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und y ∈ 〈g〉. Bestimme die eindeutige Zahl x<n mit y = gx
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• Über Zp ähnlich schwer wie Faktorisierung

– Viele Faktorisierungsalgorithmen lassen sich übertragen

– Kryptosysteme werden durch Verwendung des DL Problems alleine

nicht sicherer als durch das Faktorisierungsproblem



Kryptographie und Komplexität §5.3 1 Angriffe auf ElGamal Systeme

Das Problem des diskreten Logarithmus

• Allgemeine Formulierung

– Gegeben multiplikative Gruppe (G, ·), Element g der Ordnung n

und y ∈ 〈g〉. Bestimme die eindeutige Zahl x<n mit y = gx
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• Es gibt viele DL-Algorithmen

– Aufzählungsverfahren, Shanks, Pollard ρ, Pohlig-Hellman,

Index-Calculus, Zahlkörpersiebe

– Zunehmende Kompliziertheit senkt die Komplexität

• Schwieriger über anderen Gruppen

– Die besten DL-Algorithmen sind nur zahlentheoretisch verwendbar



Kryptographie und Komplexität §5.3 2 Angriffe auf ElGamal Systeme

Aufzählung

• Einfacher, leicht zu programmierender Ansatz

– Lösungskandidaten x = 1, 2, 3, ... werden der Reihe nach überprüft

– Die Bestimmung von x = logg y benötigt x−1 Multiplikationen

– Hochgradig ineffizient Laufzeit O(n·||n||2) = O(2||n||)
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Aufzählung

• Einfacher, leicht zu programmierender Ansatz

– Lösungskandidaten x = 1, 2, 3, ... werden der Reihe nach überprüft
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• Nur für Zahlen mit kleinen Logarithmen
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– Schranke jenseits von 107 wenig sinnvoll
Anders als bei Faktorisierung sagt dies nichts über die Größe von n oder y aus

• Keine Optimierungen wie bei Faktorisierung

– Jede Zahl könnte der geeignete Logarithmus sein

– Man kann wenig über Struktur von x sagen (z.B. ungerade)

– Außer n gibt es keine obere Grenze für x

• Beispiel für (Zp, ·) mit p = 944137

– log2 3 = 467306, log2 4 = 2, log2 5 = 271379, ...
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– Zerlege das gesuchte x = logg y in x = q·m+r

– Für diese Zerlegung gilt gq·m+r = y also (gm)q = y·g−r

– Teste diese Gleichung für alle Paare (q, r) um x zu bestimmen
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• Modifikation der Pollard ρ Faktorisierung
– Suche a 6=a′, b 6=b′ ∈Zn mit ga·yb = ga′·yb′

– Ist x = logg y in G so gilt ga·gx·b = ga′·gx·b′ also ga+x·b = ga′+x·b′

somit a+x·b≡ a′+x·b′ mod n bzw. (a−a′)≡x·(b′−b) mod n
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• Erzeuge und prüfe Zufallskandidaten
– Berechne Folge (β1, a1, b1), (β2, a2, b2)... mit βi = gai·ybi

und (βi+1, ai+1, bi+1 = f(βi, ai, bi) für eine “Zufallsfunktion” f

– Gilt βi = βj für ein i<j, dann auch βi+1 = βj+1 also βi+k = βj+k

für alle k Folge der βk läuft in eine Schleife, was aussieht wie ein ρ
– Hat die Schleife die Länge l = j−i, so gibt es ein k ∈{i..j−1},

das Vielfaches von l ist. Für dieses k gilt βk = β2k
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• Einfaches Suchverfahren
– In Schritt k bestimme βk, β2k bis Werte gleich sind und berechne x
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• Wahl der “Zufallsfunktion” f

– Teile Gruppe G in drei gleich große Teilgruppen G1, G2, G3 auf

– Definiere f(β, a, b) :=







(β·g, a+n1, b) falls β ∈G1

(β2, 2·na, 2·nb) falls β ∈G2

(β·y, a, b+n1) falls β ∈G3
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– Teile Gruppe G in drei gleich große Teilgruppen G1, G2, G3 auf
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




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– Definiere (β0, a0, b0) = (1, 0, 0) und (βi+1, ai+1, bi+1) = f(βi, ai, bi)

