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PROBLEME SYMMETRISCHER VERSCHLUSSELUNG I

e Schlusselverteilungsproblem
— Sender und Empfanger miissen den gleichen Schliissel verwenden
— Schliissel muf3 vor der Kommunikation ausgetauscht werden

— Zwischen beiden Teilnehmern mufl ein sicherer Kanal existieren,

was uiber groflere Distanzen kaum moglich ist

— Anwendungen verlangen spontanen Aufbau sicherer Verbindungen

e s sind zu viele Schlussel erforderlich

— Wenn jeder mit jedem sicher kommunizieren will, braucht man
bei n Teilnehmern n(n—1)/2 Schliissel und

zum Schliisselaustausch eine gleichgrof3e Anzahl sicherer Kanale
— Bei 10? Internetnutzern braucht man 10 Schliissel /Kanale

— Organisatorisch nicht zu bewaltigen

e Kommunikation uber sichere Zentrale?
— Fuhrt zu Engpassen und Gefahr von Sicherheitslochern in Zentralstelle
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PUBLIC-KEY KRYPTOGRAPHIE IST FLEXIBLER I

e Schliusselmanagement wird einfacher
— Ver- und Entschliisselung benutzen verschiedene (inverse) Schliissel
— Emptanger erzeugt beide Schliissel, legt Verschliisselungsschliissel offen
— Jeder Teilnehmer kann einen sicheren Kanal zum Empfanger autbauen
— Pro Empfanger nur ein Schliissel erforderlich
— Schliissel werden in offentlichem Verzeichnis gelagert
oder bei Bedarf vom Empfanger erzeugt

e Wichtige Randbedingungen
— Privater Schlussel des Emptangers darf nicht aus dem offentlichen
Schlussel berechnet werden konnen
— Es muf leicht sein, viele (gute) Schliissel schnell zu erzeugen
— Offentlicher Schliissel muf vor Falschungen geschiitzt werden

e Public-Key Verfahren sind langsamer
— AES ist etwa 1000 mal schneller als asymmetrische Verfahren
— Praxis verwendet hybride Verfahren
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SICHERHEIT VON PUBLIC-KEY VERFAHREN I

e Sicherheit des privaten Schlussels
— Privater Schlissel nicht aus offentlicher Information zu berechnen
— Sicherheitsbeweise sind Reduktionen auf schwierige mathematische
Probleme, da Nachweis der “Unbrechbarkeit” nicht moglich
— Berechnungsprobleme der Zahlentheorie liefern gute Verfahren
Faktorisierung, Diskreter Logarithmus, Elliptische Kurven

e Semantische Sicherheit
— Wahrscheinlichkeit, dafl Angreifer Chiffrierung eines Klartextes
von der eines beliebigen Strings unterscheiden kann, ist maximal 50%
— Macht Public-Key Verfahren sicher gegen Ciphertext-only Angriffe

e Adaptive-Chosen-Ciphertext Sicherheit

— Wahrscheinlichkeit, dafi Angreifer einen gegebenen Chiffretext
entschliisseln kann, wenn er die Klartexte einer beliebigen Menge
anderer Schliisseltexte kennt, ist maximal 50%

— Macht Vertahren sicher gegen Vertalschungen von Nachrichten
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PuBLIC-KEY KRYPTOGRAPHIE MIT DEM RSA VERFAHREN I

e Altestes und bedeutendstes Public-Key Verfahren
— Benannt nach Ron Rivest, Adi Shamir und Len Adleman (1977)

— Sicherheit basiert auf Schwierigkeit des Faktorisierungsproblems
Lerlegung groBer Zahlen in Faktoren ist nicht in akzeptabler Zeit moglich

e Verwendet weiterhin Modulararithmetik
— Multiplikation und Potenzierung sehr groffer Zahlen (> 100 Stellen)

