, 1) = \{(q, \epsilon)\}$

Zu jedem PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann eine kfG G konstruiert werden mit $L_{\epsilon}(P) = L(G)$

Zu jedem PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann eine kfG G konstruiert werden mit $L_{\epsilon}(P)=L(G)$

- Simuliere Abarbeitung eines Symbols vom Stack
 - Verarbeite Variablen der Form "(q, X, p)" mit impliziter Bedeutung " $Entfernen\ von\ X\ kann\ von\ Zustand\ q\ zu\ Zustand\ p\ f\"{u}hren$ "

Zu jedem PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann eine kfG G konstruiert werden mit $L_{\epsilon}(P)=L(G)$

• Simuliere Abarbeitung eines Symbols vom Stack

- Verarbeite Variablen der Form "(q, X, p)" mit impliziter Bedeutung " $Entfernen\ von\ X\ kann\ von\ Zustand\ q\ zu\ Zustand\ p\ f\"{u}hren$ "
- Entfernen von X kann zuerst ein $Y_1...Y_m$ auf- und dann abbauen

Zu jedem PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann eine kfG G konstruiert werden mit $L_{\epsilon}(P)=L(G)$

• Simuliere Abarbeitung eines Symbols vom Stack

- Verarbeite Variablen der Form "(q, X, p)" mit impliziter Bedeutung " $Entfernen\ von\ X\ kann\ von\ Zustand\ q\ zu\ Zustand\ p\ f\"{u}hren$ "
- Entfernen von X kann zuerst ein $Y_1...Y_m$ auf- und dann abbauen
- Beginne mit Erzeugung von Z_0 und zeige, daß Z_0 entfernt werden kann

Zu jedem PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann eine kfG G konstruiert werden mit $L_{\epsilon}(P)=L(G)$

• Simuliere Abarbeitung eines Symbols vom Stack

- Verarbeite Variablen der Form "(q, X, p)" mit impliziter Bedeutung " $Entfernen\ von\ X\ kann\ von\ Zustand\ q\ zu\ Zustand\ p\ f\"{u}hren$ "
- Entfernen von X kann zuerst ein $Y_1...Y_m$ auf- und dann abbauen
- Beginne mit Erzeugung von Z_0 und zeige, daß Z_0 entfernt werden kann
- ullet Generiere $G=(\{S\}\cup Q imes\Gamma imes Q,\ \Sigma,\ P_G,\ S)$ mit
 - $-S \rightarrow (q_0, Z_0, q) \in P_G$ für alle $q \in Q$

Zu jedem PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann eine kfG G konstruiert werden mit $L_{\epsilon}(P)=L(G)$

• Simuliere Abarbeitung eines Symbols vom Stack

- Verarbeite Variablen der Form "(q, X, p)" mit impliziter Bedeutung " $Entfernen\ von\ X\ kann\ von\ Zustand\ q\ zu\ Zustand\ p\ f\"{u}hren$ "
- Entfernen von X kann zuerst ein $Y_1...Y_m$ auf- und dann abbauen
- Beginne mit Erzeugung von Z_0 und zeige, daß Z_0 entfernt werden kann
- ullet Generiere $G=(\{S\}\cup Q imes\Gamma imes Q,\ \Sigma,\ P_G,\ S)$ mit
 - $-S \rightarrow (q_0, Z_0, q) \in P_G$ für alle $q \in Q$
 - $-(q, X, q_m) \rightarrow a(p, Y_1, q_1)...(q_{m-1}, Y_m, q_m) \in P_G,$ für beliebige Kombinationen $q_1, ..., q_m \in Q$, falls $(p, Y_1...Y_m) \in \delta(q, a, X)$ $(q, X, p) \rightarrow a \in P_G,$ falls $(p, \epsilon) \in \delta(q, a, X)$

Zu jedem PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann eine kfG G konstruiert werden mit $L_{\epsilon}(P)=L(G)$

