Kryptographie und Komplexitat

Einheit 4.3

Angriffe auf das RSA Verfahren

1. Faktorisierungsangrifte
2. Andere Angriffe

3. Richtlinien fur die Schlusselauswahl
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SICHERHEIT DES RSA VERFAHRENS I

e Sicherheit des geheimen Schlussels
— Einziger bekannter Weg, Schliissel zu brechen, ist Faktorisierung von n

— Man kann zeigen, dafi beide Probleme aquivalent sind (Beweis folgt)
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e Sicherheit des geheimen Schlussels

— Einziger bekannter Weg, Schliissel zu brechen, ist Faktorisierung von n
— Man kann zeigen, daf3 beide Probleme aquivalent sind

— Wie aufwendig ist Faktorisierung?

(Beweis folgt)

- N'P-Problem: Standardsuche nach Teilern ist exponentiell in |n|
- Primzahltests liefern nur Information, aber keine Faktoren
- Eis gibt Algorithmen, die den Exponenten stark verkleinern

- Trotzdem braucht man fur 1024 Bit mehr als 100.000.000 Jahre
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- Primzahltests liefern nur Information, aber keine Faktoren
- Eis gibt Algorithmen, die den Exponenten stark verkleinern

- Trotzdem braucht man fur 1024 Bit mehr als 100.000.000 Jahre
e Semantische Sicherheit
Kann ein Schliisseltext dechiffriert werden, ohne des Schliissel zu kennen?

— Bis heute nicht abschlieend geklart - es gibt Probleme in Einzelfallen

— Aquivalenz von RSA zum Faktorisierungsproblem nicht nachweisbar
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SICHERHEIT DES RSA VERFAHRENS I

e Sicherheit des geheimen Schlussels
— Einziger bekannter Weg, Schliissel zu brechen, ist Faktorisierung von n
— Man kann zeigen, dafi beide Probleme aquivalent sind (Beweis folgt)
— Wie aufwendig ist Faktorisierung?
- N'P-Problem: Standardsuche nach Teilern ist exponentiell in |n|
- Primzahltests liefern nur Information, aber keine Faktoren

- Eis gibt Algorithmen, die den Exponenten stark verkleinern
- Trotzdem braucht man fir 1024 Bit mehr als 100.000.000 Jahre

e Semantische Sicherheit
Kann ein Schliisseltext dechiffriert werden, ohne des Schliissel zu kennen?
— Bis heute nicht abschlieend geklart - es gibt Probleme in Einzelfallen
— Aquivalenz von RSA zum Faktorisierungsproblem nicht nachweisbar
Wie leicht konnen RSA-chiffrierte Nachrichten manipuliert werden?

— Man kann Schlusseltexte kombinieren ohne den Klartext zu kennen
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SICHERHEIT DES RSA SCHLUSSELS K=(n,p,q,d,e€)

Berechnung des geheimen Schlissels d aus e, n ist
genauso schwer wie die Faktorisierung von n = p-q
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Berechnung des geheimen Schlissels d aus e, n ist
genauso schwer wie die Faktorisierung von n = p-q

e Faktorisierung bricht den geheimen Schliissel
— Wenn Eve n in p und q zerlegen kann, dann kann sie auch

d = e 'mod (p—1)(g—1) in O(|n|?) Schritten berechnen
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— Wenn Eve n in p und q zerlegen kann, dann kann sie auch

d = e 'mod (p—1)(g—1) in O(|n|?) Schritten berechnen

e Der geheime Schliissel liefert die Faktorisierung
Sei s = max{teN |2 teilt ed—1} und k = (ed—1)/2°
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SICHERHEIT DES RSA SCHLUSSELS K=(n,p,q,d,e€)

Berechnung des geheimen Schlissels d aus e, n ist
genauso schwer wie die Faktorisierung von n = p-q

e Faktorisierung bricht den geheimen Schliissel
— Wenn Eve n in p und q zerlegen kann, dann kann sie auch

d = e 'mod (p—1)(g—1) in O(|n|?) Schritten berechnen

e Der geheime Schliissel liefert die Faktorisierung
Sei s = max{teN |2 teilt ed—1} und k = (ed—1)/2°
1. Ist ged(a,n)=1 so ist orderzn(ak):T fiir ein 1<s
Esist (a")? = a“"'=1modn, also ist ordean(ak) Teiler von 2°
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SICHERHEIT DES RSA SCHLUSSELS K=(n,p,q,d,e€)

Berechnung des geheimen Schlissels d aus e, n ist
genauso schwer wie die Faktorisierung von n = p-q

e Faktorisierung bricht den geheimen Schliissel
— Wenn Eve n in p und ¢ zerlegen kann, dann kann sie auch
d = e 'mod (p—1)(g—1) in O(|n|?) Schritten berechnen
e Der geheime Schliissel liefert die Faktorisierung
Sei s = max{teN |2 teilt ed—1} und k = (ed—1)/2°
1. Ist gcd(a,n)=1 so ist ordery (a®)=2* fiir ein 1<s
Esist (a")? = a“"'=1modn, also ist ordery (a %) Teiler von 2°
2. Ist ged(a,n)=1 und ordery (a¥) # orderZ (a*) so ist
ged(a®*—1,n)=£1 fiir ein t<3
Wie oben sind ordeer( a”) und ordequ(ak) Teiler von 2°.
Sei 0.B.d.A. ordequ(ak) =2 < ordeer(ak) < 2% Dann gilt
(@")? =1 mod g aber (a¥)? #1modp also ged(a?*—1n) =g
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SICHERHEIT DES RSA SCHLUSSELS K=(n,p,q,d,e€)

3. Die Anzahl der a<n mit ged(a,n)=1 und
ordeer(ak) % ordequ(ak) ist mindestens ¢(n)/2
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SICHERHEIT DES RSA SCHLUSSELS K=(n,p,q,d,e€)

3. Die Anzahl der a<n mit ged(a,n)=1 und
ordeer(a,k) % ordequ(ak) ist mindestens ¢(n)/2
Nach dem chinesischen Restsatz gibt es g<n, das Z, und Z, erzeugt.

Falls e = ordeer(gk) > ordequ(gk) dann sei 0<x<p ungerade,
y<q—2 und a Losung der Kongruenzen a = ¢* mod p, a = g? modg.
Da e Zweierpotenz ist, ist ordeer(ak) = orderzp(gk) > orderzq(ak)
Da g Erzeugende von Z, und Z, ist a fiir jedes z, y anders.

KRYPTOGRAPHIE UND KOMPLEXITAT §4.3 3 ANGRIFFE AUF DAS RSA VERFAHREN




SICHERHEIT DES RSA SCHLUSSELS K=(n,p,q,d,e€)

3. Die Anzahl der a<n mit ged(a,n)=1 und
ordeer(a,k) % ordequ(ak) ist mindestens ¢(n)/2
Nach dem chinesischen Restsatz gibt es g<n, das Z, und Z, erzeugt.
Falls e = ordeer(gk) > ordequ(gk) dann sei 0<x<p ungerade,
y<q—2 und a Losung der Kongruenzen a = ¢* mod p, a = g? modg.
Da e Zweierpotenz ist, ist ordeer(ak) = orderzp(gk) > orderzq(ak)
Da g Erzeugende von Z, und Z, ist a fiir jedes z, y anders.
Falls orderzp(gk) = orderzq(gk) dann sei 0<x<p ungerade, y<qg—2

gerade (oder umgekehrt) und a<n mit a = ¢* mod p, a= ¢ mod q.
Es folgt ordeer(ak) +# ordequ(ak) fir 2-(p — 1)(q¢ — 1)/4 Zahlen.
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3. Die Anzahl der a<n mit ged(a,n)=1 und
ordeer(a,k) % ordequ(ak) ist mindestens ¢(n)/2
Nach dem chinesischen Restsatz gibt es g<n, das Z, und Z, erzeugt.
Falls e = ordeer(gk) > ordequ(gk) dann sei 0<x<p ungerade,
y<q—2 und a Losung der Kongruenzen a = ¢* mod p, a = g? modg.
Da e Zweierpotenz ist, ist ordeer(ak) = orderzp(gk) > orderzq(ak)
Da g Erzeugende von Z, und Z, ist a fiir jedes z, y anders.
Falls orderzp(gk) = orderzq(gk) dann sei 0<x<p ungerade, y<qg—2

gerade (oder umgekehrt) und a<n mit a = ¢* mod p, a= ¢ mod q.
Es folgt ordeer(ak) +# ordequ(ak) fir 2-(p — 1)(q¢ — 1)/4 Zahlen.

