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Wie sicher kann ein Verfahren werden?

• Ziel ist (nahezu) perfekte Sicherheit

– Klartext eines Schlüsseltextes ist ohne Schlüssel niemals zu ermitteln

auch wenn Angreifer beliebig viel Zeit und Rechnerkapazität hat

• Wie präzisiert man perfekte Sicherheit?

– Schlüsseltext enthält keine Information über zugehörigen Klartext

· Jeder mögliche Klartext könnte zu diesem Schlüsseltext passen

· Zugehörige Schlüssel sind alle gleich wahrscheinlich

· Eve kann nicht wissen, welcher Schlüssel tatsächlich benutzt wurde

– Keine Frage der Komplexität sondern des Informationsgehalts

– Präzisierung benötigt Wahrscheinlichkeits- und Informationstheorie

• Kann perfekte Sicherheit erreicht werden?

– Möglich wenn Schlüssel perfekt zufällig und so groß wie Klartext

– Unrealistischer Aufwand – reale Verfahren sind niemals perfekt
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Mathematik: Wahrscheinlichkeitstheorie

• Ereignis

– Menge möglicher Ergebnisse eines Zufallsexperimentes

z.B. Erstes Symbol eines Textes ist ein Y: E = {Y}

Würfel zeigt eine ungerade Zahl: E = {1, 3, 5}

– Menge S aller möglichen Ergebnisse (Elementarereignisse) nicht leer

– Sicheres Ereignis: E = S (z.B. Würfel zeigt Zahl zwischen 1 und 6)

– Leeres Ereignis: E = ∅ (z.B. Würfel zeigt eine Zahl größer als 6)

– Ereignisse A und B schließen sich gegenseitig aus, wenn A∩B = ∅

• Wahrscheinlichkeitsverteilung auf S

– Abbildung Pr : P(S)→R, die jedem Ereignis eine Zahl zuordnet mit

· 0≤Pr(E)≤ 1 für alle E⊆S

· Pr(∅) = 0 und Pr(S) = 1

· Pr(A∪B) = Pr(A)+Pr(B), falls A und B sich ausschließen

– Pr(E) ist die Wahrscheinlichkeit des Ereignisses E
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Mathematik: Wahrscheinlichkeitstheorie (II)

• Eigenschaften von Wahrscheinlichkeiten

– Pr(A)≤Pr(B), falls A⊆B

– Pr(S\A) = 1−Pr(A)

– Pr(
⋃n

i=1 Ai) =
∑n

i=1 Pr(Ai), falls alle Ai sich paarweise ausschließen

– Pr(A) =
∑

a ∈A Pr(a), für alle A⊆S (Pr(a) steht kurz für Pr({a}))

– Wahrscheinlichkeitsverteilungen sind durch die Wahrscheinlichkeiten

der Elementarereignisse eindeutig definiert

• Gleichverteilung

– Wahrscheinlichkeitsverteilung mit Pr(a) = Pr(b) für alle a, b ∈S

– Für endliche Mengen S ist Pr(a) = 1/|S| und Pr(A) = |A|/|S|

· z.B. perfekte Würfel: Pr(i) = 1/6 für alle i ∈{1..6}

– Verteilung von Buchstaben im Text ist keine Gleichverteilung
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Mathematik: Wahrscheinlichkeitstheorie (III)

• Bedingte Wahrscheinlichkeit Pr(A|B)

– Wahrscheinlichkeit, daß Ereignis A auftritt, wenn B bekannt ist

z.B. Wahrscheinlichkeit des Klartextes x, wenn Schlüsseltext y vorliegt

Pr(A|B) = Pr(A∩B)/Pr(B)

– Wahrscheinlichkeit, daß Würfel eine 4 zeigt, wenn sicher ist,

daß die angezeigte Zahl gerade ist, ist 1/3

– Wahrscheinlichkeit, daß Klartext einer Verschiebechiffre ENDE ist,

wenn Schlüsseltext ABCD vorliegt, ist 0

• Unabhängigkeit von Ereignissen A und B

– Pr(A|B) = Pr(A): Wahrscheinlichkeit für A hängt nicht von B ab

z.B. Ergebnis eines zweiten Würfelns hängt nicht vom ersten Wurf ab

– Äquivalent zu Pr(A∩B) = Pr(A)Pr(B)

