Kryptographie und Komplexitat

Einheit 2.3

One-Time Pads und Perfekte Sicherheit

1. Perfekte Geheimhaltung
2. One-Time Pads

3. Strombasierte Verschliisselung
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WIE SICHER KANN EIN VERFAHREN WERDEN? I

e Ziel ist (nahezu) perfekte Sicherheit

— Klartext eines Schliisseltextes ist ohne Schliissel niemals zu ermitteln
auch wenn Angreifer beliebig viel Zeit und Rechnerkapazitat hat

e Wie prazisiert man perfekte Sicherheit?

— Schliisseltext enthalt keine Information tiber zugehorigen Klartext
- Jeder mogliche Klartext konnte zu diesem Schliisseltext passen
- Zugehorige Schliissel sind alle gleich wahrscheinlich

- Eve kann nicht wissen, welcher Schliissel tatsachlich benutzt wurde
— Keine Frage der Komplexitat sondern des Informationsgehalts

— Prazisierung benotigt Wahrscheinlichkeits- und Informationstheorie

e Kann perfekte Sicherheit erreicht werden?
— Moglich wenn Schliissel perfekt zufallig und so grof3 wie Klartext

— Unrealistischer Aufwand — reale Verfahren sind niemals perfekt
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MATHEMATIK: WAHRSCHEINLICHKEITSTHEORIE I

e Ereignis

— Menge moglicher Ergebnisse eines Zufallsexperimentes
z.B. Erstes Symbol eines Textes ist ein Y: E={Y}
Wiirfel zeigt eine ungerade Zahl: E={1,3,5}

— Menge S aller moglichen Ergebnisse (Elementarereignisse) nicht leer
— Sicheres Ereignis: B =S (z.B. Wiirfel zeigt Zahl zwischen 1 und 6)
— Leeres Ereignis: E = () (z.B. Wiirfel zeigt eine Zahl grofer als 6)
— Ereignisse A und B schliefien sich gegenseitig aus, wenn ANB = ()

e Wahrscheinlichkeitsverteilung auf S
— Abbildung Pr : P(S)—R, die jedem Ereignis eine Zahl zuordnet mit
- 0< Pr(F) <1 fir alle EcS
- Pr(0) =0und Pr(S) =1
- Pr(AUB) = Pr(A)+Pr(B), falls A und B sich ausschliefen
— Pr(F) ist die Wahrscheinlichkeit des Ereignisses F
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MATHEMATIK: WAHRSCHEINLICHKEITSTHEORIE (II)

e Eigenschaften von Wahrscheinlichkeiten
— Pr(A) < Pr(B), falls AcB
—- Pr(S\A) =1-Pr(A)
- Pr(lJ_, A) =>_", Pr(A,), falls alle A7 sich paarweise ausschliefen
~Pr(A)=>_,c4Pr(a), fir alle AcS (Pr(a) steht kurz fiir Pr({a}))

— Wahrscheinlichkeitsverteilungen sind durch die Wahrscheinlichkeiten
der Elementarereignisse eindeutig definiert

e (Gleichverteilung
— Wahrscheinlichkeitsverteilung mit Pr(a) = Pr(b) fiir alle a,be S
— Fiir endliche Mengen S ist Pr(a) = 1/[S| und Pr(A) =|Al/|S|
- 7.B. perfekte Wiirfel: Pr(7) = 1/6 fiir alle 1 €{1..6}

— Verteilung von Buchstaben im Text ist keine Gleichverteilung
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MATHEMATIK: WAHRSCHEINLICHKEITSTHEORIE (IIT)

e Bedingte Wahrscheinlichkeit Pr(A|B)

— Wahrscheinlichkeit, daf§ Ereignis A auftritt, wenn B bekannt ist
z.B. Wahrscheinlichkeit des Klartextes x, wenn Schliisseltext y vorliegt

Pr(A|B) = Pr(ANB)/Pr(B)
— Wahrscheinlichkeit, dall Wiirfel eine 4 zeigt, wenn sicher ist,
daB die angezeigte Zahl gerade ist, ist 1/3

