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Schwächen von ElGamal Verfahren über Zp

Nicht wesentlich besser als RSA

• Schlüssel müssen sehr groß werden
– Faktorisierungsalgorithmen sind auf diskrete Logarithmen übertragbar

– Schlüssel bis 1024 Bit sind heutzutage angreifbar

– Wachsende Blockgröße macht Verschlüsselung ineffizient

· Zeit für Verschlüsselung langer Nachrichten wächst linear

· Implementierung auf SmartCards nur mit Coprozessor möglich

• Die besten Angriffe basieren auf Zahlen
– Einfache Algorithmen wie Shanks, Pollard ρ und Pohlig-Hellman

sind gleich gut für alle Gruppen geeignet

– Die Index-Calculus Methode und das Zahlkörpersieb benötigen

schnelle arithmetische Operationen, um effizient sein zu können

• Verwende andere Gruppen als Basis für ElGamal
– GF (pn): Endliche Körper mit pn Elementen

– E(p, a, b): Punkte einer elliptischen Kurve über GF (p)
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Mathematik: endliche Körper der Größe pn
(vgl. §3)

Körper der Polynome mit Koeffizienten aus Zp

• Für jede Primzahl p ist (Zp, +p, ·p) ein Körper

– (Zp, +p) ist abelsche Gruppe der Ordnung p

– (Z∗
p, ·p) ist abelsche Gruppe der Ordnung p−1

– Das Distributivgesetz gilt für +p und ·p
• K[x]: Polynome über Körper K in Variable x

– Ausdrücke der Form f(x) = anx
n + an−1x

n−1 + ..a1x + a0

mit Koeffizienten ai und Belegungen der Variablen x aus K

– n ist der Grad von f (n = deg f)

– Monome sind Polynome, für die ai=0 für alle i6=n gilt

– Eine Nullstelle von f ist ein Element r ∈K mit f(r) = 0

z.B. hat f(x) = x2+1 über Q keine Nullstelle, über Z2 die Nullstelle 1
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Mathematik: Polynomringe

• Addition und Multiplikation in K[x]

– Sei f(x) =
∑m

i=0 aix
i und g(x) =

∑n
i=0 bix

i (o.B.d.A. n≥m)

· (f+g)(x) =
∑n

i=0(ai+bi)x
i O(n) Additionen

· (f ·g)(x) =
∑n+m

i=0 cix
i mit ck =

∑k
i=0 aibk−i O(n·m) Add./Mult.

– z.B. ist (x2+2x+1)·(x3−2x2 + 2) = x5−3x3+4x + 2

• (K[x], +, ·) ist ein Ring mit Division

– (K[x], +) ist eine abelsche Gruppe

– (K[x], ·) ist nullteilerfreie abelsche Halbgruppe mit Einselement 1

– Das Distributivgesetz gilt für + und ·
– Division: Für f, g ∈K[x] gibt es eindeutige Polynome q, r ∈K[x]

mit f = q·g + r und r=0 oder deg r < deg g

– Beweis: Konstruktion durch schriftliche Division O(m·(n−m)) Ops.

– Bezeichung: q = bf/gc, r = f mod g

– z.B. bx3−2x2+2 / x2+2c = x−2, x3−2x2+2 mod x2+2 = −2x+6
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Mathematik: Polynomkörper

• Konstruktion verallgemeinert Zp

– Restklassen modulo eines Ringelements f ∈K[x] (anstelle von p ∈Z)

– Ringelement f muß irreduzibel sein (anstelle von “p Primzahl”)

d.h. f darf nicht durch ein g mit deg f > deg g≥ 1 teilbar sein

– z.B. ist f1(x) = x3+1 reduzibel in Z2[x], da f1(x) = (x+1)(x2+x+1)

– h(x) = x2+x+1 ist irreduzibel in Z2[x], da h≡ 1 ∈Z2, aber für jeden

echten Teiler g(x) = x+a der Wert a Nullstelle von h in Z2 wäre

• (K[x]/f, +, ·) ist Körper mit |K|deg f Elementen

– g ≡ h mod f falls f | g−h

– [g]f = g+f ·K[x] := {h |h≡ g mod f} ist die Restklasse von g modulo f

– K[x]/f ist die Menge aller Restklassen modulo f

– K[x]/f ist Körper, da zu jedem 06=g ∈K[x]/f ein Inverses mit dem

erweiterten euklidischen Algorithmus konstruiert werden kann (Folie 15, §2.1)

– |K[x]/f | = |K|deg f , weil jedes [g]f ein h mit deg h < deg f enthält

und die Restklassen dieser Polynome paarweise verschieden sind
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Mathematik: Polynomkörper der Größe pn

• Eindeutige Konstruktion möglich

– Wähle Körper K mit p Elementen, wobei p Primzahl (z.B. (Zp, +p, ·p))
– Bestimme ein irreduzibles Polynom f ∈K[x] mit Grad n

– GF (pn) = K[x]/f ist bis auf Isomorphie eindeutig bestimmt

Insbesondere ist GF (p) isomorph zu (Zp, +p, ·p)
– Satz: Für jeden endlichen Körper K gibt es eine Primzahl p sodaß