“RP” Algorithmus zur Faktorisierung von n

— Wahle ae{1...n—1} zufallig

—Ist g = ged(a,n) # 1 dann ist g echter Teiler von n

— Ansonsten teste gcd(ath—l, n) furt =s—1,s—2,...,0
Wahrscheinlichkeit, in r Iterationen keinen Teiler zu finden ist 27"
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ES GIBT VIELE ARTEN VON FAKTORISIERUNGSANGRIFFEN I

e Probedivision

— Standardverfahren, gut fiir kleine Faktoren
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ES GIBT VIELE ARTEN VON FAKTORISIERUNGSANGRIFFEN I

e Probedivision

— Standardverfahren, gut fiir kleine Faktoren

e Methoden fiir spezielle Zahlen
— Pollard p—1: Fur Faktor p hat p—1 nur kleine Primfaktoren
— Fermat-Methode: Faktoren liegen nahe bei y/n
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e Pollard p

— Systematische Suche nach Kollisionen x = 2’ mod p fiir unbekanntes p
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— Pollard p—1: Fur Faktor p hat p—1 nur kleine Primfaktoren
— Fermat-Methode: Faktoren liegen nahe bei y/n

e Pollard p

— Systematische Suche nach Kollisionen x = 2’ mod p fiir unbekanntes p

e Methoden auf Basis quadratischer Kongruenzen

— Dixon Random Squares, Quadratische Siebe, Zahlkorpersiebe
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— Systematische Suche nach Kollisionen x = 2’ mod p fiir unbekanntes p

e Methoden auf Basis quadratischer Kongruenzen

— Dixon Random Squares, Quadratische Siebe, Zahlkorpersiebe

e Elliptische-Kurven-Faktorisierung

— Probabilistischer Algorithmus auf Basis elliptscher Kurven
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PROBEDIVISION I

e Einfacher, leicht zu programmierender Ansatz
— Alle Teiler der Zahl n werden der Reihe nach durchgetestet
— Hochgradig ineffizient Laufzeit O(n) = O(2I"1)
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PROBEDIVISION I

e Einfacher, leicht zu programmierender Ansatz
— Alle Teiler der Zahl n werden der Reihe nach durchgetestet

— Hochgradig ineffizient Laufzeit O(n) = 0(2”””)
e Optimierungen haben geringen Effekt
— AuBler 2 nur noch ungerade Zahlen betrachten O (2l
— Suche beschriankt auf Zahlen bis | /1| O(2Inl/2)
— Beschranke Suche auf Primzahlen mit dem Sieb des Erathostenes
Komplexitit ist O(v/n/in(y/n)) — O(2lnl/2=legnl)
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e Optimierungen haben geringen Effekt
— AuBler 2 nur noch ungerade Zahlen betrachten O (2l
— Suche beschriankt auf Zahlen bis | /1| O(2Inl/2)
— Beschranke Suche auf Primzahlen mit dem Sieb des Erathostenes
Komplexitit ist O(v/n/in(y/n)) — O(2lnl/2=legnl)

e Nur geeignet fiir Zahlen mit kleinen Teilern
— Suche nach Teilern mufl auf Schranke B begrenzt werden

— Schranke jenseits von 107 wenig sinnvoll
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— Alle Teiler der Zahl n werden der Reihe nach durchgetestet

— Hochgradig ineffizient Laufzeit O(n) = 0(2”””)
e Optimierungen haben geringen Effekt
— AuBler 2 nur noch ungerade Zahlen betrachten O (2l
— Suche beschriankt auf Zahlen bis | /1| O(2Inl/2)
— Beschranke Suche auf Primzahlen mit dem Sieb des Erathostenes
Komplexitit ist O(v/n/in(y/n)) — O(2lnl/2=legnl)

e Nur geeignet fiir Zahlen mit kleinen Teilern
— Suche nach Teilern mufl auf Schranke B begrenzt werden

— Schranke jenseits von 107 wenig sinnvoll

Zahlen grofler als 104 sollten anders faktorisiert werden
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POLLARD p—1 ALGORITHMUS I

Nur fur Zahlen mit bestimmten Eigenschaften
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POLLARD p—1 ALGORITHMUS I

Nur fur Zahlen mit bestimmten Eigenschaften

e Fiir ein p|n hat p—1 nur kleine Primfaktoren
— Sel k ein beliebiges Vielfaches von p—1

kmodp—l fir jedes @ mit p fa

— Nach Satz von Fermat ist a
— Da p Teiler von a*—1 ist, mu ged(a*—1,n) echter Teiler von n sein,

wenn a”—1 kein Vielfaches von n ist
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POLLARD p—1 ALGORITHMUS I

Nur fur Zahlen mit bestimmten Eigenschaften

e Fiir ein p|n hat p—1 nur kleine Primfaktoren
— Sel k ein beliebiges Vielfaches von p—1

kmodp—l fir jedes @ mit p fa

— Nach Satz von Fermat ist a
— Da p Teiler von a*—1 ist, mu ged(a*—1,n) echter Teiler von n sein,

wenn a”—1 kein Vielfaches von n ist

Wie bestimmt man das Vielfache einer unbekannten Zahl?

— Wenn die Primfaktorezerlegung von p—1 nur aus Primzahlpotenzen
q°<B fir eine Schranke B bestehen, dann ist B! Vielfaches von p—1
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POLLARD p—1 ALGORITHMUS I

Nur fur Zahlen mit bestimmten Eigenschaften

e Fiir ein p|n hat p—1 nur kleine Primfaktoren
— Sel k ein beliebiges Vielfaches von p—1

"modp =1 fiir jedes a mit p fa

— Nach Satz von Fermat ist «a
— Da p Teiler von a"—1 ist, mul ged(a®—1,n) echter Teiler von n sein,

wenn a”—1 kein Vielfaches von n ist
Wie bestimmt man das Vielfache einer unbekannten Zahl?

— Wenn die Primfaktorezerlegung von p—1 nur aus Primzahlpotenzen
q°<B fir eine Schranke B bestehen, dann ist B! Vielfaches von p—1

e Einfacher Algorithmus
— Wahle a:=2
— Berechne ' = all’27 mod n
— Falls d := ged(a’—1,n)>1, dann ist d Faktor von n
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POLLARD p—1 ALGORITHMUS I

Nur fur Zahlen mit bestimmten Eigenschaften

e Fiir ein p|n hat p—1 nur kleine Primfaktoren
— Sel k ein beliebiges Vielfaches von p—1

kmodp—l fir jedes @ mit p fa

— Nach Satz von Fermat ist a
— Da p Teiler von a*—1 ist, mu ged(a*—1,n) echter Teiler von n sein,

wenn a”—1 kein Vielfaches von n ist

Wie bestimmt man das Vielfache einer unbekannten Zahl?

