Theoretische Informatik II

Einheit 6

Theoretische Informatik im Rückblick

- 1. Berechenbarkeitsmodelle
- 2. Berechenbarkeitstheorie
- 3. Komplexitätstheorie
- 4. Methodik des Aufgabenlösens

BERECHENBARKEITSMODELLE

Turingmaschinen

- Endlicher Automat mit unendlichem Band als Gedächtnis
- Beschreibung durch Zustandsüberführungstabellen
- Semantik definiert über Konfigurationen
- Berechenbarkeitsbegriff übertragbar von Wörtern auf Zahlen, Mengen, ...
- Akzeptierende und berechnende Variante sind äquivalent
- Nichtdeterministische Variante mit exponentiellem Aufwand simulierbar
- Varianten: Datenregister, Mehrere Spuren, Mehrere Bänder, Halbseitiges Band, Beschränktes Alphabet ... alle äquivalent
- Turingmaschinen erkennen genau die Typ-0 Sprachen

• Rekursive Funktionen

- Mathematischer Funktionenkalkül auf Zahlen
- Anwendung von Operationen (\circ , Pr, μ) auf Grundfunktionen (s, pr_k^n , c_k^n)
- Alle Programmiertechniken simulierbar
- Primitiv-rekursive Funktionen als wichtige Teilklasse
- Äquivalent zu Turing-berechenbaren Funktionen

BERECHENBARKEITSMODELLE

• λ-Kalkül

- Einfaches mathematisches Modell funktionaler Programmiersprachen
- Funktionsdefinition, -anwendung und -auswertung
- Datenstrukturen wie Zahlen, Listen, Boole'sche Operatoren codierbar
- Äquivalent zu μ -rekursiven Funktionen

• Arithmetische Repräsentierbarkeit

- Beweisbasiertes Modell für logische Programmiersprachen
- Formeln repräsentieren Ein-/Ausgabeverhalten von Funktionen
- Einfaches Modell, äquivalent zu rekursiven Funktionen

• Weitere Modelle sind ebenfalls äquivalent

- Abakus, Registermaschinen, Mini-Pascal, Markov-Algorithmen, ...

• Church'sche These

- Intuitiv berechenbare Funktionen sind Turing-berechenbar
- Unbeweisbare aber praktisch sehr nützliche Arbeitshypothese

Berechenbarkeitstheorie – Losgelöst vom Modell

• Berechenbare Funktionen als Oberbegriff

- Charakteristische Funktion erklärt Aufzählbarkeit & Entscheidbarkeit

• Berechenbarkeit ist axiomatisierbar

- Berechenbare Funktionen & Rechenzeitfunktion sind numerierbar
- Es gibt eine universelle berechenbare Funktion
- Programme sind effektiv kombinierbar
- Rechenzeit ist entscheidbar

• Aufzählbarkeit & Entscheidbarkeit

- Viele äquivalente Charakterisierungen von Aufzählbarkeit
- $-\,M$ entscheidbar $\Leftrightarrow\,M$ und \overline{M} aufzählbar
- Abschlußeigenschaften: Vereinigung, Durchschnitt, Urbild Für Entscheidbarkeit auch Komplement und Differenz

• Beweistechniken für unlösbare Probleme

- Diagonalisierung: Unendliche Konstruktion von Gegenbeispielen
- Monotonieargumente: Widersprüche im Wachstumsverhalten
- Problemreduktion: Abbildung auf bekanntes unlösbares Problem
- Satz von Rice: keine extensionale Eigenschaft ist entscheidbar

Komplexitätstheorie

Komplexitätsmaße

- Zeit- und Platzkomplexität relativ zur Größe der Eingabe
- Vereinfachte Komplexitätsabschätzungen genügen
- Asymptotische Meßgröße $\mathcal{O}(f)$ für worst-case Analyse
- Obergrenze für Handhabbarkeit ist polynomielles Wachstum

• Analyse der Komplexität von Algorithmen

- Suchverfahren lineare und logarithmische Verfahren
- Sortierverfahren quadratische und $\mathcal{O}(n * \log_2 n)$ Algorithmen
- Travelling Salesman nur exponentiell bekannt

• Komplexität von Problemen

- Untere Schranken für Komplexität von Sortieren: $\mathcal{O}(n * \log_2 n)$
- Nichtdeterministische Maschinen lösen Suchprobleme effizient
- Komplexitätsklassen: .. $LOGSPACE \subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE \subseteq$..

$$\mathcal{P} \stackrel{?}{=} \mathcal{NP}$$
 ist die wichtigste noch offene Frage

NICHT-HANDHABBARE PROBLEME

• NP-vollständigkeit

- Die schwierigste Klasse innerhalb von \mathcal{NP}
- Erklärbar durch polynomielle Reduzierbarkeit \leq_p
- Satz von Cook: Expliziter \mathcal{NP} -vollständigkeitsbeweis für SAT
- Sonstige Beweise via \leq_p : 3SAT, CLIQUE, VC, KP, GC, ...
- Klassen jenseits von \mathcal{NP} : $co-\mathcal{NP}$, PSPACE-vollständig, ...

