Theoretische Informatik II

Prof. Dr. Christoph Kreitz / Holger Arnold Universität Potsdam, Theoretische Informatik, Sommersemester 2006

Übung 8 (Version 1) — Abgabetermin: 19.6.2006

Was Sie als Vorbereitung auf diese Übung wissen sollten

- Wie sind für eine Funktion f die Mengen O(f), $\Omega(f)$ und $\Theta(f)$ definiert?
- Wie werden Zeit- und Platzkomplexität eines gegebenen Algorithmus analysiert?

Aufgabe 8.1

Zeigen Sie, dass jede aufzählbare Sprache auf die Sprache $A = \{ \langle \langle M \rangle, x \rangle \mid \langle M \rangle \text{ ist die Beschreibung einer Turingmaschine } M$, die das Wort x akzeptiert $\}$ reduziert werden kann.

Aufgabe 8.2

Gegeben seien $f, g, h, k : \mathbb{N} \to \mathbb{N}$. Beweisen oder widerlegen Sie:

- 1. Wenn f = O(h) und g = O(k), dann f + g = O(h + k) und fg = O(hk).
- 2. Wenn $f = \Omega(h)$ und $g = \Omega(k)$, dann $f + g = \Omega(h + k)$ und $fg = \Omega(hk)$.
- 3. $f + g = \Theta(\max(f, g))$ mit $\max(f, g)(x) = \max(f(x), g(x))$.

Aufgabe 8.3

Die Relationen \prec und \sim seien wie folgt definiert: $f \prec g$ genau dann, wenn f = O(g) und $f \sim g$ genau dann, wenn $f = \Theta(g)$. Zeigen Sie, dass \prec reflexiv und transitiv ist und dass \sim eine Äquivalenzrelation ist.

Aufgabe 8.4

Beweisen oder widerlegen Sie: $g = \Omega(f)$ gilt genau dann, wenn f = O(g).

Aufgabe 8.5

Zeigen Sie, dass $n^c \leq_a d^n$ für beliebige reelle Konstanten c > 0 und d > 1.

Aufgabe 8.6

- 1. Zeigen Sie, dass die Funktionen n!, n^n und 2^{2^n} schneller wachsen, als jede Exponentialfunktion. Ordnen Sie diese drei Funktionen nach ihrer Wachstumsrate.
- 2. Zeigen Sie, dass die Funktionen $2^{\sqrt{n}}$ und $n^{\log n}$ schneller als jedes Polynom, aber langsamer als jede Exponentialfunktion wachsen. Welche der beiden Funktionen hat die größere Wachstumsrate?

Hausaufgabe 8.7

Beweisen Sie durch Reduktion, dass nicht entscheidbar ist, ob eine rekursive Funktion überall undefiniert ist. Zeigen Sie dazu, dass die Menge \overline{H} auf die Menge $U = \{i \mid \forall x \,.\, \varphi_i(x) = \bot\}$ reduziert werden kann. Geben Sie die Reduktionsfunktion explizit an und begründen Sie, warum diese berechenbar und total ist.

Hausaufgabe 8.8

Geben Sie für die folgenden Paare von Funktionen jeweils an, ob $f=O(g), f=\Omega(g)$ oder $f=\Theta(g)$ gilt. Begründen Sie Ihre Aussage und geben Sie die entsprechenden Konstanten aus der Definition von O, Ω und Θ an.

1.
$$f(n) = \sqrt{n}, g(n) = 1000n.$$

2.
$$f(n) = \log_{10} n$$
, $g(n) = \log_2 n$.

3.
$$f(n) = n^{1/4}$$
, $g(n) = \sqrt{n}$.

4.
$$f(n) = 256n^2 + 128n - 64$$
, $g(n) = 13n^2$.

Hausaufgabe 8.9

Wenn f und g totale, monoton wachsende Funktionen von $\mathbb N$ nach $\mathbb N$ mit f = O(g) und $g \neq O(f)$ sind, folgt dann, dass $f = \Omega(g)$ gilt? Geben Sie einen Beweis oder ein Gegenbeispiel an.