– Die Wahrscheinlichkeit, daß mehrere unabhängige Ereignisse

gleichzeitig auftreten, ist das Produkt der Einzelwahrscheinlichkeiten
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Mathematik: Wahrscheinlichkeitstheorie (IV)

• Satz von Bayes:
– Pr(B|A) = Pr(B)Pr(A|B)/Pr(A), falls Pr(A) > 0

Einfache Rechnung: Pr(B|A) = Pr(B∩A)/Pr(A) = Pr(B)Pr(A|B)/Pr(A)

– Wahrscheinlichkeit eines Klartextes x bei Vorliegen des Schlüsseltextes
y ergibt sich aus Wahrscheinlichkeit, daß x zu y verschlüsselt wird

• Geburtstagsparadox
– Wieviele Personen benötigt man in einem Raum, damit mit großer

Wahrscheinlichkeit zwei am gleichen Tag Geburtstag haben?

– Wieviele Klartext-/Schlüsselpaare braucht man, um mit hoher
Wahrscheinlichkeit mehrmals denselben Schlüsseltext zu generieren?

Analyse: bei k Personen, n Geburtstagen gibt es nk Elementarereignisse
(g1, .., gk) ∈{1..n}k mit Wahrscheinlichkeit 1/nk

Die Wahrscheinlichkeit p, daß alle gi verschieden sind, ist
∏k−1

i=0 (n−i)/nk

Wegen 1 + x≤ex ist p maximal e
∑k−1

i=0 (−i/n) = e−k(k−1)/(2n)

Für k≥ 1/2+
√

1/2+2n·ln2 = 22.9999 ist p≤1/2 (Für k≥42 ist p≤0.1 !)

Mit Wahrscheinlichkeit 50% haben 2 von 23 Personen denselben Geburtstag
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Perfekte Geheimhaltung präzisiert

• Informationsgehalt von Nachrichten

– PrP : Wahrscheinlichkeitsverteilung der Klartexte

Abhängig von Sprache und Thematik (Bank, Uni, Militär,..)

– PrK: Wahrscheinlichkeitsverteilung der Schlüssel

Unabhängig von PrP aber ggf. abhängig von verwendetem System

– Pr(x, K) := PrP(x)PrK(K)

Wahrscheinlichkeit der Verschlüsselung von x ∈P mit K ∈K

Spezialfälle: Pr(x) := Pr(x,K), Pr(K) := Pr(P , K)

– Pr(y) := Pr({(x, K) | eK(x) = y}) =
∑

K ∈K Pr(dK(y))Pr(K)

Wahrscheinlichkeit, daß eine Verschlüsselung den Klartext y ergibt

• Perfekte Geheimhaltung eines Kryptosystems

– Kein Schlüsseltext sagt etwas über den zugehörigen Klartext aus

Mathematisch: Für alle x ∈P , y ∈C ist Pr(x|y) = Pr(x)

Mit dem Satz von Bayes auch: Pr(y) = Pr(y|x) = Pr({K|eK(x)=y})
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Informationsgehalt von Kryptosystemen

Ein einfaches Beispielsystem
Wahrscheinlichkeiten und Verschlüsselung durch Tabelle gegeben

K1 K2 K3 K4 K5

PrC\PrK .2 .4 .1 .2 .1

A .2 1 2 3 4 5
B .5 2 3 4 6 1
C .2 3 4 6 5 2
D .1 4 5 1 2 3

P = {A, B,C,D},

C = {1, 2, 3, 4, 5, 6}

K = {K1,K2, K3,K4,K5}l

Schlüsselwahrscheinlichkeit unabhängig von Klartextwahrscheinlichkeit

– Wahrscheinlichkeiten der Schlüsseltexte:

· Pr(1) = Pr({(A, K1), (B,K5), (D, K3)}) = .04 + .05 + .01 = .10

· Pr(2)..P r(6) = .22, .27, .19, .10, .12

– Wahrscheinlichkeiten der Klartexte bei bekannten Schlüsseltexten:

