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– Bis heute nicht abschließend geklärt - es gibt Probleme in Einzelfällen

– Äquivalenz von RSA zum Faktorisierungsproblem nicht nachweisbar

Wie leicht können RSA-chiffrierte Nachrichten manipuliert werden?

– Man kann Schlüsseltexte kombinieren ohne den Klartext zu kennen
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(ak)=2i für ein i≤s

Es ist (ak)2
s
= aed−1 ≡ 1 modn, also ist orderZn

(ak) Teiler von 2s

2. Ist gcd(a, n)=1 und orderZp
(ak) 6= orderZq

(ak) so ist

gcd(a2tk−1, n)6=1 für ein t<s

Wie oben sind orderZp
(ak) und orderZq

(ak) Teiler von 2s.

Sei o.B.d.A. orderZq
(ak) = 2t < orderZp

(ak) ≤ 2s. Dann gilt

(ak)2
t≡ 1 mod q aber (ak)2

t 6≡ 1 mod p also gcd(a2tk−1, n) = q
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“RP” Algorithmus zur Faktorisierung von n

– Wähle a ∈{1...n−1} zufällig

– Ist g = gcd(a, n) 6= 1 dann ist g echter Teiler von n

– Ansonsten teste gcd(a2tk−1, n) für t = s−1, s−2, ..., 0

Wahrscheinlichkeit, in r Iterationen keinen Teiler zu finden ist 2−r
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• Nur geeignet für Zahlen mit kleinen Teilern

– Suche nach Teilern muß auf Schranke B begrenzt werden

– Schranke jenseits von 107 wenig sinnvoll

Zahlen größer als 1014 sollten anders faktorisiert werden
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– Wähle a:=2

– Berechne a′ := a
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j=2 j modn
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• Komplexität abhängig von B O(B·||B||·||n||2)
– B modulare Potenzierungen mit j≤B und Berechnung des gcd
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• Faktorisierung von n = 6609029

– Primfaktoren bis 3 reichen aus, um Faktoren

p = 7 und q = 944147 zu finden

• Faktorisierung von n = 891404116139

– Primfaktoren bis 47 reichen aus, um Faktoren

p = 944137 und q = 944147 zu finden

– Da beides Primzahlen sind, benötig Probedivision nahezu 106 Schritte

• Faktorisierung von n = 32163303412819

– Faktoren sind zu groß um effektiv gefunden zu werden

– Basis 2 führt zu a
∏B
j=2 j = n
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– Ist p Primfaktor von n so gilt p≤ gcd(x−x′, n)<n falls x≡ x′ mod p

– Bei einer Teilmenge X⊆Zn mit 1.2
√
p Elementen findet man eine

solche Kollision mit Wahrscheinlichkeit 50% (Geburtstagsparadox)

– Überprüfen aller Paare aus X braucht mehr als p/2 gcd-Berechnungen
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• Erzeuge und prüfe Zufallselemente schrittweise
– Berechne Folge x1, x2, ... mit xk+1 := f(xk) modn (f Zufallspolynom)

– Gilt xi≡ xj mod p für ein i<j, dann gilt auch f(xi)≡ f(xj) mod p

also xi+1 ≡ xj+1 mod p und damit xi+k≡ xj+k mod p für alle k
Folge der xk läuft in eine Schleife, was aussieht wie ein ρ

– Hat die Schleife die Länge l = j−i, so gibt es ein k ∈{i..j−1},
das Vielfaches von l ist. Für dieses k gilt xk≡x2k mod p
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• Erzeuge und prüfe Zufallselemente schrittweise
– Berechne Folge x1, x2, ... mit xk+1 := f(xk) modn (f Zufallspolynom)

– Gilt xi≡ xj mod p für ein i<j, dann gilt auch f(xi)≡ f(xj) mod p

also xi+1 ≡ xj+1 mod p und damit xi+k≡ xj+k mod p für alle k
Folge der xk läuft in eine Schleife, was aussieht wie ein ρ

– Hat die Schleife die Länge l = j−i, so gibt es ein k ∈{i..j−1},
das Vielfaches von l ist. Für dieses k gilt xk≡x2k mod p

• Einfaches Suchverfahren
– In Schritt k bestimme x:=fk(x1), x

′:=f 2k(x1) und d := gcd(x′−x, n)