— Wenn die Primfaktorezerlegung von p—1 nur aus Primzahlpotenzen
q°<B fir eine Schranke B bestehen, dann ist B! Vielfaches von p—1

e Einfacher Algorithmus
— Wahle a:=2
_ Berechne ¢’ = all’=27 mod n
— Falls d := ged(a’—1,n)>1, dann ist d Faktor von n
e Komplexitat abhangig von B O(B-|B|-|n|?)
— B modulare Potenzierungen mit 7 <B und Berechnung des gcd
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POLLARD p—1: ABLAUFBEISPIEL I

e Faktorisierung von n = 6609029

— Primfaktoren bis 3 reichen aus, um Faktoren
p=7 und g = 944147 zu finden
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POLLARD p—1: ABLAUFBEISPIEL I

e Faktorisierung von n = 6609029

— Primfaktoren bis 3 reichen aus, um Faktoren
p=7 und g = 944147 zu finden

e Faktorisierung von n = 891404116139

— Primfaktoren bis 47 reichen aus, um Faktoren
p = 944137 und ¢ = 944147 zu finden

— Da beides Primzahlen sind, bendtig Probedivision nahezu 10° Schritte
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POLLARD p—1: ABLAUFBEISPIEL I

e Faktorisierung von n = 6609029

— Primfaktoren bis 3 reichen aus, um Faktoren
p=7 und g = 944147 zu finden

e Faktorisierung von n = 891404116139

— Primfaktoren bis 47 reichen aus, um Faktoren
p = 944137 und ¢ = 944147 zu finden

— Da beides Primzahlen sind, bendtig Probedivision nahezu 10° Schritte

e Faktorisierung von n = 32163303412819

— Faktoren sind zu grof3 um effektiv gefunden zu werden

B .
~ Basis 2 fiihrt zu alli=27 =
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POLLARD p ALGORITHMUS I

e Suche z#z' €Z_ mit 1 < ged(z—x',n) < n
— Ist p Primfaktor von n so gilt p <gcd(z—x',n)<n falls x=2"modp
— Bei einer Teilmenge X cZ, mit 1.2,/p Elementen findet man eine
solche Kollision mit Wahrscheinlichkeit 50% (Geburtstagsparadox)
— Uberpriifen aller Paare aus X braucht mehr als p /2 ged-Berechnungen
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POLLARD p ALGORITHMUS I

e Suche z#z' €Z_ mit 1 < ged(z—x',n) < n
— Ist p Primfaktor von n so gilt p <gcd(z—x',n)<n falls x=2"modp
— Bei einer Teilmenge X cZ, mit 1.2,/p Elementen findet man eine
solche Kollision mit Wahrscheinlichkeit 50% (Geburtstagsparadox)
— Uberpriifen aller Paare aus X braucht mehr als p /2 ged-Berechnungen

e Erzeuge und priufe Zufallselemente schrittweise
— Berechne Folge x1, s, ... mit 231 := f(xp) modn (f Zufallspolynom)
~ Gilt x;=2,;modp fiir ein <7, dann gilt auch f(z;) = f(z,;) modp

also ;41 =xj.1modp und damit ;1 =2, modp fur alle k
Folge der x;. lauft in eine Schleife, was aussieht wie ein O

— Hat die Schleife die Lange [ = j—i, so gibt es ein ke{i..j—1},
das Vielfaches von [ ist. Fur dieses k gilt x), = x9, mod p
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POLLARD p ALGORITHMUS I

e Suche z#z' €Z_ mit 1 < ged(z—x',n) < n
— Ist p Primfaktor von n so gilt p <gcd(z—x',n)<n falls x=2"modp
— Bei einer Teilmenge X cZ, mit 1.2,/p Elementen findet man eine
solche Kollision mit Wahrscheinlichkeit 50% (Geburtstagsparadox)
— Uberpriifen aller Paare aus X braucht mehr als p /2 ged-Berechnungen

e Erzeuge und priufe Zufallselemente schrittweise
— Berechne Folge x1, s, ... mit 231 := f(xp) modn (f Zufallspolynom)
~ Gilt x;=2,;modp fiir ein <7, dann gilt auch f(z;) = f(z,;) modp

also ;41 =xj.1modp und damit ;1 =2, modp fur alle k
Folge der x;. lauft in eine Schleife, was aussieht wie ein O

— Hat die Schleife die Lange [ = j—i, so gibt es ein ke{i..j—1},
das Vielfaches von [ ist. Fur dieses k gilt x), = x9, mod p
e Einfaches Suchverfahren
— In Schritt k bestimme z:=f"(x), 2":=f**(21) und d := ged(2'—x,n)
— Ist d>1, dann ist d Faktor von n
— Ist d=n oder k = B, so breche ohne Erfolg ab
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POLLARD p: ABLAUFBEISPIEL I

e Trace der Faktorisierung von n = 275831

Schleife 1. x =1 x’? =2 =
Schleife 2. X = 2 x’ =26 =
Schleife 3. x =5 x’ =182499 =
Schleife 4. x = 26 x’ =6145 =
Schleife 5. X = 677 x’ =26256 =
Schleife 6. x = 182499 x’ =187948 =
Schleife 7. x = 119245 x’ =104247 =
Schleife 8. x = 6145 x’ =260046

Schleife 9. x = 248010 x’ =252849

Schleife 10. x = 26256 x’ =153840
Schleife 11. x = 75868 x’ =89454
Schleife 12. = 187948 x’ =10831
Schleife 13. 153690 x’ =244353
Schleife 14. = 104247 x’ =141598
Schleife 15. = 247272 x’ =230974
Schleife 16. = 260046 x’ =191915
Schleife 17. x = 90833 x’ =89356
Schleife 18. x = 252849 x’ =266080

— Faktoren sind 101 und 2731 (beide Primzahlen)

ol o i

oo NeeNefcNye oo Ne o Nyc o Ny e Fiyo Ry o iy o N o R
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PR RP R RPRPRrRPRPRRrRPRRPRPRRPRRER R
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e Trace der Faktorisierung von n = 275831

Schleife 1. x =1 x’? =2 =
Schleife 2. X = 2 x’ =26 =
Schleife 3. x =5 x’ =182499 =
Schleife 4. x = 26 x’ =6145 =
Schleife 5. X = 677 x’ =26256 =
Schleife 6. x = 182499 x’ =187948 =
Schleife 7. x = 119245 x’ =104247 =
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Schleife 9. x = 248010 x’ =252849

Schleife 10. x = 26256 x’ =153840
Schleife 11. x = 75868 x’ =89454
Schleife 12. = 187948 x’ =10831
Schleife 13. 153690 x’ =244353
Schleife 14. = 104247 x’ =141598
Schleife 15. = 247272 x’ =230974
Schleife 16. = 260046 x’ =191915
Schleife 17. x = 90833 x’ =89356
Schleife 18. x = 252849 x’ =266080

— Faktoren sind 101 und 2731 (beide Primzahlen)

e Faktorisierung von n = 891404116139
— 1410 Schritte notig um Faktoren p = 944137, ¢ = 944147 zu finden
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FERMAT-FAKTORISIERUNGSMETHODE I

Gut wenn Differenz der Faktoren gering
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FERMAT-FAKTORISIERUNGSMETHODE I

Gut wenn Differenz der Faktoren gering

e Suche Faktoren p, g nahe bei v/n
— Sei n = p-q mit p<q ungerade (nicht notwendigerweise prim)
— Da q—p gerade ist, setze d = ¢q—p/2 und = = p+q/2
— Dann ist n = p-q = (v—d)(z+d)= 2*—d*,
also x > |\/n] und 2°—n Quadratzahl
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FERMAT-FAKTORISIERUNGSMETHODE I

Gut wenn Differenz der Faktoren gering

e Suche Faktoren p, g nahe bei v/n
— Sei n = p-q mit p<q ungerade (nicht notwendigerweise prim)
— Da q—p gerade ist, setze d = ¢q—p/2 und = = p+q/2
— Dann ist n = p-q = (v—d)(z+d)= 2*—d*,
also x > |\/n] und 2°—n Quadratzahl
e Einfacher Suchalgorithmus
— Suche das erste 2> |/n| fiir das 2°—n =: d> Quadratzahl ist
—p:=x—d und ¢q:= x+d sind die Faktoren von n
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Gut wenn Differenz der Faktoren gering

e Suche Faktoren p, g nahe bei v/n
— Sei n = p-q mit p<q ungerade (nicht notwendigerweise prim)
— Da q—p gerade ist, setze d = ¢q—p/2 und = = p+q/2
— Dann ist n = p-q = (v—d)(z+d)= 2*—d*,
also x > |\/n] und 2°—n Quadratzahl
e Einfacher Suchalgorithmus
— Suche das erste 2> |/n| fiir das 2°—n =: d> Quadratzahl ist
—p:=x—d und ¢q:= x+d sind die Faktoren von n

e Ablauftbeispiel
~ Fiir n = 891404116139 ist x( := |/n] = 944141
— Es gilt (zg+1)2 = 891404116164, also (zg+1)2—n = 25
— Die beiden Faktoren sind p = 944137 und ¢ = 944147
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FAKTORISIERUNG MIT QUADRATISCHEN KONGRUENZEN I

