Kryptographie und Komplexitat

Einheit 5.3

Angriffe auf ElGamal Systeme

1. Berechnung diskreter Logarithmen
2. Andere Angriffe

3. Richtlinien fur die Schlusselauswahl



DAS PROBLEM DES DISKRETEN LOGARITHMUS I

e Allgemeine Formulierung

— Gegeben multiplikative Gruppe (G, -), Element g der Ordnung n
und y e {(g). Bestimme die eindeutige Zahl x<n mit y = g°
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DAS PROBLEM DES DISKRETEN LOGARITHMUS I

e Allgemeine Formulierung

— Gegeben multiplikative Gruppe (G, -), Element g der Ordnung n
und y e {(g). Bestimme die eindeutige Zahl x<n mit y = g°

e Uber Zp ahnlich schwer wie Faktorisierung
— Viele Faktorisierungsalgorithmen lassen sich iibertragen

— Kryptosysteme werden durch Verwendung des DL Problems alleine
nicht sicherer als durch das Faktorisierungsproblem
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DAS PROBLEM DES DISKRETEN LOGARITHMUS I

e Allgemeine Formulierung

— Gegeben multiplikative Gruppe (G, -), Element g der Ordnung n
und y e {(g). Bestimme die eindeutige Zahl x<n mit y = g°

e Uber Zp ahnlich schwer wie Faktorisierung
— Viele Faktorisierungsalgorithmen lassen sich iibertragen

— Kryptosysteme werden durch Verwendung des DL Problems alleine
nicht sicherer als durch das Faktorisierungsproblem

e Es gibt viele DL-Algorithmen

— Aufzahlungsverfahren, Shanks, Pollard p, Pohlig-Hellman,
Index-Calculus, Zahlkorpersiebe

— Zunehmende Kompliziertheit senkt die Komplexitat
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DAS PROBLEM DES DISKRETEN LOGARITHMUS I

e Allgemeine Formulierung

— Gegeben multiplikative Gruppe (G, -), Element g der Ordnung n
und y e {(g). Bestimme die eindeutige Zahl x<n mit y = g°

e Uber Zp ahnlich schwer wie Faktorisierung
— Viele Faktorisierungsalgorithmen lassen sich iibertragen

— Kryptosysteme werden durch Verwendung des DL Problems alleine
nicht sicherer als durch das Faktorisierungsproblem

e Es gibt viele DL-Algorithmen

— Aufzahlungsverfahren, Shanks, Pollard p, Pohlig-Hellman,
Index-Calculus, Zahlkorpersiebe

— Zunehmende Kompliziertheit senkt die Komplexitat

e Schwieriger uiber anderen Gruppen

— Die besten DL-Algorithmen sind nur zahlentheoretisch verwendbar
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AUFZAHLUNG I

e Einfacher, leicht zu programmierender Ansatz
— Losungskandidaten x = 1,2, 3, ... werden der Reihe nach tuiberprift

— Die Bestimmung von x = log, y benotigt w—1 Multiplikationen
— Hochgradig ineffizient Laufzeit O(n-|n|?) = 02"
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AUFZAHLUNG I

e Einfacher, leicht zu programmierender Ansatz

— Losungskandidaten x = 1,2, 3, ... werden der Reihe nach tuiberprift

— Die Bestimmung von x = log, y benotigt w—1 Multiplikationen

— Hochgradig ineffizient Laufzeit O(n-|n|?) = 02"
e Nur fur Zahlen mit kleinen Logarithmen

— Suche nach Logarithmen mufl auf Schranke B begrenzt werden

— Schranke jenseits von 107 wenig sinnvoll

Anders als bei Faktorisierung sagt dies nichts tiber die GroBe von n oder y aus

KRYPTOGRAPHIE UND KOMPLEXITAT §5.3 2 ANGRIFFE AUF ELGAMAL SYSTEME




AUFZAHLUNG I

e Einfacher, leicht zu programmierender Ansatz
— Losungskandidaten x = 1,2, 3, ... werden der Reihe nach tuiberprift
— Die Bestimmung von x = log, y benotigt w—1 Multiplikationen
— Hochgradig ineffizient Laufzeit O(n-|n|?) = 02"
e Nur fur Zahlen mit kleinen Logarithmen
— Suche nach Logarithmen mufl auf Schranke B begrenzt werden
— Schranke jenseits von 107 wenig sinnvoll
Anders als bei Faktorisierung sagt dies nichts liber die GroBe von n oder y aus
e Keine Optimierungen wie bei Faktorisierung
— Jede Zahl konnte der geeignete Logarithmus sein
— Man kann wenig iiber Struktur von x sagen (z.B. ungerade)

— Aufler n gibt es keine obere Grenze fir x
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AUFZAHLUNG I

e Einfacher, leicht zu programmierender Ansatz

— Losungskandidaten x = 1,2, 3, ... werden der Reihe nach tuiberprift

— Die Bestimmung von x = log, y benotigt w—1 Multiplikationen

— Hochgradig ineffizient Laufzeit O(n-|n|?) = 02"
e Nur fur Zahlen mit kleinen Logarithmen

— Suche nach Logarithmen mufl auf Schranke B begrenzt werden

— Schranke jenseits von 107 wenig sinnvoll

Anders als bei Faktorisierung sagt dies nichts tiber die GroBe von n oder y aus

e Keine Optimierungen wie bei Faktorisierung

— Jede Zahl konnte der geeignete Logarithmus sein

— Man kann wenig iiber Struktur von x sagen (z.B. ungerade)

— Aufler n gibt es keine obere Grenze fir x
e Beispiel fiir (Zp, ) mit p = 944137
— log, 3 = 467306, log,4 =2, log, 5 = 271379, ...