— Wahrscheinlichkeit, dafl Klartext einer Verschiebechiffre ENDE ist,
wenn Schliisseltext ABCD vorliegt, ist 0

e Unabhangigkeit von Ereignissen A und B
— Pr(A|B) = Pr(A): Wahrscheinlichkeit fiir A hingt nicht von B ab

z.B. Ergebnis eines zweiten Wiirfelns hangt nicht vom ersten Wurt ab
— Aquivalent zu Pr(ANB) = Pr(A)Pr(B)
— Die Wahrscheinlichkeit, dafl mehrere unabhangige Ereignisse
gleichzeitig auftreten, ist das Produkt der Einzelwahrscheinlichkeiten
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MATHEMATIK: WAHRSCHEINLICHKEITSTHEORIE (IV)

e Satz von Bayes:
- Pr(B|A) = Pr(B)Pr(A|B)/Pr(A), falls Pr(A) >0
Einfache Rechnung: Pr(B|A) = Pr(BNA)/Pr(A) = Pr(B)Pr(A|B)/Pr(A)
— Wahrscheinlichkeit eines Klartextes x bei Vorliegen des Schliisseltextes
y ergibt sich aus Wahrscheinlichkeit, dall « zu y verschlisselt wird

e Geburtstagsparadox

— Wieviele Personen benotigt man in einem Raum, damit mit grofer
Wahrscheinlichkeit zwei am gleichen Tag Geburtstag haben?

— Wieviele Klartext-/Schliisselpaare braucht man, um mit hoher
Wahrscheinlichkeit mehrmals denselben Schlisseltext zu generieren?

Analyse: bei k Personen, n Geburtstagen gibt es n* Elementarereignisse
(g1, .., gr) € {1..n}* mit Wahrscheinlichkeit 1/n*
Die Wahrscheinlichkeit p, daf§ alle g; verschieden sind, ist Hf:ol (n—i)/n*
Wegen 1 + x<e” ist p maximal eXimo (Zi/m) — o=h(k=1)/(2n)
Fur k> 1/2+\/1/2+2n-ln2 = 22.9999 ist p<1/2  (Fiir k>42ist p<0.1!)
Mit Wahrscheinlichkeit 50% haben 2 von 23 Personen denselben Geburtstag
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PERFEKTE GEHEIMHALTUNG PRAZISIERT I

e Informationsgehalt von Nachrichten

— Prp: Wahrscheinlichkeitsverteilung der Klartexte
Abhéngig von Sprache und Thematik (Bank, Uni, Militar,..)

— Prjyc: Wahrscheinlichkeitsverteilung der Schliissel
Unabhangig von Prp aber ggf. abhangig von verwendetem System
— Pr(x, K) := Prp(x)Pri(K)
Wahrscheinlichkeit der Verschliisselung von x € P mit K €
Spezialfalle: Pr(x) .= Pr(x,K), Pr(K) := Pr(P,K)

- Pr(y) == Pr({(z, K) | ex(x) = y}) = Xy xc Prdic(y)) Pr(K)
Wahrscheinlichkeit, dafl eine Verschliisselung den Klartext y ergibt

e Perfekte Geheimhaltung eines Kryptosystems
— Kein Schlusseltext sagt etwas iiber den zugehorigen Klartext aus
Mathematisch: Fiir alle x € P,y eC ist Pr(z|y) = Pr(x)
Mit dem Satz von Bayes auch: Pr(y) = Pr(y|z) = Pr({K|ex(z)=y})

KRYPTOGRAPHIE UND KOMPLEXITAT §2.3 6 ONE-TIME PADS UND PERFEKTE SICHERHEIT




INFORMATIONSGEHALT VON KRYPTOSYSTEMEN I

Ein einfaches Beispielsystem
Wahrscheinlichkeiten und Verschlisselung durch Tabelle gegeben

K, Ky Ky K, Ks
Prc\PT/C 2 4 1 2 1
Al 2 |1 2 3 4 5 P ={A,B,C,D},
Bl 5 |2 3 4 6 1 B
Cl 2 |3 4 6 5 2 € =11,2,3,4,5,6}
Dl 1 |4 5 1 2 3 K ={Ki, Ky, K3, Ky, K5}