– Dann gilt βi = gai·ybi für alle i

• Suchverfahren

– In Schritt k bestimme (βk, ak, bk) und (β2k, a2k, b2k) bis βk = β2k

– Ist gcd(b2k−bk, n)=1 so berechne x = (ak−na2k)(b2k−mbk)
−1 mod n

– Ansonsten breche ohne Erfolg ab
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– Definiere (β0, a0, b0) = (1, 0, 0) und (βi+1, ai+1, bi+1) = f(βi, ai, bi)

– Dann gilt βi = gai·ybi für alle i

• Suchverfahren

– In Schritt k bestimme (βk, ak, bk) und (β2k, a2k, b2k) bis βk = β2k

– Ist gcd(b2k−bk, n)=1 so berechne x = (ak−na2k)(b2k−mbk)
−1 mod n

– Ansonsten breche ohne Erfolg ab

Laufzeit O(
√

n) = O(2||n||/2) konstanter Speicherbedarf
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Pollard ρ: Ablaufbeispiel

• Trace der Berechnung von log89 618 in Z809
– Ordnung von g = 89 in (Z∗

809, ·) ist n = 101

– Wähle G1/2/3 = {g≤808 | g≡ 1/0/2 mod 3}
Schleife 1. β = 618 a = 0 b = 1 β’ = 76 a’ = 0 b’ = 2

Schleife 2. β = 76 a = 0 b = 2 β’ = 113 a’ = 0 b’ = 4

Schleife 3. β = 46 a = 0 b = 3 β’ = 488 a’ = 1 b’ = 5

Schleife 4. β = 113 a = 0 b = 4 β’ = 605 a’ = 4 b’ = 10

Schleife 5. β = 349 a = 1 b = 4 β’ = 422 a’ = 5 b’ = 11

Schleife 6. β = 488 a = 1 b = 5 β’ = 683 a’ = 7 b’ = 11

Schleife 7. β = 555 a = 2 b = 5 β’ = 451 a’ = 8 b’ = 12

Schleife 8. β = 605 a = 4 b = 10 β’ = 344 a’ = 9 b’ = 13

Schleife 9. β = 451 a = 5 b = 10 β’ = 112 a’ = 11 b’ = 13

Schleife 10. β = 422 a = 5 b = 11 β’ = 422 a’ = 11 b’ = 15

– Resultat: x = (a −n a′)(b′ −n b)−1 = 95·n4−1 = 95·n76= 49
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Schleife 10. β = 422 a = 5 b = 11 β’ = 422 a’ = 11 b’ = 15

– Resultat: x = (a −n a′)(b′ −n b)−1 = 95·n4−1 = 95·n76= 49

• Erweiterung des Algorithmus
– Originalverfahren bricht ab, wenn gcd(b2k−bk, n) 6=1

– Kongruenz (ak−a2k)≡ x·(b2k−bk) mod n hat d mögliche Lösungen xi

wenn d = gcd(b2k−bk, n) > 1

– Für kleine d kann man für alle xi prüfen, ob gxi = y ist
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• Bestimme Logarithmen in Untergruppen von G
– Sei n = |G| =

∏

p|n pep und x = logg y

– Für jedes p setze np = n/pep, gp = gnp, yp = ynp
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p = gnp·x = ynp = yp

also existiert der diskrete Logarithmus xp = loggp
yp
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p = gnp·x = ynp = yp

also existiert der diskrete Logarithmus xp = loggp
yp

– Berechne alle xp mit dem Shanks- oder dem Pollard ρ Algorithmus

• Berechne x = logg y aus den Komponenten
Satz: Gilt x ≡ loggp

yp mod pep für alle p, dann ist x = logg y

Beweis: Es gilt (g−x·y)np = (gnp)−x·ynp = g
−xp
p ·yp = 1

für alle Primteiler p von n. Also ist die Ordnung von g−x·y (in G)

ein Teiler von allen np. Da 1 der größte gemeinsame Teiler aller np

ist, gilt g−x·y≡ 1 mod n also gx ≡ y mod n
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Der Pohlig-Hellman Algorithmus (I)