2
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SHANKS BABYSTEP-GIANTSTEP-ALGORITHMUS I

e Idee: Beschleunigung durch Zwischenspeicherung
— Zerlege das gesuchte x = log, y in © = ¢g-m+r
— Fiir diese Zerlegung gilt ¢4 =y also (¢"")! = y-g~"
— Teste diese Gleichung fiir alle Paare (¢, ) um z zu bestimmen
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SHANKS BABYSTEP-GIANTSTEP-ALGORITHMUS I

e Idee: Beschleunigung durch Zwischenspeicherung
— Zerlege das gesuchte x = log, y in © = ¢g-m+r
— Fiir diese Zerlegung gilt ¢4 =y also (¢"")! = y-g~"
— Teste diese Gleichung fiir alle Paare (¢, ) um z zu bestimmen
— Die Werte y-¢g~" und (¢"")? konnen separat berechnet werden

— Fir m = |/n| miissen nur 2-[y/n| Werte berechnet werden
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SHANKS BABYSTEP-GIANTSTEP-ALGORITHMUS I

e Idee: Beschleunigung durch Zwischenspeicherung
— Zerlege das gesuchte x = log, y in © = ¢g-m+r
— Fiir diese Zerlegung gilt ¢4 =y also (¢"")! = y-g~"
— Teste diese Gleichung fiir alle Paare (¢, ) um z zu bestimmen
— Die Werte y-¢g~" und (¢"")? konnen separat berechnet werden

— Fiir m = |/n| miissen nur 2-|/n| Werte berechnet werden

e Algorithmus
— Babystep: Speichere fiir r<m die Werte (y-¢g~",r) in einer Tabelle B
— Giantstep: Fiir ¢ =0, 1,2, ... priife, ob (¢"")? in B vorkommt
— Im Erfolgsfall gebe = = ¢-m+r als Losung fur log, y aus
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SHANKS BABYSTEP-GIANTSTEP-ALGORITHMUS I

e Idee: Beschleunigung durch Zwischenspeicherung
— Zerlege das gesuchte x = log, y in © = ¢g-m+r
— Fiir diese Zerlegung gilt ¢4 =y also (¢"")! = y-g~"
— Teste diese Gleichung fiir alle Paare (¢, ) um z zu bestimmen
— Die Werte y-¢g~" und (¢"")? konnen separat berechnet werden

— Fiir m = |/n| miissen nur 2-|/n| Werte berechnet werden

e Algorithmus
— Babystep: Speichere fiir r<m die Werte (y-¢g~",r) in einer Tabelle B
— Giantstep: Fiir ¢ =0, 1,2, ... priife, ob (¢"")? in B vorkommt
— Im Erfolgsfall gebe = = ¢-m+r als Losung fur log, y aus
e Komplexitat
— Je eine Multiplikation fiir Berechnung eines y-g~" bzw. eines (g )?

— Bei Hashtabellen konstante Zeit fiir Test, ob (¢")? in B vorkommt
— Maximal m Baby- und Giantsteps erforderlich
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SHANKS BABYSTEP-GIANTSTEP-ALGORITHMUS I

e Idee: Beschleunigung durch Zwischenspeicherung
— Zerlege das gesuchte x = log, y in © = ¢g-m+r
— Fiir diese Zerlegung gilt ¢4 =y also (¢"")! = y-g~"
— Teste diese Gleichung fiir alle Paare (¢, ) um z zu bestimmen
— Die Werte y-¢g~" und (¢"")? konnen separat berechnet werden

— Fiir m = |/n| miissen nur 2-|/n| Werte berechnet werden

e Algorithmus
— Babystep: Speichere fiir r<m die Werte (y-¢g~",r) in einer Tabelle B
— Giantstep: Fiir ¢ =0, 1,2, ... priife, ob (¢"")? in B vorkommt
— Im Erfolgsfall gebe = = ¢-m+r als Losung fur log, y aus

e Komplexitat
— Je eine Multiplikation fiir Berechnung eines y-g~" bzw. eines (g )?
— Bei Hashtabellen konstante Zeit fiir Test, ob (¢")? in B vorkommt
— Maximal m Baby- und Giantsteps erforderlich

~ Laufzeit O(y/n) = O(2I"1/2%) Speicherbedarf O(4/n)
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SHANKS ALGORITHMUS AM BEISPIEL I

Bestimme logs 5 in (Z3137, *)
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SHANKS ALGORITHMUS AM BEISPIEL I

Bestimme logs 5 in (Z3137, *)

e Berechne Intialwerte
—m = |v/n] =56, gt =3 1 mod 3137 = 1046, ¢" = 893
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SHANKS ALGORITHMUS AM BEISPIEL I

Bestimme logs 5 in (Z3137, *)

e Berechne Intialwerte
—m = |v/n] =56, gt =3 1 mod 3137 = 1046, ¢" = 893

e Erzeuge Babystep-Tabelle B=[(y-g~",r) | r<m]
~ B =(5,0); (2093, 1): (2789, 2); (3021, 3); (1007, 4): ...... (541,55)]
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SHANKS ALGORITHMUS AM BEISPIEL I

Bestimme logs 5 in (Z3137, *)

e Berechne Intialwerte
—m = |v/n] =56, gt =3 1 mod 3137 = 1046, ¢" = 893

e Erzeuge Babystep-Tabelle B=[(y-g~",7) | r<m]

~ B =(5,0): (2093, 1); (2789, 2); (3021, 3); (1007, 4); ...... (541,55),

— Sortiert: [(5,0); (92,17); (146, 35); (226,26); (276, 16); (394,43); (397, 12);

(400, 41); (436,10); (438,34); (518,48); (541,55); (544, 39); (678, 25); (767, 8);

805,32); (809, 6); (828, 15); (971,30); (1007, 4); (1121,27); (1177, 44);
1178, 13); (1162,42); (1191, 11); (1227,40); (1308,9); (1314,33); (1438, 45);
1525, 46); (1554,47); (1589, 21); (1623, 54); (1630, 20); (1632, 38);
1732, 53); (1753, 19); (1759, 37); (2034, 24); (2059, 52); (2093, 1); (2122, 18);
2140,36); (2264, 49); (2361, 7); (2415, 31); (2427,5); (2465,28); (2484, 14);
2621,22); (2789, 2); (2846,50); (2913, 29); (2965,23); (3021, 3); (3040, 51)]

e e e e
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SHANKS ALGORITHMUS AM BEISPIEL I

Bestimme logs 5 in (Z3137, *)

e Berechne Intialwerte
—m = |v/n] =56, gt =3 1 mod 3137 = 1046, ¢" = 893

e Erzeuge Babystep-Tabelle B=[(y-g~",7) | r<m]

~ B =(5,0): (2093, 1); (2789, 2); (3021, 3); (1007, 4); ...... (541,55),

— Sortiert: [(5,0); (92,17); (146, 35); (226,26); (276, 16); (394,43); (397, 12);

(400, 41); (436,10); (438,34); (518,48); (541,55); (544, 39); (678, 25); (767, 8);

(805, 32); (809, 6); (828,15); (971,30); (1007, 4); (1121,27); (1177, 44);
(1178, 13); (1182,42); (1191, 11); (1227,40); (1308,9); (1314,33); (1438, 45);
(1525,46); (1554, 47); (1589, 21); (1623, 54); (1630,20); (1632, 38);
(1732,53); (1753,19); (1759, 37); (2034, 24); (2059, 52); (2093, 1); (2122, 18);
(2140, 36); (2264, 49); (2361,7); (2415, 31); (2427, 5); (2465, 28); (2484, 14);
(2621,22); (2789, 2); (2846, 50); (2913,29); (2965, 23); (3021,3); (3040, 51)]

e Berechne Giantstep Werte (¢g")4, q =0,1,2,...