Schlusselwahrscheinlichkeit unabhangig von Klartextwahrscheinlichkeit
— Wahrscheinlichkeiten der Schliisseltexte:
- Pr(1)= Pr({(A, K1), (B, K5), (D, K3)}) = .04+ .05+ .01 = .10
- Pr(2)..Pr(6) = .22, .27, .19, .10, .12
— Wahrscheinlichkeiten der Klartexte bei bekannten Schliisseltexten:
- Pr(A|l) = Pr({(A,1)})/Pr(1) = .04/.10 = .40
- Pr(B|1)..Pr(D|1) = .50, .00, .10
- Pr(A|2)..Pr(D|2) = .364 (8/22), .454, .091, .091
Keine perfekte Geheimhaltung, da i.a. Pr(x|y)#Pr(x)

KRYPTOGRAPHIE UND KOMPLEXITAT §2.3 7 ONE-TIME PADS UND PERFEKTE SICHERHEIT




PERFEKT SICHERE KRYPTOSYSTEME I

e Die Verschiebechifire ist perfekt geheim

... aber nur, wenn jeder Schliissel mit gleicher Wahrscheinlichkeit vorkommt

und das Chiffrierverfahren fiir jeden Buchstaben neu gestartet wird
e Beweis:
— Wegen P =C =K = Zo; gilt fiir jedes xeP,yeC
Pr(y|lx) = Pr({K|z+,K=y}) = Pr(y—,z) = 1/27 und
Pr(y) = 2k ex Pride()PriK) = 3 e Priy—eK)/27

= epPr(x)/27T=1/27
— Da beide Werte gleich sind, ist die Verschiebechiffre perfekt sicher

selbst wenn keine Gleichverteilung der Klartexte vorliegt

e Was sind die Kernargumente des Beweises?
— Pr(y|z): Fir alle z € P,y eC gibt es genau einen Schliissel mit ey (x)=y
— Pr(y): Pr(K) ist eine Konstante (Schliissel sind gleichverteilt)
— Klartext- und Schliisselmenge sind gleich grof3 und endlich
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PERFEKTE SICHERHEIT: DER SATZ VON SHANNON I

Ein Kryptosystem mit |IC|=|P|=|C|<oc und Pr(x)>O0 fiir alle x € P
ist genau dann perfekt geheim, wenn die Schlissel gleichverteilt sind und
fir alle & € P,y € C genau ein Schlissel K € IC mit eg (x)=y existiert

= Wir nehmen an, das Kryptosystem sei perfekt geheim

— Gabe es fiir ein 2 € P,y €C keinen Schliissel K € IC mit ex(x)=y, dann
ware Pr(x|y)=0#Pr(z). Also gibt es mindestens ein K mit ey (z)=y
Wegen || = |C| gibt es dann genau einen Schliissel mit ey (z)=y

— Sei K,(y) der eindeutige Schliissel K mit ey (x)=y
Wegen || = |P| gilt {K.(y)|xzeP} =K fiir jedes y eC und
Pr(y) = Pr(y|x) = Pr({K|ex(x)=y}) = Pr(K,(y)) fir alle x e P
Damit haben alle Schlissel die gleiche Wahrscheinlichkeit

< : Wir zeigen die Umkehrung
- Es gilt Pr(y|z) = Pr({Klex(z)=y}) = Pr(K,(y)) = 1/|K]|

und  Pr(y) = 3, cp Pr(z)Pr(Ku(y)) = 2, cp Pr(z)/|K] = 1/|K]
fur alle x e P,y €C. Also ist das Kryptosystem perfekt geheim
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ONE-TIME PADS I

Perfekte Geheimhaltung mit groflem Aufwand

e Einfaches Verschliisselungsverfahren (©Vernam, 1917)
— Bei n-bit Texten wihle P =C = K = {0,1}" = Z§
— Ver-/entschliissele bitweise: ex(x) = v®K, dg(y) = ydK
— Schliissel werden zufillig (mit Gleichverteilung) gewéahlt
— Perfekte Geheimhaltung folgt aus Satz von Shannon

e Nicht wirklich praktikabel

— Jede neue Nachricht braucht neuen Schliissel gleicher Grofie

- Wiederverwendung ermoglicht known plaintext Attacke (K = x®y)
— Schliissel mufl separat ausgetauscht werden

