Theoretische Informatik II

Einheit 4

Allgemeine und kontextsensitive Sprachen

- 1. Turingmaschinen
- 2. Maschinenmodelle für \mathcal{L}_0 und \mathcal{L}_1
- 3. Eigenschaften von $\mathcal{L}_0/\mathcal{L}_1$ -Sprachen

Jenseits von Kontextfreiheit

• Viele wichtige Konzepte sind nicht kontextfrei

- Sind Bezeichner im Programmkörper deklariert?
- $\{ ww \mid w \in \{0, 1\}^* \}$: erscheint Programmcode doppelt?
- $-\{0^n1^n2^n|n\in\mathbb{N}\}$: kommen mehrere Bestandteile gleich oft vor?
- Zählen jenseits von Addition und Multiplikation

• Wie verarbeitet man Typ-1 / Typ-0 Sprachen?

- Welches Maschinenmodell ist zur Beschreibung geeignet?
- Wie analysiert man Wörter der Sprache
- Wie kann man Sprachen aus Bausteinen zusammensetzen?
- Welche Spracheigenschaften kann man testen?

Theoretische Informatik II

Einheit 4.1

- 1. Das Maschinenmodell
- 2. Arbeitsweise & erkannte Sprache
- 3. Programmiertechniken
- 4. Ausdruckskraft

TURINGMASCHINEN (Alan Turing, 1936)

Maschinenmodell für Typ-0 Sprachen

• Erweiterung des Konzepts endlicher Automaten

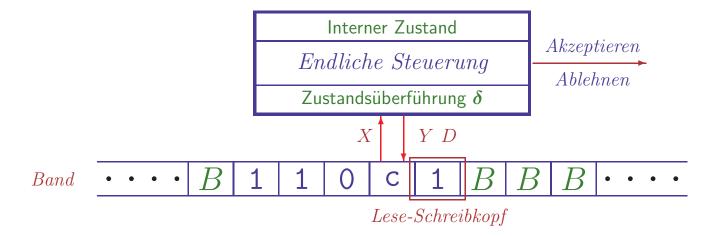
- Verarbeitung interner Zustände abhängig von gelesenen Daten
- Lese- und Schreibzugriff auf externen Speicher
- Minimal mögliche Erweiterung

• Maximal mögliche Ausdruckskraft

- Speicher muß Fähigkeiten von Typ-0 Grammatiken widerspiegeln
 - · Keine Einschränkung an Ersetzungsregeln
 - · Auch Terminalsymbole und ganze Wörter dürfen ersetzt werden
- Automat muß Eingabe an jeder Stelle verarbeiten können
 - · Gesamte Eingabe muß gespeichert werden
 - · Speicher muß Veränderungen an jeder Stelle zulassen
 - · Speicher muß beliebig erweiterbar sein

Wähle unendliches, bewegliches Band als Speicher

TURINGMASCHINEN INTUITIV



• Endlicher Automat + lineares Band

- Endliche Steuerung liest Eingabesymbole
- Gleichzeitig wird Bandsymbol unter Lese-Schreibkopf gelesen

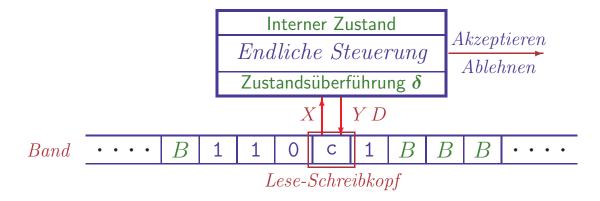
• Vereinfachung: keine separate Eingabe

- Eingabewort steht zu Anfang bereits auf dem Band

• Einfacher Verarbeitungsmechanismus

- Bandsymbol X wird gelesen
- Interner Zustand q wird zu q' verändert
- Neues Symbol Y wird auf das Band geschrieben
- Kopf wird in eine Richtung D (rechts oder links) bewegt

Turingmaschinen – mathematisch präzisiert



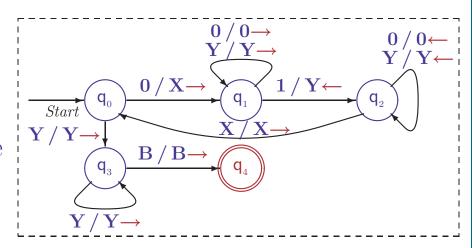
Eine **Turingmaschine** (TM) ist ein 7-Tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ mit