—1; 893; 651; 998; 306; 339; 1575; 1099; 2663; 213; 1989; 635; 2395;
2438; 56; 2953; 1949; 2559; 1451; 162; 364; 1941; 1689; 2517; 1589
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SHANKS ALGORITHMUS AM BEISPIEL I

Bestimme logs 5 in (Z3137, *)

e Berechne Intialwerte
—m = |v/n] =56, gt =3 1 mod 3137 = 1046, ¢" = 893

e Erzeuge Babystep-Tabelle B=[(y-g~",7) | r<m]

~ B =(5,0): (2093, 1); (2789, 2); (3021, 3); (1007, 4); ...... (541,55),

— Sortiert: [(5,0); (92,17); (146, 35); (226,26); (276, 16); (394,43); (397, 12);

(400, 41); (436,10); (438,34); (518,48); (541,55); (544, 39); (678, 25); (767, 8);

(805, 32); (809, 6); (828,15); (971,30); (1007, 4); (1121,27); (1177, 44);
(1178, 13); (1182,42); (1191, 11); (1227,40); (1308,9); (1314,33); (1438, 45);
(1525,46); (1554, 47); (1589, 21); (1623, 54); (1630,20); (1632, 38);
(1732,53); (1753,19); (1759, 37); (2034, 24); (2059, 52); (2093, 1); (2122, 18);
(2140, 36); (2264, 49); (2361,7); (2415, 31); (2427, 5); (2465, 28); (2484, 14);
(2621,22); (2789, 2); (2846, 50); (2913,29); (2965, 23); (3021,3); (3040, 51)]

e Berechne Giantstep Werte (¢g")4, q =0,1,2,...
—1; 893; 651; 998; 306; 339; 1575; 1099; 2663; 213; 1989; 635; 2395;
2438; 56; 2953; 1949; 2559; 1451; 162; 364; 1941; 1689; 2517; 1589
— Treffer (1589, 21) fiir ¢ = 24 liefert x = 24-56+21 = 1365
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POLLARD p ALGORITHMUS I

e Modifikation der Pollard p Faktorisierung
— Suche a#ad’, b4V € Z mit ¢y’ = g”
~Ist v = log,y in G so gilt gogtt = g¥.g" also grtrb = gtV
somit a+x-b=a'+z-b'modn bzw. (a—ad')=x-(b'—b) modn
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POLLARD p ALGORITHMUS I

e Modifikation der Pollard p Faktorisierung
— Suche a#ad’, b4V € Z mit ¢y’ = g”
~Ist v = log,y in G so gilt gogtt = g¥.g" also grtrb = gtV
somit a+x-b=a'+z-b'modn bzw. (a—ad')=x-(b'—b) modn
— Damit ist = = (a—a’)(0'—b) ' modn falls ged(b'—b,n)=1
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POLLARD p ALGORITHMUS I

e Modifikation der Pollard p Faktorisierung
— Suche a#ad’, b4V € Z mit ¢y’ = g”
~Ist v = log,y in G so gilt gogtt = g¥.g" also grtrb = gtV
somit a+x-b=a'+z-b'modn bzw. (a—ad')=x-(b'—b) modn
— Damit ist = = (a—a’)(0'—b) ' modn falls ged(b'—b,n)=1
— Bei Erzeugung einer Zufallsfolge mit O(y/n) Elementen findet man
diese Kollision mit Wahrscheinlichkeit 50% (Geburtstagsparadox)
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POLLARD p ALGORITHMUS I

e Modifikation der Pollard p Faktorisierung
— Suche a#ad’, b4V € Z mit ¢y’ = g”
~Ist v = log,y in G so gilt gogtt = g¥.g" also grtrb = gtV
somit a+x-b=a'+z-b'modn bzw. (a—ad')=x-(b'—b) modn
— Damit ist = = (a—a’)(0'—b) ' modn falls ged(/—b,n)=
— Bei Erzeugung einer Zufallsfolge mit O(y/n) Elementen findet man
diese Kollision mit Wahrscheinlichkeit 50% (Geburtstagsparadox)

e Erzeuge und priife Zufallskandidaten
— Berechne Folge (31, a1,b), (B2, as,by)... mit 3; = g%-1)"
und (G411, aiv1, bivr = f(0i, a;, b;) fiir eine “Zufallsfunktion” f
~Gilt §; = §; furein 1<y, dann auch ;11 = B41 also By = B
fur alle & Folge der 3 lauft in eine Schleife, was aussieht wie ein 0
— Hat die Schleife die Lange [ = j—i, so gibt es ein ke{i..j—1},
das Vielfaches von [ ist. Fur dieses k gilt (. = [,
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POLLARD p ALGORITHMUS I

e Modifikation der Pollard p Faktorisierung
— Suche a#ad’, b4V € Z mit ¢y’ = g”
~Ist v = log,y in G so gilt gogtt = g¥.g" also grtrb = gtV
somit a+x-b=a'+z-b'modn bzw. (a—ad')=x-(b'—b) modn
— Damit ist = = (a—a’)(0'—b) ' modn falls ged(/—b,n)=
— Bei Erzeugung einer Zufallsfolge mit O(y/n) Elementen findet man
diese Kollision mit Wahrscheinlichkeit 50% (Geburtstagsparadox)

e Erzeuge und priife Zufallskandidaten
— Berechne Folge (31, a1,b), (B2, as,by)... mit 3; = g%-1)"
und (G411, aiv1, bivr = f(0i, a;, b;) fiir eine “Zufallsfunktion” f
~Gilt §; = §; furein 1<y, dann auch ;11 = B41 also By = B
fur alle & Folge der 3 lauft in eine Schleife, was aussieht wie ein 0
— Hat die Schleife die Lange [ = j—i, so gibt es ein ke{i..j—1},
das Vielfaches von [ ist. Fur dieses k gilt (. = [,
e Einfaches Suchverfahren
— In Schritt k& bestimme (3., (5. bis Werte gleich sind und berechne x
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POLLARD p IM DETAIL I

e Wahl der “Zufallsfunktion” f

— Teile Gruppe G in drei gleich grofie Teilgruppen G4, G, G'3 auf
(B-g,a+,1,b) falls BeG,

