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Probleme symmetrischer Verschlüsselung

• Schlüsselverteilungsproblem

– Sender und Empfänger müssen den gleichen Schlüssel verwenden

– Schlüssel muß vor der Kommunikation ausgetauscht werden

– Zwischen beiden Teilnehmern muß ein sicherer Kanal existieren,

was über größere Distanzen kaum möglich ist

– Anwendungen verlangen spontanen Aufbau sicherer Verbindungen

• Es sind zu viele Schlüssel erforderlich

– Wenn jeder mit jedem sicher kommunizieren will, braucht man

bei n Teilnehmern n(n−1)/2 Schlüssel und

zum Schlüsselaustausch eine gleichgroße Anzahl sicherer Kanäle

– Bei 109 Internetnutzern braucht man 1018 Schlüssel/Kanäle

– Organisatorisch nicht zu bewältigen

• Kommunikation über sichere Zentrale?

– Führt zu Engpässen und Gefahr von Sicherheitslöchern in Zentralstelle
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Public-Key Kryptographie ist flexibler

• Schlüsselmanagement wird einfacher
– Ver- und Entschlüsselung benutzen verschiedene (inverse) Schlüssel

– Empfänger erzeugt beide Schlüssel, legt Verschlüsselungsschlüssel offen

– Jeder Teilnehmer kann einen sicheren Kanal zum Empfänger aufbauen

– Pro Empfänger nur ein Schlüssel erforderlich

– Schlüssel werden in öffentlichem Verzeichnis gelagert

oder bei Bedarf vom Empfänger erzeugt

• Wichtige Randbedingungen
– Privater Schlüssel des Empfängers darf nicht aus dem öffentlichen

Schlüssel berechnet werden können

– Es muß leicht sein, viele (gute) Schlüssel schnell zu erzeugen

– Öffentlicher Schlüssel muß vor Fälschungen geschützt werden

• Public-Key Verfahren sind langsamer
– AES ist etwa 1000 mal schneller als asymmetrische Verfahren

– Praxis verwendet hybride Verfahren
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Sicherheit von Public-Key Verfahren

• Sicherheit des privaten Schlüssels
– Privater Schlüssel nicht aus öffentlicher Information zu berechnen

– Sicherheitsbeweise sind Reduktionen auf schwierige mathematische

Probleme, da Nachweis der “Unbrechbarkeit” nicht möglich

– Berechnungsprobleme der Zahlentheorie liefern gute Verfahren

Faktorisierung, Diskreter Logarithmus, Elliptische Kurven

• Semantische Sicherheit
– Wahrscheinlichkeit, daß Angreifer Chiffrierung eines Klartextes

von der eines beliebigen Strings unterscheiden kann, ist maximal 50%

– Macht Public-Key Verfahren sicher gegen Ciphertext-only Angriffe

• Adaptive-Chosen-Ciphertext Sicherheit
– Wahrscheinlichkeit, daß Angreifer einen gegebenen Chiffretext

entschlüsseln kann, wenn er die Klartexte einer beliebigen Menge

anderer Schlüsseltexte kennt, ist maximal 50%

– Macht Verfahren sicher gegen Verfälschungen von Nachrichten
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Public-Key Kryptographie mit dem RSA verfahren

• Ältestes und bedeutendstes Public-Key Verfahren

– Benannt nach Ron Rivest, Adi Shamir und Len Adleman (1977)

– Sicherheit basiert auf Schwierigkeit des Faktorisierungsproblems

Zerlegung großer Zahlen in Faktoren ist nicht in akzeptabler Zeit möglich

• Verwendet weiterhin Modulararithmetik

– Multiplikation und Potenzierung sehr großer Zahlen (> 100 Stellen)

• Verwandet bekannte Gesetze der Zahlentheorie

– Ist gcd(x, n) = 1, so folgt xϕ(n) mod n = 1 (Satz von Euler-Fermat)