Wenn die Faktorisierung von n = |G| bekannt ist

• Bestimme Logarithmen in Untergruppen von G
– Sei n = |G| =

∏

p|n pep und x = logg y

– Für jedes p setze np = n/pep, gp = gnp, yp = ynp

– Dann ist pep die Ordnung von gp und es gilt gx
p = gnp·x = ynp = yp

also existiert der diskrete Logarithmus xp = loggp
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• Berechne x = logg y aus den Komponenten
Satz: Gilt x ≡ loggp

yp mod pep für alle p, dann ist x = logg y

Beweis: Es gilt (g−x·y)np = (gnp)−x·ynp = g
−xp
p ·yp = 1

für alle Primteiler p von n. Also ist die Ordnung von g−x·y (in G)

ein Teiler von allen np. Da 1 der größte gemeinsame Teiler aller np

ist, gilt g−x·y≡ 1 mod n also gx ≡ y mod n

– Berechne x = logg y aus allen xp mit dem chinesischem Restsatz

Gesamtlaufzeit O(
∑

p|n
√

pep) konstanter Speicherbedarf
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Der Pohlig-Hellman Algorithmus (II)

• Vereinfache Darstellung von xp = loggp
yp

Der Übersichtlichkeit halber wird der Index p im folgenden fallen gelassen

– Wegen x < pe gilt x =
∑

i<e xip
i für bestimmte Koeffizienten xi

– Folglich ist ype−1
= gx·pe−1

= (gpe−1
)x0·(gpe

)
∑

0<i<e xip
i−1

= (gpe−1
)x0

da pe die Ordnung von g ist

– Da g∗ = gpe−1
die Ordnung p hat, kann x0 = logg∗ ype−1

in einer

Gruppe der Ordnung p in der Laufzeit O(
√

p) berechnet werden
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die Ordnung p hat, kann x0 = logg∗ ype−1

in einer

Gruppe der Ordnung p in der Laufzeit O(
√

p) berechnet werden

• Berechne Koeffizienten von xp
– Berechne x0 mit dem Shanks- oder dem Pollard ρ Algorithmus

– Sind x0, .., xk−1 bereits bestimmt, so gilt

yk = (y·g−
∑

i<k xip
i
)p

e−k−1
= (g

∑

k≤i<e
xip

i

)p
e−k−1

= (g
∑

i<e−k xip
i
)p

e−1

= (gpe−1
)xk·(gpe

)
∑

0<i<e−k xip
i−1

= (gpe−1
)xk, also xk = logg∗ yk

Berechne xk mit dem Shanks- oder dem Pollard ρ Algorithmus



Kryptographie und Komplexität §5.3 9 Angriffe auf ElGamal Systeme

Der Pohlig-Hellman Algorithmus (II)

• Vereinfache Darstellung von xp = loggp
yp
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• Gesamtkomplexität
– Berechnung der Koeffizienten von xp benötigt Laufzeit O(ep·

√
p)

– Aufwand für chinesischen Restsatz vernachlässigbar
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• Gesamtkomplexität O(
∑

p|n ep·√p)
– Berechnung der Koeffizienten von xp benötigt Laufzeit O(ep·

√
p)

– Aufwand für chinesischen Restsatz vernachlässigbar
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Pohlig-Hellman Algorithmus für x = log5 3 in Z2017

• Reduktion auf Primzahlpotenzen
– Die Gruppenordnung ist n = 2016 = 25·32·7
– Zu berechnen sind x2 = log563 363 = log500 913,

x3 = log5224 3224 = log576 1933 und x7 = log5288 3288 = log1879 1879



Kryptographie und Komplexität §5.3 10 Angriffe auf ElGamal Systeme
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• Reduktion auf Primzahlpotenzen
– Die Gruppenordnung ist n = 2016 = 25·32·7
– Zu berechnen sind x2 = log563 363 = log500 913,

x3 = log5224 3224 = log576 1933 und x7 = log5288 3288 = log1879 1879

• Berechnung von x2 =
∑4

i=0 x2,i2
i

– Es ist g∗ = 50016 mod 2017 = 2016 und 91316 mod 2017 = 1

– Damit ist x2,0 = log2016 1 = 0

– Es ist y2,1 = (913·5000)8 = 9138 = 2016 also x2,1 = log2016 2016 = 1

– Es ist y2,2 = 15794 = 2016 also x2,2 = log2016 2016 = 1

– Es ist y2,3 = 12 = 1 also x2,3 = log2016 1 = 0

– Es ist y2,4 = 1 also x2,4 = log2016 1 = 0

– Insgesamt ergibt sich x2 = 6
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x3 = log5224 3224 = log576 1933 und x7 = log5288 3288 = log1879 1879