— Definiere f(8,a,b) = ¢ (3% 2-,a,2-,b) falls 3eGy
(By,a,b+,1) falls BeGs

KRYPTOGRAPHIE UND KOMPLEXITAT §5.3 6 ANGRIFFE AUF ELGAMAL SYSTEME




POLLARD p IM DETAIL I

e Wahl der “Zufallsfunktion” f

— Teile Gruppe G in drei gleich grofie Teilgruppen G4, G, G'3 auf
(B-g,a+,1,b) falls BeG,

— Definiere f(8,a,b) = ¢ (3% 2-,a,2-,b) falls 3eGy
(By,a,b+,1) falls BeGs

— Per Konstruktion erhalt f die Eigenschaft 3 = ¢%-y”
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POLLARD p IM DETAIL I

e Wahl der “Zufallsfunktion” f

— Teile Gruppe G in drei gleich grofie Teilgruppen G4, G, G'3 auf
(B-g,a+,1,b) falls BeG,

— Definiere f(8,a,b) = ¢ (3% 2-,a,2-,b) falls 3eGy
(By,a,b+,1) falls BeGs

— Per Konstruktion erhilt f die Eigenschaft 3 = g1/

e Konstruktion der (3;, a;, b;)
— Definiere (8, ag, by) = (1,0,0) und (Bii1, aiv1, biv1) = f(G;i, a;, b;)
— Dann gilt 3; = g%-y" fiir alle 4
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POLLARD p IM DETAIL I

e Wahl der “Zufallsfunktion” f

— Teile Gruppe G in drei gleich grofie Teilgruppen G4, G, G'3 auf
(B-g,a+,1,b) falls BeG,

— Definiere f(8,a,b) = ¢ (3% 2-,a,2-,b) falls 3eGy
(By,a,b+,1) falls BeGs

— Per Konstruktion erhilt f die Eigenschaft 3 = g1/

e Konstruktion der (3;, a;,b;)
— Definiere (8, ag, by) = (1,0,0) und (Bii1, aiv1, biv1) = f(G;i, a;, b;)
— Dann gilt 3; = g%-y" fiir alle 4

e Suchverfahren
— In Schritt k& bestimme (0, ay, by) und (o, asp, bop) bis G = By
— Ist gcd(by.—by, n)=1 so berechne x = (a,—,a0;)(bop—br) "t modn

— Ansonsten breche ohne Erfolg ab
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POLLARD p IM DETAIL I

e Wahl der “Zufallsfunktion” f

— Teile Gruppe G in drei gleich grofie Teilgruppen G4, G, G'3 auf
(B-g,a+,1,b) falls BeG,

— Definiere f(8,a,b) = ¢ (3% 2-,a,2-,b) falls 3eGy
(By,a,b+,1) falls BeGs

— Per Konstruktion erhilt f die Eigenschaft 3 = g1/

e Konstruktion der (3;, a;, b;)
— Definiere (8, ag, by) = (1,0,0) und (Bii1, aiv1, biv1) = f(G;i, a;, b;)
— Dann gilt 3; = g%-y" fiir alle 4

e Suchverfahren
— In Schritt k& bestimme (0, ay, by) und (o, asp, bop) bis G = By
— Ist gcd(by.—by, n)=1 so berechne x = (a,—,a0;)(bop—br) "t modn
— Ansonsten breche ohne Erfolg ab
Laufzeit O(y/n) = O(2I71/2) konstanter Speicherbedarf
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POLLARD p: ABLAUFBEISPIEL I

e Trace der Berechnung von loggqg 618 in Zggg
— Ordnung von g = 89 in (Zg,, -) ist n = 101
~ Wahle G /93 = {9<808|g=1/0/2 mod 3}

Schleife 1 =618 a=0b=1 |p’>=76 a’ =0 b =2
Schleife 2. (B3 =76 a=0Db=2 |3 =113 a’ =0 Db’ =4
Schleife 3. [ =46 a =0 b =3 |3’ =488 a’ =1 b’ =5
Schleife 4. B =113 a=0b=4 |3 =605 a> =4 b’ = 10
Schleife 5. [ =349 a=1 b =4 |3’ =422 a’ =5 b’ =11
Schleife 6 =488 a=1 b=5 | =683 a’ =7 Db’ =11
Schleife 7 G =556 a=2Db=5 |3’ =451 a> =8 Db’ =12
Schleife 8 6 =605 a=4b=10|p4’ =344 a’ =9 Db’ =13
Schleife 9. [ =451 a =5 b =103’ = 112 a’ = 11 b’ = 13
Schleife 10. § =422 a =5 b = 11|38’ = 422 a’ = 11 b’ = 15
— Resultat: = (a —, a)(0/ —, b)"! = 95-,471 = 95.,76= 49
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POLLARD p: ABLAUFBEISPIEL I

e Trace der Berechnung von loggqg 618 in Zggg
— Ordnung von g = 89 in (Zg,, -) ist n = 101
~ Wahle G /93 = {9<808|g=1/0/2 mod 3}

Schleife 1 =618 a=0b=1 |p’>=76 a’ =0 b =2
Schleife 2. (B3 =76 a=0Db=2 |3 =113 a’ =0 Db’ =4
Schleife 3. (3 =46 a=0 Db =3 |3’ =488 a’ =1 Db’ =5
Schleife 4. [ =113 a=0 b =4 |3’ =605 a> =4 b’ =10
Schleife 5. [ =349 a=1 b =4 |3’ =422 a’ =5 b’ =11
Schleife 6 =488 a=1 b=5 | =683 a’ =7 Db’ =11
Schleife 7 G =556 a=2Db=5 |3’ =451 a> =8 Db’ =12
Schleife 8 6 =605 a=4b=10|p4’ =344 a’ =9 Db’ =13
Schleife 9. [ =451 a =5 b =103’ = 112 a’ = 11 b’ = 13
Schleife 10. § =422 a =5 b = 11|38’ = 422 a’ = 11 b’ = 15
1