- Hoher Speicheraufwand fiir Lagerung von Schliisseln
— Verwendung wenn Sicherheitsanforderungen hohe Kosten rechtfertigen

e Wie erzeugt man Zufallszahlen?
— Hardware-Zufallsbit Generatoren: physikalische Quellen (Radioaktivitét)
— Software-Zufallsbit Generatoren: Zeit zwischen Keyboardanschlagen
— Pseudozufallszahlen: algorithmisch erzeugte Zahlen (effizienter)
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STROM CHIFFREN I

Systematisch erzeugte “One-Time Pads”

e (Generiere “zufalligen” Schlusselstrom kqikoks...
— Verschliisselung: ex (x122...2y,) = ex, (v1)ep,(x2)...e, (7))
Entschliisselung: di (y1y2-.-Yn) = di, (y1)di, (y2)...dg, (Yn)
— Schliissel ki..k,, wird systematisch aus Anfangsschliissel /X berechnet
e Berechnung des Schliisselstroms
— Anfangsschliissel K und bisherige Klartextfragmente konnen eingehen

k; = f(K,xy..x;_1) fur eine feste Schliisselerzeugungsmethode f
— Alice berechnet k\=f(K, €), yi=ep,(x1), ko=f(K, x1), yo=ep,(T2), ...
Bob berechnet ki=f(K,¢€), v1=ep,(y1), ko=f(K,x1), xo=ep,(Y2), -..
— Alice und Bob miissen nur den Anfangsschliissel A austauschen

- Schlusselaustausch erheblich einfacher als bei One-Time Pads

- Effiziente Austihrung und grofle Diffusion und Konfusion moglich
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KLASSIFIZIERUNG VON STROM CHIFFREN I

e Asynchrone Erzeugung des Schlusselstroms

— Klartext wird in Schliisselerzeugung mit einbezogen
z.B. letzter Klartextblock wird Schlussel fiir nachsten Block

e Synchrone Erzeugung des Schlusselstroms
— Keine Abhangigkeit des Schlusselstroms vom Klartext

— Schliisselstrom wird ausschliellich aus Basisschliissel K erzeugt
z.B. Fibonaccizahlen modulon: 1235813217189 17 26 16 15 ...

® Periodische Erzeugung des Schlisselstroms
— Teilschlissel wiederholen sich mit Periode m: k;.,, = k; fur alle ¢

— Blockchiffren der Lange m sind Schliisselstrome mit Periode m
— Gewichtete Summe £, = Z;nz_ol cjkiy;modn der letzten
m Schliissel (mit Anfangsschliissel K = ky..k,,, co..Cp1)

kann einen Schlusselstrom der Periode n'"—1 liefern
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LSFR STROMCHIFFRE I

D

Da— k 1 /€2 kg k4 k5

e Verwende Lineares Feedback Shift Register
— Periodische Stromchiffre mit Anfangsschliissel K = ky..k,,, co..cp—1
— In jeder Phase verwende £ als aktuellen Schliissel und berechne
k! = k;1 (Shift) und k) = ZT:_Ol cjkji1mod n (Lineares Feedback)
— Kann fir n=2 sehr effizient mit Hardwareregistern realisiert werden

— Liefert bei guten Anfangsschliisseln einen Strom der Periode 2" —1

e Anwendungsbeispiel
— Anfangsschlissel K = 10000, 10100 liefert den Schliisselstrom
1000010010110011111000110111010100060 ...

— Anfangsschliissel /A = 10000, 10110 liefert den Schliisselstrom
10000101111010000 ... (Periode 12!)
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AUTOKEY CHIFFRE I

Einfacher asynchroner Strom Chiffre

e Vigenere Chiffre mit “Klartext als Schlissel”
— Wahle k; = K (der geheime Schliissel) und setze k; .1 = x;
ex(x;) =x;+k; modn, dig(y;) =y, —k; modn
— ENDE UM ELF = [4;13;3;4,26;20;12;26;4;11;5
liefert mit K=3 [3;4;13;3;4;26;20;12;26;4;11] als Schliisselstrom
und ergibt 7,17;16;7;3;19;5;11;3;15;16] = HRQHDTFLDPQ

e Relativ sicher gegeniiber statistischen Analysen
— RegelmaBigkeit des Alphabets wird aufgehoben