• Simuliere Abarbeitung eines Symbols vom Stack

- Verarbeite Variablen der Form "(q, X, p)" mit impliziter Bedeutung " $Entfernen\ von\ X\ kann\ von\ Zustand\ q\ zu\ Zustand\ p\ f\"{u}hren$ "
- Entfernen von X kann zuerst ein $Y_1...Y_m$ auf- und dann abbauen
- Beginne mit Erzeugung von Z_0 und zeige, daß Z_0 entfernt werden kann

ullet Generiere $G=(\{S\}\cup Q imes\Gamma imes Q,\ \Sigma,\ P_G,\ S)$ mit

- $-S \rightarrow (q_0, Z_0, q) \in P_G$ für alle $q \in Q$
- $-(q, X, q_m) \rightarrow a(p, Y_1, q_1)...(q_{m-1}, Y_m, q_m) \in P_G,$ für beliebige Kombinationen $q_1, ..., q_m \in Q$, falls $(p, Y_1...Y_m) \in \delta(q, a, X)$ $(q, X, p) \rightarrow a \in P_G,$ falls $(p, \epsilon) \in \delta(q, a, X)$

ullet Korrektheitsbeweis $L_{\epsilon}(P) = L(G)$

– Zeige: $(q, X, p) \xrightarrow{*} w \in \Sigma^{*}$ genau dann, wenn $(q, w, X) \vdash^{*} (p, \epsilon, \epsilon)$

Zu jedem PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ kann eine kfG G konstruiert werden mit $L_{\epsilon}(P)=L(G)$

• Simuliere Abarbeitung eines Symbols vom Stack

- Verarbeite Variablen der Form "(q, X, p)" mit impliziter Bedeutung " $Entfernen\ von\ X\ kann\ von\ Zustand\ q\ zu\ Zustand\ p\ f\"{u}hren$ "
- Entfernen von X kann zuerst ein $Y_1...Y_m$ auf- und dann abbauen
- Beginne mit Erzeugung von Z_0 und zeige, daß Z_0 entfernt werden kann

ullet Generiere $G=(\{S\}\cup Q imes\Gamma imes Q,\ \Sigma,\ P_G,\ S)$ mit

- $-S \rightarrow (q_0, Z_0, q) \in P_G$ für alle $q \in Q$
- $-(q, X, q_m) \rightarrow a(p, Y_1, q_1)...(q_{m-1}, Y_m, q_m) \in P_G,$ für beliebige Kombinationen $q_1, ..., q_m \in Q$, falls $(p, Y_1...Y_m) \in \delta(q, a, X)$ $(q, X, p) \rightarrow a \in P_G,$ falls $(p, \epsilon) \in \delta(q, a, X)$

ullet Korrektheitsbeweis $L_{\epsilon}(P) = L(G)$

- Zeige: $(q, X, p) \xrightarrow{*} w \in \Sigma^{*}$ genau dann, wenn $(q, w, X) \vdash^{*} (p, \epsilon, \epsilon)$
 - ⊆: Induktion über Länge der PDA Berechnung
 - ⊇: Induktion über Länge der Ableitung

(viele Details)

$$\begin{array}{l} \bullet \text{ Gegeben } P_1 = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset) & (X/1X) \\ \text{mit } \delta(q, (X)) = \{(q, 1X)\} & \epsilon, Z_0/\epsilon \\ \delta(q, 0, 1) = \{(q, \epsilon)\} & \delta(q, \epsilon, Z_0) = \{(q, \epsilon)\} \end{array}$$

- Gegeben $P_1 = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset)$ $\text{mit } \delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\}$ $\delta(q,), 1) = \{(q, \epsilon)\}$ $\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$ $\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$
- ullet Generiere $G=(\{(,)\},\{S,\;(q,Z_0,1,q)\},P_G,S)$ mit $P_G=S o (q,Z_0,q)$

- $\begin{array}{l} \bullet \ \text{Gegeben} \ P_1 = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset) & (X/1X) \\ \text{mit } \delta(q, (X)) = \{(q, 1X)\} & \epsilon, Z_0/\epsilon \\ \delta(q, 0, 1) = \{(q, \epsilon)\} & \delta(q, \epsilon, Z_0) = \{(q, \epsilon)\} & \\ \end{array}$
- ullet Generiere $G = (\{(,)\}, \{S, \ (q, Z_0, 1, q)\}, P_G, S)$ mit $P_G = S o (q, Z_0, q)$ $(q, Z_0, q) o ((q, 1, q)(q, Z_0, q))$