• Berechnung von x2 =
∑4

i=0 x2,i2
i

– Es ist g∗ = 50016 mod 2017 = 2016 und 91316 mod 2017 = 1

– Damit ist x2,0 = log2016 1 = 0

– Es ist y2,1 = (913·5000)8 = 9138 = 2016 also x2,1 = log2016 2016 = 1

– Es ist y2,2 = 15794 = 2016 also x2,2 = log2016 2016 = 1

– Es ist y2,3 = 12 = 1 also x2,3 = log2016 1 = 0

– Es ist y2,4 = 1 also x2,4 = log2016 1 = 0

– Insgesamt ergibt sich x2 = 6

• Berechnung von x
– Analog ergibt sich x3 = 4 und x7 = 1

– Lösung der simultanen Kongruenzen x≡ 6 mod 32, x≡ 4 mod 9 und

x≡ 1 mod 7 ergibt x = 1030
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Die Index-Calculus Methode

Verwandt mit Siebverfahren für Faktorisierung

• Einfache Grundidee
– Wähle eine Faktorbasis B = {p prim | p≤b} für eine Zahl b

– Bestimme diskrete Logarithmen xp = logg p für alle Elemente von B
– Suche Exponenten a<n für die y·ga b-glatt ist (d.h. y·ga =

∏

p ∈B pep)

– Dann ist y·ga ≡ ∏

p ∈B(gxp)ep ≡ g
∑

p ∈B xp·ep mod n
also x = logg y≡ ∑

p ∈B xp·ep−a mod ϕ(n)
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p ∈B(gxp)ep ≡ g
∑

p ∈B xp·ep mod n
also x = logg y≡ ∑

p ∈B xp·ep−a mod ϕ(n)

• Bestimmung der xp= logg p für p ∈ B
– Wähle zufällige 1≤zi<n für die gzi mod n zerlegbar in

∏

p ∈B pei,p

– Dann ist gzi ≡ ∏

p ∈B pei,p ≡ ∏

p ∈B gxp·ei,p mod n
also zi ≡ ∑

p ∈B xp·ei,p mod ϕ(n)
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p ∈B pei,p ≡ ∏

p ∈B gxp·ei,p mod n
also zi ≡ ∑

p ∈B xp·ei,p mod ϕ(n)

– Hat man |B| derartige Relationen (ei,p)p ∈B gefunden, so kann man
die xp mit Hilfe eines modifizierten Gaußalgorithmus bestimmen
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Verwandt mit Siebverfahren für Faktorisierung

• Einfache Grundidee
– Wähle eine Faktorbasis B = {p prim | p≤b} für eine Zahl b

– Bestimme diskrete Logarithmen xp = logg p für alle Elemente von B
– Suche Exponenten a<n für die y·ga b-glatt ist (d.h. y·ga =

∏

p ∈B pep)

– Dann ist y·ga ≡ ∏

p ∈B(gxp)ep ≡ g
∑

p ∈B xp·ep mod n
also x = logg y≡ ∑

p ∈B xp·ep−a mod ϕ(n)
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∏

p ∈B pei,p

– Dann ist gzi ≡ ∏

p ∈B pei,p ≡ ∏

p ∈B gxp·ei,p mod n
also zi ≡ ∑

p ∈B xp·ei,p mod ϕ(n)

– Hat man |B| derartige Relationen (ei,p)p ∈B gefunden, so kann man
die xp mit Hilfe eines modifizierten Gaußalgorithmus bestimmen

• Gesamtkomplexität O(2(1+o(1))·||n||1/2· log ||n||1/2
)

– Analyse ähnlich wie bei quadratischen Sieben für Faktorisierung
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Logarithmen der Faktorbasis für g = 2 in Z2027
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Die Index-Calculus Methode am Beispiel

Logarithmen der Faktorbasis für g = 2 in Z2027

• Relationen der Faktorbasis {2, 3, 5, 7, 11}
– Zufällige Erzeugung von Zahlen zi liefert

· 21593 mod 2027 = 33 = 3·11

· 2983 mod 2027 = 385 = 5·7·11

· 21318 mod 2027 = 1408 = 27·11

· 2293 mod 2027 = 63 = 32·7
· 21918 mod 2027 = 1600 = 26·52
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Die Index-Calculus Methode am Beispiel

Logarithmen der Faktorbasis für g = 2 in Z2027

• Relationen der Faktorbasis {2, 3, 5, 7, 11}
– Zufällige Erzeugung von Zahlen zi liefert