® Verwandet bekannte (Gesetze der Zahlentheorie

—Ist ged(z,n) = 1, so folgt ¥ mod n = 1 (Satz von Euler-Fermat)
Konsequenz: Ist exd mod ¢(n) = 1 und x<n, so ist (29)? mod n = x

— Potenzierung mit e bzw. d liefert ein einfaches Public-Key Verfahren

— Sicherheit: Um den privaten Schliissel d aus e und n zu berechnen,

mufl man ¢(n) bestimmen, also n in Primfaktoren zerlegen konnen
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DaAs RSA VERFAHREN IM DETAIL

e Schlusselerzeugung
— Generiere n als Produkt zweier grofer Primzahlen p und ¢ (z.B. 512 bit)
In diesem Fall ist ¢(n) = (p—1)(g—1)
— Erzeuge zufalliges e mit ged(e, o(n))=1 und berechne d = ¢~ 'mod ¢(n)
— Setze n = p * ¢ und lege n, e offen, halte d, p und ¢ geheim

e Verschliisselungsverfahren
— Gesamtschliissel ist K = (n,p,q,d,e), wobei e, n offentlich
— Text wird in Blocke der Lange log, n/8 zerlegt (ein Byte pro Buchstabe)

Jeder Textblock wird als Binardarstellung einer Zahl x interpretiert
— Verschliisselung wird Potenzieren mit e modulo n: ex(x) = 2 mod n

~ Entschliisselung wird Potenzieren mit d modulo n: dx(y) = y? mod n

e Benotigt schnelle Potenzierung grofler Zahlen
— e-fache Multiplikation mit sich selbst ist indiskutabel

— Laufzeit mufl in GrofSenordnung der Anzahl der Stellen von e liegen
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DAs RSA VERFAHREN AM BEISPIEL I

e Einfaches Zahlenbeispiel
— Wahle p =13 und ¢ = 17, also n = 221
— Wahle e = 5. Dann mufl d = 77 sein (5 % 77 mod 192 = 1)

— Verschlusselung der Zahlen 4 5 6 7 8 9 mit e ergibt 140 31 41 11 60 42
Zeigt gute statistische Streuung der Schliisseltexte

— Entschlisselung von 8 9 10 11 12 mit d ergibt 60 42 147 7 116

e Realistische Blocklange ist 256, 512 oder 1024 Bit

— Textblocke von 32, 64 oder 128 Bytes werden als Zahlen interpretiert

— Generierte Primzahlen p und ¢ miissen je 38/77/155 Stellen haben
Benotigt schnelle Primzahltests fir sehr grofie Zahlen

— Die Zahlen n, e und d haben jeweils 77/155/310 Stellen

— Ver-/Entschliisselung ist Potenzierung mit riesigen Zahlen

Naive Algorithmen sind linear in e und d

— Resultierende Zahl wird als Byte-Kette interpretiert / versendet
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MATHEMATIK: ZYKLISCHE (GRUPPEN I

e RSA basiert auf Eigenschaften von Gruppen
— Potenzierung in Z ist eine iterierte Gruppenoperation: 2 = g-x-..-3,

e mal

~ Entschliisselung benétigt eine Zahl d mit 27! = 11in Z

e Ordnung eines Gruppenelements g € G
—orderg(g): kleinste Zahl e mit ¢° = 1 in (G, -)
— In (Zo7,+) ist order(2)=27, order(3)=9, order(4)=27, ...
—In (Z3-,-) ist order(2)=18 und order(4)=9 (3 gehort nicht zu Z3-)
Im Ring R ist R* die Menge der bzgl. - invertierbaren Elemente
e Von g € G erzeugte Untergruppe
~ Menge (g) = {g¢" | k<orderg(g)} zusammen mit der Verkniipfung o
— G heifit zyklisch, wenn G = (g) fiir ein g G
— (Zo7,+) und (Z3-,+) sind zyklisch mit Erzeuger 1 bzw. 2

—(Z,,-) ist immer zyklisch, wenn n eine Primzahl ist Beweis spater
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MATHEMATIK: ZYKLISCHE GRUPPEN (II) I

e g°=1 genau dann, wenn orderg(g) Teiler von e
= : Es sei n=orderg(g), ¢ =1und e = gn +r.
Dann ist ¢" = g“g "1 =1-1=1.
Da n die kleinste Zahl mit ¢" = 1 ist und r<n, mufl » = 0 sein.