· Pr(A|1) = Pr({(A, 1)})/Pr(1) = .04/.10 = .40

· Pr(B|1)..P r(D|1) = .50, .00, .10

· Pr(A|2)..P r(D|2) = .364 (8/22), .454, .091, .091

Keine perfekte Geheimhaltung, da i.a. Pr(x|y) 6=Pr(x)
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Perfekt sichere Kryptosysteme

• Die Verschiebechiffre ist perfekt geheim

... aber nur, wenn jeder Schlüssel mit gleicher Wahrscheinlichkeit vorkommt

und das Chiffrierverfahren für jeden Buchstaben neu gestartet wird

• Beweis:

– Wegen P = C = K = Z27 gilt für jedes x ∈P , y ∈C

Pr(y|x) = Pr({K|x+nK=y}) = Pr(y−nx) = 1/27 und

Pr(y) =
∑

K ∈K Pr(dK(y))Pr(K) =
∑

K ∈K Pr(y−nK)/27

=
∑

x ∈P Pr(x)/27 = 1/27

– Da beide Werte gleich sind, ist die Verschiebechiffre perfekt sicher

selbst wenn keine Gleichverteilung der Klartexte vorliegt

• Was sind die Kernargumente des Beweises?

– Pr(y|x): Für alle x ∈P , y ∈C gibt es genau einen Schlüssel mit eK(x)=y

– Pr(y): Pr(K) ist eine Konstante (Schlüssel sind gleichverteilt)

– Klartext- und Schlüsselmenge sind gleich groß und endlich
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Perfekte Sicherheit: Der Satz von Shannon

Ein Kryptosystem mit |K|=|P|=|C|<∞ und Pr(x)>0 für alle x ∈P
ist genau dann perfekt geheim, wenn die Schlüssel gleichverteilt sind und
für alle x ∈P, y ∈C genau ein Schlüssel K ∈K mit eK(x)=y existiert

⇒ : Wir nehmen an, das Kryptosystem sei perfekt geheim

– Gäbe es für ein x ∈P , y ∈C keinen Schlüssel K ∈K mit eK(x)=y, dann

wäre Pr(x|y)=06=Pr(x). Also gibt es mindestens ein K mit eK(x)=y

Wegen |K| = |C| gibt es dann genau einen Schlüssel mit eK(x)=y

– Sei Kx(y) der eindeutige Schlüssel K mit eK(x)=y

Wegen |K| = |P| gilt {Kx(y) |x ∈P} = K für jedes y ∈C und

Pr(y) = Pr(y|x) = Pr({K|eK(x)=y}) = Pr(Kx(y)) für alle x ∈P

Damit haben alle Schlüssel die gleiche Wahrscheinlichkeit

⇐ : Wir zeigen die Umkehrung

– Es gilt Pr(y|x) = Pr({K|eK(x)=y}) = Pr(Kx(y)) = 1/|K|

und Pr(y) =
∑

x ∈P Pr(x)Pr(Kx(y)) =
∑

x ∈P Pr(x)/|K| = 1/|K|

für alle x ∈P , y ∈C. Also ist das Kryptosystem perfekt geheim
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One-Time Pads

Perfekte Geheimhaltung mit großem Aufwand

• Einfaches Verschlüsselungsverfahren ( c©Vernam, 1917)

– Bei n-bit Texten wähle P = C = K = {0, 1}n = Z
n
2

– Ver-/entschlüssele bitweise: eK(x) = x⊕K, dK(y) = y⊕K

– Schlüssel werden zufällig (mit Gleichverteilung) gewählt

– Perfekte Geheimhaltung folgt aus Satz von Shannon

• Nicht wirklich praktikabel
– Jede neue Nachricht braucht neuen Schlüssel gleicher Größe

· Wiederverwendung ermöglicht known plaintext Attacke (K = x⊕y)

– Schlüssel muß separat ausgetauscht werden

· Hoher Speicheraufwand für Lagerung von Schlüsseln

– Verwendung wenn Sicherheitsanforderungen hohe Kosten rechtfertigen

• Wie erzeugt man Zufallszahlen?
– Hardware-Zufallsbit Generatoren: physikalische Quellen (Radioaktivität)

– Software-Zufallsbit Generatoren: Zeit zwischen Keyboardanschlägen

– Pseudozufallszahlen: algorithmisch erzeugte Zahlen (effizienter)
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Strom Chiffren

Systematisch erzeugte “One-Time Pads”

• Generiere “zufälligen” Schlüsselstrom k1k2k3...