- Gegeben $P_1 = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset)$ $\text{mit } \delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\}$ $\delta(q,), 1) = \{(q, \epsilon)\}$ $\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$ $\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$
- ullet Generiere $G = (\{(,)\}, \{S, \ (q, Z_0, 1, q)\}, P_G, S)$ mit $P_G = S o (q, Z_0, q)$ $(q, Z_0, q) o ((q, 1, q)(q, Z_0, q)$ $(q, Z_0, q) o \epsilon$

• Gegeben
$$P_1 = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset)$$

$$\text{mit } \delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\}$$

$$\delta(q,), 1) = \{(q, \epsilon)\}$$

$$\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$$

$$\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$$

ullet Generiere $G=(\{(,)\},\{S,\;(q,Z_0,1,q)\},P_G,S)$ mit $P_G=S o (q,Z_0,q)$

$$egin{align} (q,Z_0,q) &
ightarrow (q,Z_0,q) \ (q,Z_0,q) &
ightarrow (q,Z_0,q)
ightarrow \epsilon \ (q,1,q) &
ightarrow (q,1,q)
ightarrow (q,1,q) \end{array}$$

• Gegeben
$$P_1 = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset)$$
mit $\delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\}$

$$\delta(q,), 1) = \{(q, \epsilon)\}$$

$$\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$$
Start

• Generiere $G = (\{(,)\}, \{S, (q, Z_0, 1, q)\}, P_G, S)$

$$egin{aligned} \operatorname{mit} oldsymbol{P_G} &= S
ightarrow (q, Z_0, q) \ &\qquad (q, Z_0, q)
ightarrow (q, 1, q)
ightarrow \epsilon \ &\qquad (q, 1, q)
ightarrow (q, 1, q)
ightarrow (q, 1, q)
ightarrow) \end{aligned}$$

• Gegeben
$$P_1 = (\{q\}, \{(,)\}, \{Z_0, 1\}, \delta, q, Z_0, \emptyset)$$

$$\text{mit } \delta(q, (, \boldsymbol{X}) = \{(q, 1\boldsymbol{X})\}$$

$$\delta(q,), 1) = \{(q, \epsilon)\}$$

$$\delta(q, \epsilon, \boldsymbol{Z_0}) = \{(q, \epsilon)\}$$

$$Start$$

• Generiere $G = (\{(,)\}, \{S, (q, Z_0, 1, q)\}, P_G, S)$

$$egin{aligned} \operatorname{mit} oldsymbol{P_G} &= S
ightarrow (q, Z_0, q) \ &\qquad (q, Z_0, q)
ightarrow (q, Z_0, q)
ightarrow \epsilon \ &\qquad (q, 1, q)
ightarrow ((q, 1, q), q)
ightarrow (q, 1, q)
ightarrow (q, 1, q)
ightarrow) \end{aligned}$$

Wähle Kurzschreibweise A/B für Hilfssymbole (q, Z_0, q) bzw. (q, 1, q):

$$G=(\{(,)\},\{S,A,B\},P,S)$$

mit $P=\{S o A,A o (BA,A o\epsilon,B o (BB,B o)\}$

Brauchen wir Nichtdeterministische Automaten?

• Grammatiken sind nichtdeterministisch

- Nichtdeterministische Automaten sind das "natürliche" Gegenstück
 - · Grammatikregeln führen zu mengenwertiger Überführungsfunktion
- "Wirkliche" Automaten müssen deterministisch sein

Brauchen wir Nichtdeterministische Automaten?

• Grammatiken sind nichtdeterministisch

- Nichtdeterministische Automaten sind das "natürliche" Gegenstück
 - · Grammatikregeln führen zu mengenwertiger Überführungsfunktion
- "Wirkliche" Automaten müssen deterministisch sein

• Typ-3 Sprachen haben deterministische Modelle

- NEAs können in äquivalente DEAs umgewandelt werden
- Teilmengenkonstruktion kann Automaten exponentiell vergrößern

Brauchen wir Nichtdeterministische Automaten?