Konsequenz: Ist e∗d mod ϕ(n) = 1 und x<n, so ist (xe)d mod n = x

– Potenzierung mit e bzw. d liefert ein einfaches Public-Key Verfahren

– Sicherheit: Um den privaten Schlüssel d aus e und n zu berechnen,

muß man ϕ(n) bestimmen, also n in Primfaktoren zerlegen können
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Das RSA verfahren im Detail

• Schlüsselerzeugung

– Generiere n als Produkt zweier großer Primzahlen p und q (z.B. 512 bit)

In diesem Fall ist ϕ(n) = (p−1)(q−1)

– Erzeuge zufälliges e mit gcd(e, ϕ(n))=1 und berechne d = e−1mod ϕ(n)

– Setze n = p ∗ q und lege n, e offen, halte d, p und q geheim

• Verschlüsselungsverfahren

– Gesamtschlüssel ist K := (n, p, q, d, e), wobei e, n öffentlich

– Text wird in Blöcke der Länge log2 n/8 zerlegt (ein Byte pro Buchstabe)

Jeder Textblock wird als Binärdarstellung einer Zahl x interpretiert

– Verschlüsselung wird Potenzieren mit e modulo n: eK(x) = xe mod n

– Entschlüsselung wird Potenzieren mit d modulo n: dK(y) = yd mod n

• Benötigt schnelle Potenzierung großer Zahlen

– e-fache Multiplikation mit sich selbst ist indiskutabel

– Laufzeit muß in Größenordnung der Anzahl der Stellen von e liegen
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Das RSA Verfahren am Beispiel

• Einfaches Zahlenbeispiel

– Wähle p = 13 und q = 17, also n = 221

– Wähle e = 5. Dann muß d = 77 sein (5 ∗ 77 mod 192 = 1)

– Verschlüsselung der Zahlen 4 5 6 7 8 9 mit e ergibt 140 31 41 11 60 42

Zeigt gute statistische Streuung der Schlüsseltexte

– Entschlüsselung von 8 9 10 11 12 mit d ergibt 60 42 147 7 116

• Realistische Blocklänge ist 256, 512 oder 1024 Bit

– Textblöcke von 32, 64 oder 128 Bytes werden als Zahlen interpretiert

– Generierte Primzahlen p und q müssen je 38/77/155 Stellen haben

Benötigt schnelle Primzahltests für sehr große Zahlen

– Die Zahlen n, e und d haben jeweils 77/155/310 Stellen

– Ver-/Entschlüsselung ist Potenzierung mit riesigen Zahlen

Naive Algorithmen sind linear in e und d

– Resultierende Zahl wird als Byte-Kette interpretiert / versendet
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Mathematik: Zyklische Gruppen

• RSA basiert auf Eigenschaften von Gruppen

– Potenzierung in Zn ist eine iterierte Gruppenoperation: xe = x·x·..·x︸ ︷︷ ︸
e mal– Entschlüsselung benötigt eine Zahl d mit xe·d−1 = 1 in Zn

• Ordnung eines Gruppenelements g ∈ G

– orderG(g): kleinste Zahl e mit ge = 1 in (G, ·)

– In (Z27,+) ist order(2)=27, order(3)=9, order(4)=27, . . .

– In (Z∗
27,·) ist order(2)=18 und order(4)=9 (3 gehört nicht zu Z

∗
27)

Im Ring R ist R∗ die Menge der bzgl. · invertierbaren Elemente

• Von g ∈ G erzeugte Untergruppe

– Menge 〈g〉 := {gk | k≤orderG(g)} zusammen mit der Verknüpfung ◦G

– G heißt zyklisch, wenn G = 〈g〉 für ein g ∈G

– (Z27,+) und (Z∗
27,·) sind zyklisch mit Erzeuger 1 bzw. 2

– (Zn,·) ist immer zyklisch, wenn n eine Primzahl ist Beweis später
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Mathematik: Zyklische Gruppen (II)

• ge=1 genau dann, wenn orderG(g) Teiler von e

⇒ : Es sei n=orderG(g), ge = 1 und e = q·n + r.