— Resultat: = (a —, a)(0/ —, b)"! = 95-,471 = 95.,76= 49
e Erweiterung des Algorithmus
— Originalverfahren bricht ab, wenn ged(bor—0by, n)#1
— Kongruenz (ap—asy) = x-(bop.—by) mod n hat d mégliche Losungen x;
wenn d = ged(bop—bg,m) > 1
— Fir kleine d kann man fur alle x; prufen, ob g% = vy ist
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DER POHLIG-HELLMAN ALGORITHMUS (I)

Wenn die Faktorisierung von n = |G| bekannt ist
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DER POHLIG-HELLMAN ALGORITHMUS (I)

Wenn die Faktorisierung von n = |G| bekannt ist

e Bestimme Logarithmen in Untergruppen von G
~Sein=|G|=]],,p” und z =log,y

— Fiir jedes p setze n, =n/p®, g,=g", y,=y"
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DER POHLIG-HELLMAN ALGORITHMUS (I)

Wenn die Faktorisierung von n = |G| bekannt ist

e Bestimme Logarithmen in Untergruppen von G
—Sein = |G| = Hp‘npep und z = log, y

Np Np

— Fiir jedes p setze n, =n/p®, g,=9g", y, =1y
— Dann ist p® die Ordnung von g, und es gilt g; = g™ = y"» =y,

also existiert der diskrete Logarithmus z;, = log, v,
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DER POHLIG-HELLMAN ALGORITHMUS (I)

Wenn die Faktorisierung von n = |G| bekannt ist

e Bestimme Logarithmen in Untergruppen von G
~Sein=|G|=]],,p” und z =log,y

Np Np

— Fiir jedes p setze n, =n/p®, g,=9g", y, =1y
— Dann ist p® die Ordnung von g, und es gilt g; = g™ = y"» =y,
also existiert der diskrete Logarithmus z;, = log, v,

— Berechne alle x, mit dem Shanks- oder dem Pollard p Algorithmus
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DER POHLIG-HELLMAN ALGORITHMUS (I)

Wenn die Faktorisierung von n = |G| bekannt ist

e Bestimme Logarithmen in Untergruppen von G
—Sein = |G| = Hp‘npep und z = log, y

Np Np

— Fiir jedes p setze n, =n/p®, g,=9g", y, =1y
— Dann ist p® die Ordnung von g, und es gilt g; = g™ = y"» =y,
also existiert der diskrete Logarithmus z;, = log, v,

— Berechne alle x, mit dem Shanks- oder dem Pollard p Algorithmus

® Berechne z = log, y aus den Komponenten
Satz: Gilt x = log, Y, mod p fiur alle p, dann ist * = log, y
Beweis: Es gilt (g “-y)"™ = (¢") “y"™ =g, "y, = 1
fiir alle Primteiler p von n. Also ist die Ordnung von ¢~"-y (in G)
ein Teiler von allen n,. Da 1 der grofite gemeinsame Teiler aller n,
ist, gilt ¢ "-y=1modn also ¢g*=ymodn
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DER POHLIG-HELLMAN ALGORITHMUS (I)

Wenn die Faktorisierung von n = |G| bekannt ist

e Bestimme Logarithmen in Untergruppen von G
—Sein = |G| = Hp‘npep und z = log, y

Np Np

— Fiir jedes p setze n, =n/p®, g,=9g", y, =1y
— Dann ist p® die Ordnung von g, und es gilt g; = g™ = y"» =y,
also existiert der diskrete Logarithmus z;, = log, v,

— Berechne alle x, mit dem Shanks- oder dem Pollard p Algorithmus

® Berechne z = log, y aus den Komponenten
Satz: Gilt x = loggp yp mod p°r fur alle p, dann ist =z = log, y
Beweis: Es gilt (g “-y)"™ = (¢") “y"™ =g, "y, = 1
fiir alle Primteiler p von n. Also ist die Ordnung von ¢~"-y (in G)
ein Teiler von allen n,. Da 1 der grofite gemeinsame Teiler aller n,
ist, gilt ¢g-"-y=1modn also ¢g"=ymodn
— Berechne = = log, y aus allen x;, mit dem chinesischem Restsatz
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DER POHLIG-HELLMAN ALGORITHMUS (I)

Wenn die Faktorisierung von n = |G| bekannt ist

e Bestimme Logarithmen in Untergruppen von G
~Sein=|G|=]],,p” und z =log,y

Np Np

— Fiir jedes p setze n, =n/p®, g,=9g", y, =1y
— Dann ist p® die Ordnung von g, und es gilt g; = g™ = y"» =y,
also existiert der diskrete Logarithmus z;, = log, v,

— Berechne alle x, mit dem Shanks- oder dem Pollard p Algorithmus

® Berechne z = log, y aus den Komponenten
Satz: Gilt « = log, yp, mod p fiir alle p, dann ist x = log, y
Beweis: Es gilt (g “-y)"™ = (¢") “y"™ =g, "y, = 1
fiir alle Primteiler p von n. Also ist die Ordnung von ¢~"-y (in G)
ein Teiler von allen n,. Da 1 der grofite gemeinsame Teiler aller n,
ist, gilt ¢g-"-y=1modn also ¢g"=ymodn
— Berechne = = log, y aus allen x;, mit dem chinesischem Restsatz

Gesamtlaufzeit O()_,,, vP) konstanter Speicherbedarf
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DER POHLIG-HELLMAN ALGORITHMUS (II)

e Vereinfache Darstellung von x, = log, gp Yp
Der Ubersichtlichkeit halber W|rd der Index p im folgenden fallen gelassen
~ Wegen z < p° gilt x =) ,__ z;p" fiir bestimmte Koeffizienten x;
— Folglich ist ype_l = g“/“'pe_1 — (gpe_l)xo.(gpe)zkm A (gpe_l)xo
da p® die Ordnung von g ist
e—1