Erweitere Idee der Fermat-Faktorisierung
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FAKTORISIERUNG MIT QUADRATISCHEN KONGRUENZEN I

Erweitere Idee der Fermat-Faktorisierung

e Suche nichttriviale x,y € Z  mit 2 =y? mod n
— Ist n Teiler von 2°—y* = (x—y)(z+y) und x£+y mod n

dann haben n und z—y (sowie n und z+y) gemeinsame Teiler
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FAKTORISIERUNG MIT QUADRATISCHEN KONGRUENZEN I

Erweitere Idee der Fermat-Faktorisierung

e Suche nichttriviale x,y € Z  mit 2 =y? mod n
— Ist n Teiler von 2°—y* = (x—y)(z+y) und x£+y mod n
dann haben n und z—y (sowie n und z+y) gemeinsame Teiler

~2.B. sei n = 156770708441, z = 125979 und y = 10000
Dann ist 2% = 15870708441 = n + y? und ged(x—y,n) = 115979
Damit ist 115979 Faktor von n (ebenso wie ged(x+y,n) = 135979)
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FAKTORISIERUNG MIT QUADRATISCHEN KONGRUENZEN I

Erweitere Idee der Fermat-Faktorisierung

e Suche nichttriviale x,y € Z  mit 2 =y? mod n
— Ist n Teiler von 2°—y* = (x—y)(z+y) und x£+y mod n
dann haben n und z—y (sowie n und z+y) gemeinsame Teiler
~2.B. sei n = 15770708441, z = 125979 und y = 10000
Dann ist 2% = 15870708441 = n + y? und ged(x—y,n) = 115979
Damit ist 115979 Faktor von n (ebenso wie ged(x+y,n) = 135979)
e Suche x und y ausgehend von |/n|

— Anders als bei Fermat mufl 22 mod n Quadratzahl modulo 7 sein

und der Abstand von x zu |y/n] kann sehr groff werden
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FAKTORISIERUNG MIT QUADRATISCHEN KONGRUENZEN I

Erweitere Idee der Fermat-Faktorisierung

e Suche nichttriviale x,y € Z  mit 2 =y? mod n
— Ist n Teiler von 2°—y* = (x—y)(z+y) und x£+y mod n
dann haben n und z—y (sowie n und z+y) gemeinsame Teiler

~2.B. sei n = 156770708441, z = 125979 und y = 10000
Dann ist 2% = 15870708441 = n + y? und ged(x—y,n) = 115979
Damit ist 115979 Faktor von n (ebenso wie ged(x+y,n) = 135979)

e Suche x und y ausgehend von |/n|

— Anders als bei Fermat mufl 22 mod n Quadratzahl modulo 7 sein

und der Abstand von x zu |y/n] kann sehr groff werden
2
)
— Faktoren miissen zu einer Faktorbasis B = {—1,2,3,5,7, ...} gehoren

e Zerlege b; = ¥ mod n in Primfaktoren

— Suche Kombination der Zerlegungen, die eine Quadratzahl ergeben,

d.h. alle Faktoren von b'-b3%..b," miissen gradzahlig vorkommen
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BESTIMMUNG QUADRATISCHER KONGRUENZEN I

e Kombination von Faktorzerlegungen am Beispiel
— Sei n = 15770708441 und B = {—1,2,3,5,7,11, 13}
— Betrachte 83409341562 modn =21 =3 %7

120449429442 mod n = 78 = 2% 3 % 13
27737000112 mod n = 182 = 2% 7 % 13

— Das Produkt der drei Quadrate ergibt 22.32.7%.13% = 546
— Ergebnis x = 9503435785 und y = 546 und ged(x—y,n) = 115979
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BESTIMMUNG QUADRATISCHER KONGRUENZEN I

e Kombination von Faktorzerlegungen am Beispiel
— Sei n = 15770708441 und B = {—1,2,3,5,7,11, 13}
— Betrachte 83409341562 modn =21 =3 %7

120449429442 mod n = 78 = 2% 3 % 13
27737000112 mod n = 182 = 2% 7 % 13

— Das Produkt der drei Quadrate ergibt 22.32.7%.13% = 546
— Ergebnis x = 9503435785 und y = 546 und ged(x—y,n) = 115979

e Methode: Losung linearer Gleichungssysteme
—Ist b; = nglp?’j fiir b:=|B| (“b; ist b-glatt”) dann ist b;'-b5%..b,"
genau dann eine Quadratzahl, wenn die Summe der entstehenden
Exponenten aller Primfaktoren p; geradzahlig wird
— Also muB3 fur alle j<b gelten: e;, ;-21+e€, j-22..4¢€;,_ -2, mod 2 =0

— Lineares System von b Gleichungen mit & Unbekannten z; €{0, 1}
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WIE WAHLT MAN GUT FAKTORISIERBARE b;? I

e Erfolglose Probedivisionen sind aufwendig
— Probedivision von b durch Elemente von B benotigt Zeit O(|B|*-|b])
— Faktorbasen sind i.a. sehr grofy (mehr als 100000 Primzahlen)
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WIE WAHLT MAN GUT FAKTORISIERBARE b;? I

e Erfolglose Probedivisionen sind aufwendig
— Probedivision von b durch Elemente von B benotigt Zeit O(|B|*-|b])
— Faktorbasen sind i.a. sehr grofy (mehr als 100000 Primzahlen)

e Dixon Random Squares O (e(+o))-In]'/2-(log(Inl)'/?)
— Probedivision mit semi-zufalliger Wahl der x;
— Wahrscheinlichkeit b-glatter Zahlen ist relativ hoch
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e Erfolglose Probedivisionen sind aufwendig
— Probedivision von b durch Elemente von B benotigt Zeit O(|B|*-|b])
— Faktorbasen sind i.a. sehr grofy (mehr als 100000 Primzahlen)

e Dixon Random Squares O (e(+o))-In]'/2-(log(Inl)'/?)
— Probedivision mit semi-zufalliger Wahl der x;
— Wahrscheinlichkeit b-glatter Zahlen ist relativ hoch

e Quadratisches Sieb O (e(1+oW)-Inl'/*(log(In])/?)
— Wihle x; = [/n|+i) fir i =0, £1,£2,... £ C
— Probedivision fur i €{0, .., p—1} identifizert alle durch p teilbaren b;
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WIE WAHLT MAN GUT FAKTORISIERBARE b;? I

e Erfolglose Probedivisionen sind aufwendig
— Probedivision von b durch Elemente von B benotigt Zeit O(|B|*-|b])
— Faktorbasen sind i.a. sehr grofy (mehr als 100000 Primzahlen)

e Dixon Random Squares O (e(1+o)-Inl'/?(log(In])/?)
— Probedivision mit semi-zufalliger Wahl der x;
— Wahrscheinlichkeit b-glatter Zahlen ist relativ hoch

e Quadratisches Sieb O (e(1+oW)-Inl'/*(log(In])/?)
— Wihle x; = [/n|+i) fir i =0, £1,£2,... £ C
— Probedivision fur i €{0, .., p—1} identifizert alle durch p teilbaren b;
e Zahlkorpersieb O (el-9% Inl'/?-(og(Inl))*/*
— Systematischer Erzeugung der Kongruenzen z?=y? mod n
mithilfe der algebraischen Zahlentheorie (aufwendig!)