• Grenzüberschreitung ist möglich

- Pseudopolynomielle Algorithmen, wenn es an großen Zahlen liegt
- Approximationsalgorithmen, wenn suboptimale Lösung akzeptabel
- Probabilistische Algorithmen reduzieren Fehlerwahrscheinlichkeit

Theoretische Informatik - kurzgefasst

FRAGEN?

Tutorium, morgen 15:15-16:40

Wie löst man Aufgaben effektiv und korrekt?

In der Theorie läuft nicht alles nach Schema, aber Methodik führt dennoch zu mehr Erfolg

1. Voraussetzungen präzisieren (essentiell für alles Weitere)

- Welche Begriffe sind zum Verständnis der Aufgabe erforderlich
- Was ist eigentlich genau zu tun?

2. Lösungsweg entwickeln und konkretisieren

- Welche Einzelschritte benötigt man, um das Problem zu lösen?
- Lösungen der einzelnen Schritte knapp, aber präzise skizzieren

3. Argumente zu Lösung zusammenfassen

- Ergebnis sollte ein zusammenhängendes schlüssiges Argument sein
 - · Lösungen der Einzelschritte Gesamtergebnis zusammenführen
 - · Zusammenfassend hinschreiben, was jetzt insgesamt gezeigt ist
- Auf lesbaren und verständlichen Text achten
 Formeln & Textfragmente ohne erkennbaren Sinn aneinanderzureihen ist unakzeptabel

Beispiele im Anhang dieser Folien

Beispiel I: Primitiv-rekursive Funktionen

Zeige, daß $h: \mathbb{N} \to \mathbb{N}$ mit h(n) = n! primitiv rekursiv ist. Stelle h explizit durch Operatoren und Grundfunktionen dar

1. Voraussetzungen präzisieren

- $-h:\mathbb{N}^k\to\mathbb{N}$ ist primitiv-rekursiv, wenn h aus primitiv-rekursiven Funktionen durch Komposition oder primitive Rekursion entsteht
- Die Grundfunktionen s, pr_k^n , und c_k^n sind primitiv-rekursiv
- Bekannte primitiv-rekursive Funktionen aus Vorlesung und Übungen
 - $\cdot p, sub, mul, exp, \dots$
 - · Fallunterscheidung, Summierung, beschränkte Minimierung, . . .
- Was ist zu tun?

Drücke h durch obige Funktionen und Operatoren aus

Beispiel I: n! ist primitiv-rekursiv

2. Lösungsweg konkretisieren

- -Einzelschritte: versuche h durch ein Operatorenschema zu beschreiben
 - · Einfache Komposition bekannter Funktionen reicht nicht
 - · Fallunterscheidung und Minimierung passen nicht
 - · Versuche Schema der primitiven Rekursion
- -h = Pr[f, g] gilt, wenn $h(\vec{x}, 0) = f(\vec{x}), h(\vec{x}, y+1) = g(\vec{x}, y, h(\vec{x}, y))$
- Dabei muß $f:\mathbb{N}^0 \to \mathbb{N}$ und $g:\mathbb{N}^2 \to \mathbb{N}$ sein, also fällt \vec{x} ganz weg.
- Eingesetzt: h(0) = 0! = 1 = f()h(y+1) = (y+1)! = (y+1)*y! = (y+1)*h(y) = g(y, h(y))
- Es folgt f() = 1 also $f = c_1^0$ und g(y,z) = (y+1)*z = mul(s(y),z), also $g = mul\circ(s\circ pr_1^2, pr_2^2)$

3. Argumente zu Lösung zusammenfassen

- Da f und g primitiv rekursiv sind, folgt daß h primitiv-rekursiv ist
- Operatorenschema: $h = Pr[c_1^0, (mul \circ (s \circ pr_1^2, pr_2^2))]$
- Wir setzen ein: $mul = Pr[c_0^1, (add \circ (pr_1^3, pr_3^3))]$ und $add = Pr[pr_1^1, s \circ pr_3^3]$

$$h = \Pr[c_1^0, (\Pr[c_0^1, (\Pr[pr_1^1, s \circ pr_3^3] \circ (pr_1^3, pr_3^3))] \circ (s \circ pr_1^2, pr_2^2))]$$