- Q nichtleere endliche **Zustandsmenge**
- $\bullet \Sigma$ endliches **Eingabealphabet**
- $\Gamma \supseteq \Sigma$ endliches **Bandalphabet**
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ (partielle) Überführungsfunktion
- $q_0 \in Q$ Startzustand
- $B \in \Gamma \setminus \Sigma$ Leersymbol des Bands ("blank")
- $F \subseteq Q$ Menge von **akzeptierenden** (End-)**Zuständen**

Beschreibung von Turingmaschinen

• Übergangsdiagramme

- Zustände durch Knoten dargestellt
- $-q_0$ markiert durch Start-Pfeil, Endzustände durch doppelte Kreise
- Für $\delta(q, X) = (p, Y, D)$ hat das Diagramm eine Kante $q \xrightarrow{X/YD} p$

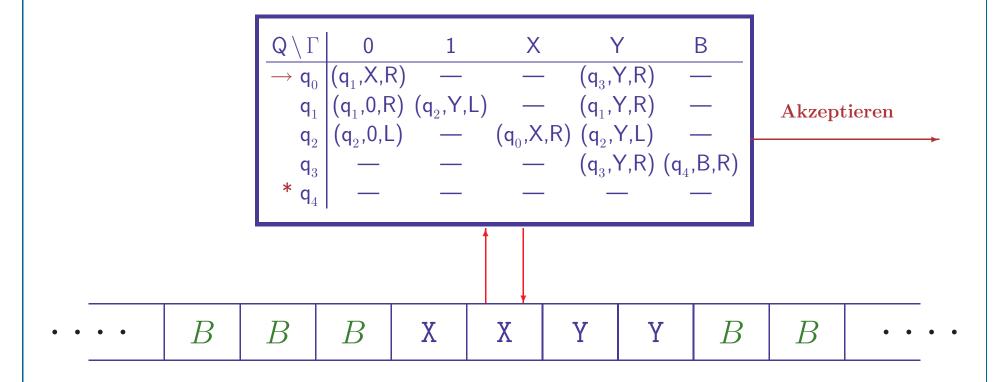


 $-\Sigma$ und Γ implizit durch Diagramm bestimmt, Leersymbol heißt B

• Übergangstabellen

- Funktionstabelle für δ
 - heißt " δ nicht definiert"
- Pfeil \rightarrow kennzeichnet q_0
- Stern * kennzeichnet F
- $-\Sigma$, Γ und B implizit bestimmt

Abarbeitung von Turing-Programmen



Maschine hält im Endzustand q₄ an

Arbeitsweise von Turingmaschinen intuitiv

Anfangssituation

- Eingabewort w steht auf dem Band, umgeben von Leerzeichen
- Kopf ist über erstem Symbol, Startzustand ist q_0

Arbeitsschritt

- Im Zustand q lese Bandsymbol X und bestimme $\delta(q,X)=(p,Y,D)$
- Wechsle in Zustand p, schreibe Y aufs Band, bewege Kopf gemäß D

ullet Terminierung, wenn $\delta(q,X)$ nicht definiert

- Alternativ: Maschine hält bei Erreichen eines Endzustands
- Konvention: $\delta(q,X)$ undefiniert für Endzustände $q \in F$

• Ergebnis

- Eingabewort w wird akzeptiert, wenn Maschine im Endzustand anhält

• Hilfsmittel zur Präzisierung: Konfigurationen

- Verallgemeinere bekanntes Konzept der Konfigurationsübergänge

Details in Literatur sehr unterschiedlich!!

Arbeitsweise von Turingmaschinen präzisiert

• Erweitere Begriff der Konfiguration

- Zustand q, Inhalt des Bandes und Kopfposition
- Formal dargestellt als Tripel $\mathbf{K} = (\mathbf{u}, \mathbf{q}, \mathbf{v}) \in \Gamma^* \times Q \times \Gamma^+$
 - $\cdot u, v$: String links/rechts vom Kopf
 - Achtung: im Buch wird das Tripel als ein (!) String uqv geschrieben
- Nur der bereits 'besuchten' Teil des Bandes wird betrachtet Blanks am Anfang von u oder am Ende von v entfallen, wo möglich