—Da g, = gpe_1 die Ordnung p hat, kann x¢ = log, y”  in einer
Gruppe der Ordnung p in der Laufzeit O(,/p) berechnet werden
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DER POHLIG-HELLMAN ALGORITHMUS (II)

e Vereinfache Darstellung von x, = log, gp Yp
Der Ubersichtlichkeit halber W|rd der Index p im folgenden fallen gelassen

~ Wegen z < p° gilt x =) ,__ z;p" fiir bestimmte Koeffizienten z;
— FOlghCh 1st ype—l — gx'pe—l — (gpe_l)x().(gpe>20<i<e xipl_l — (gpe_l)x()
da p® die Ordnung von g ist
e—1

—Da g, = gpe_1 die Ordnung p hat, kann x¢ = log, y”  in einer
Gruppe der Ordnung p in der Laufzeit O(,/p) berechnet werden

e Berechne Koeflizienten von xj
— Berechne zy mit dem Shanks- oder dem Pollard p Algorithmus
—ind x, .., x;_1 bereits bestimmt, so gilt
o ?l(y g ZKHZP) pe il <nge<i<e rip )pe_k_l — (gZi<e—kxipi>pe_1
= (g" ) (g ) Pocicet T = (g ), also ay = log,, y
Berechne x; mit dem Shanks- oder dem Pollard p Algorithmus

-1
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DER POHLIG-HELLMAN ALGORITHMUS (II)

e Vereinfache Darstellung von x, = log, gp Yp
Der Ubersichtlichkeit halber W|rd der Index p im folgenden fallen gelassen

— Wegen x < p°gilt =) . a;p' fiir bestimmte Koeffizienten z;
— FOlghCh 1st ypel — gx'pel — (gpel)xo.(gpe>20<i<e xiplil — (gpel)xo
da p® die Ordnung von g ist
e—1

—Da g, = gpe_1 die Ordnung p hat, kann x¢ = log, y”  in einer
Gruppe der Ordnung p in der Laufzeit O(,/p) berechnet werden

e Berechne Koeflizienten von xj
— Berechne zy mit dem Shanks- oder dem Pollard p Algorithmus
—ind x, .., x;_1 bereits bestimmt, so gilt
m le(y q ZKW@P) pe il <ngp<i<e rip )pekl — (gZi<ekxipi)p61
— <gp )xk; (gp )ZO<@<() ki’ (gp >$k7 also x = logg* Yk
Berechne x;, mit dem Shanks- oder dem Pollard p Algorithmus

-1

e Gesamtkomplexitat
— Berechnung der Koeffizienten von x, benétigt Laufzeit O(e,-,/p)
— Aufwand fiir chinesischen Restsatz vernachlassighar
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DER POHLIG-HELLMAN ALGORITHMUS (II)

e Vereinfache Darstellung von x, = log, gp Yp
Der Ubersichtlichkeit halber W|rd der Index p im folgenden fallen gelassen

~ Wegen z < p° gilt x =) ,__ z;p" fiir bestimmte Koeffizienten z;
— FOlghCh 1st ype—l — gx'pe—l — (gpe_l)x().(gpe>20<i<e xipl_l — (gpe_l)x()
da p® die Ordnung von g ist
e—1

—Da g, = gpe_1 die Ordnung p hat, kann x¢ = log, y”  in einer
Gruppe der Ordnung p in der Laufzeit O(,/p) berechnet werden

e Berechne Koeflizienten von xj
— Berechne zy mit dem Shanks- oder dem Pollard p Algorithmus
—ind x, .., x;_1 bereits bestimmt, so gilt
o ?l(y g ZKHZP) pe il <nge<i<e rip )pe_k_l — (gZi<e—kxipi>pe_1
= (g" ) (g ) Pocicet T = (g ), also ay = log,, y
Berechne x; mit dem Shanks- oder dem Pollard p Algorithmus

e Gesamtkomplexitit (’)(me ep*+/P)
— Berechnung der Koeflizienten von z,, benotigt Laufzeit (’)(ep-\/ﬁ)

-1

— Aufwand fiir chinesischen Restsatz vernachlassighar
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POHLIG-HELLMAN ALGORITHMUS FUR x = logs 3 IN Zoy7 I

e Reduktion auf Primzahlpotenzen
— Die Gruppenordnung ist n = 2016 = 2°-3%.7
— 7Zu berechnen sind x5 = logses 3% = logs,, 913,
23 = logs4 321 = log:- 1933 und 27 = logxass 3%°° = log -9 1879
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POHLIG-HELLMAN ALGORITHMUS FUR x = logs 3 IN Zoy7 I

e Reduktion auf Primzahlpotenzen
— Die Gruppenordnung ist n = 2016 = 2°-3%.7
— 7Zu berechnen sind x5 = logses 3% = logs,, 913,
23 = logs4 321 = log:- 1933 und 27 = logxass 3%°° = log -9 1879
e Berechnung von xo = Z;;l:() To ;2"
— Esist g, = 50019 mod 2017 = 2016 und 913 mod 2017 = 1

— Damit 1st T20 = 1090161 = 0
~ Esist yo1 = (913:500%)% = 913° = 2016 also @1 = logyy2016 = 1
— Es ist 420 = 1579* = 2016 also T99 = 108162016 = 1
~ Esist yo3 =1 =1 also T23 = logypgl = 0
—Esist yoq =1 also T24 = logysl =0

— Insgesamt ergibt sich x5 = 6
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POHLIG-HELLMAN ALGORITHMUS FUR x = logs 3 IN Zoy7 I

e Reduktion auf Primzahlpotenzen
— Die Gruppenordnung ist n = 2016 = 2°-3%.7
— 7Zu berechnen sind x5 = logses 3% = logs,, 913,
23 = logs4 321 = log:- 1933 und 27 = logxass 3%°° = log -9 1879
e Berechnung von xo = Z;;l:() To ;2"
— Esist g, = 50019 mod 2017 = 2016 und 913 mod 2017 = 1

— Damit 1st T20 = 1090161 = 0
~ Esist yo1 = (913:500%)% = 913° = 2016 also @1 = logyy2016 = 1
— Es ist 420 = 1579* = 2016 also T99 = 108162016 = 1
~ Esist yo3 =1 =1 also T23 = logypgl = 0
—Esist yoq =1 also T24 = logysl =0