– Ist d>1, dann ist d Faktor von n

– Ist d=n oder k = B, so breche ohne Erfolg ab
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Pollard ρ: Ablaufbeispiel

• Trace der Faktorisierung von n = 275831
Schleife 1. x = 1 x’ =2 d = 1

Schleife 2. x = 2 x’ =26 d = 1

Schleife 3. x = 5 x’ =182499 d = 1

Schleife 4. x = 26 x’ =6145 d = 1

Schleife 5. x = 677 x’ =26256 d = 1

Schleife 6. x = 182499 x’ =187948 d = 1

Schleife 7. x = 119245 x’ =104247 d = 1

Schleife 8. x = 6145 x’ =260046 d = 1

Schleife 9. x = 248010 x’ =252849 d = 1

Schleife 10. x = 26256 x’ =153840 d = 1

Schleife 11. x = 75868 x’ =89454 d = 1

Schleife 12. x = 187948 x’ =10831 d = 1

Schleife 13. x = 153690 x’ =244353 d = 1

Schleife 14. x = 104247 x’ =141598 d = 1

Schleife 15. x = 247272 x’ =230974 d = 1

Schleife 16. x = 260046 x’ =191915 d = 1

Schleife 17. x = 90833 x’ =89356 d = 1

Schleife 18. x = 252849 x’ =266080 d = 101

– Faktoren sind 101 und 2731 (beide Primzahlen)
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Pollard ρ: Ablaufbeispiel

• Trace der Faktorisierung von n = 275831
Schleife 1. x = 1 x’ =2 d = 1

Schleife 2. x = 2 x’ =26 d = 1

Schleife 3. x = 5 x’ =182499 d = 1

Schleife 4. x = 26 x’ =6145 d = 1

Schleife 5. x = 677 x’ =26256 d = 1

Schleife 6. x = 182499 x’ =187948 d = 1

Schleife 7. x = 119245 x’ =104247 d = 1

Schleife 8. x = 6145 x’ =260046 d = 1

Schleife 9. x = 248010 x’ =252849 d = 1

Schleife 10. x = 26256 x’ =153840 d = 1

Schleife 11. x = 75868 x’ =89454 d = 1

Schleife 12. x = 187948 x’ =10831 d = 1

Schleife 13. x = 153690 x’ =244353 d = 1

Schleife 14. x = 104247 x’ =141598 d = 1

Schleife 15. x = 247272 x’ =230974 d = 1

Schleife 16. x = 260046 x’ =191915 d = 1

Schleife 17. x = 90833 x’ =89356 d = 1

Schleife 18. x = 252849 x’ =266080 d = 101

– Faktoren sind 101 und 2731 (beide Primzahlen)

• Faktorisierung von n = 891404116139

– 1410 Schritte nötig um Faktoren p = 944137, q = 944147 zu finden



Kryptographie und Komplexität §4.3 10 Angriffe auf das RSA Verfahren

Fermat-Faktorisierungsmethode

Gut wenn Differenz der Faktoren gering



Kryptographie und Komplexität §4.3 10 Angriffe auf das RSA Verfahren

Fermat-Faktorisierungsmethode

Gut wenn Differenz der Faktoren gering

• Suche Faktoren p, q nahe bei
√
n

– Sei n = p·q mit p<q ungerade (nicht notwendigerweise prim)

– Da q−p gerade ist, setze d = q−p/2 und x = p+q/2

– Dann ist n = p·q = (x−d)(x+d)= x2−d2,

also x > ⌊√n⌋ und x2−n Quadratzahl



Kryptographie und Komplexität §4.3 10 Angriffe auf das RSA Verfahren

Fermat-Faktorisierungsmethode

Gut wenn Differenz der Faktoren gering

• Suche Faktoren p, q nahe bei
√
n

– Sei n = p·q mit p<q ungerade (nicht notwendigerweise prim)

– Da q−p gerade ist, setze d = q−p/2 und x = p+q/2

– Dann ist n = p·q = (x−d)(x+d)= x2−d2,

also x > ⌊√n⌋ und x2−n Quadratzahl

• Einfacher Suchalgorithmus

– Suche das erste x>⌊√n⌋ für das x2−n =: d2 Quadratzahl ist

– p := x−d und q := x+d sind die Faktoren von n
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Fermat-Faktorisierungsmethode