• Modifiziere Konfigurationsübergangsrelation

$$-(\boldsymbol{u}\boldsymbol{Z},\,\boldsymbol{q},\,\boldsymbol{X}\boldsymbol{v}) \vdash (\boldsymbol{u},\,\boldsymbol{p},\,\boldsymbol{Z}\boldsymbol{Y}\boldsymbol{v}), \quad \text{falls } \delta(q,X) = (p,Y,L)$$

$$-(\boldsymbol{u}, \boldsymbol{q}, \boldsymbol{X}\boldsymbol{v}) \vdash (\boldsymbol{u}\boldsymbol{Y}, \boldsymbol{p}, \boldsymbol{v}),$$
 falls $\delta(q, X) = (p, Y, R)$

Sonderfälle

$$-(\boldsymbol{\epsilon}, \boldsymbol{q}, \boldsymbol{X}\boldsymbol{v}) \vdash (\boldsymbol{\epsilon}, \boldsymbol{p}, \boldsymbol{B}\boldsymbol{Y}\boldsymbol{v}), \quad \text{falls } \delta(q, X) = (p, Y, L)$$

$$-(\boldsymbol{u}\boldsymbol{Z}, \boldsymbol{q}, \boldsymbol{X}) \vdash (\boldsymbol{u}, \boldsymbol{p}, \boldsymbol{Z}),$$
 falls $\delta(q, X) = (p, B, L)$

$$-\left(oldsymbol{u},\,oldsymbol{q},\,oldsymbol{X}
ight) \qquad \vdash \left(oldsymbol{u}oldsymbol{Y},\,oldsymbol{p},\,oldsymbol{B}
ight), \qquad ext{falls} \;\; \delta(q,X) = (p,Y,R)$$

$$-(\boldsymbol{u}, \boldsymbol{q}, \boldsymbol{X}) \vdash (\boldsymbol{u}\boldsymbol{Y}, \boldsymbol{p}, \boldsymbol{B}), \quad \text{falls } \delta(q, X) = (p, Y, R) \\ -(\boldsymbol{\epsilon}, \boldsymbol{q}, \boldsymbol{X}\boldsymbol{v}) \vdash (\boldsymbol{\epsilon}, \boldsymbol{p}, \boldsymbol{v}), \quad \text{falls } \delta(q, X) = (p, B, R)$$

 $K_1 \vdash^* K_2$, falls $K_1 = K_2$ oder es gibt ein K mit $K_1 \vdash K$ und $K \vdash^* K_2$

Verarbeitung eines Eingabewortes

Eingabewort 0011 ergibt Anfangskonfiguration $(\epsilon, q_0, 0011)$

 $0/0 \rightarrow$

$$(\epsilon, q_0, 0011)$$

$$\vdash (X, q_1, 011)$$

$$\vdash (X0, q_1, 11)$$

$$\vdash (X, q_2, 0Y1)$$

$$\vdash (\epsilon, q_2, X0Y1)$$

$$\vdash (X, q_0, 0Y1)$$

$$\vdash (XX, q_1, Y1)$$

$$\vdash (XXY, q_1, 1)$$

$$\vdash (XX, q_2, YY)$$

$$\vdash (X, q_2, XYY)$$

$$\vdash (XX, q_0, YY)$$

$$\vdash (XXY, q_3, Y)$$

$$\vdash (XXYY, q_3, B)$$

$$\vdash (XXYYB, q_4, B)$$

 $\vdash (X, q_2, 0Y1)$ $0/X \rightarrow$ 1 / Y← $\vdash (\epsilon, q_2, X0Y1)$ Start $X/X \rightarrow$ $\vdash (X, q_0, 0Y1) \qquad \forall Y/Y \rightarrow$ $B/B \rightarrow$ $\vdash (XX, q_1, Y1)$ $\vdash (XXY, q_1, 1)$ $\vdash (XX, q_2, YY)$ $Y/Y \rightarrow$ $\vdash (X, q_2, XYY)$ $\vdash (XX, q_0, YY)$ $\vdash (XXY, q_3, Y)$

Maschine terminiert, Endzustand erreicht, Eingabe wird akzeptiert

0 / 0←

DIE SPRACHE EINER TURINGMASCHINE

• Akzeptierte Sprache

– Menge der Eingaben, für die ⊢ zu akzeptierendem Zustand führt

$$oldsymbol{L(M)} = \{w \in \Sigma^* \mid \exists p \in F. \ \exists u,v \in \Gamma^*. \ (\epsilon,q_0,w) \ dash^* \ (u,p,v)\}$$