< Es sei orderg(g) Teiler von e. Dann ist e = k-n fiir ein k,
also ¢¢ = (¢")F = 1" = 1.

e g*=gY genau dann, wenn x =y mod orderg(g)

— Folgt direkt aus obigem Satz mit e =z — y

e Fiir e=orderg(g) gilt orderg(g®) =e/gcd(e, k)
— Es sei k€N beliebig. Dann (gF)e/ocdler) — (ge)k/gedler) — 1
— Damit ist l:=orderg(g"*) Teiler von e/gcd(e, k)
— Umgekehrt folgt aus 1 = (¢*)! = ¢, daB e/ged(e, k) Teiler von [ ist.
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MATHEMATIK: ZYKLISCHE GRUPPEN (IIT) I

e Jede endliche zyklische Gruppe G hat genau
¢(|G|) Erzeuger und jeder hat die Ordnung |G|
— Ist e = orderg(g) fiir ein g€ G, so gilt |{g)| = e.

— Damit sind die Elemente g der Ordnung |G| genau die Erzeuger von G
und jeder Erzeuger ¢’ von G beschreibbar als ¢’ = ¢" fiir ein k<|G]|
~ Wegen |G| = orderg(g*) = orderg(g)/ged(|G|, k) folgt ged(|G|, k)=1.

— Damit entsprechen die Erzeuger den zu |G| teilerfremden Zahlen.

e Ist U Untergruppe von G so ist |U| Teiler von |G|

Satz von Lagrange

— Definiere a =b g.d.w. aob~' eU. Dann ist = eine Aquivalenzrelation.

~ Fiir die zugehérige Aquivalenzklassen [a] = {b|a=b} = {uoa|uecU}
gilt |[a]| = |U|, weil f: U—]a] mit f(u) = uoa bijektiv ist.

~ Da G disjunkte Vereinigung aller Aquivalenzklassen ist,

muf} |U| Teiler von |G| sein.
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DER KLEINE SATZ VON FERMAT I

Ist ged(x,n) = 1, so folgt (") mod n = 1

e Fiir jedes g € G ist orderg(g) Teiler von |G|
— (g) ist Untergruppe von G der Ordnung orderg(g)
— Nach dem Satz von Lagrange ist somit orderg(g) Teiler von |G|

e Fur jedes g € GG ist g|G| =1
— Folgt aus der Tatsache, daff orderg(g) Teiler von |G| ist

e Ist ged(z,n) = 1, so folgt z#(™) =1 in Z,*
— Gilt ged(z,n) = 1so0ist x €Z *. Die Ordnung von (Z *-) ist p(n).

e Korollar: Ist exd mod ¢p(n) =1 und x<n,
so gilt (€)Y mod n = x
— Es sei exd = k % ¢(n) + 1. Dann gilt

exd

()" modn = % modn = 2"*"M  modn = z * 2" modn

— 2 % (29" modn = z * 1" modn = «
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MATHEMATIK: SCHNELLE POTENZIERUNG I

e Naives Potenzierung € modn ist in @(n-|n|?)
— Undurchfihrbar fir grofie n

e Quadrieren und Multiplizieren

o k i1 . . . e k L
—Ist e =), e2" die Bindrentwicklung von e so ist 2° = Hz‘;@ i

. . . . 1
~ Weil die e; nur 0 oder 1 sein konnen, folgt 2¢ = [[.<, , _, 2
— "W
1+1 l . . .
— Wegen 2° = (2*)? ist ¢ durch sukzessives Quadrieren zu berechnen

z.B. 411 mod 27 = (45>%7°274 — <<4g7>%7°274>%7°274
= (165,974)57014 = (13-974)37074 = 253,974 = 474 = 16

e Funktionale Implementierung

let rec pow x e n
= 1f e = 0 then 1
else let r = pow (x*x mod n) (e/2) n
in 1if e mod 2 = 0O then r else r*x mod n;;