Gut wenn Differenz der Faktoren gering

• Suche Faktoren p, q nahe bei
√
n

– Sei n = p·q mit p<q ungerade (nicht notwendigerweise prim)

– Da q−p gerade ist, setze d = q−p/2 und x = p+q/2

– Dann ist n = p·q = (x−d)(x+d)= x2−d2,

also x > ⌊√n⌋ und x2−n Quadratzahl

• Einfacher Suchalgorithmus

– Suche das erste x>⌊√n⌋ für das x2−n =: d2 Quadratzahl ist

– p := x−d und q := x+d sind die Faktoren von n

• Ablaufbeispiel

– Für n = 891404116139 ist x0 := ⌊√n⌋ = 944141

– Es gilt (x0+1)2 = 891404116164, also (x0+1)2−n = 25

– Die beiden Faktoren sind p = 944137 und q = 944147
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Erweitere Idee der Fermat-Faktorisierung

• Suche nichttriviale x, y ∈ Zn mit x2 ≡ y2 mod n

– Ist n Teiler von x2−y2 = (x−y)(x+y) und x 6≡±y mod n

dann haben n und x−y (sowie n und x+y) gemeinsame Teiler
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– Ist n Teiler von x2−y2 = (x−y)(x+y) und x 6≡±y mod n

dann haben n und x−y (sowie n und x+y) gemeinsame Teiler

– z.B. sei n = 15770708441, x = 125979 und y = 10000

Dann ist x2 = 15870708441 = n + y2 und gcd(x−y, n) = 115979

Damit ist 115979 Faktor von n (ebenso wie gcd(x+y, n) = 135979)
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– Ist n Teiler von x2−y2 = (x−y)(x+y) und x 6≡±y mod n

dann haben n und x−y (sowie n und x+y) gemeinsame Teiler

– z.B. sei n = 15770708441, x = 125979 und y = 10000

Dann ist x2 = 15870708441 = n + y2 und gcd(x−y, n) = 115979

Damit ist 115979 Faktor von n (ebenso wie gcd(x+y, n) = 135979)

• Suche x und y ausgehend von ⌊√
n⌋

– Anders als bei Fermat muß x2 mod n Quadratzahl modulo n sein

und der Abstand von x zu ⌊√n⌋ kann sehr groß werden
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Faktorisierung mit quadratischen Kongruenzen

Erweitere Idee der Fermat-Faktorisierung

• Suche nichttriviale x, y ∈ Zn mit x2 ≡ y2 mod n

– Ist n Teiler von x2−y2 = (x−y)(x+y) und x 6≡±y mod n

dann haben n und x−y (sowie n und x+y) gemeinsame Teiler

– z.B. sei n = 15770708441, x = 125979 und y = 10000

Dann ist x2 = 15870708441 = n + y2 und gcd(x−y, n) = 115979

Damit ist 115979 Faktor von n (ebenso wie gcd(x+y, n) = 135979)

• Suche x und y ausgehend von ⌊√
n⌋

– Anders als bei Fermat muß x2 mod n Quadratzahl modulo n sein

und der Abstand von x zu ⌊√n⌋ kann sehr groß werden

• Zerlege bi = x2
i mod n in Primfaktoren

– Faktoren müssen zu einer Faktorbasis B = {−1, 2, 3, 5, 7, ...} gehören

– Suche Kombination der Zerlegungen, die eine Quadratzahl ergeben,

d.h. alle Faktoren von bz11 ·bz22 ..bzkk müssen gradzahlig vorkommen



Kryptographie und Komplexität §4.3 12 Angriffe auf das RSA Verfahren

Bestimmung quadratischer Kongruenzen

• Kombination von Faktorzerlegungen am Beispiel

– Sei n = 15770708441 und B = {−1, 2, 3, 5, 7, 11, 13}
– Betrachte 8340934156

2 mod n = 21 = 3 ∗ 7

12044942944
2 mod n = 78 = 2 ∗ 3 ∗ 13

2773700011
2 mod n = 182 = 2 ∗ 7 ∗ 13

– Das Produkt der drei Quadrate ergibt 22·32·72·132 = 546
2

– Ergebnis x = 9503435785 und y = 546 und gcd(x−y, n) = 115979
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Bestimmung quadratischer Kongruenzen