- Bei Einhalten der Konvention hält M im akzeptierenden Zustand an

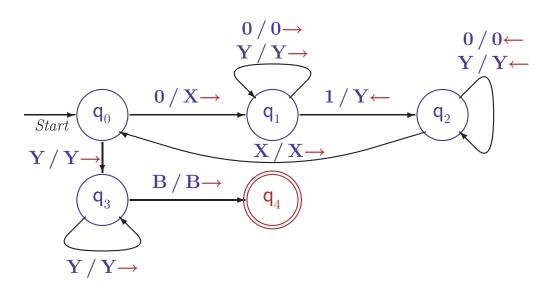
• Semi-entscheidbare Sprache

- Sprache, die von einer Turingmaschine M akzeptiert wird
- Alternative Bezeichnung: (rekursiv) aufzählbare Sprache

• Entscheidbare Sprache

- Sprache, die von einer Turingmaschine M akzeptiert wird, die bei jeder Eingabe terminiert
- Alternative Bezeichnung: **rekursive Sprache**

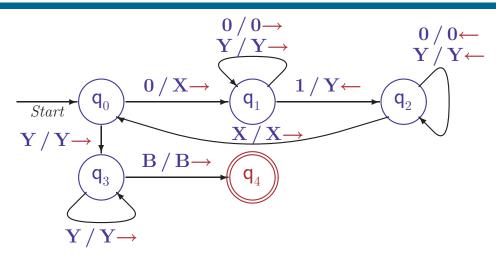
ERKANNTE SPRACHE EINER TURINGMASCHINE



• Analyse: M zählt Nullen und Einsen gleichzeitig

- Umwandeln einer 0 in X triggert Umwandeln einer 1 in Y
- Maschine stoppt in q_1 , wenn zuwenig Einsen vorhanden sind
- Maschine stoppt in q_3 , wenn zuwenig Nullen vorhanden sind
- Maschine akzeptiert in q_4 , wenn Anzahl der Nullen und Einsen gleich
- Zeige: $L(M) = \{0^n 1^n | n \ge 1\}$
 - $-(\epsilon, q_0, w) \stackrel{*}{\vdash} (u, q_4, v)$ genau dann, wenn $w = 0^n 1^n$ für ein $n \ge 1$

NACHWEIS DER ERKANNTEN SPRACHE



$(\epsilon,q_0,w) \, \stackrel{*}{dash} \, (u,q_4,v) ext{ wenn } w=0^n 1^n ext{ für ein } n{\geq}1$

Argument, warum andere Wörter nicht akzeptiert werden, ist aufwendiger

Ausdruckskraft von Turingmaschinen

Genauso leistungsfähig wie konventionelle Computer

• Reale Computer bieten viele Freiheiten

- Programme als Daten im Speicher
- Datenregister und Programmzähler
- "Simultaner" direkter Zugriff auf mehrere Speicherzellen
- Unterprogramme

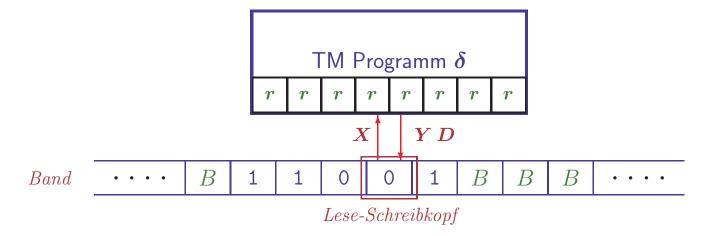
• Turingmaschinen sind unbeschränkt

- Beliebig große Alphabete (statt binären Daten)
- Unendliches Speicherband

• Gegenseitige Simulation ist möglich

- Zusätzliche Freiheiten als Programmiertechniken einer TM simulierbar
- Beschränkungen des TM Modells verringern die Ausdruckskraft nicht

Programmiertechnik: Datenregister



• TM hat zusätzlich endliche Menge von Registern

- Jedes Register kann einen Wert aus einer endlichen Menge Δ enthalten
- Maschine kann jeweils eine Bandzelle und alle Register bearbeiten
- Verwendung: Speichern einer Menge von Daten separat vom Band