· 21593 mod 2027 = 33 = 3·11

· 2983 mod 2027 = 385 = 5·7·11

· 21318 mod 2027 = 1408 = 27·11

· 2293 mod 2027 = 63 = 32·7
· 21918 mod 2027 = 1600 = 26·52

• Bestimme xp= log2 p für p ∈ {2, 3, 5, 7, 11}
· x3 + x11 ≡ 1593 mod 2026

· x5 + x7 + x11 ≡ 983 mod 2026

· 7x2 + x11 ≡ 1318 mod 2026

· 2x3 + x7 ≡ 293 mod 2026

· 6x2 + 2x5 ≡ 1918 mod 2026

– Löse Kongruenzen mit modifiziertem Gaußalgorithmus
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Die Index-Calculus Methode am Beispiel (II)

• Modifizierter Gaußalgorithmus
– Löse Kongruenzen modulo 2 und 1013 (die Primteiler von 2026)

– Berechne xp aus Einzellösungen mit Chinesischem Restsatz
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Die Index-Calculus Methode am Beispiel (II)

• Modifizierter Gaußalgorithmus
– Löse Kongruenzen modulo 2 und 1013 (die Primteiler von 2026)

– Berechne xp aus Einzellösungen mit Chinesischem Restsatz

• Löse Kongruenzen modulo 2
· x3 + x11 ≡ 1593 mod 2 x5 + x7 + x11 ≡ 983 mod 2

· x2 + x11 ≡ 1318 mod 2 x7 ≡ 293 mod 2

– Wegen g = 2 ist x2 = 1

– Ansonsten ergibt sich x5 ≡x7 ≡ x11 ≡ 1 mod 2 und x3 ≡ 0 mod 2
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– Wegen g = 2 ist x2 = 1

– Ansonsten ergibt sich x5 ≡x7 ≡ x11 ≡ 1 mod 2 und x3 ≡ 0 mod 2

• Löse Kongruenzen modulo 1013
· x3 + x11 ≡ 580 mod 1013 x5 + x7 + x11 ≡ 983 mod 1013

· x11 ≡ 298 mod 1013 2x3 + x7 ≡ 293 mod 1013

· 2x5 ≡ 899 mod 1013

– Ergibt x11 ≡ 298, x5 ≡ 956, x7 ≡ 742, x3 ≡ 282 mod 1013

• Lösung der simultanen Kongruenz
– x2 = 1, x3 = 282, x5 = 1969, x7 = 1755, x11 = 1311
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• Suche ein 11-glattes 13·2a für ein a ∈ {1, ..2026}
– Zufallssuche ergibt a = 1397 und 13·21397 ≡ 110≡ 2·5·11 mod 2027

• Berechne x ≡
∑

p ∈ B xp·ep−a mod ϕ(n)

– Liefert x≡ x1
2 + x1

5 + x1
11 − a≡ 1 + 1969 + 1311 − 1397 mod 2026

– Ergebnis ist x = log2 13 = 1884
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Berechnung von log2 13 in Z2027

• Suche ein 11-glattes 13·2a für ein a ∈ {1, ..2026}
– Zufallssuche ergibt a = 1397 und 13·21397 ≡ 110≡ 2·5·11 mod 2027

• Berechne x ≡
∑

p ∈ B xp·ep−a mod ϕ(n)

– Liefert x≡ x1
2 + x1

5 + x1
11 − a≡ 1 + 1969 + 1311 − 1397 mod 2026

– Ergebnis ist x = log2 13 = 1884

Verallgemeinerung auf andere Gruppen

– Methode stützt sich auf zahlentheoretische Eigenschaften

– Andere Gruppen müssen Aufbau einer Faktorbasis und Konstruktion

von Relationen aus Exponentenvektoren unterstützen

– Relationenfindung in Z
∗
p baut auf Primfaktorzerlegung in Z auf

– Verfahren zur Relationenfindung in anderen Gruppen nicht bekannt
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• Aufzählungsverfahren

– Standardverfahren, gut für kleine Gruppenordnungen O(2||n||)

• Algorithmus Algorithmus von Shanks

– Zerlegung der Suche in Baby- und Giantsteps Zeit/Platz O(2||n||/2)

• Pollard ρ

– Systematische Suche nach Kollisionen O(2||n||/2)

• Pohlig-Hellman Verfahren

– Reduktion auf Primfaktoren von n O(
∑

p|n ep·
√

p)

• Index-Calculus Methode

– Aufbau von Logarithmen einer Faktorbasis O(2(1+o(1))·||n||1/2· log ||n||1/2
)

– Zahlkörpersieb als effizienteste Variante O(21.92·||n||1/3· log ||n||2/3
)

– Verallgemeinert sehr schlecht auf andere Gruppen


