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Semantische Sicherheit

Mehr als nur Sicherheit des Schlüssels

• Vollständiger Bruch des Verfahrens
– Angreifer ist in der Lage, den geheimen Schlüssel zu bestimmen

– Danach kann jede beliebige Nachricht vom Angreifer genauso effizient

entschlüsselt werden wie vom vorgesehenen Empfänger

• Partieller Bruch des Verfahrens
– Angreifer kann mit einer gewissen Wahrscheinlichkeit Schlüsseltexte

in akzeptabler Zeit dechiffrieren, ohne den Schlüssel kennen zu müssen

• Extraktion von Teilinformationen
– Angreifer kann aus Schlüsseltext spezifische Teilinformationen

über den Klartext extrahieren

– Äquivalent zum Ziel, Chiffrierung eines Klartextes von der eines

beliebigen Strings zu unterscheiden (mit Wahrscheinlichkeit über 50%)

– Ein System ist semantisch sicher, wenn dies nicht möglich ist
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Extraktion partieller Informationen

• Steckt Klartextinformation im Schlüsseltext?

– z.B.: Ist Klartext x eine gerade Zahl oder größer als n/2?

– Information über einzelne Klartextbits kann sehr wertvoll sein

und z.B. Antworten auf wichtige Ja/Nein Entscheidungen liefern

• Nicht jede Information kann geheim bleiben

– z.B. ändert RSA Verschlüsselung den Wert des Jacobi Symbols nicht

Ist y = xe mod n so ist (y
n) = (xe

n ) = (x
n)e = (x

n), da e ungerade ist

• Extraktion von Teilinformation ist bei RSA

genauso schwer wie partieller Bruch

– Das Problem der vollständigen Entschlüsselung von RSA ist

reduzierbar auf die Berechnung von parity bzw half (Beweis folgt)

• RSA Sicherheit gegen partiellen Bruch ungewiß

– Es gibt keinen Beweis, daß RSA genauso schwer wie Faktorisierung ist
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Extraktion partieller Information bei RSA

Genauso schwer wie partieller Bruch

• Breche Schlüsseltexte mit ‘Orakel’ half

– Sei half(y) =

{

1, n>x>n/2
0, x<n/2

und parity(y) =

{

1, x ungerade
0, x gerade

für y = eK(x)

– half und parity sind gleich schwer zu bestimmen

half(y) liefert das erste ‘Bit’ des Klartextes, parity(y) das letzte

– Wegen (2x)e mod n = 2e·xe mod n liefert half(2e·y) das zweite ‘Bit’,

half(22e·y) das dritte, bis nach ||n|| Iterationen der Klartext feststeht

• Verfahren berechnet x durch Binärsuche

– Setze [l..r] := [0..n]

– Für i := 0..||n|| setze [l..r] := [(l + r)/2..r], falls half(2i·e·y) = 1

[l..r] := [l..(l + r)/2], falls half(2i·e·y) = 0

– Ergebnis nach ||n|| Schritten ist x = ⌊r⌋



Kryptographie und Komplexität §4.4 4 Semantische Sicherheit

Das Rabin Verschlüsselungsverfahren

‘Sichere’ Modifikation des RSA Verfahrens

• Schlüsselerzeugung

– Wähle zwei großer Primzahlen p und q, wobei p, q≡ 3 mod 4
(Zusatzbedingung nicht nötig, erleichtert Dechiffrierung)

– Setze n = p ∗ q und lege n offen, halte p und q geheim

• Verschlüsselungsverfahren

– Jeder Textblock wird als Binärdarstellung einer Zahl x interpretiert

– Verschlüsselung wird Quadrieren modulo n: eK(x) = x2 mod n

– Entschlüsselung wird Quadratwurzel modulo n: dK(y) =
√

y mod n
(Nichttriviale Operation, wenn p, q nicht bekannt)

• System nur von theoretischem Interesse

– Ein partieller Bruch des Systems ist genauso schwer wie Faktorisierung

– Nach heutigem Stand der Technik semantisch sicher
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Entschlüsselung im Rabin Verfahren

• Die Gleichung x2 ≡ y mod p·q hat 4 Lösungen
– y ist quadratischer Rest modulo p und modulo q

– Es folgt y(p−1)/2 ≡ 1 mod p und y(q−1)/2 ≡ 1 mod q

– Damit (±y(p+1)/4)2 = y(p+1)/2 ≡ y mod p (analog für q)

– Wegen p, q≡ 3 mod 4 sind ±y(p+1)/4 und ±y(q+1)/4 wohldefiniert

– Nach dem chinesischen Restsatz hat jedes Paar von Kongruenzen

x≡±y(p+1)/4 mod p und x≡±y(q+1)/4 mod q

jeweils eine eindeutige Lösung modulo n

– Verschlüsselung ist nicht injektiv

• Bestimmung des Klartextes O(||n||3)
– Berechne yp := q−1 mod p und yq := p−1 mod q a priori

– Berechne xi := ±q·yp·y(p+1)/4 ± p·yq·y(q+1)/4 mod n

– Wähle nach Übertragung in Text den besten der vier Kandidaten aus

Bei großen Blöcken gibt es i.a. nur einen einzigen sinnvollen

Nichtdeterministische Dechiffrierung ist Basis für Sicherheit des Verfahrens
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Das Rabin Verfahren am Beispiel