• Simulation durch erweiterte Zustandsmenge

- Bei k Registern wähle Zustandsmenge $Q' := Q \times \Delta^k$
- Simuliere Zustandsübergang in Q und Änderung der Register durch entsprechenden Zustandsübergang in Q'

SIMULATION EINER MASCHINE MIT REGISTERN

Beschreibe Maschine, die $L((01^*)+(10^*))$ erkennt

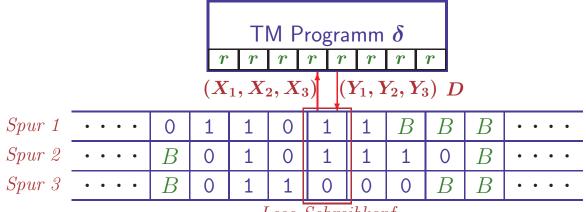
• Einfache Lösung mit Registern

- Speichere erstes Bandsymbol im Register
- $-q_0$: Prüfe ob das gespeicherte Symbol im restlichen Wort vorkommt
- $-q_1$: Akzeptiere, wenn gesamtes Wort erfolgreich überprüft

ullet Simulation mit $Q':=\{q_0,\,q_1\} imes\{0,1,\mathrm{B}\}$

	0	1	В	
\rightarrow (q ₀ ,B)	$((q_0,0),0,R)$	$((q_0,1),1,R)$	_	Erstes Symbol speichern
$(q_0,0)$		$((q_0,0),1,R)$	$((q_1,B),B,R)$	Mit 0 vergleichen
$(q_0,1)$	$((q_0,1),0,R)$	_	$((q_1,B),B,R)$	Mit 1 vergleichen
$*(q_1,B)$		_		Vergleich war erfolgreich
$(q_1,0)$		_		$(Nicht\ erreichbar)$
$(q_1,\!1)$		_		$(Nicht\ erreichbar)$

Programmiertechnik: Mehrere Spuren



Lese-Schreibkopf

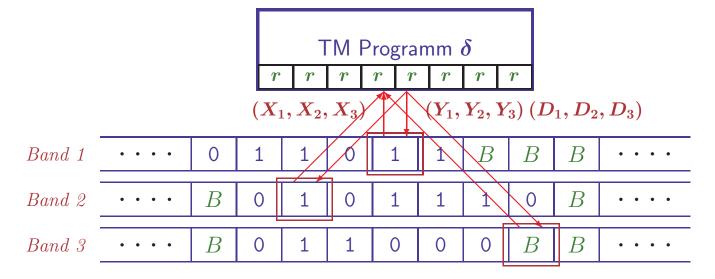
• Band hat mehrere Datenspuren

- Jede Spur enthält ein Symbol des Bandalphabets Γ
- Alle Symbole werden simultan gelesen und geschrieben
- Kopf wird "synchron" über das Band bewegt
- Verwendung: Simultane Verarbeitung von Teilen der Eingabe z.B. zur Erkennung von $\{w\#w|w\in\{0,1\}^*\}$ \mapsto HMU, §8.3.2

• Simulation durch erweitertes Bandalphabet

- Bei k Spuren wähle Tupelalphabet $\Sigma' := \Sigma^k$
- In jedem Schritt wird 'ein' Symbol $X := (x_1, ..., x_k)$ verarbeitet, wobei x_i dem Symbol auf Spur i entspricht

Programmiertechnik: Mehrere Bänder



• Maschine verwaltet mehrere Bänder

- Jedes Band enthält ein Symbol des Bandalphabets Γ
- Alle Symbole werden simultan gelesen und geschrieben
- Köpfe werden unabhängig über die Bänder bewegt
- Erheblich größere Freiheiten bei der Programmierung

Simulation aufwendiger

- Mehrspurband + Verwaltung der Kopfpositionen auf separaten Spuren
- Spuren werden "einzeln aufgesucht" und modifiziert

SIMULATION EINER MEHRBANDMASCHINE

			TM Programm δ								
			r	r	r	$r \mid r$	r	r	r		
			$(X_1$	$,X_{2},$	(X_3)		$(Y_1,$	Y_2, Y	D_1	$,D_{2},$	$D_3)$
Band 1		0	1	1	0	1	1	B	B	B	
Kopfmarke	1					#					
Band 2	• • • •	B	0	1	0	1	1	1	0	B	• • • •
Kopfmarke	2			#							
Band 3		B	0	1	1	0	0	0	В	В	
Kopfmarke	3								#		
Begrenzungsm	\overline{arke}										#