— Brute-Force Attacken durch langere Anfangsschliissel vermeidbar
- Wahle K = ky..k,, und setze k;, ., = x;
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WIE SICHER SIND STROMCHIFFREN? I

e Stromchiffren erzeugen beliebig lange Schlussel
— 32-bit Anfangsschliissel liefern “One-Time Pad” fir 500MB Daten
— Fine wichtige Voraussetzung von Shannons Theorem ist erfiillt

— Liefern Stromchiffren nahezu perfekte Sicherheit?

e Grofle Schlussel alleine reichen nicht
— Stromchiffren erzeugen keinen echten Zufall (keine Gleichverteilung)
— Stromchiffren konnen nicht jeden 500MB grofien Schliissel erzeugen
- Pro Klartext kann es nicht mehr Schliissel als Anfangsschliissel geben
- Eis konnen nicht alle moglichen Schliisseltexte erzeugt werden

— Beide Annahmen von Shannons Theorem sind verletzt

e Stromchiffren konnen attackiert werden
— Schliissel- enthalten zu viele Regelmafiigkeiten

— Schlisseltexte enthalten wertvolle Strukturinformation fiir Angreifer
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KRYPTOANALYSE DER LFSR STROMCHIFFRE I

e Known plaintext Attacke

— Zur Bestimmung des Anfangsschliissels K = kq..k,,, cy..c,,—1 benotigt
Eve nur ein Klar-/Schliisseltextpaar (z1..xop,, y1..Toy) der Lange 2m

— Wegen y; = x; ® k; ist k; = x; @ y; fur alle ¢ leicht zu berechnen
— Wegen k1 = Z?;l c;jkjr;mod?2 hat Eve m lineare Gleichungen:

ki ke ... k,
Fir Z = kf2 kz3 e kmﬂ gilt (kpi1--kom) = (Co--Cm1) *2 Z
km km+1 s ka—l

e Anwendungsbeispiel fiir m = 3
— Eve hat Schlusseltext 1110111111 und Klartext 1011001101

und da Z invertierbar ist, folgt (co..cm—1) = (kma1..kom) *x2 Z 71
— Berechneter Schlusselstrom ist 0101110010
011

— Es fOlgt (COa C1, CQ) — <17 ]-7 1) *9 Z_l — (17 17 O)
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EINFACHE KRYPTOSYSTEME IM RUCKBLICK I

e Buchstabenorientierte Systeme
— Substitution von Buchstaben durch andere Symbole des Alphabets
— Mono- und polyalphabetische Variante
— Anfallig fiir Brute-Force Attacken oder statistische Analysen

e Blockbasierte Verschlusselung
— Permutationen und affin-lineare Chiffren

— Anfallig fiir known plaintext Attacken mit Matrix-Invertierung

e Strombasierte Verschlusselung

— Approximation von One-Time Pads durch lange Schliisselstrome
macht statistische Analysen nahezu undurchfithrbar

— Schlisselerzeugung mit und ohne Verwendung des Klartextes

— 7 brechen, wenn Erzeugungsverfahren fiir Schliisselstrom bekannt

Keine Sicherheit im Computerzeitalter
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ERKENNTNISSE & SICHERHEITSPRINZIPIEN I

e Buchstabenorientierte Chiffrierung reicht nicht
— Kryptosystem mufl grofie Klartextblocke auf einmal verschliisseln
— Chiffrierung darf nicht affin-linear sein (auch nicht zuféllig)

— Mehrere Klartextblocke sollten nicht identisch verschlusselt werden

e Hohe Diffusion und Konfusion ist wichtig

— Annahernde Gleichverteilung der Schliissel und statistisch

geringe Abhangigkeit zwischen Klar- und Schlisseltext
— Pertekte Sicherheit bleibt unerreichbar, da One-Time Pads zu teuer

e Systeme miussen sehr komplex werden

— Hohes Mafl an Sicherheit gegeniiber jeder moglichen Attacke
- Aufwendige Verschliisselungsalgorithmen mit grofSien Schliisseln

- Schliissel diirfen nur mit Hilfe von Zufallsgeneratoren bestimmt werden

— Ver-/Entschliisselung nur noch mit Computerunterstiitzung moglich

- Grofie Datenmengen miissen effizient verarbeitet werden konnen
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