Dann ist gr = ge·g−nq = 1·1 = 1.

Da n die kleinste Zahl mit gn = 1 ist und r<n, muß r = 0 sein.

⇐ : Es sei orderG(g) Teiler von e. Dann ist e = k·n für ein k,

also ge = (gn)k = 1k = 1.

• gx=gy genau dann, wenn x ≡ y mod orderG(g)

– Folgt direkt aus obigem Satz mit e = x − y

• Für e =orderG(g) gilt orderG(gk)= e/gcd(e, k)

– Es sei k ∈N beliebig. Dann (gk)e/gcd(e,k) = (ge)k/gcd(e,k) = 1.

– Damit ist l:=orderG(gk) Teiler von e/gcd(e, k)

– Umgekehrt folgt aus 1 = (gk)l = gkl, daß e/gcd(e, k) Teiler von l ist.
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Mathematik: Zyklische Gruppen (III)

• Jede endliche zyklische Gruppe G hat genau

ϕ(|G|) Erzeuger und jeder hat die Ordnung |G|

– Ist e = orderG(g) für ein g ∈G, so gilt |〈g〉| = e.

– Damit sind die Elemente g der Ordnung |G| genau die Erzeuger von G

und jeder Erzeuger g′ von G beschreibbar als g′ = gk für ein k≤|G|

– Wegen |G| = orderG(gk) = orderG(g)/gcd(|G|, k) folgt gcd(|G|, k)=1.

– Damit entsprechen die Erzeuger den zu |G| teilerfremden Zahlen.

• Ist U Untergruppe von G so ist |U | Teiler von |G|
Satz von Lagrange

– Definiere a≡ b g.d.w. a◦b−1 ∈U . Dann ist ≡ eine Äquivalenzrelation.

– Für die zugehörige Äquivalenzklassen [a] = {b | a≡ b} = {u◦a | u ∈U}

gilt |[a]| = |U |, weil f : U→[a] mit f(u) = u◦a bijektiv ist.

– Da G disjunkte Vereinigung aller Äquivalenzklassen ist,

muß |U | Teiler von |G| sein.
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Der kleine Satz von Fermat

Ist gcd(x, n) = 1, so folgt xϕ(n) mod n = 1

• Für jedes g ∈ G ist orderG(g) Teiler von |G|
– 〈g〉 ist Untergruppe von G der Ordnung orderG(g)

– Nach dem Satz von Lagrange ist somit orderG(g) Teiler von |G|

• Für jedes g ∈ G ist g|G| = 1
– Folgt aus der Tatsache, daß orderG(g) Teiler von |G| ist

• Ist gcd(x, n) = 1, so folgt xϕ(n) = 1 in Zn
∗

– Gilt gcd(x, n) = 1 so ist x ∈Zn
∗. Die Ordnung von (Zn

∗,·) ist ϕ(n).

• Korollar: Ist e∗d mod ϕ(n) = 1 und x<n,
so gilt (xe)d mod n = x

– Es sei e∗d = k ∗ ϕ(n) + 1. Dann gilt

(xe)d mod n = xe∗d mod n = xk∗ϕ(n)+1 mod n = x ∗ xk∗ϕ(n) modn

= x ∗ (xϕ(n))k mod n = x ∗ 1k mod n = x
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Mathematik: Schnelle Potenzierung

• Naives Potenzierung xe mod n ist in O(n·||n||2)

– Undurchführbar für große n

• Quadrieren und Multiplizieren

– Ist e =
∑k

i=0 ei2
i die Binärentwicklung von e so ist xe =

∏k
i=0 xei2

i

– Weil die ei nur 0 oder 1 sein können, folgt xe =
∏

i≤k,ei=1 x2i

– Wegen x2i+1
= (x2i

)2 ist xe durch sukzessives Quadrieren zu berechnen

z.B. 411 mod 27 = (45)227·274 = ((42
27)