• Schlüsselerzeugung

– Wähle p = 944123 q = 944147

– Dann ist n = 891390898081

– Entschlüsselungskoeffizienten sind yp := p−1 mod q = 511400

und yq := q−1 mod p = 432734

• Verschlüsselung

– Alice verschlüsselt Klartext x = 730581888230

– Ergebnis ist y = x2 mod n = 408240297532

• Entschlüsselung

– Bob berechnet y(p+1)/4 mod p = 568209, y(q+1)/4 mod q = 576202

– Bob berechnet ±q·yp·y(p+1)/4 ± p·yq·y(q+1)/4 mod n und erhält

160809009851, 532577267684, 358813630397, 730581888230

– Die letzte der vier Lösungskandidaten ist der Klartext
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Sicherheit des Rabin Verfahrens

Berechnung des Klartextes x aus y = x2 mod n ist
genauso schwer wie die Faktorisierung von n = p·q

• Faktorisierung liefert den Klartext
– Wenn Eve n faktorisieren kann, dann hat sie alle Informationen,

die im Rabin Verfahren zur Entschlüsselung erforderlich sind

• Quadratwurzelberechnung liefert Faktorisierung
– Wähle a ∈{1...n−1} zufällig

– Ist g = gcd(a, n) 6= 1 dann ist g echter Teiler von n

– Ansonsten berechne eine Quadratwurzel z von x2 mod n

– Wenn z 6≡ ± x mod n so ist gcd(z−x, n) echter Teiler von n

Für z gibt es vier Möglichkeiten

gcd(z−x, n) =











n z ≡ x mod p ∧ z ≡ x mod q
p z ≡ x mod p ∧ z ≡ − x mod q
q z ≡ − x mod p ∧ z≡ x mod q
1 z ≡ − x mod p ∧ z≡ − x mod q

Da x zufällig ist, wird ein Teiler mit Wahrscheinlichkeit 1/2 gefunden

Liefert “RP” Algorithmus zur Faktorisierung von n
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Sicherheit durch Randomisierung

• Unterscheidbarkeit von Schlüsseltexten

– Gegeben Verschlüsselungsfunktion f , zwei Klartexte x1, x2 und

einen Schlüsseltext y mit der Eigenschaft y=f(xi) für ein i.

Bestimme i mit einer Fehlerwahrscheinlichkeit weniger als 50%

– Allgemeinste Form der Extraktion von Information aus Schlüsseltexten

– Kann ein Angreifer Schlüsseltexte nicht in polynomieller Zeit unter-

scheiden, so kann er keinerlei Information über den Klartext aus

einem Schlüsseltext extrahieren

– Semantische Sicherheit =̂ Nichtunterscheidbarkeit von Schlüsseltexten

• Nichtunterscheidbarkeit braucht Randomisierung

– Wenn die Verschlüsselungsfunktion f deterministisch ist, kann ein

Angreifer f(x1) und f(x2) in polynomieller Zeit ausrechnen

– Ein deterministisches Verfahren kann nicht semantisch sicher sein

– Moderne Versionen von RSA ergänzen Zufallskomponenten
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Semantisch sichere Verschlüsselung

• Randomisierung der Verschlüsselungsfunktion f

– Verschlüsselung: (y1, y2) := eK(x) = (f(r), G(r)⊕x)

– Entschlüsselung: dK(y1, y2) := G(f−1(y1))⊕y2

r beliebige Zufallszahl

G ‘zufallstreue’ Expansionsfunktion (dargestellt als riesige Tabelle)

f Einwegfunktion (nicht in polynomieller Zeit umkehrbar)

• Intuitive Begründung der Sicherheit

– Um Information über x zu erhalten, braucht man Information zu G(r)

– G(r) kann nur berechnet werden, wenn r vollständig bekannt ist

Teile von r reichen nicht aus, um Teile von G(r) zu bestimmen

– r kann nur bestimmt werden, wenn f−1(y1) vollständig berechnet wird

f−1(y1) kann nicht in polynomieller Zeit berechnet werden

Detaillierter Beweis siehe Stinson §5.9.2
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Semantisch sichere Version von RSA

• Einfache Variante

– Verschlüsselung: (y1, y2) := eK(x) = (re mod n,G(r)⊕x)

– Entschlüsselung: dK(y1, y2) := G(yd
1 mod n)⊕y2

• PKCS# Standard

– Verschlüsselung: y := eK(x) = ((x⊕G(r))◦(r⊕H(x⊕G(r))))e mod n

r ∈{0, 1}k beliebige Zufallszahl

G:{0, 1}k→{0, 1}l Expansionsfunktion

H :{0, 1}l→{0, 1}m Kompressionsfunktion

Klartextlänge ||x|| = l, RSA Blocklänge ||n|| = l+k+1

Klartext wird zu y1 = x⊕G(r) randomisiert

Zufallszahl wird zu y2 = r⊕H(y1) maskiert

– Entschlüsselung: Berechne y1◦y2 := yd mod n

Bestimme r = H(y1)⊕y2 und berechne x = y1⊕G(r)
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RSA im Rückblick

• Ältestes/bedeutendstes Public-Key Verfahren

– Ver-/Entschlüsselung ist Potenzieren mit e bzw. d modulo n

– Rahmenbedingung d = e−1mod ϕ(n)

– n zusammengesetzt aus zwei großen Primzahlen p und q

– n, e liegt offen, d, p und q bleiben geheim

• Schlüsselerzeugung benötigt Primzahltests

– Schnellste Verfahren sind probabilistisch (Miller-Rabin)

• Sicherheit basiert auf Faktorisierungsproblem

– Schlüsselangriff äquivalent zu Lösung des Faktorisierungsproblems

– Faktorisierung ist subexponentiell O(e1.92·||n||1/3·(log(||n||))2/3
)

– Sicherheit nur noch für Schlüsselgröße über 1024 Bit

– Semantische Sicherheit nur mithilfe von Randomisierung