Beispiel I: n! ist primitiv-rekursiv

Zeige, daß $h: \mathbb{N} \to \mathbb{N}$ mit h(n) = n! primitiv rekursiv ist. Stelle h explizit durch Operatoren und Grundfunktionen dar

Kurze, aufgeschriebene Lösung

- Wir beschreiben h durch das Schema der primitiven Rekursion
- Es ist h(0) = 0! = 1 = f(),

$$h(y+1) = (y+1)! = (y+1)*y! = (y+1)*h(y) = g(y, h(y))$$

- Es folgt f() = 1, also $f = c_1^0$

und
$$g(y,z) = (y+1)*z = mul(s(y),z)$$
, also $g = mul \circ (s \circ pr_1^2, pr_2^2)$

- Da f und g primitiv rekursiv sind, folgt daß h primitiv-rekursiv ist
- Operatorenschema: $h = Pr[c_1^0, (mul \circ (s \circ pr_1^2, pr_2^2))]$
- Nach Einsetzen

$$h = Pr[c_1^0, (Pr[c_0^1, (Pr[pr_1^1, s \circ pr_3^3] \circ (pr_1^3, pr_3^3))] \circ (s \circ pr_1^2, pr_2^2))]$$

In vielen Fällen greift ein anderes Schema (Komposition, Minimierung, etc.) besser

Beispiel II: Diagonalisierung

Zeige: $RG_{\varphi} = \{(i,y) \mid \exists n \in \mathbb{N}. \ \varphi_i(n) = y\}$ ist nicht entscheidbar

1. Voraussetzungen präzisieren

- L ist entscheidbar, wenn χ_L berechenbar ist
- Charakteristische Funktion $\chi_{L}(\vec{x}) = \begin{cases} 1 & \text{falls } \vec{x} \in L, \\ 0 & \text{sonst} \end{cases}$
- $-\varphi$: Numerierung berechenbarer Funktionen, Für jede berechenbare Funktion f gibt es in j mit $f = \varphi_i$
- Zeige, daß die Annahme " RG_{φ} ist entscheidbar" zum Widerspruch führt
- Mögliche Techniken: Diagonalisierung, Monotonieargumente, Problemreduktion, Satz von Rice

Beispiel II: Diagonalisierung

2. Lösungsweg konkretisieren: Diagonalisierung

Einzelschritte: 1. Annahme RG_{φ} ist entscheidbar

- 2. Konstruiere eine Diagonalfunktion f mittels $\chi_{RG_{oo}}$
- 3. Zeige: f ist berechenbar ist, also $f = \varphi_j$ für ein j
- 4. Zeige: f ist auf seinem eigenen Index j widersprüchlich

$$zu \ 2.: \ \text{definiere} \ f(i) = \left\{ \begin{array}{l} \bot \ \ \text{falls} \ (i,i) \in RG_{\varphi} \\ i \ \ \ \text{sonst} \end{array} \right. \\ \text{Schlüsselidee für Widerspruch auf} \ (j,j)$$

zu 3.: f berechenbar, da Fallunterscheidung mit Test $(i, i) \in RG_{\varphi}$

Es gilt
$$(i, i) \in RG_{\varphi} \iff \chi_{RG_{\varphi}}(i, i) = 1$$
, also $f(i) = \mu_z[\chi_{RG_{\varphi}}(i, i) = 0] + i$

Da f berechenbar ist, gibt es einen Index j mit $f = \varphi_j$

 $zu \not a$: Wir betrachten das Verhalten von f auf j

Es gilt
$$(j, j) \in RG_{\varphi}$$

$$\Leftrightarrow \exists n \in \mathbb{N}. \ \varphi_j(n) = j$$

$$\Leftrightarrow \exists n \in \mathbb{N}. \ f(n) = j$$

$$\Leftrightarrow (j,j) \notin RG_{\varphi}$$

(nach Definition von
$$RG_{\varphi}$$
)

(nach Definition von
$$RG_{arphi_{j}}$$

$$(f=\varphi_j)$$

(nach Konstruktion von f)

Dies ist ein Widerspruch. Also kann RG_{φ} nicht entscheidbar sein

Beispiel II: Diagonalisierung

Zeige: $RG_{\varphi} = \{(i,y) \mid \exists n \in \mathbb{N}. \ \varphi_i(n) = y\}$ ist nicht entscheidbar

Kurze, aufgeschriebene Lösung

Wir nehmen an RG_{φ} sei entscheidbar.