• Grammatiken sind nichtdeterministisch

- Nichtdeterministische Automaten sind das "natürliche" Gegenstück
 - · Grammatikregeln führen zu mengenwertiger Überführungsfunktion
- "Wirkliche" Automaten müssen deterministisch sein

• Typ-3 Sprachen haben deterministische Modelle

- NEAs können in äquivalente DEAs umgewandelt werden
- Teilmengenkonstruktion kann Automaten exponentiell vergrößern

• Reichen deterministische PDAs für Typ-2 Sprachen?

- Uberführungsfunktion $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^*$ muß eindeutig sein
- Gibt es für PDAs immer äquivalente deterministische PDAs?

Deterministische Pushdown-Automaten – präzisiert

Ein Deterministischer Pushdown-Automat (DPDA) ist ein 7-Tupel $P=(Q,\,\Sigma,\,\Gamma,\,\delta,\,q_0,\,Z_0,\,F)$ mit

- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**
- $\bullet \Gamma$ endliches **Stackalphabet**
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^*$ Überführungsfunktion
 - $-\delta(q,\epsilon,X)$ nur definiert, wenn $\delta(q,a,X)$ für alle $a \in \Sigma$ undefiniert
- $q_0 \in Q$ Startzustand
- $Z_0 \in \Gamma$ Initialsymbol des Stacks
- $F \subseteq Q$ Menge von akzeptierenden (End-)**Zuständen**

Deterministische Pushdown-Automaten – präzisiert

Ein Deterministischer Pushdown-Automat (DPDA) ist ein 7-Tupel $P=(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ mit

- \bullet Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**
- $\bullet \Gamma$ endliches **Stackalphabet**
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to Q \times \Gamma^*$ Überführungsfunktion
 - $-\delta(q,\epsilon,X)$ nur definiert, wenn $\delta(q,a,X)$ für alle $a \in \Sigma$ undefiniert
- $q_0 \in Q$ Startzustand
- $Z_0 \in \Gamma$ Initialsymbol des Stacks
- $F \subseteq Q$ Menge von **akzeptierenden** (End-)**Zuständen**

Erkannte Sprache

$$-\mathbf{L}_{\mathbf{F}}(\mathbf{P}) = \{ w \in \Sigma^* \mid \exists q \in F. \ \exists \beta \in \Gamma^*. (q_0, w, Z_0) \vdash^* (q, \epsilon, \beta) \}$$

$$- \mathbf{L}_{\epsilon}(\mathbf{P}) = \{ w \in \Sigma^* \mid \exists q \in Q. (q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon) \}$$

ullet DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2

- ullet DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq\mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA

- DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq \mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA
 - 2. DPDAs können $\{ww^R \mid w \in \{0,1\}^*\}$ nicht erkennen DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt

- ullet DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq \mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA
 - 2. DPDAs können $\{ww^R \mid w \in \{0,1\}^*\}$ nicht erkennen

DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt

· Wenn $0^n 110^n$ (großes n) gelesen ist, ist Stack durchs Zählen geleert

- ullet DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq \mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA
 - 2. DPDAs können $\{ww^R \mid w \in \{0,1\}^*\}$ nicht erkennen

- · Wenn $0^n 110^n$ (großes n) gelesen ist, ist Stack durchs Zählen geleert
- · Wenn noch einmal 0^n110^n gelesen wird, muß P akzeptieren

- ullet DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq \mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA
 - 2. DPDAs können $\{ww^R \mid w \in \{0,1\}^*\}$ nicht erkennen

- · Wenn $0^n 110^n$ (großes n) gelesen ist, ist Stack durchs Zählen geleert
- · Wenn noch einmal $0^n 110^n$ gelesen wird, muß P akzeptieren
- · Wenn stattdessen $0^m110^m \ (m\neq n)$ kommt, darf P nicht akzeptieren

- ullet DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq \mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA
 - 2. DPDAs können $\{ww^R \mid w \in \{0,1\}^*\}$ nicht erkennen

- · Wenn $0^n 110^n$ (großes n) gelesen ist, ist Stack durchs Zählen geleert
- · Wenn noch einmal $0^n 110^n$ gelesen wird, muß P akzeptieren
- · Wenn stattdessen $0^m110^m \ (m\neq n)$ kommt, darf P nicht akzeptieren
- · Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)

- ullet DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq \mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA
 - 2. DPDAs können $\{ww^R \mid w \in \{0,1\}^*\}$ nicht erkennen