— Laufzeit ist O(|n|?), da nur k = |e| Multiplikationen/Quadrierungen
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DER CHINESISCHE RESTSATZ I

Die simultane Kongruenz Vi<k. x = a; mod m;
hat eine eindeutige Losung modulo m—= Hle m;,
wenn alle m; paarweise teilerfremd sind

Konstruktion: Sei M; = Hﬁél m;. Dann gilt ged(m,;, M;) = 1 und
Y = ]\41-_1 mod m,; kann mit egcd berechnet werden.

Setze v = (Zle a;y; M;) mod m.

Korrektheit: Wegen a,;y; M; mod m; = a; und a;y; M; mod M, = 0 folgt
v = (a;y; M; + Zﬁéz a;y; M;) mod m; = a; mod m, fiir alle i

Eindeutigkeit: Ist 2’ eine Losung der simultanen Kongruenz so gilt
Vi<k.r =2’ mod m; und somit x = 2’ mod m.

Laufzeit: Berechnung von m kostet Zeit O(|m/|- 320, |ma]) = O(|m|?).
Berechnung eines M; aus m und eines y; liegt in O(|m]-|m;]).
Berechnung von = benétigt O(|m[- 325, |mai]) = O(|m|?).
Gesamtlaufzeit ist O(|m|?) bei Platzbedarf O([m]).

Liefert schnelle Losung simultaner Kongruenzen

KRYPTOGRAPHIE UND KOMPLEXITAT §4.1 9 Das PUBLIC-KEY VERFAHREN VONRIVEST, SHAMIR UND ADLEMAN (RSA)




SCHNELLE ENTSCHLUSSELUNG I

e Reduziere absolute Schrittzahl um 75%
— Absolute Rechenzeit ist kritisch fir Chipkarten und ahnliche Hardware
— 512 Quadrierungen + 256 Multiplikationen fur 512 Bit ist zu viel

e Verwende den Chinesischen Restsatz
— Wegen n = p-q berechne x, = y? mod p und Ty = y?mod ¢
— Laufzeit ist jeweils ein Achtel der Berechnungszeit fiir = y? modn
— Lose simultane Kongruenz x =z, modp r z=x,modq
Dann gilt 2 =y?modp und z=7y’modq also z=ymodn
— Losung der Kongruenz erfordert nur zwei Multiplikationen, weil
y; = p 'mod ¢ und ys = ¢ ' mod p statisch berechnet werden konnen

— Gesamtlaufzeit ist somit viermal schneller als Potenzierung modulo n
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KORREKTHEIT UND KOMPLEXITAT VON RSA I

e Korrektheit: Ver-/Entschliisselung sind invers
— Weil e, d so gewahlt werden, dafl e-d mod p(n) = 1 ist, gilt

di(er(x)) = (2° mod n)? mod n = (z°) mod n = x

e Aufwand fiir Auswahl des Schliissels (einmalig)
— Erzeugung der Primzahlen p, ¢ und von n = p-q O(H”H3>
?)

— Wahl von e und Berechnung von d = e~ 'mod o(n) O(|n|
Mehr dazu in §4.2

e Aufwand fur Ver- und Entschliisselung
— Kein Aufwand fir Umwandlung zwischen Text und Zahlen
— Potenzierung von 8|w|/||n| Blocken O(|wl|-|n|?)
— Blocklange geht quadratisch in Laufzeit ein

® Sicherheit des geheimen Schlussels
— Bestimmung von d ist genauso schwer wie Faktorisierung von n

— Faktorisierung braucht i.w. exponentiell viele Schritte in ||n|
Mehr dazu in §4.3
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