— Bestes asymptotisches Verhalten aller Faktorisierungsalgorithmen
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(QUADRATISCHE SIEBE I

e Wahle Siebintervall S = {-C,... —1,0,1,...C'}
— Fiir alle €S wahle z; = |\/n]+i und berechne b; := 7 mod n
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(QUADRATISCHE SIEBE I

e Wahle Siebintervall S = {-C,... —1,0,1,...C'}
~ Fir alle ¢ € S wihle z; = | /n|+i und berechne b; := z7 mod n
e Identifiziere b-glatte Werte im Intervall
— Fiir pe B teste alle b; mit i €{0, .., p—1} auf Teilbarkeit
22 mod p ist Polynom zweiten Grades, also gibt es maximal 2 Treffer
— Ist b; durch p teilbar, dann auch b;4,, bj19,, ... aber kein anderes b;

— Es gibt (fast) keine erfolglosen Divisionen mehr
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(QUADRATISCHE SIEBE I

e Wahle Siebintervall S = {-C,... —1,0,1,...C'}
~ Fir alle ¢ € S wihle z; = | /n|+i und berechne b; := z7 mod n

e Identifiziere b-glatte Werte im Intervall
— Fiir pe B teste alle b; mit i €{0, .., p—1} auf Teilbarkeit
22 mod p ist Polynom zweiten Grades, also gibt es maximal 2 Treffer
— Ist b; durch p teilbar, dann auch b;4,, bj19,, ... aber kein anderes b;

— Es gibt (fast) keine erfolglosen Divisionen mehr

e Faktorisierung mit quadratische Sieben
— Fiir alle p € B: Identifiziere die durch p teilbaren b; mit j {0, ..,p—1}
Dividiere alle b1, mit £<C'/p durch das maximale p°
— Ein b, ist b-glatt, wenn es insgesamt zu 1 oder -1 reduziert wurde
— Lose Gleichungssystem, wenn b Zahlen gefunden, die b-glatt sind
<

— Berechne o = H?:1 ., das zugehdrige y und den Faktor ged(z—y, n)
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FAKTORISIERUNG MIT QUADRATISCHEN SIEBEN I

e Beispielfaktorisierung von n = 7429
— Berechne b; fiir S = {—3,...,3} und siebe mit B = {2,3,5,7}

7 31 -2 -1] O] 1] 2] 3
b; -540|-373|-204 | -33 140|315 492
Sieb mit 2[-135 -51 35 123
Sieb mit 3| -5 -17 |-11 35| 41
Sieb mit 5| -1 71 7
Sieb mit 7 1 1

— Drei glatte Werte b_3 = (—1)-22:3%5, by = 2°-5:7 und by = 3%:5:7
— Losung des Gleichungssystems ergibt

r = xo-x3 modn =227 und y = 2-3-5-7 mod n = 210
— Faktoren sind ged(x—y,n) = 17 und ged(x+y,n) = 437
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FAKTORISIERUNG MIT QUADRATISCHEN SIEBEN I

e Beispielfaktorisierung von n = 7429
— Berechne b; fiir S = {—3,...,3} und siebe mit B = {2,3,5,7}

7 31 -2 -1] O] 1] 2] 3
b; -540|-373|-204 | -33 140|315 492
Sieb mit 2[-135 -51 35 123
Sieb mit 3| -5 -17 |-11 35| 41
Sieb mit 5| -1 71 7
Sieb mit 7 1 1

— Drei glatte Werte b_3 = (—1)-22:3%5, by = 2°-5:7 und by = 3%:5:7
— Losung des Gleichungssystems ergibt
r = xo-x3 modn =227 und y = 2-3-5-7 mod n = 210
— Faktoren sind ged(x—y,n) = 17 und ged(x+y,n) = 437
e GGrofle von Intervall und Faktorbasis
— Ideale GroBe ist |B| ~ 2(nl-log In)'/2/2 ynd |S| = |B|-u",
wobei u = (|n]/log ”n”)l/Q (siehe Laufzeitanalyse)

BitgroBe 128192256 |384] 512
Typische Werte | |B| in Tausend | 1| 4| 65|524| 16777
S| in Millionen| 1| 4| 67|536|209715
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LAUFZEITANALYSE QUADRATISCHER SIEBE I

Laufzeit hangt von vielen Faktoren ab
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LAUFZEITANALYSE QUADRATISCHER SIEBE I

Laufzeit hangt von vielen Faktoren ab

e Grofle eines Intervalls S
— Es miussen gentigend b-glatte Werte b; erzeugt werden konnen
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LAUFZEITANALYSE QUADRATISCHER SIEBE I

Laufzeit hangt von vielen Faktoren ab

e Grofle eines Intervalls S
— Es miussen gentigend b-glatte Werte b; erzeugt werden konnen

e Aufwand fur Berechnung aller b; fir 1 € S
— Insgesamt |\S| Quadrierungen modulo n O(|S|-|n]?)
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LAUFZEITANALYSE QUADRATISCHER SIEBE I

Laufzeit hangt von vielen Faktoren ab

e Grofle eines Intervalls S
— Es miussen gentigend b-glatte Werte b; erzeugt werden konnen

e Aufwand fur Berechnung aller b; fir 1 € S
— Insgesamt |\S| Quadrierungen modulo n O(|S|-|n]?)

e Bestimmung der teilbaren b; mit ¢ € {0, .., p—1}
— Maximal b* Divisionen Ob*|n|?)
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LAUFZEITANALYSE QUADRATISCHER SIEBE I

Laufzeit hangt von vielen Faktoren ab

e Grofle eines Intervalls S
— Es miussen gentigend b-glatte Werte b; erzeugt werden konnen

e Aufwand fur Berechnung aller b; fir 1 € S

— Insgesamt |\S| Quadrierungen modulo n O(|S|-|n]?)
e Bestimmung der teilbaren b; mit ¢ € {0, .., p—1}

— Maximal b* Divisionen Ob*|n|?)
e Aussieben der b-glatten Elemente

— Aufwand fiir eine Divisionen von b; durch ein p e B O(bi]- 12l

— Zahl der Elemente, die durch ein p € B dividiert werden 1S|/p

— Anzahl der Elemente der Faktorbasis B b
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LAUFZEITANALYSE QUADRATISCHER SIEBE I

Laufzeit hangt von vielen Faktoren ab

e Grofle eines Intervalls S
— Es miussen gentigend b-glatte Werte b; erzeugt werden konnen

e Aufwand fur Berechnung aller b; fir 1 € S

— Insgesamt |\S| Quadrierungen modulo n O(|S|-|n]?)
e Bestimmung der teilbaren b; mit ¢ € {0, .., p—1}

— Maximal b* Divisionen Ob*|n|?)
e Aussieben der b-glatten Elemente

— Aufwand fiir eine Divisionen von b; durch ein p e B O(bi]- 12l

— Zahl der Elemente, die durch ein p € B dividiert werden 1S|/p

— Anzahl der Elemente der Faktorbasis B b

e Losen des linearen b X b-Gleichungssystems
— Bei diinn besetzten Matrixen (Wiedemann Algorithmus) O(b*-|n|)
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LAUFZEITANALYSE QUADRATISCHER SIEBE I

Laufzeit hangt von vielen Faktoren ab

e Grofle eines Intervalls S
— Es miussen gentigend b-glatte Werte b; erzeugt werden konnen

e Aufwand fur Berechnung aller b; fir 1 € S

— Insgesamt |\S| Quadrierungen modulo n O(|S|-|n]?)
e Bestimmung der teilbaren b; mit ¢ € {0, .., p—1}