– Verschlüsselung: eK(x1x2...xn) = ek1(x1)ek2(x2)...ekn(xn)

Entschlüsselung: dK(y1y2...yn) = dk1(y1)dk2(y2)...dkn(yn)

– Schlüssel k1..kn wird systematisch aus Anfangsschlüssel K berechnet

• Berechnung des Schlüsselstroms

– Anfangsschlüssel K und bisherige Klartextfragmente können eingehen

ki = f(K, x1..xi−1) für eine feste Schlüsselerzeugungsmethode f

– Alice berechnet k1=f(K, ǫ), y1=ek1(x1), k2=f(K, x1), y2=ek2(x2), ...

Bob berechnet k1=f(K, ǫ), x1=ek1(y1), k2=f(K, x1), x2=ek2(y2), ...

– Alice und Bob müssen nur den Anfangsschlüssel K austauschen

· Schlüsselaustausch erheblich einfacher als bei One-Time Pads

· Effiziente Ausführung und große Diffusion und Konfusion möglich
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Klassifizierung von Strom Chiffren

• Asynchrone Erzeugung des Schlüsselstroms

– Klartext wird in Schlüsselerzeugung mit einbezogen

z.B. letzter Klartextblock wird Schlüssel für nächsten Block

• Synchrone Erzeugung des Schlüsselstroms

– Keine Abhängigkeit des Schlusselstroms vom Klartext

– Schlüsselstrom wird ausschließlich aus Basisschlüssel K erzeugt

z.B. Fibonaccizahlen modulo n: 1 2 3 5 8 13 21 7 1 8 9 17 26 16 15 ...

• Periodische Erzeugung des Schlüsselstroms

– Teilschlüssel wiederholen sich mit Periode m: ki+m = ki für alle i

– Blockchiffren der Länge m sind Schlüsselströme mit Periode m

– Gewichtete Summe ki+m =
∑m−1

j=0 cjki+j mod n der letzten

m Schlüssel (mit Anfangsschlüssel K = k1..km, c0..cm−1)

kann einen Schlüsselstrom der Periode nm−1 liefern
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LSFR Stromchiffre

k1 k2 k3 k4 k5
� � � � �

-

6

�⊕

�

• Verwende Lineares Feedback Shift Register

– Periodische Stromchiffre mit Anfangsschlüssel K = k1..km, c0..cm−1

– In jeder Phase verwende k1 als aktuellen Schlüssel und berechne

k′
i := ki+1 (Shift) und k′

m :=
∑m−1

j=0 cjkj+1 mod n (Lineares Feedback)

– Kann für n=2 sehr effizient mit Hardwareregistern realisiert werden

– Liefert bei guten Anfangsschlüsseln einen Strom der Periode 2m−1

• Anwendungsbeispiel

– Anfangsschlüssel K = 10000, 10100 liefert den Schlüsselstrom

1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 ...

– Anfangsschlüssel K = 10000, 10110 liefert den Schlüsselstrom

1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 ... (Periode 12!)
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Autokey Chiffre

Einfacher asynchroner Strom Chiffre

• Vigenere Chiffre mit “Klartext als Schlüssel”

– Wähle k1 = K (der geheime Schlüssel) und setze ki+1 = xi

eK(xi) = xi + ki mod n, dK(yi) = yi − ki mod n

– ENDE UM ELF =̂ [4;13;3;4;26;20;12;26;4;11;5]

liefert mit K=3 [3;4;13;3;4;26;20;12;26;4;11] als Schlüsselstrom

und ergibt [7;17;16;7;3;19;5;11;3;15;16] =̂ HRQHDTFLDPQ

• Relativ sicher gegenüber statistischen Analysen

– Regelmäßigkeit des Alphabets wird aufgehoben

– Brute-Force Attacken durch längere Anfangsschlüssel vermeidbar

· Wähle K = k1..km und setze ki+m = xi
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Wie sicher sind Stromchiffren?