• Kombination von Faktorzerlegungen am Beispiel

– Sei n = 15770708441 und B = {−1, 2, 3, 5, 7, 11, 13}
– Betrachte 8340934156

2 mod n = 21 = 3 ∗ 7

12044942944
2 mod n = 78 = 2 ∗ 3 ∗ 13

2773700011
2 mod n = 182 = 2 ∗ 7 ∗ 13

– Das Produkt der drei Quadrate ergibt 22·32·72·132 = 546
2

– Ergebnis x = 9503435785 und y = 546 und gcd(x−y, n) = 115979

• Methode: Lösung linearer Gleichungssysteme

– Ist bi =
∏b

j=1 p
ei,j
j für b:=|B| (“bi ist b-glatt”) dann ist bz11 ·bz22 ..bzkk

genau dann eine Quadratzahl, wenn die Summe der entstehenden

Exponenten aller Primfaktoren pj geradzahlig wird

– Also muß für alle j≤b gelten: ei1,j·z1+ei2,j·z2..+eik,j·zk mod 2 = 0

– Lineares System von b Gleichungen mit k Unbekannten zi ∈{0, 1}
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Wie wählt man gut faktorisierbare bi?

• Erfolglose Probedivisionen sind aufwendig

– Probedivision von b durch Elemente von B benötigt Zeit O(|B|2·||b||)
– Faktorbasen sind i.a. sehr groß (mehr als 100000 Primzahlen)
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– Wahrscheinlichkeit b-glatter Zahlen ist relativ hoch
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• Quadratisches Sieb O(e(1+o(1))·||n||1/2·(log(||n||))1/2)

– Wähle xi = ⌊√n⌋+i) für i = 0,±1,±2, ...± C

– Probedivision für i ∈{0, .., p−1} identifizert alle durch p teilbaren bi
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Wie wählt man gut faktorisierbare bi?

• Erfolglose Probedivisionen sind aufwendig

– Probedivision von b durch Elemente von B benötigt Zeit O(|B|2·||b||)
– Faktorbasen sind i.a. sehr groß (mehr als 100000 Primzahlen)

• Dixon Random Squares O(e(1+o(1))·||n||1/2·(log(||n||))1/2)

– Probedivision mit semi-zufälliger Wahl der xi

– Wahrscheinlichkeit b-glatter Zahlen ist relativ hoch

• Quadratisches Sieb O(e(1+o(1))·||n||1/2·(log(||n||))1/2)

– Wähle xi = ⌊√n⌋+i) für i = 0,±1,±2, ...± C

– Probedivision für i ∈{0, .., p−1} identifizert alle durch p teilbaren bi

• Zahlkörpersieb O(e1.92·||n||1/3·(log(||n||))2/3)

– Systematischer Erzeugung der Kongruenzen x2
i ≡ y2

i mod n

mithilfe der algebraischen Zahlentheorie (aufwendig!)

– Bestes asymptotisches Verhalten aller Faktorisierungsalgorithmen
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Quadratische Siebe

• Wähle Siebintervall S = {−C, ...− 1, 0, 1, ...C}
– Für alle i ∈S wähle xi = ⌊√n⌋+i und berechne bi := x2

i mod n
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– Für alle i ∈S wähle xi = ⌊√n⌋+i und berechne bi := x2

i mod n

• Identifiziere b-glatte Werte im Intervall

– Für p ∈B teste alle bi mit i ∈{0, .., p−1} auf Teilbarkeit

x2 mod p ist Polynom zweiten Grades, also gibt es maximal 2 Treffer

– Ist bj durch p teilbar, dann auch bj±p, bj±2p, ... aber kein anderes bi

– Es gibt (fast) keine erfolglosen Divisionen mehr
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Quadratische Siebe

• Wähle Siebintervall S = {−C, ...− 1, 0, 1, ...C}
– Für alle i ∈S wähle xi = ⌊√n⌋+i und berechne bi := x2

i mod n

• Identifiziere b-glatte Werte im Intervall

– Für p ∈B teste alle bi mit i ∈{0, .., p−1} auf Teilbarkeit

x2 mod p ist Polynom zweiten Grades, also gibt es maximal 2 Treffer

– Ist bj durch p teilbar, dann auch bj±p, bj±2p, ... aber kein anderes bi

– Es gibt (fast) keine erfolglosen Divisionen mehr

• Faktorisierung mit quadratische Sieben

– Für alle p ∈B: Identifiziere die durch p teilbaren bj mit j ∈{0, .., p−1}
Dividiere alle bj±k·p mit k≤C/p durch das maximale pe