— Maximal b* Divisionen Ob*|n|?)
e Aussieben der b-glatten Elemente

— Aufwand fiir eine Divisionen von b; durch ein p e B O(bi]- 12l

— Zahl der Elemente, die durch ein p € B dividiert werden 1S|/p

— Anzahl der Elemente der Faktorbasis B b

e Losen des linearen b X b-Gleichungssystems
— Bei diinn besetzten Matrixen (Wiedemann Algorithmus) O(b*-|n|)

e Berechnung von z, y und ged(xz—y,n)
— Jeweils b Multiplikationen bzw. Fuklids Algorithmus O(b-|n|?)
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LAUFZEITANALYSE QUADRATISCHER SIEBE (II)

e Wieviele b-glatte Elemente erzeugt Intervall S7
Satz (Zahlentheorie): Sei ¢ (m, b) die Anzahl b-glatter Zahlen in {1..m}.
Dann ist ¢ (m, b) =~ m/u", wobei u = |m|/|b|
— Quadratische Siebe generieren z; = |[/n|+i und b; = i-|\/n] + %,
Beide Werte liegen nahe bei [y/n ], da i€ S klein
— Anteil b-glatter Werte fiir S entspricht Anteil in {1, .., [\/n]}
da 1(m, b) /m sich fiir kleine Anderungen von m kaum &ndert

— Um b gute b; zu erzeugen, mufl | S| = b-u" sein mit u = |n|/(2(0])
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LAUFZEITANALYSE QUADRATISCHER SIEBE (II)

e Wieviele b-glatte Elemente erzeugt Intervall S7
Satz (Zahlentheorie): Sei ¢ (m, b) die Anzahl b-glatter Zahlen in {1..m}.
Dann ist ¢ (m, b) =~ m/u", wobei u = |m|/|b|
— Quadratische Siebe generieren z; = |[/n|+i und b; = i-|\/n] + %,
Beide Werte liegen nahe bei [y/n ], da i€ S klein
— Anteil b-glatter Werte fiir S entspricht Anteil in {1, .., [\/n]}
da 1(m, b) /m sich fiir kleine Anderungen von m kaum &ndert

— Um b gute b; zu erzeugen, mufl | S| = b-u" sein mit u = |n|/(2(0])

e Aufwand fir Aussieben der b-glatten Elemente
— Aufwand der Division von b; durch pe B ist O(|b;]-|p])
mit b; =~ y/n und p<n ist der Aufwand O(|n|?/2)
— Anzahl der b;, die durch p € B dividiert werden ist |[S|/p
Im Mittel ist dies maximal 2-|S|/b = 2-u"
— Bei b Elementen in B ist die Laufzeit insgesamt O(b-u*-|n|?)
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LAUFZEITANALYSE QUADRATISCHER SIEBE (III)

e Bestimme ideale Grofie der Faktorbasis
— Gesamtlaufzeit ist O (b-u-|n|? + b*-|n|?)
— Polynomieller Anteile verschwinden gegeniiber dem exponentiellen "

— Ergibt Laufzeit b-u|n|? = 210lwlosut2-losinl mit o) = |n| /(2] b])

— Der Exponent ist minimal fiir |b] = 1/2-(|n|- log HnH)l/Q,

1/2

— Dann ist u = (|n|/log|n|)"/* und die Laufzeit ist

O (2!l log )72 /2+(In]/ 1og ) /2 (log [n]| ~loglog |n]) /2+2- log I

= O(2(Inl-log In)!*(1—(loglog|nl/log In]))) = @ (2(A+0(1))-In]'/*-log |n|'/?)
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LAUFZEITANALYSE QUADRATISCHER SIEBE (III)

e Bestimme ideale Grofie der Faktorbasis
— Gesamtlaufzeit ist O (b-u-|n|? + b*-|n|?)
— Polynomieller Anteile verschwinden gegeniiber dem exponentiellen "

— Ergibt Laufzeit b-u|n|? = 210lwlosut2-losinl mit o) = |n| /(2] b])
— Der Exponent ist minimal fiir [b] = 1/2:(|n|-log|n])"/?,
~ Dann ist u = (|n|/log |n])"/? und die Laufzeit ist

O(2(7]-log Inl)!/2 /24 (Inl/ log [n])'/2-(log [n]| ~loglog |n])/2+2- log Il

= O(2(Inl-log In)!*(1—(loglog|nl/log In]))) = @ (2(A+0(1))-In]'/*-log |n|'/?)

e Definiere L, |u,v] := (’)(e”'”n”u'(log(||"||))1_u)

— u beschreibt den Grad der “Exponentialitat” der Laufzeitfunktion
L,[0,v] = O(etoellnh)y = O(|n|") ist polynomielle Laufzeit
L,[1,v] = O(evI" ist exponentielle Laufzeit

— Schnelle Faktorisierungsalgorithmen sind subexponentiell (0<u<1)

— Laufzeit quadratischer Siebe ist L,[1/2, 1+o0(1)]
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FAKTORISIERUNGSSTRATEGIE FUR GROSSE ZAHLEN I

Kaskadischer Einsatz von Verfahren
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FAKTORISIERUNGSSTRATEGIE FUR GROSSE ZAHLEN I

Kaskadischer Einsatz von Verfahren

e Teste auf kleine Faktoren mit Probedivision
— Sehr erfolgreich, wenn n einen Faktor kleiner als 107 hat
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FAKTORISIERUNGSSTRATEGIE FUR GROSSE ZAHLEN I

Kaskadischer Einsatz von Verfahren

e Teste auf kleine Faktoren mit Probedivision
— Sehr erfolgreich, wenn n einen Faktor kleiner als 107 hat

e Teste Spezialsituationen mit Pollard p—1 /Fermat
— Entdeckt Faktoren p, fur die p—1 nur kleine Primfaktoren hat

— Entdeckt Faktoren nahe bei y/n
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FAKTORISIERUNGSSTRATEGIE FUR GROSSE ZAHLEN I

Kaskadischer Einsatz von Verfahren

e Teste auf kleine Faktoren mit Probedivision
— Sehr erfolgreich, wenn n einen Faktor kleiner als 107 hat

e Teste Spezialsituationen mit Pollard p—1 /Fermat
— Entdeckt Faktoren p, fur die p—1 nur kleine Primfaktoren hat

— Entdeckt Faktoren nahe bei y/n
e Teste n mit Pollard p

— Gut, wenn ein Faktor kleiner als 10'? ist
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FAKTORISIERUNGSSTRATEGIE FUR GROSSE ZAHLEN I

Kaskadischer Einsatz von Verfahren

e Teste auf kleine Faktoren mit Probedivision
— Sehr erfolgreich, wenn n einen Faktor kleiner als 107 hat

e Teste Spezialsituationen mit Pollard p—1 /Fermat
— Entdeckt Faktoren p, fur die p—1 nur kleine Primfaktoren hat

— Entdeckt Faktoren nahe bei y/n
e Teste n mit Pollard p

— Gut, wenn ein Faktor kleiner als 10'? ist
e Teste mit quadratischem Sieb
— Empfehlenswert fiir Zahlen bis ca. 1012

— Basis und Intervall werden ab 380 Bits zu grof3
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FAKTORISIERUNGSSTRATEGIE FUR GROSSE ZAHLEN I

Kaskadischer Einsatz von Verfahren

e Teste auf kleine Faktoren mit Probedivision
— Sehr erfolgreich, wenn n einen Faktor kleiner als 107 hat

e Teste Spezialsituationen mit Pollard p—1 /Fermat
— Entdeckt Faktoren p, fur die p—1 nur kleine Primfaktoren hat

— Entdeckt Faktoren nahe bei y/n
e Teste n mit Pollard p

— Gut, wenn ein Faktor kleiner als 10'? ist

e Teste mit quadratischem Sieb
— Empfehlenswert fiir Zahlen bis ca. 10120

— Basis und Intervall werden ab 380 Bits zu grof3

e Verwende Zahlenkorpersieb fur grofiere Zahlen
— Schnellster bekannter Algorithmus fiir sehr grofie Zahlen
— Finzelne RSA Schliissel mit 640 Bit wurden erfolgreich faktorisiert
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WEITERE ANGRIFFE AUF RSA I

Nicht nur der Schlissel selbst ist angreifbar
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WEITERE ANGRIFFE AUF RSA I

