Kryptographie und Komplexitat

Einheit 4.4

Semantische Sicherheit

1. Sicherheit partieller Informationen
2. Das Verfahren von Rabin

3. Sicherheit durch Randomisierung
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SEMANTISCHE SICHERHEIT I

Mehr als nur Sicherheit des Schlussels

e Vollstandiger Bruch des Verfahrens
— Angreifer ist in der Lage, den geheimen Schliissel zu bestimmen
— Danach kann jede beliebige Nachricht vom Angreifer genauso effizient
entschliisselt werden wie vom vorgesehenen Emptanger

e Partieller Bruch des Verfahrens
— Angreifer kann mit einer gewissen Wahrscheinlichkeit Schliisseltexte
in akzeptabler Zeit dechiffrieren, ohne den Schliissel kennen zu miissen

e Extraktion von Teilinformationen
— Angreifer kann aus Schliisseltext spezifische Teilinformationen
uber den Klartext extrahieren
— Aquivalent zum Ziel, Chiffrierung eines Klartextes von der eines
beliebigen Strings zu unterscheiden (mit Wahrscheinlichkeit iiber 50%)
— Ein System ist semantisch sicher, wenn dies nicht moglich ist
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EXTRAKTION PARTIELLER INFORMATIONEN I

e Steckt Klartextinformation im Schliisseltext?
—z.B.: Ist Klartext x eine gerade Zahl oder gréfier als n/27?

— Information uber einzelne Klartextbits kann sehr wertvoll sein

und z.B. Antworten auf wichtige Ja/Nein Entscheidungen liefern

e Nicht jede Information kann geheim bleiben
—z.B. andert RSA Verschliisselung den Wert des Jacobi Symbols nicht

e

Ist y=a2°modn soist (£) = (%) =(5)° = (7), da e ungerade ist

e Extraktion von Teilinformation ist bei RSA
genauso schwer wie partieller Bruch

— Das Problem der vollstandigen Entschliisselung von RSA ist
reduzierbar aut die Berechnung von parity bzw half (Beweis folgt)

e RSA Sicherheit gegen partiellen Bruch ungewif}

— Es gibt keinen Beweis, dafi RSA genauso schwer wie Faktorisierung ist
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EXTRAKTION PARTIELLER INFORMATION BEI RSA I

Genauso schwer wie partieller Bruch

® Breche Schlusseltexte mit ‘Orakel’ half
1, n>x>n/2 1, x ungerade

—Sei half (y) = { 0, z<n/? und parity(y) = { 0. 2 gerade
fir y = ex(x)

—half und parity sind gleich schwer zu bestimmen
half (y) liefert das erste ‘Bit’ des Klartextes, parity(y) das letzte

— Wegen (22)° mod n = 2°2° mod n liefert half (2°y) das zweite ‘Bit’,
half (2°°y) das dritte, bis nach |n| Iterationen der Klartext feststeht

e Verfahren berechnet x durch Binarsuche
— Setze [[..r] ;= [0..n]
— Fir ¢ := 0..|n| setze [l..r] := [(I +r)/2..r], falls half (2"¢y) =1
[l..r] :==[l..(1+r)/2], falls half(2"¢y) =0
— Ergebnis nach |n| Schritten ist ©x = |r
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DAS RABIN VERSCHLUSSELUNGSVERFAHREN I

‘Sichere’ Modifikation des RSA Verfahrens

e Schlusselerzeugung

— Wahle zwei grofier Primzahlen p und ¢, wobel p, ¢ =3 mod 4
(Zusatzbedingung nicht nétig, erleichtert Dechiffrierung)

— Setze n = p * ¢ und lege n offen, halte p und ¢ geheim

® Verschlisselungsverfahren
— Jeder Textblock wird als Binardarstellung einer Zahl x interpretiert
— Verschliisselung wird Quadrieren modulo n: ex () = 2> mod n
— Entschliisselung wird Quadratwurzel modulo n: dg(y) = \/y mod n
(Nichttriviale Operation, wenn p, g nicht bekannt)
e System nur von theoretischem Interesse
— Ein partieller Bruch des Systems ist genauso schwer wie Faktorisierung

— Nach heutigem Stand der Technik semantisch sicher
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ENTSCHLUSSELUNG IM RABIN VERFAHREN I

e Die Gleichung 2 =y mod p-q hat 4 Lésungen
— y ist quadratischer Rest modulo p und modulo ¢
~ Es folgt y»"Y2=1mod p und y“/?=1mod ¢
~ Damit  (dyPt/1?2 = y+D/2 =y mod p (analog fiir q)
— Wegen p, g =3 mod 4 sind £yP+t1)/* und +y9t/4 wohldefiniert
— Nach dem chinesischen Restsatz hat jedes Paar von Kongruenzen

z=4+yP /4 mod p und =4y V4 mod ¢
jewelils eine eindeutige Losung modulo n

— Verschliisselung ist nicht injektiv

® Bestimmung des Klartextes O(|n|3)
~ Berechne 1, := ¢ ' mod p und y, :=p ' mod ¢ a priori
~ Berechne x; := +q-y,-y?+tV/* + poy, -y /4 mod n
— Wihle nach Ubertragung in Text den besten der vier Kandidaten aus

Bei grofien Blocken gibt es i.a. nur einen einzigen sinnvollen

Nichtdeterministische Dechiffrierung ist Basis fur Sicherheit des Verfahrens
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DAS RABIN VERFAHREN AM BEISPIEL I

e Schlusselerzeugung
~ Wahle p = 944123 ¢ = 944147
— Dann ist n = 891390898081

— Entschliisselungskoeffizienten sind v, :== p~! mod ¢ = 511400
und y, = ¢ ' mod p = 432734
® Verschliisselung
— Alice verschliisselt Klartext x = 730581888230