– Ein bi ist b-glatt, wenn es insgesamt zu 1 oder -1 reduziert wurde

– Löse Gleichungssystem, wenn b Zahlen gefunden, die b-glatt sind

– Berechne x =
∏b

j=1 x
zj
j , das zugehörige y und den Faktor gcd(x−y, n)
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Faktorisierung mit quadratischen Sieben

• Beispielfaktorisierung von n = 7429
– Berechne bi für S = {−3, ..., 3} und siebe mit B = {2, 3, 5, 7}

i -3 -2 -1 0 1 2 3
bi -540 -373 -204 -33 140 315 492
Sieb mit 2 -135 -51 35 123
Sieb mit 3 -5 -17 -11 35 41
Sieb mit 5 -1 7 7
Sieb mit 7 1 1

– Drei glatte Werte b−3 = (−1)·22·32·5, b1 = 22·5·7 und b2 = 32·5·7
– Lösung des Gleichungssystems ergibt

x = x2·x3 mod n = 227 und y = 2·3·5·7 mod n = 210

– Faktoren sind gcd(x−y, n) = 17 und gcd(x+y, n) = 437
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Faktorisierung mit quadratischen Sieben

• Beispielfaktorisierung von n = 7429
– Berechne bi für S = {−3, ..., 3} und siebe mit B = {2, 3, 5, 7}

i -3 -2 -1 0 1 2 3
bi -540 -373 -204 -33 140 315 492
Sieb mit 2 -135 -51 35 123
Sieb mit 3 -5 -17 -11 35 41
Sieb mit 5 -1 7 7
Sieb mit 7 1 1

– Drei glatte Werte b−3 = (−1)·22·32·5, b1 = 22·5·7 und b2 = 32·5·7
– Lösung des Gleichungssystems ergibt

x = x2·x3 mod n = 227 und y = 2·3·5·7 mod n = 210

– Faktoren sind gcd(x−y, n) = 17 und gcd(x+y, n) = 437

• Größe von Intervall und Faktorbasis
– Ideale Größe ist |B| ≈ 2(||n||· log ||n||)1/2/2 und |S| ≈ |B|·uu,

wobei u = (||n||/ log ||n||)1/2 (siehe Laufzeitanalyse)

Typische Werte
Bitgröße 128 192 256 384 512
|B| in Tausend 1 4 65 524 16777
|S| in Millionen .1 4 67 536 209715
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Laufzeitanalyse quadratischer Siebe

Laufzeit hängt von vielen Faktoren ab

• Größe eines Intervalls S
– Es müssen genügend b-glatte Werte bi erzeugt werden können

• Aufwand für Berechnung aller bi für i∈S
– Insgesamt |S| Quadrierungen modulo n O(|S|·||n||2)

• Bestimmung der teilbaren bi mit i ∈ {0, .., p−1}
– Maximal b2 Divisionen O(b2·||n||2)

• Aussieben der b-glatten Elemente
– Aufwand für eine Divisionen von bi durch ein p ∈B O(||bi||·||p||)
– Zahl der Elemente, die durch ein p ∈B dividiert werden |S|/p
– Anzahl der Elemente der Faktorbasis B b

• Lösen des linearen b×b-Gleichungssystems
– Bei dünn besetzten Matrixen (Wiedemann Algorithmus) O(b2·||n||)

• Berechnung von x, y und gcd(x−y, n)
– Jeweils b Multiplikationen bzw. Euklids Algorithmus O(b·||n||2)
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Laufzeitanalyse quadratischer Siebe (II)

• Wieviele b-glatte Elemente erzeugt Intervall S?

Satz (Zahlentheorie): Sei ψ(m, b) die Anzahl b-glatter Zahlen in {1..m}.
Dann ist ψ(m, b) ≈ m/uu, wobei u = ||m||/||b||

– Quadratische Siebe generieren xi = ⌊√n⌋+i und bi = i·⌊√n⌋ + i2,

Beide Werte liegen nahe bei ⌊√n⌋, da i ∈S klein

– Anteil b-glatter Werte für S entspricht Anteil in {1, .., ⌊√n⌋}
da ψ(m, b)/m sich für kleine Änderungen von m kaum ändert

– Um b gute bi zu erzeugen, muß |S| = b·uu sein mit u = ||n||/(2||b||)
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Laufzeitanalyse quadratischer Siebe (II)

• Wieviele b-glatte Elemente erzeugt Intervall S?