Nicht nur der Schlissel selbst ist angreifbar

e Angriff auf kleine Verschlusselungsexponenten
— Verschliisselung ist sehr effektiv bei kleinen Exponenten
— Wenn Sender den gleichen Exponenten bei verschiedenen Emptangern

nutzt, wird das System leicht angreifbar
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WEITERE ANGRIFFE AUF RSA I

Nicht nur der Schlissel selbst ist angreifbar

e Angriff auf kleine Verschlusselungsexponenten
— Verschliisselung ist sehr effektiv bei kleinen Exponenten
— Wenn Sender den gleichen Exponenten bei verschiedenen Emptangern
nutzt, wird das System leicht angreifbar

— Beispiel: Nachricht x wurde mit e = 3 an drei Empfanger geschickt
Angreifer liest y; = 2° mod n; und 16st mit dem Chinesischen
Restsatz die Kongruenzen z = vy; mod n; in Zy,, ., ns
Wegen 23 < ny-ny-ng ist # = /2 (ohne Modulararithmetik)

— Idee 148t sich verallgemeinern auf e Gleichungen fiir e<10°
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WEITERE ANGRIFFE AUF RSA I

Nicht nur der Schlissel selbst ist angreifbar

e Angriff auf kleine Verschlusselungsexponenten
— Verschliisselung ist sehr effektiv bei kleinen Exponenten
— Wenn Sender den gleichen Exponenten bei verschiedenen Emptangern
nutzt, wird das System leicht angreifbar

— Beispiel: Nachricht x wurde mit e = 3 an drei Empfanger geschickt
Angreifer liest y; = 2° mod n; und 16st mit dem Chinesischen
Restsatz die Kongruenzen z = vy; mod n; in Zy,, ., ns
Wegen 23 < ny-ny-ng ist # = /2 (ohne Modulararithmetik)

— Idee 148t sich verallgemeinern auf e Gleichungen fiir e<10°

e Angriff auf kurze Nachrichten
— Ist 2° < n, so reicht konventionelles Wurzelziehen zur Dechiffrierung
— Ist |2 klein, so ist eine Worterbuchattacke moglich
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WEITERE ANGRIFFE AUF RSA (II)

e Homomorpheeigenschaft (Multiplikativitat)
— (w1-19)¢ = 2§25 macht adaptive chosen ciphertext Attacke moglich
- Angreifer liest y = 2° mod n, erginzt vy = 2’ mod n fiir ein z,
schickt vy’ an Empfanger und bittet um Bestatigung
. Empfinger schickt m = (y-y/)? auf sicherem Kanal zuriick

. Wegen (y-1/)? = x-2' kann = = m-2’~! mod n berechnet werden
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WEITERE ANGRIFFE AUF RSA (II)

e Homomorpheeigenschaft (Multiplikativitat)
— (w1-19)¢ = 2§25 macht adaptive chosen ciphertext Attacke moglich
- Angreifer liest y = 2° mod n, erginzt vy = 2’ mod n fiir ein z,
schickt vy’ an Empfanger und bittet um Bestatigung
. Empfinger schickt m = (y-y/)? auf sicherem Kanal zuriick
. Wegen (y-1/)? = x-2' kann = = m-2’~! mod n berechnet werden

e Common Modulus Attacke
— Szenario: Zentrale Autoritét legt Schliissel K = (n, p, q, d;, e;) fiir
eine gesamte Organisationseinheit fest (gleiches n fiir alle!)
— Wenn Angreifer ein einziges Paar (d;, e;) in die Hand bekommt,
kann n faktorisiert werden und alle Schlissel liegen offen
— Alle Mitarbeiter konnen die fiir andere bestimmten Nachrichten lesen
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WEITERE ANGRIFFE AUF RSA (II)

e Homomorpheeigenschaft (Multiplikativitat)
— (w1-19)¢ = 2§25 macht adaptive chosen ciphertext Attacke moglich
- Angreifer liest y = 2° mod n, erginzt vy = 2’ mod n fiir ein z,
schickt vy’ an Empfanger und bittet um Bestatigung
. Empfinger schickt m = (y-y/)? auf sicherem Kanal zuriick
. Wegen (y-1/)? = x-2' kann = = m-2’~! mod n berechnet werden

e Common Modulus Attacke
— Szenario: Zentrale Autoritét legt Schliissel K = (n, p, q, d;, e;) fiir
eine gesamte Organisationseinheit fest (gleiches n fiir alle!)
— Wenn Angreifer ein einziges Paar (d;, e;) in die Hand bekommt,
kann n faktorisiert werden und alle Schlissel liegen offen
— Alle Mitarbeiter konnen die fiir andere bestimmten Nachrichten lesen

e Cycling Attacke
— Ist y =2° mod n, so gilt yek =y fur ein k£ und yek_1 =" =2

— Berechne 4, (y°)°, ¥, ... mod n bis y° =y und extrahiere z = y¢
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WIENERS ATTACKE AUF ENTSCHLUSSELUNG I

e Angriff auf kleine Entschliusselungsexponenten
~ Durchfithrbar wenn 3d < n'/* (also |d| < |n]/4—1) und

q<p<2q (Faktoren nahe beieinander, aber zu weit fiir Fermat)

1

32 (Beweis folgt)

~ Wegen e-d—1 = k-p(n) fiir ein k folgt hieraus [£—%| <
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WIENERS ATTACKE AUF ENTSCHLUSSELUNG I

e Angriff auf kleine Entschliusselungsexponenten
~ Durchfithrbar wenn 3d < n'/* (also |d| < |n]/4—1) und

q<p<2q (Faktoren nahe beieinander, aber zu weit fiir Fermat)

1

32 (Beweis folgt)

~ Wegen e-d—1 = k-p(n) fiir ein k folgt hieraus [£—%| <

® Verwendet zahlentheoretischen Satz

— Ist der Abstand |—5| zwischen zwei Briichen maximal 2722,

ist o einer der Konvergenten der Kettenbruchexpansion von

dann

a

b
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WIENERS ATTACKE AUF ENTSCHLUSSELUNG I

e Angriff auf kleine Entschliusselungsexponenten
~ Durchfithrbar wenn 3d < n'/* (also |d| < |n]/4—1) und

q<p<2q (Faktoren nahe beieinander, aber zu weit fiir Fermat)

~ Wegen e-d—1 = k-p(n) fiir ein k folgt hieraus [£—%| < Beweis folgt)

3d2 (
® Verwendet zahlentheoretischen Satz

— Ist der Abstand |—5| zwischen zwei Briichen maximal dann

d27

ist 5 einer der Konvergenten der Kettenbruchexpansion von ¥

— Die Kettenbruchexpansion [qi, .., g»] von § ist die Folge der
Quotienten ¢; = L%J bei Abarbeitung des Euklidischen Algorithmus

- BEs gilt: § = ¢ +251 Q1b1 = q+2 = qtm = G+ =t ——1—
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WIENERS ATTACKE AUF ENTSCHLUSSELUNG I

e Angriff auf kleine Entschliusselungsexponenten
~ Durchfithrbar wenn 3d < n'/* (also |d| < |n]/4—1) und

q<p<2q (Faktoren nahe beieinander, aber zu weit fiir Fermat)

~ Wegen e-d—1 = k-p(n) fiir ein k folgt hieraus |[S—2| < -1, (Beweis folgt)

3d2
® Verwendet zahlentheoretischen Satz

— Ist der Abstand |—5| zwischen zwei Briichen maximal dann

2d27
ist 5 einer der Konvergenten der Kettenbruchexpansion von ¥

— Die Kettenbruchexpansion [qi, .., g»] von § ist die Folge der
Quotienten ¢; = L%J bei Abarbeitung des Euklidischen Algorithmus

- BEs gilt: § = ¢ +251 Q1b1 = q+2 = qit+a = @t = it g —
b (J2+a_3 +q3+ L

— Der j-te Konvergent von [q, .., ¢, ist der Kettenbruch 1, -, 4]
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WIENERS ATTACKE AUF ENTSCHLUSSELUNG I

e Angriff auf kleine Entschliusselungsexponenten
~ Durchfithrbar wenn 3d < n'/* (also |d| < |n]/4—1) und

q<p<2q (Faktoren nahe beieinander, aber zu weit fiir Fermat)