— Insgesamt ergibt sich x5 = 6
e Berechnung von «
— Analog ergibt sich 3 =4 und x7; = 1
— Losung der simultanen Kongruenzen x =6 mod 32, xr=4mod9 und
r=1mod7 ergibt x = 1030
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DIE INDEX-CALCULUS METHODE I

Verwandt mit Siebverfahren fiir Faktorisierung
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DIE INDEX-CALCULUS METHODE I

Verwandt mit Siebverfahren fiir Faktorisierung

e Einfache Grundidee
— Waébhle eine Faktorbasis B = {p prim | p<b} fiir eine Zahl b
~ Bestimme diskrete Logarithmen ), = log, p fur alle Elemente von B

— Suche Exponenten a<n fiir die y-g* b-glatt ist (d.h. y-g* =[] <5 p?)
~Dann ist y-g* = ], cp(g™)" = g2r €8 mod n
also z =log,y= ) cprpe,—amod p(n)
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DIE INDEX-CALCULUS METHODE I

Verwandt mit Siebverfahren fiir Faktorisierung

e Einfache Grundidee
— Waébhle eine Faktorbasis B = {p prim | p<b} fiir eine Zahl b
~ Bestimme diskrete Logarithmen ), = log, p fur alle Elemente von B

— Suche Exponenten a<n fiir die y-g* b-glatt ist (d.h. y-g* =[] <5 p?)
~Dann ist y-g* = ], cp(g™)" = g2r €8 mod n
also = =log,y = Zpega:p-ep—a mod ¢(n)
¢ Bestimmung der xp=Ilog,p fur peB
— Wahle zufallige 1<z;,<n fur die g* mod n zerlegbar in Hp cpD P
—Dann ist g% = [[ czp = [[,epg™» modn
also z; = Zp c g Tp-€ip mod (n)
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DIE INDEX-CALCULUS METHODE I

Verwandt mit Siebverfahren fiir Faktorisierung

e Einfache Grundidee
— Waébhle eine Faktorbasis B = {p prim | p<b} fiir eine Zahl b
~ Bestimme diskrete Logarithmen ), = log, p fur alle Elemente von B

— Suche Exponenten a<n fiir die y-g* b-glatt ist (d.h. y-g* =[] <5 p?)
~Dann ist y-g* = ], cp(g™)" = g2r €8 mod n
also z =log,y= ) cprpe,—amod p(n)
¢ Bestimmung der xp=Ilog,p fur peB
— Wahle zufallige 1<z;,<n fur die g* mod n zerlegbar in Hp cpD P
—Dann ist g% = [[ czp = [[,epg™» modn
also z; = ) cprpeipmod p(n)
— Hat man |B| derartige Relationen (e; ), e 5 gefunden, so kann man
die x, mit Hilfe eines modifizierten GauBalgorithmus bestimmen
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DIE INDEX-CALCULUS METHODE I

Verwandt mit Siebverfahren fiir Faktorisierung

e Einfache Grundidee
— Waébhle eine Faktorbasis B = {p prim | p<b} fiir eine Zahl b
~ Bestimme diskrete Logarithmen ), = log, p fur alle Elemente von B

— Suche Exponenten a<n fiir die y-g* b-glatt ist (d.h. y-g* =[] <5 p?)
~Dann ist y-g* = ], cp(g™)" = g2r €8 mod n
also z =log,y= ) cprpe,—amod p(n)
¢ Bestimmung der xp=Ilog,p fur peB
— Wahle zufallige 1<z;,<n fur die g* mod n zerlegbar in Hp cpD P
—Dann ist g% = [[ czp = [[,epg™» modn
also z; = ) cprpeipmod p(n)
— Hat man |B| derartige Relationen (e; ), e 5 gefunden, so kann man
die x, mit Hilfe eines modifizierten GauBalgorithmus bestimmen

- /2. 1/2
e Gesamtkomplexitat (’)(2(1+0(1)) |7 /2- log |n|*/ )
— Analyse ahnlich wie bei quadratischen Sieben fiir Faktorisierung
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DIE INDEX-CALCULUS METHODE AM BEISPIEL I

Logarithmen der Faktorbasis fur g = 2 in Zgg27
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DIE INDEX-CALCULUS METHODE AM BEISPIEL I

Logarithmen der Faktorbasis fur g = 2 in Zgg27

e Relationen der Faktorbasis {2,3,5,7,11}
— Zufallige Erzeugung von Zahlen z; liefert
21993 m0d 2027 = 33 = 311
. 2983 mod 2027 = 385 = 5-7-11
- 21318 mod 2027 = 1408 = 2711
- 2% mod 2027 = 63 = 3%.7
- 21918 mod 2027 = 1600 = 255
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DIE INDEX-CALCULUS METHODE AM BEISPIEL I

Logarithmen der Faktorbasis fur g = 2 in Zgg27

e Relationen der Faktorbasis {2,3,5,7,11}
— Zufallige Erzeugung von Zahlen z; liefert
- 29931m0d 2027 = 33 = 3-11
- 2983 mod 2027 = 385 = 5-7-11
- 2818 mod 2027 = 1408 = 2711
- 2% mod 2027 = 63 = 3%.7
- 298 m0d 2027 = 1600 = 2°-5°
e Bestimme x,=logs p fiir p€ {2,3,5,7,11}
- T3 + 11 = 1593 mod 2026
- x5 + 7+ x11 = 983 mod 2026
- (x9 + 111 = 1318 mod 2026
. 213 + 27 = 293 mod 2026
- 69 + 225 = 1918 mod 2026
— Lose Kongruenzen mit modifiziertem Gauflalgorithmus
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DiE INDEX-CALCULUS METHODE AM BEISPIEL (II)

e Modifizierter Gauflalgorithmus
— Lose Kongruenzen modulo 2 und 1013 (die Primteiler von 2026)
— Berechne z, aus Einzellosungen mit Chinesischem Restsatz
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DiE INDEX-CALCULUS METHODE AM BEISPIEL (II)

e Modifizierter Gauflalgorithmus
— Lose Kongruenzen modulo 2 und 1013 (die Primteiler von 2026)
— Berechne z, aus Einzellosungen mit Chinesischem Restsatz