Satz (Zahlentheorie): Sei ψ(m, b) die Anzahl b-glatter Zahlen in {1..m}.
Dann ist ψ(m, b) ≈ m/uu, wobei u = ||m||/||b||

– Quadratische Siebe generieren xi = ⌊√n⌋+i und bi = i·⌊√n⌋ + i2,

Beide Werte liegen nahe bei ⌊√n⌋, da i ∈S klein

– Anteil b-glatter Werte für S entspricht Anteil in {1, .., ⌊√n⌋}
da ψ(m, b)/m sich für kleine Änderungen von m kaum ändert

– Um b gute bi zu erzeugen, muß |S| = b·uu sein mit u = ||n||/(2||b||)
• Aufwand für Aussieben der b-glatten Elemente

– Aufwand der Division von bi durch p ∈B ist O(||bi||·||p||)
mit bi ≈

√
n und p<n ist der Aufwand O(||n||2/2)

– Anzahl der bi, die durch p ∈B dividiert werden ist |S|/p
Im Mittel ist dies maximal 2·|S|/b = 2·uu

– Bei b Elementen in B ist die Laufzeit insgesamt O(b·uu·||n||2)
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Laufzeitanalyse quadratischer Siebe (III)

• Bestimme ideale Größe der Faktorbasis

– Gesamtlaufzeit ist O(b·uu·||n||2 + b2·||n||2)
– Polynomieller Anteile verschwinden gegenüber dem exponentiellen uu

– Ergibt Laufzeit b·uu·||n||2 = 2||b||+u· log u+2· log ||n|| mit u = ||n||/(2||b||)
– Der Exponent ist minimal für ||b|| = 1/2·(||n||· log ||n||)1/2,
– Dann ist u = (||n||/ log ||n||)1/2 und die Laufzeit ist

O(2(||n||· log ||n||)1/2/2+(||n||/ log ||n||)1/2·(log ||n||−log log ||n||)/2+2· log ||n||)

= O(2(||n||· log ||n||)1/2(1−(log log ||n||/ log ||n||))) = O(2(1+o(1))·||n||1/2· log ||n||1/2)
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– Gesamtlaufzeit ist O(b·uu·||n||2 + b2·||n||2)
– Polynomieller Anteile verschwinden gegenüber dem exponentiellen uu

– Ergibt Laufzeit b·uu·||n||2 = 2||b||+u· log u+2· log ||n|| mit u = ||n||/(2||b||)
– Der Exponent ist minimal für ||b|| = 1/2·(||n||· log ||n||)1/2,
– Dann ist u = (||n||/ log ||n||)1/2 und die Laufzeit ist

O(2(||n||· log ||n||)1/2/2+(||n||/ log ||n||)1/2·(log ||n||−log log ||n||)/2+2· log ||n||)

= O(2(||n||· log ||n||)1/2(1−(log log ||n||/ log ||n||))) = O(2(1+o(1))·||n||1/2· log ||n||1/2)

• Definiere Ln[u, v] := O(ev·||n||u·(log(||n||))1−u
)

– u beschreibt den Grad der “Exponentialität” der Laufzeitfunktion

Ln[0, v] = O(ev(log(||n||))) = O(||n||v) ist polynomielle Laufzeit

Ln[1, v] = O(ev·||n||) ist exponentielle Laufzeit

– Schnelle Faktorisierungsalgorithmen sind subexponentiell (0<u<1)

– Laufzeit quadratischer Siebe ist Ln[1/2, 1+o(1)]
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Faktorisierungsstrategie für große Zahlen

Kaskadischer Einsatz von Verfahren

• Teste auf kleine Faktoren mit Probedivision
– Sehr erfolgreich, wenn n einen Faktor kleiner als 107 hat

• Teste Spezialsituationen mit Pollard p−1 /Fermat
– Entdeckt Faktoren p, für die p−1 nur kleine Primfaktoren hat

– Entdeckt Faktoren nahe bei
√
n

• Teste n mit Pollard ρ
– Gut, wenn ein Faktor kleiner als 1012 ist

• Teste mit quadratischem Sieb
– Empfehlenswert für Zahlen bis ca. 10120

– Basis und Intervall werden ab 380 Bits zu groß

• Verwende Zahlenkörpersieb für größere Zahlen
– Schnellster bekannter Algorithmus für sehr große Zahlen