~ Wegen e-d—1 = k-p(n) fiir ein k folgt hieraus |[S—2| < -1, (Beweis folgt)

3d2
® Verwendet zahlentheoretischen Satz

— Ist der Abstand |—5| zwischen zwei Briichen maximal dann

2d27
ist 5 einer der Konvergenten der Kettenbruchexpansion von ¥

— Die Kettenbruchexpansion [qi, .., g»] von § ist die Folge der
Quotienten ¢; = L%J bei Abarbeitung des Euklidischen Algorithmus

- BEs gilt: § = ¢ +251 C“bl = q+2 = qit+a = @t = it g —
b (J2+a_3 +q3+ L

— Der j-te Konvergent von [q, .., ¢, ist der Kettenbruch 1, -, 4]

Liefert Verfahren zur Berechnung von %
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WIENERS ATTACKE IM DETAIL I

e Geringer Abstand der Briiche

- e e n 1+k-( 3k-\/n
- Es ist |£—k] = [edpha) - |hllon)) o S0 o s 3 o
— Wegen g<p<2q gilt: 0 < n—gp(n) = p+q—1 < 3q < 3/n

— Wegen 3d < n'/* gilt \} 91032
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WIENERS ATTACKE IM DETAIL I

e Geringer Abstand der Briiche

— Fs ist ’%__‘ ’ed kn|_|1+k |<3k..\7~{ﬁ< 3d 3 1

Tvi = Vi <3P
— Wegen g<p<2q gilt: 0 < n—gp(n) = p+q—1 < 3q < 3/n

— Wegen 3d < n'/* gilt \} 91032

e Bestimmung des j-ten Konvergenten

— Der durch |q, .., ¢;] dargestellte Bruch L st iterativ zu berechnen:
]

1 falls 7=0 0 falls =0
ki=1< ¢ falls j=1 d; = ¢ 1 falls j=1
ijj_1+]€j_2 falls 7>1 qjdj_1+dj_2 falls 7>1
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WIENERS ATTACKE IM DETAIL I

e Geringer Abstand der Briiche

— Fs ist ’%__‘ ’€d kn|_|1+/€ |<3k..\7~{ﬁ< 3d 3 1

Tvi = Vi <A
— Wegen ¢<p<2q gilt: 0 < n—gp(n) = p+q—1 < 3q < 3/n

— Wegen 3d < n'/* gilt } 91032

e Bestimmung des j-ten Konvergenten

— Der durch |q, .., ¢;] dargestellte Bruch L st iterativ zu berechnen:
]

1 falls 7=0 0 falls j=0
ki=1< ¢ falls j=1 d; = ¢ 1 falls j=1
qjkj_1+kj_2 falls 7>1 qjdj_1+dj_2 falls 7>1

e Wieners Angriff auf RSA

— In Stufe j der Attacke berechne den j-ten Konvergenten %

J
— Setze ; = (e-d;—1)/k; und lése Gleichung p* — (n—p;+1)p+n =0
— Wenn beide Losungen zwischen 2 und n liegen, sind sie Teiler von n

und d; ist der Entschlisselungsschliissel
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BEISPIELATTACKE NACH WIENERS METHODE I

e Gegeben n = 160523347 und e = 60728973

~ Zahlenbruchentwicklung von £: 0,2,1,1,1,4,12,102,1,1,2, 3,2, 2, 30]

01 1 2 3 14 171
17 27 37 57 8 377 4527 " *°

— Erste fiint Konvergenten liefern keine Faktorisierung von n

— Konvergenten sind
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BEISPIELATTACKE NACH WIENERS METHODE I

e Gegeben n = 160523347 und e = 60728973
~ Zahlenbruchentwicklung von £: 0,2,1,1,1,4,12,102,1,1,2, 3,2, 2, 30]
— Konvergenten sind ¥, & 1 2 3 14 1o

— Erste fiint Konvergenten liefern keine Faktorisierung von n

e Berechnung der sechsten Stufe der Attacke
— g ist (37-60728973 — 1)/14 = 160498000
— Zu losende quadratische Gleichung: p? — 25348-p + 160523347 = 0
ergibt ¢ = 12347 und p = 13001
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BEISPIELATTACKE NACH WIENERS METHODE I

e Gegeben n = 160523347 und e = 60728973
~ Zahlenbruchentwicklung von £: 0,2,1,1,1,4,12,102,1,1,2, 3,2, 2, 30]
— Konvergenten sind ¥, & 1 2 3 14 1o

— Erste fiint Konvergenten liefern keine Faktorisierung von n

e Berechnung der sechsten Stufe der Attacke
— g ist (37-60728973 — 1)/14 = 160498000
— Zu losende quadratische Gleichung: p? — 25348-p + 160523347 = 0
ergibt ¢ = 12347 und p = 13001

e Ergebnis der Attacke
— Faktorisierung von n = 12347-13001
~ Entschliisselungsschliissel d = 37 (knapp unter n'/*/3 = 37.52004)
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RICHTLINIEN FUR DIE SCHLUSSELAUSWAHL I

e p und g miussen sehr grofl sein
— Nach heutigen Mafistaben sind mindestens 512 Bit erforderlich
— Fr sicherheitskritische Anwendungen sind 2024 Bit empfehlenswert
— |p| und ||g| sollten &hnlich gro sein (nur wenige Bits Unterschied)
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RICHTLINIEN FUR DIE SCHLUSSELAUSWAHL I

e p und g miussen sehr grofl sein
— Nach heutigen Mafistaben sind mindestens 512 Bit erforderlich
— Fr sicherheitskritische Anwendungen sind 2024 Bit empfehlenswert
— |p| und ||g| sollten &hnlich gro sein (nur wenige Bits Unterschied)

e Zufallige Primzahlen generieren
— Systematische Konstruktion kann nachgebaut werden

— Es ist besser, Eigenschaften im Nachinein zu priifen
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RICHTLINIEN FUR DIE SCHLUSSELAUSWAHL I

e p und g miussen sehr grofl sein
— Nach heutigen Mafistaben sind mindestens 512 Bit erforderlich
— Fr sicherheitskritische Anwendungen sind 2024 Bit empfehlenswert
— |p| und ||g| sollten &hnlich gro sein (nur wenige Bits Unterschied)

e Zufallige Primzahlen generieren
— Systematische Konstruktion kann nachgebaut werden

— Es ist besser, Eigenschaften im Nachinein zu priifen

e Starke Primzahlen auswahlen
— p und ¢ dirfen nicht zu nahe beieinanderliegen  (Fermat-Faktorisierung!)
— p—1 muf} auch grofie Primfaktoren haben (Pollard p—1 Faktorisierung!)
— p+1 muf3 auch grofie Primfaktoren haben  (Williams p+1 Faktorisierung!)
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RICHTLINIEN FUR DIE SCHLUSSELAUSWAHL I

e p und g miussen sehr grofl sein
— Nach heutigen Mafistaben sind mindestens 512 Bit erforderlich
— Fr sicherheitskritische Anwendungen sind 2024 Bit empfehlenswert
— |p| und ||g| sollten &hnlich gro sein (nur wenige Bits Unterschied)

e Zufallige Primzahlen generieren
— Systematische Konstruktion kann nachgebaut werden

— Es ist besser, Eigenschaften im Nachinein zu priifen

e Starke Primzahlen auswahlen
— p und ¢ dirfen nicht zu nahe beieinanderliegen  (Fermat-Faktorisierung!)
— p—1 muf} auch grofie Primfaktoren haben (Pollard p—1 Faktorisierung!)
— p+1 muf3 auch grofie Primfaktoren haben  (Williams p+1 Faktorisierung!)

e ¢ und d mussen grof} sein

— Vermeide Angriffe auf zu kleine Ver-/Entschliisselungsexponenten
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