Dann ist die charakteristische Funktion $\chi_{RG_{\varphi}}$ berechenbar.

Wir konstruieren mit $\chi_{RG_{\varphi}}$ eine berechenbare Funktion f, die sich auf ihrer eigenen Gödelnummer widersprüchlich verhält.

Es sei
$$f(i) = \begin{cases} \bot & \text{falls } (i, i) \in RG_{\varphi} \\ i & \text{sonst} \end{cases}$$

f ist berechenbar, da $(i,i) \in RG_{\varphi} \iff \chi_{RG_{\varphi}}(i,i) = 1.$

Damit gibt es einen Index j mit $f = \varphi_i$

Wir betrachten das Verhalten von f auf j

Es gilt
$$(j,j) \in RG_{\varphi} \Leftrightarrow \exists n \in \mathbb{N}. \ \varphi_j(n) = j \Leftrightarrow \exists n \in \mathbb{N}. \ f(n) = j \Leftrightarrow (j,j) \notin RG_{\varphi}$$

Dies ist ein Widerspruch. Also kann RG_{φ} nicht entscheidbar sein

Beispiel III: \mathcal{NP} -vollständigkeit

Zeige, daß das Vertex Cover Problem \mathcal{NP} -vollständig ist

• Voraussetzungen präzisieren

- L ist \mathcal{NP} -vollständig, falls $L \in \mathcal{NP}$ und $L' \leq_p L$ für jedes $L' \in \mathcal{NP}$
- $-L \in \mathcal{NP}$, falls L von einer NTM in polynomieller Zeit entschieden wird
- $-L' \leq_p L$, falls $x \in L' \Leftrightarrow f(x) \in L$ für eine polynomiell bb. Funktion f
- $-\mathbf{VC} = \{ (G, k) \mid \exists V' \subseteq V. \mid V' \mid \leq k \land V' \text{ Knotenüberdeckung von } G \}$

Standard-Lösungsweg

- 1. Zeige $VC \in \mathcal{NP}$:
 - a) Beschreibe, welchen Lösungsvorschlag die NTM generiert
 - b) Beschreibe, wie Lösungsvorschlag deterministisch überprüft wird
 - c) Zeige, daß das Prüfverfahren polynomiell ist
- 2. Zeige $\exists L' \in \mathcal{NPC}. \ L' \leq_p VC$:
 - d) Wähle ein ähnliches, bekanntes \mathcal{NP} -vollständiges Problem L'
 - e) Beschreibe Transformationsfunktion f von L' auf VC
 - f) Zeige für alle $x \in \Sigma'^*$: $x \in L' \Leftrightarrow f(x) \in VC$
 - g) Zeige, daß f in polynomieller Zeit berechnet werden kann

Beispiel III: \mathcal{NP} -Vollständigkeit von VC

1. Zeige $VC \in \mathcal{NP}$:

- a) Rate eine Kantenmenge $V'\subseteq V$
- b) Prüfe $|V'| \leq k$ maximal |V'| SchrittePrüfe: $\forall \{v, v'\} \in E. \ v \in V' \lor v' \in V'$ $maximal \ |V'| * |E| \le |V|^3 \ Schritte$
- c) Gesamte Anzahl der Schritte ist in $\mathcal{O}(|V|^3)$

2. Zeige $\exists L' \in \mathcal{NPC}. L' \leq_p VC$

- d) Wähle das \mathcal{NP} -vollständige Cliquen Problem, zeige $CLIQUE \leq_p VC$
- e) Es ist V' eine Clique in G = (V, E)

$$\Leftrightarrow \forall v, v' \in V_c. v \neq v' \Rightarrow \{v, v'\} \in E \quad \Leftrightarrow \forall v, v' \in V_c. \{v, v'\} \notin E^c$$

$$\Leftrightarrow \forall \{v, v'\} \in E^c. \ v \in V - V_c \lor v' \in V - V_c$$

 $\Leftrightarrow V - V_c$ Knotenüberdeckung von $G^c = (V, E^c)$

Setze
$$f(G, k) := (G^c, |V| - k)$$

- f) Es folgt $(G, k) \in CLIQUE$ \Leftrightarrow G hat Clique V_c der Mindestgröße k $\Leftrightarrow G^c$ hat Knotenüberdeckung $V'=V-V_c$ der Maximalgröße |V|-k $\Leftrightarrow f(G,k) = (G^c, |V| - k) \in VC$
- g) f ist in polynomieller Zeit $\mathcal{O}(|V|^2)$ berechenbar

Aus $VC \in \mathcal{NP}$ und $CLIQUE \leq_p VC$ folgt VC ist \mathcal{NP} -vollständig