– Einzelne RSA Schlüssel mit 640 Bit wurden erfolgreich faktorisiert
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Nicht nur der Schlüssel selbst ist angreifbar

• Angriff auf kleine Verschlüsselungsexponenten

– Verschlüsselung ist sehr effektiv bei kleinen Exponenten

– Wenn Sender den gleichen Exponenten bei verschiedenen Empfängern

nutzt, wird das System leicht angreifbar

– Beispiel: Nachricht x wurde mit e = 3 an drei Empfänger geschickt

Angreifer liest yi = x3 mod ni und löst mit dem Chinesischen

Restsatz die Kongruenzen z≡ yi mod ni in Zn1·n1·n3

Wegen x3 < n1·n1·n3 ist x = 3
√
z (ohne Modulararithmetik)

– Idee läßt sich verallgemeinern auf e Gleichungen für e<106

• Angriff auf kurze Nachrichten

– Ist xe < n, so reicht konventionelles Wurzelziehen zur Dechiffrierung

– Ist ||x|| klein, so ist eine Wörterbuchattacke möglich
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Weitere Angriffe auf RSA (II)

• Homomorpheeigenschaft (Multiplikativität)
– (x1·x2)

e = xe1·xe2 macht adaptive chosen ciphertext Attacke möglich

· Angreifer liest y≡ xe mod n, ergänzt y′≡x′e mod n für ein z,

schickt y·y′ an Empfänger und bittet um Bestätigung

· Empfänger schickt m = (y·y′)d auf sicherem Kanal zurück

· Wegen (y·y′)d = x·x′ kann x = m·x′−1 mod n berechnet werden
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– Alle Mitarbeiter können die für andere bestimmten Nachrichten lesen
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· Angreifer liest y≡ xe mod n, ergänzt y′≡x′e mod n für ein z,

schickt y·y′ an Empfänger und bittet um Bestätigung

· Empfänger schickt m = (y·y′)d auf sicherem Kanal zurück

· Wegen (y·y′)d = x·x′ kann x = m·x′−1 mod n berechnet werden

• Common Modulus Attacke
– Szenario: Zentrale Autorität legt Schlüssel K := (n, p, q, di, ei) für

eine gesamte Organisationseinheit fest (gleiches n für alle!)

– Wenn Angreifer ein einziges Paar (di, ei) in die Hand bekommt,

kann n faktorisiert werden und alle Schlüssel liegen offen

– Alle Mitarbeiter können die für andere bestimmten Nachrichten lesen

• Cycling Attacke
– Ist y≡xe mod n, so gilt ye

k ≡ y für ein k und ye
k−1 ≡ xe

k ≡ x

– Berechne ye, (ye)e, ye
3
, ... mod n bis ye

k ≡ y und extrahiere x = ye
k−1
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• Angriff auf kleine Entschlüsselungsexponenten

– Durchführbar wenn 3d < n1/4 (also ||d|| < ||n||/4−1) und

q<p<2q (Faktoren nahe beieinander, aber zu weit für Fermat)

– Wegen e·d−1 = k·ϕ(n) für ein k folgt hieraus | en−k
d| < 1

3d2 (Beweis folgt)
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– Ist der Abstand |ab−c
d| zwischen zwei Brüchen maximal 1

2d2, dann

ist c
d

einer der Konvergenten der Kettenbruchexpansion von a
b

– Die Kettenbruchexpansion [q1, .., qm] von a
b

ist die Folge der

Quotienten qi = ⌊ai
bi
⌋ bei Abarbeitung des Euklidischen Algorithmus

– Es gilt: ab = q1+
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b3

= q1+
1

q2+
1
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– Durchführbar wenn 3d < n1/4 (also ||d|| < ||n||/4−1) und

q<p<2q (Faktoren nahe beieinander, aber zu weit für Fermat)

– Wegen e·d−1 = k·ϕ(n) für ein k folgt hieraus | en−k
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– Ist der Abstand |ab−c
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– Der j-te Konvergent von [q1, .., qm] ist der Kettenbruch [q1, .., qj]

Liefert Verfahren zur Berechnung von k
d
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Wieners Attacke im Detail