• Stromchiffren erzeugen beliebig lange Schlüssel

– 32-bit Anfangsschlüssel liefern “One-Time Pad” für 500MB Daten

– Eine wichtige Voraussetzung von Shannons Theorem ist erfüllt

– Liefern Stromchiffren nahezu perfekte Sicherheit?

• Große Schlüssel alleine reichen nicht

– Stromchiffren erzeugen keinen echten Zufall (keine Gleichverteilung)

– Stromchiffren können nicht jeden 500MB großen Schlüssel erzeugen

· Pro Klartext kann es nicht mehr Schlüssel als Anfangsschlüssel geben

· Es können nicht alle möglichen Schlüsseltexte erzeugt werden

– Beide Annahmen von Shannons Theorem sind verletzt

• Stromchiffren können attackiert werden

– Schlüssel- enthalten zu viele Regelmäßigkeiten

– Schlüsseltexte enthalten wertvolle Strukturinformation für Angreifer
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Kryptoanalyse der LFSR Stromchiffre

• Known plaintext Attacke

– Zur Bestimmung des Anfangsschlüssels K = k1..km, c0..cm−1 benötigt

Eve nur ein Klar-/Schlüsseltextpaar (x1..x2m, y1..x2m) der Länge 2m

– Wegen yi = xi ⊕ ki ist ki = xi ⊕ yi für alle i leicht zu berechnen

– Wegen km+i :=
∑m−1

j=0 cjkj+i mod 2 hat Eve m lineare Gleichungen:

Für Z :=





k1 k2 . . . km
k2 k3 . . . km+1... ... ... ...
km km+1 . . . k2m−1



 gilt (km+1..k2m) = (c0..cm−1) ⋆2 Z

und da Z invertierbar ist, folgt (c0..cm−1) = (km+1..k2m) ⋆2 Z−1

• Anwendungsbeispiel für m = 3

– Eve hat Schlüsseltext 1110111111 und Klartext 1011001101

– Berechneter Schlüsselstrom ist 010 1110010

– Berechne Inverse von Z :=

(

0 1 0
1 0 1
0 1 1

)

als Z−1 =

(

1 1 1
1 0 0
1 0 1

)

– Es folgt (c0, c1, c2) = (1, 1, 1) ⋆2 Z−1 = (1, 1, 0)
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Einfache Kryptosysteme im Rückblick

• Buchstabenorientierte Systeme

– Substitution von Buchstaben durch andere Symbole des Alphabets

– Mono- und polyalphabetische Variante

– Anfällig für Brute-Force Attacken oder statistische Analysen

• Blockbasierte Verschlüsselung

– Permutationen und affin-lineare Chiffren

– Anfällig für known plaintext Attacken mit Matrix-Invertierung

• Strombasierte Verschlüsselung

– Approximation von One-Time Pads durch lange Schlüsselströme

macht statistische Analysen nahezu undurchführbar

– Schlüsselerzeugung mit und ohne Verwendung des Klartextes

– Zu brechen, wenn Erzeugungsverfahren für Schlüsselstrom bekannt

Keine Sicherheit im Computerzeitalter
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Erkenntnisse & Sicherheitsprinzipien

• Buchstabenorientierte Chiffrierung reicht nicht

– Kryptosystem muß große Klartextblöcke auf einmal verschlüsseln

– Chiffrierung darf nicht affin-linear sein (auch nicht zufällig)

– Mehrere Klartextblöcke sollten nicht identisch verschlüsselt werden

• Hohe Diffusion und Konfusion ist wichtig

– Annähernde Gleichverteilung der Schlüssel und statistisch

geringe Abhängigkeit zwischen Klar- und Schlüsseltext

– Perfekte Sicherheit bleibt unerreichbar, da One-Time Pads zu teuer

• Systeme müssen sehr komplex werden

– Hohes Maß an Sicherheit gegenüber jeder möglichen Attacke

· Aufwendige Verschlüsselungsalgorithmen mit großen Schlüsseln

· Schlüssel dürfen nur mit Hilfe von Zufallsgeneratoren bestimmt werden

– Ver-/Entschlüsselung nur noch mit Computerunterstützung möglich

· Große Datenmengen müssen effizient verarbeitet werden können