• Sequentielle Verarbeitung der einzelnen Bänder

- Lesen: Suche Begrenzungsmarke, laufe rückwärts zu Kopfmarken, sammle zu lesende Symbole in Registern
- Schreiben + Kopfbewegungen: lege Symbole und Richtungen in Register suche Kopfmarken und überschreibe Teilzelle entsprechend

Simulation benötigt quadratischen Zeitaufwand → HMU, §8.4.3

Programmiertechnik: Unterprogramme

Ausführung einer anderen TM als Zwischenschritt

ullet Aufruf von M' in Überführungsfunktion von M

- -M' erhält Eingabewort von M und gibt Resultat an M zurück
- -M wechselt nach Ausführung von M' in festen Folgezustand
- Anwendungsbeispiel: Multiplikation als wiederholte Addition

• Simulation wie bei Assembler-Unterprogrammen

- Umbenennung aller Zustände von M' zur Konfliktvermeidung
- Ergänze Zustand q_r für Rücksprung ins aufrufende Programm
- Ergänze separates Arbeitsband für Unterprogramm
- Aufruf: Speichere Rücksprungadresse (Zustand von M) in Register
- Kopiere Eingabe für Unterprogramme auf Arbeitsband für M'
- Nach Abarbeitung kopiere Resultate auf Arbeitsband von M
- Wechsele in Zustand, der im Register gespeichert ist

Beschränkte Turingmaschinenmodelle

Restriktionen vereinfachen Analysen von TM

Einfachere Annahmen und weniger Alternativen in Beweisen Kein Verlust der Ausdruckskraft: Simulation normaler TMs möglich

1. Halbseitig unendliches Band

→ HMU, §8.5.1

- Beidseitig unendliches Band durch Tupelalphabet Γ^2 simulierbar
- Im Paar (X_l, X_r) repräsentiert X_l die linke, X_r die rechte Bandhälfte
- Register (simulierbar im Zustand) gibt an, welche Hälfte aktiv ist

2. Binäres Bandalphabet $\Gamma = \{1, B\}$

- Symbole beliebiger Alphabete als Strings über {1B,11} simulierbar

3. Zwei Stacks statt Turingband

→ HMU, §8.5.2

-2 Stacks + Zustand können jede Konfiguration $(\boldsymbol{u},\boldsymbol{q},\boldsymbol{v})$ beschreiben

4. Zählermaschinen

 \mapsto HMU, $\S 8.5.3/4$

- Endliche Anzahl von Registern kann beliebig große Zahlen verarbeiten
- Operationen: Test auf Null, Addition oder Subtraktion von Eins
- Zähler können Stacks simulieren (aufwendige Codierung von Wörtern als Zahl)

DER VERGLEICH MIT REALEN COMPUTERN

• Computer können Turingmaschinen simulieren

- Repräsentiere binäres Bandalphabet und halbseitig unendliches Band
- (Endliche) reale Speicher können nach Bedarf beliebig erweitert werden

• Turingmaschinen können Computer simulieren

- Speicher wird durch einseitiges Band mit binärem Alphabet repräsentiert
- Register enthalten Programmzähler, Speicheradressregister, etc.
- Aufsuchen einer Speicherzelle vom Bandanfang durch Zählen
- Gesuchter Speicherinhalt wird im Register abgelegt und analysiert
- Identifizierte Anweisungen werden durch Unterprogramme ausgeführt
- Nach Ausführung wird Anweisungszähler angepaßt und die nächste Anweisung aus dem Speicher geholt

• Simulationsaufwand ist polynomiell → HMU, §8.6.3

- -n Schritte des realen Computers benötigen maximal n^6 Schritte
- Optimierungen möglich

Turingmaschinen im Rückblick

• Allgemeinstes Maschinenmodell

- Deterministischer endlicher Automat mit unendlichem Speicherband
- "Beliebiger" Zugriff auf Speicherzellen
- Erkennung von Wörtern durch Endzustand

• Verhaltensanalyse durch Konfigurationsübergänge

- Konfigurationen beschreiben Zustand, Bandinhalt & Kopfposition

• Äquivalent zu realen Computern

- Register, mehrere Bänder, Unterprogramme, etc. simulierbar
- Beschränkte Maschinenmodelle sind ebenfalls gleich mächtig