- · Wenn $0^n 110^n$ (großes n) gelesen ist, ist Stack durchs Zählen geleert
- · Wenn noch einmal $0^n 110^n$ gelesen wird, muß P akzeptieren
- · Wenn stattdessen $0^m110^m \ (m\neq n)$ kommt, darf P nicht akzeptieren
- · Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)
- DPDAs erkennen nur eindeutige Typ-2 Sprachen

- DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq\mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA
 - 2. DPDAs können $\{ww^R \mid w \in \{0,1\}^*\}$ nicht erkennen DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt
 - · Wenn $0^n 110^n$ (großes n) gelesen ist, ist Stack durchs Zählen geleert
 - · Wenn noch einmal $0^n 110^n$ gelesen wird, muß P akzeptieren
 - · Wenn stattdessen $0^m110^m~(m\neq n)$ kommt, darf P nicht akzeptieren
 - · Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)
- DPDAs erkennen nur eindeutige Typ-2 Sprachen
 - 1. Für jeden DPDA P hat $L_{\epsilon}(P)$ eine eindeutige Grammatik

Für DPDAs ergibt die Umwandlung eine eindeutige Typ-2 Grammatik

· Folge der Konfigurationsübergänge bestimmt Linksableitung eindeutig

- DPDA-Sprachen sind eine echte Teilklasse von \mathcal{L}_2
 - 1. $L(DPDA)\subseteq \mathcal{L}_2$: Jeder DPDA ist ein spezieller PDA
 - 2. DPDAs können $\{ww^R \mid w \in \{0,1\}^*\}$ nicht erkennen DPDA P kann nicht entscheiden, wo die Mitte eines Wortes liegt
 - · Wenn $0^n 110^n$ (großes n) gelesen ist, ist Stack durchs Zählen geleert
 - · Wenn noch einmal $0^n 110^n$ gelesen wird, muß P akzeptieren
 - Wenn stattdessen $0^m110^m~(m\neq n)$ kommt, darf P nicht akzeptieren
 - · Aber die Information über n ist nicht mehr gespeichert (Details aufwendig)
- DPDAs erkennen nur eindeutige Typ-2 Sprachen
 - 1. Für jeden DPDA P hat $L_{\epsilon}(P)$ eine eindeutige Grammatik Für DPDAs ergibt die Umwandlung eine eindeutige Typ-2 Grammatik
 - · Folge der Konfigurationsübergänge bestimmt Linksableitung eindeutig
 - 2. Für jeden DPDA P hat $L_F(P)$ eine eindeutige Grammatik Umwandlung in $L_{\epsilon} - DPDA$ kann deterministisch gemacht werden

DPDAs sind mächtiger als endliche Automaten

- $\bullet \, \mathcal{L}_3 = L(DEA) \subseteq L_F(DPDA)$
 - Jeder DEA ist ein spezieller DPDA, der mit Endzustand akzeptiert

DPDAs sind mächtiger als endliche Automaten

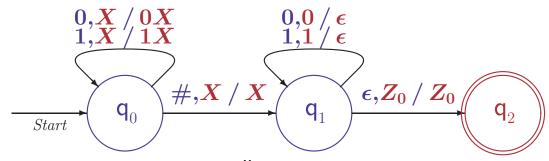
- $\bullet \mathcal{L}_3 = L(DEA) \subseteq L_F(DPDA)$
 - Jeder DEA ist ein spezieller DPDA, der mit Endzustand akzeptiert
- $ullet \ L = \{ w \# w^R \, | \, w \in \{0,1\}^* \} \in L_F(DPDA) L(DEA)$

DPDAS SIND MÄCHTIGER ALS ENDLICHE AUTOMATEN

- $\bullet \ \mathcal{L}_3 = L(DEA) \subseteq L_F(DPDA)$
 - Jeder DEA ist ein spezieller DPDA, der mit Endzustand akzeptiert
- $ullet \ L = \{ w \# w^R \, | \, w \in \{0,1\}^* \} \in L_F(DPDA) L(DEA)$
 - L ist nicht regulär
 - · Beweis durch Pumping Lemma, analog zu $\{ww^R \mid w \in \{0, 1\}^*\}$