• Geringer Abstand der Brüche

– Es ist | en−k
d| = |e·d−k·nd·n | = |1+k·(ϕ(n)−n)

d·n | < 3k·√n
d·n < 3d

d·√n = 3√
n
< 1

3d2

– Wegen q<p<2q gilt: 0 < n−ϕ(n) = p+q−1 < 3q < 3
√
n

– Wegen 3d < n1/4 gilt 1√
n
> 1

9·d2
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• Bestimmung des j-ten Konvergenten

– Der durch [q1, .., qj] dargestellte Bruch
kj
dj

ist iterativ zu berechnen:

kj =







1 falls j=0
q1 falls j=1
qjkj−1+kj−2 falls j≥1

dj =







0 falls j=0
1 falls j=1
qjdj−1+dj−2 falls j≥1
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– Es ist | en−k
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• Bestimmung des j-ten Konvergenten

– Der durch [q1, .., qj] dargestellte Bruch
kj
dj

ist iterativ zu berechnen:

kj =







1 falls j=0
q1 falls j=1
qjkj−1+kj−2 falls j≥1

dj =







0 falls j=0
1 falls j=1
qjdj−1+dj−2 falls j≥1

• Wieners Angriff auf RSA

– In Stufe j der Attacke berechne den j-ten Konvergenten
kj
dj

– Setze ϕj = (e·dj−1)/kj und löse Gleichung p2 − (n−ϕj+1)·p+ n = 0

– Wenn beide Lösungen zwischen 2 und n liegen, sind sie Teiler von n

und dj ist der Entschlüsselungsschlüssel
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Beispielattacke nach Wieners Methode

• Gegeben n = 160523347 und e = 60728973

– Zahlenbruchentwicklung von e
n: [0, 2, 1, 1, 1, 4, 12, 102, 1, 1, 2, 3, 2, 2, 36]

– Konvergenten sind 0
1
, 1

2
, 1

3
, 2

5
, 3

8
, 14

37
, 171

452
, . . .

– Erste fünf Konvergenten liefern keine Faktorisierung von n
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• Berechnung der sechsten Stufe der Attacke

– ϕ6 ist (37·60728973 − 1)/14 = 160498000

– Zu lösende quadratische Gleichung: p2 − 25348·p + 160523347 = 0

ergibt q = 12347 und p = 13001
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• Gegeben n = 160523347 und e = 60728973

– Zahlenbruchentwicklung von e
n: [0, 2, 1, 1, 1, 4, 12, 102, 1, 1, 2, 3, 2, 2, 36]

– Konvergenten sind 0
1
, 1

2
, 1

3
, 2

5
, 3

8
, 14

37
, 171

452
, . . .

– Erste fünf Konvergenten liefern keine Faktorisierung von n

• Berechnung der sechsten Stufe der Attacke

– ϕ6 ist (37·60728973 − 1)/14 = 160498000

– Zu lösende quadratische Gleichung: p2 − 25348·p + 160523347 = 0

ergibt q = 12347 und p = 13001

• Ergebnis der Attacke

– Faktorisierung von n = 12347·13001

– Entschlüsselungsschlüssel d = 37 (knapp unter n1/4/3 = 37.52004)
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– Nach heutigen Maßstäben sind mindestens 512 Bit erforderlich

– Für sicherheitskritische Anwendungen sind 2024 Bit empfehlenswert

– ||p|| und ||q|| sollten ähnlich groß sein (nur wenige Bits Unterschied)
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• p und q müssen sehr groß sein

– Nach heutigen Maßstäben sind mindestens 512 Bit erforderlich

– Für sicherheitskritische Anwendungen sind 2024 Bit empfehlenswert

– ||p|| und ||q|| sollten ähnlich groß sein (nur wenige Bits Unterschied)

• Zufällige Primzahlen generieren

– Systematische Konstruktion kann nachgebaut werden

– Es ist besser, Eigenschaften im Nachinein zu prüfen

• Starke Primzahlen auswählen

– p und q dürfen nicht zu nahe beieinanderliegen (Fermat-Faktorisierung!)

– p−1 muß auch große Primfaktoren haben (Pollard p−1 Faktorisierung!)

– p+1 muß auch große Primfaktoren haben (Williams p+1 Faktorisierung!)

• e und d müssen groß sein

– Vermeide Angriffe auf zu kleine Ver-/Entschlüsselungsexponenten