— Ergebnis ist vy = 2% mod n = 408240297532

e Entschlusselung
— Bob berechnet y"+t1)/* mod p = 568209, y“t1)/* mod ¢ = 576202

p+1)/4

— Bob berechnet iq-yp-y( + p-yq-y(q“)/4 mod n und erhalt

160809009851, 532577267684, 353813630397, 7305818838230

— Die letzte der vier Losungskandidaten ist der Klartext
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SICHERHEIT DES RABIN VERFAHRENS

Berechnung des Klartextes  aus y = x2 mod n ist

genauso schwer wie die Faktorisierung von n = p-q

e Faktorisierung liefert den Klartext
— Wenn Eve n faktorisieren kann, dann hat sie alle Informationen,
die im Rabin Verfahren zur Entschliisselung erforderlich sind

e Quadratwurzelberechnung liefert Faktorisierung
— Wahle ae{1...n—1} zufallig
— Ist g = ged(a,n) # 1 dann ist g echter Teiler von n
— Ansonsten berechne eine Quadratwurzel z von 22 mod n
— Wenn z# + 2 mod n so ist ged(z—x, n) echter Teiler von n

Fir z gibt es vier Moglichkeiten ¢y 2 =2 mod p A 2=z mod ¢
B ) p z=xmodp A z= —x mod ¢
ged(z—z,n) = « q 2= —xmodp A z=z mod g
| 1l 2= —2modp A 2= — 2 mod ¢

Da x zufallig ist, wird ein Teiler mit Wahrscheinlichkeit 1/2 gefunden
Liefert “RP” Algorithmus zur Faktorisierung von n
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SICHERHEIT DURCH RANDOMISIERUNG I

e Unterscheidbarkeit von Schlusseltexten

— Gegeben Verschlisselungsfunktion f, zwei Klartexte xq1, x9 und
einen Schlisseltext y mit der Eigenschaft y=f(x;) fiir ein i.
Bestimme i mit einer Fehlerwahrscheinlichkeit weniger als 50%

— Allgemeinste Form der Extraktion von Information aus Schliisseltexten

— Kann ein Angreifer Schliisseltexte nicht in polynomieller Zeit unter-
scheiden, so kann er keinerlei Information tiber den Klartext aus
einem Schlisseltext extrahieren

— Semantische Sicherheit = Nichtunterscheidbarkeit von Schlusseltexten

e Nichtunterscheidbarkeit braucht Randomisierung

— Wenn die Verschliusselungstfunktion f deterministisch ist, kann ein
Angreifer f(zq) und f(x2) in polynomieller Zeit ausrechnen

— FEin deterministisches Verfahren kann nicht semantisch sicher sein

— Moderne Versionen von RSA erganzen Zufallskomponenten
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SEMANTISCH SICHERE VERSCHLUSSELUNG I

e Randomisierung der Verschliusselungsfunktion f
— Verschliisselung: (y1,y2) == ex(z) = (f(r), G(r)®x)
— Entschliisselung: dg (y1,v2) = G(f~Hy1)) Dy
r beliebige Zufallszahl
G ‘zufallstreue’ Expansionsfunktion (dargestellt als riesige Tabelle)

[ Einwegfunktion (nicht in polynomieller Zeit umkehrbar)

e Intuitive Begrundung der Sicherheit
— Um Information tiber x zu erhalten, braucht man Information zu G(r)

— G(r) kann nur berechnet werden, wenn r vollstandig bekannt ist

Teile von 7 reichen nicht aus, um Teile von G(r) zu bestimmen

— 7 kann nur bestimmt werden, wenn f~!(y) vollstandig berechnet wird

f~Hwy1) kann nicht in polynomieller Zeit berechnet werden

Detaillierter Beweis siehe Stinson §5.9.2
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SEMANTISCH SICHERE VERSION VON RSA I

e Einfache Variante
— Verschliisselung: (y1,y2) = ex(z) = (r° mod n, G(r)®x)
— Entschliisselung: dx(y1,12) == G(y¢ mod n)®ys

e PKCS# Standard
— Verschliisselung: v .= ex(z) = ((z®G(r))o(r&H (x&G(r))))° mod n

re{0, 1} beliebige Zufallszahl
G:{0,1}F—{0, 1} Expansionsfunktion
H:{0,1}—{0, 1} Kompressionsfunktion
Klartextlinge || = [, RSA Blocklange |n| = (+k+1
Klartext wird zu y; = ®G(r) randomisiert
Zufallszahl wird zu yo = réH (y;) maskiert

— Entschliisselung: Berechne v,01, = y¢ mod n

Bestimme r = H(y;)@y, und berechne = = 1BG(r)
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RSA IM RUCKBLICK I

e Altestes/bedeutendstes Public-Key Verfahren

— Ver-/Entschliisselung ist Potenzieren mit e bzw. d modulo n
— Rahmenbedingung d = e 'mod (n)
— n zusammengesetzt aus zwel groffen Primzahlen p und ¢

—n, e liegt offen, d, p und ¢ bleiben geheim

e Schliisselerzeugung benotigt Primzahltests
— Schnellste Verfahren sind probabilistisch (Miller-Rabin)

e Sicherheit basiert auf Faktorisierungsproblem
— Schliisselangriff aquivalent zu Losung des Faktorisierungsproblems
— Faktorisierung ist subexponentiell (9(61'92'”””1/3'<10g<"””))2/3)

— Sicherheit nur noch fur Schliisselgrofe uiber 1024 Bit

— Semantische Sicherheit nur mithilfe von Randomisierung
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