DPDAs sind mächtiger als endliche Automaten

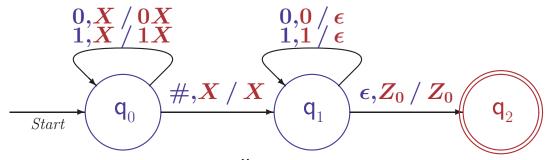
- $ullet \mathcal{L}_3 = L(DEA) \subseteq L_F(DPDA)$
 - Jeder DEA ist ein spezieller DPDA, der mit Endzustand akzeptiert
- $ullet \ L = \{ w \# w^R \, | \, w \in \{0,1\}^* \} \in L_F(DPDA) L(DEA)$
 - -L ist nicht regulär
 - · Beweis durch Pumping Lemma, analog zu $\{ww^R \mid w \in \{0, 1\}^*\}$
 - $-L = L_F(P)$ für folgenden DPDA P



-P ist deterministisch, da ϵ -Übergang in q_1 genau bei Stacksymbol Z_0

DPDAS SIND MÄCHTIGER ALS ENDLICHE AUTOMATEN

- $\bullet \mathcal{L}_3 = L(DEA) \subseteq L_F(DPDA)$
 - Jeder DEA ist ein spezieller DPDA, der mit Endzustand akzeptiert
- $ullet L = \{ w \# w^R \, | \, w \in \{0,1\}^* \} \in L_F(DPDA) L(DEA)$
 - L ist nicht regulär
 - · Beweis durch Pumping Lemma, analog zu $\{ww^R \mid w \in \{0,1\}^*\}$
 - $-L = L_F(P)$ für folgenden DPDA P



- -P ist deterministisch, da ϵ -Übergang in q_1 genau bei Stacksymbol Z_0
- \bullet $\{0\}^* \not\in L_{\epsilon}(DPDA)$
 - Wenn der Stack einmal leer ist, kann ein DPDA nicht mehr weiterarbeiten

• Maschinenmodell für kontextfreie Sprachen

- Nichtdeterministischer endlicher Automat mit Stack und ϵ -Übergängen
- Erkennung von Wörtern durch Endzustand oder leeren Stack
- Erkennungsmodelle sind ineinander transformierbar

• Maschinenmodell für kontextfreie Sprachen

- Nichtdeterministischer endlicher Automat mit Stack und ϵ -Übergängen
- Erkennung von Wörtern durch Endzustand oder leeren Stack
- Erkennungsmodelle sind ineinander transformierbar

• Verhaltensanalyse durch Konfigurationsübergänge

- Konfigurationen beschreiben 'Gesamtzustand' von Pushdown-Automaten
- Konfigurationsübergänge verallgemeinern Überführungsfunktionen

• Maschinenmodell für kontextfreie Sprachen

- Nichtdeterministischer endlicher Automat mit Stack und ϵ -Übergängen
- Erkennung von Wörtern durch Endzustand oder leeren Stack
- Erkennungsmodelle sind ineinander transformierbar

• Verhaltensanalyse durch Konfigurationsübergänge

- Konfigurationen beschreiben 'Gesamtzustand' von Pushdown-Automaten
- Konfigurationsübergänge verallgemeinern Überführungsfunktionen

• Äquivalent zu kontextfreien Grammatiken

– Umwandlung von Konfigurationsübergängen in Regeln und umgekehrt

• Maschinenmodell für kontextfreie Sprachen

- Nichtdeterministischer endlicher Automat mit Stack und ϵ -Übergängen
- Erkennung von Wörtern durch Endzustand oder leeren Stack
- Erkennungsmodelle sind ineinander transformierbar

• Verhaltensanalyse durch Konfigurationsübergänge

- Konfigurationen beschreiben 'Gesamtzustand' von Pushdown-Automaten
- Konfigurationsübergänge verallgemeinern Überführungsfunktionen

• Äquivalent zu kontextfreien Grammatiken

– Umwandlung von Konfigurationsübergängen in Regeln und umgekehrt

• Deterministische PDAs sind weniger mächtig

- DPDAs erkennen nur eindeutige Typ-2 Sprachen
- $-L_{\epsilon}$ -DPDAs können nicht einmal alle regulären Sprachen erkennen