e Lose Kongruenzen modulo 2
- T3+ 11 = 1593 mod 2 rs + x7 + 111 =983 mod 2
- X9+ 211 = 1318 mod 2 r7 =293 mod 2
~ Wegen g =21ist o =1
— Ansonsten ergibt sich z5=x7=x11=1mod2 und z3=0mod2
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DiE INDEX-CALCULUS METHODE AM BEISPIEL (II)

e Modifizierter Gauflalgorithmus
— Lose Kongruenzen modulo 2 und 1013 (die Primteiler von 2026)
— Berechne z, aus Einzellosungen mit Chinesischem Restsatz

e Lose Kongruenzen modulo 2
- T3+ 11 = 1593 mod 2 rs + x7 + 111 =983 mod 2
- X9+ 211 = 1318 mod 2 r7 =293 mod 2
~ Wegen g =21ist o =1
— Ansonsten ergibt sich z5=x7=x11=1mod2 und z3=0mod2
e Lose Kongruenzen modulo 1013
- T3+ 111 =580 mod 1013 Ts5 + 27+ 11 =983 mod 1013
- 11 =298 mod 1013 213 + x7 =293 mod 1013
- 225 =899 mod 1013
— Ergibt £11 =298, x5=956, 7 =742, r3=282 mod 1013
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DiE INDEX-CALCULUS METHODE AM BEISPIEL (II)

e Modifizierter Gauflalgorithmus
— Lose Kongruenzen modulo 2 und 1013 (die Primteiler von 2026)
— Berechne z, aus Einzellosungen mit Chinesischem Restsatz

e Lose Kongruenzen modulo 2
- T3+ 11 = 1593 mod 2 rs + x7 + 111 =983 mod 2
- X9+ 211 = 1318 mod 2 r7 =293 mod 2
~ Wegen g =21ist o =1
— Ansonsten ergibt sich z5=x7=x11=1mod2 und z3=0mod2
e Lose Kongruenzen modulo 1013
- T3+ 111 =580 mod 1013 Ts5 + 27+ 11 =983 mod 1013
- 11 =298 mod 1013 223 + 7 =293 mod 1013
- 225 =899 mod 1013
— Ergibt £11 =298, x5=956, 7 =742, r3=282 mod 1013
e Losung der simultanen Kongruenz
— x5 = 1, 3 = 282, x5 = 1969, 7 = 1755, x;; = 1311
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DAS INDEX-CALCULUS VERFAHREN AM BEISPIEL (II1)

Berechnung von logy 13 in Zsgg27
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DAS INDEX-CALCULUS VERFAHREN AM BEISPIEL (II1)

Berechnung von logy 13 in Zsgg27

e Suche ein 11-glattes 13:2¢ fiir ein a € {1,..2026}
— Zufallssuche ergibt @ = 1397 und 13-2'%97=110=2-5-11 mod 2027
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DAS INDEX-CALCULUS VERFAHREN AM BEISPIEL (II1)

Berechnung von logy 13 in Zsgg27

e Suche ein 11-glattes 13:2¢ fiir ein a € {1,..2026}
— Zufallssuche ergibt @ = 1397 und 13-2'%97=110=2-5-11 mod 2027

® Berechne x = ), c g&p-ep—a mod ¢(n)
— Liefert z =) + 2t + 2}, —a=1+ 1969 + 1311 — 1397 mod 2026
— Frgebnis ist & = log, 13 = 1884
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DAS INDEX-CALCULUS VERFAHREN AM BEISPIEL (II1)

Berechnung von logy 13 in Zsgg27

e Suche ein 11-glattes 13:2¢ fiir ein a € {1,..2026}
— Zufallssuche ergibt @ = 1397 und 13-2'%97=110=2-5-11 mod 2027
® Berechne x = ), c g&p-ep—a mod ¢(n)
— Liefert z =) + 2t + 2}, —a=1+ 1969 + 1311 — 1397 mod 2026
— Frgebnis ist & = log, 13 = 1884

Verallgemeinerung auf andere Gruppen

— Methode stiitzt sich auf zahlentheoretische Eigenschaften

— Andere Gruppen miissen Aufbau einer Faktorbasis und Konstruktion
von Relationen aus Exponentenvektoren unterstiitzen

— Relationenfindung in Z, baut auf Primfaktorzerlegung in Z auf

— Verfahren zur Relationenfindung in anderen Gruppen nicht bekannt
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DL ALGORITHMEN IM RUCKBLICK I

e Aufzahlungsverfahren
— Standardverfahren, gut fir kleine Gruppenordnungen O (2l
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DL ALGORITHMEN IM RUCKBLICK I

e Aufzahlungsverfahren
— Standardverfahren, gut fir kleine Gruppenordnungen O (2l

e Algorithmus Algorithmus von Shanks
— Zerlegung der Suche in Baby- und Giantsteps Zeit /Platz 0(2”””/ %)
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DL ALGORITHMEN IM RUCKBLICK I

e Aufzahlungsverfahren
— Standardverfahren, gut fir kleine Gruppenordnungen O (2l

e Algorithmus Algorithmus von Shanks
— Zerlegung der Suche in Baby- und Giantsteps Zeit /Platz 0(2”””/ %)

e Pollard p
— Systematische Suche nach Kollisionen O(2In1/2)
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— Standardverfahren, gut fir kleine Gruppenordnungen O (2l
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— Zerlegung der Suche in Baby- und Giantsteps Zeit /Platz 0(2”””/ %)

e Pollard p
— Systematische Suche nach Kollisionen O(2In1/2)

e Pohlig-Hellman Verfahren
— Reduktion auf Primfaktoren von n O _pjn € v/P)
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DL ALGORITHMEN IM RUCKBLICK I

e Aufzahlungsverfahren
— Standardverfahren, gut fir kleine Gruppenordnungen O (2l

e Algorithmus Algorithmus von Shanks
— Zerlegung der Suche in Baby- und Giantsteps Zeit /Platz 0(2”””/ %)

e Pollard p
— Systematische Suche nach Kollisionen O(2In1/2)

e Pohlig-Hellman Verfahren
— Reduktion auf Primfaktoren von n O _pjn € v/P)

e Index-Calculus Methode
— Aufbau von Logarithmen einer Faktorbasis (9(2(”0(1))'”””1/ > log " 2)

— Zahlkorpersieb als effizienteste Variante (’)(21'92'”””1/ 3 log n | 3)

— Verallgemeinert sehr schlecht auf andere Gruppen
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