2
27·274)227·274

= (162
27·274)227·274 = (13·274)227·274 = 252

27·274 = 4·274 = 16

• Funktionale Implementierung
let rec pow x e n
= if e = 0 then 1

else let r = pow (x*x mod n) (e/2) n
in if e mod 2 = 0 then r else r*x mod n;;

– Laufzeit ist O(||n||3), da nur k = ||e|| Multiplikationen/Quadrierungen
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Der Chinesische Restsatz

Die simultane Kongruenz ∀i≤k. x ≡ ai mod mi

hat eine eindeutige Lösung modulo m=
∏k

i=1 mi,
wenn alle mi paarweise teilerfremd sind

Konstruktion: Sei Mi =
∏

j 6=i
mj. Dann gilt gcd(mi, Mi) = 1 und

yi = M−1
i mod mi kann mit egcd berechnet werden.

Setze x = (
∑k

i=1 aiyiMi) mod m.

Korrektheit: Wegen aiyiMi mod mi = ai und aiyiMi mod Mi = 0 folgt

x≡ (aiyiMi +
∑

j 6=i
ajyjMj) mod mi = ai mod mi für alle i

Eindeutigkeit: Ist x′ eine Lösung der simultanen Kongruenz so gilt

∀i≤k.x≡ x′ mod mi und somit x≡ x′ mod m.

Laufzeit: Berechnung von m kostet Zeit O(||m||·
∑k

i=1 ||mi||) = O(||m||2).

Berechnung eines Mi aus m und eines yi liegt in O(||m||·||mi||).

Berechnung von x benötigt O(||m||·
∑k

i=1 ||mi||) = O(||m||2).

Gesamtlaufzeit ist O(||m||2) bei Platzbedarf O(||m||).

Liefert schnelle Lösung simultaner Kongruenzen
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Schnelle Entschlüsselung

• Reduziere absolute Schrittzahl um 75%

– Absolute Rechenzeit ist kritisch für Chipkarten und ähnliche Hardware

– 512 Quadrierungen + 256 Multiplikationen für 512 Bit ist zu viel

• Verwende den Chinesischen Restsatz

– Wegen n = p·q berechne xp = yd mod p und xq = yd mod q

– Laufzeit ist jeweils ein Achtel der Berechnungszeit für x = yd mod n

– Löse simultane Kongruenz x≡xp mod p ∧ x≡ xq mod q

Dann gilt x≡ yd mod p und x≡ yd mod q also x≡ yd mod n

– Lösung der Kongruenz erfordert nur zwei Multiplikationen, weil

y1 = p−1 mod q und y2 = q−1 mod p statisch berechnet werden können

– Gesamtlaufzeit ist somit viermal schneller als Potenzierung modulo n
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Korrektheit und Komplexität von RSA

• Korrektheit: Ver-/Entschlüsselung sind invers
– Weil e, d so gewählt werden, daß e·d mod ϕ(n) = 1 ist, gilt

dK(eK(x)) = (xe mod n)d mod n = (xe)d mod n = x

• Aufwand für Auswahl des Schlüssels (einmalig)
– Erzeugung der Primzahlen p, q und von n = p·q O(||n||3)

– Wahl von e und Berechnung von d = e−1mod ϕ(n) O(||n||2)
Mehr dazu in §4.2

• Aufwand für Ver- und Entschlüsselung
– Kein Aufwand für Umwandlung zwischen Text und Zahlen

– Potenzierung von 8|w|/||n|| Blöcken O(|w|·||n||2)

– Blocklänge geht quadratisch in Laufzeit ein

• Sicherheit des geheimen Schlüssels
– Bestimmung von d ist genauso schwer wie Faktorisierung von n

– Faktorisierung braucht i.w. exponentiell viele Schritte in ||n||
Mehr dazu in §4.3