K isomorph zu GF (pn) für ein n ist

• Endliche Körper sind zyklisch

– Satz: Ist (K, +, ·) Körper und q = |K| so ist (K∗, ·) eine zyklische

Gruppe der Ordnung q−1 mit ϕ(q−1) Erzeugern
(Buchmann, Theorem 3.21.1)

– (GF (pn), ·) ist eine zyklische Gruppe der Ordnung pn−1

– Für ungerade Primzahlen ist pn−1 gerade, aber für p=2 kann 2n−1

eine Primzahl sein

7→ Konstruktion zyklischer Gruppen mit Primzahlordnung
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Beispiel: Konstruktion von GF (23)

• Es gibt 8 Polynome f(x)=x3+a2x
2+a1x+a0

– Polynome mit a0=0 sind teilbar durch g(x) = x

– f1(x) = x3+1 ist reduzibel, da f1(x) = (x+1)(x2+x+1)

f2(x) = x3+x2+1 und f3(x) = x3+x+1 sind irreduzibel (f2 ≡ f3 ≡ 1)

f4(x) = x3+x2+x+1 ist reduzibel, da f4(x) = (x+1)(x2+1)

– f2 und f3 sind geeignet als Basis für die Konstruktion

• Operationen auf Koeffizienten reichen aus
– GF (23) enthält nur Polynome g(x) = a2x

2+a1x+a0 mit ai ∈Z2

– Additions- und Multiplikation sind als Bitblockoperationen darstellbar
z.B. (x2+1)·(x2+x+1) mod f3 = x4+x3+x+1 mod f3 = x2+x
entspricht 101·111 mod 1011 = 11011 mod 1011 = 110

· 001 010 011 100 101 110 111
001 001 010 011 100 101 110 111
010 010 100 110 011 001 111 101
011 011 110 101 111 100 001 010
100 100 011 111 110 010 101 001
101 101 001 100 010 111 011 110
110 110 111 001 101 011 010 100
111 111 101 010 001 110 100 011

als Zahl

· 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 3 1 7 5
3 3 6 5 7 4 1 2
4 4 3 7 6 2 5 1
5 5 1 4 2 7 3 6
6 6 7 1 5 3 2 4
7 7 5 2 1 6 4 3

– Liefert Körper mit Basis Z∗
8 und Nichtstandard-Multiplikation
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Eignung endlicher Körper für ElGamal Verfahren

• GF (2n) scheint am besten geeignet

– Addition und Multiplikation sind effizient implementierbar

– Ver-/Entschlüsselung nahezu genauso schnell wie in Zp

• Sicherheit von GF (pn) wenig größer als bei Zp

– Wenn 2n−1 Primzahl ist oder große Primfaktoren enthält,

bleibt der Pohlig-Hellman Algorithmus erfolglos

– Index-Calculus Methode nach wie vor anwendbar
O(2(1+o(1))·n1/2· log n1/2

)

– Für festes n, wachsendes p ist das Zahlkörpersieb anwendbar
O(21.92·n1/3· log n2/3

)

– Für festes p, wachsendes n ist Zahlkörpersieb erweiterbar zu

Funktionenkörpersieb O(21.92·n1/3· log n2/3
)

– Bei simultaner Erhöhung verwende Index-Calculus Methode

Einfache endliche Körper reichen nicht aus



Kryptographie und Komplexität §5.4 8 Endliche Körper und Elliptische Kurven

Elliptische Kurven

• Begriff der mathematischen Funktionentheorie

– Nutzen für Kryptographie enteckt von N. Koblitz und V. Miller

• Grundlage für effiziente ElGamal Verfahren

– Zyklische Gruppe mit relativ effizienten, aber hochgradig unstetigen

Additions- und Multiplikationsoperationen

– Problem diskreter Logarithmen viel schwerer zu lösen als für GF (pn)

160 Bit Schlüssel sind genauso sicher wie 1024 Bit Schlüssel über Zp

– Auch sehr effizient für Signaturverfahren

• “Komplizierte” Gruppenstruktur

– Elemente sind Punkte einer elliptischen Kurve über einem Körper K

Motivation entstammt elliptischen Kurven über reellen Zahlen

– Kryptographische Verfahren verwenden Kurven über endlichen Körpern
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Elliptische Kurven über R

• Umkehrfunktion elliptischer Integrale

– Konzept für die Berechnung der Bogenlänge von Ellipsen

• Algebraisch: Gleichung dritten Grades über R

– Menge E(a, b) der Punkte (x, y) ∈R×R für die y2 = x3+a·x+b

gilt, zusammen mit einem speziellen Punkt des Unendlichen O
– Nichtsinguläre elliptische Kurve, wenn 4a3+27b2 6=0 ist

– Singuläre elliptische Kurven haben weniger als 3 (komplexe) Nullstellen
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Beispiele Elliptischer Kurven

• Nichtsinguläre Kurven

• Singuläre Kurven
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Die Gruppe der elliptischen Kurven

• Verknüpfung ist Addition von Punkten

– Definiere Addition, skalare Multiplikation und Inverse von Punkten

– Punkt des Unendlichen O ist neutrales Element

– Beweise Gruppeneigenschaften

• Addition von Punkten, geometrisch

· Ziehe Gerade durch P und Q

· Bestimme Schnittpunkt −R mit Kurve

· Invertierung der y-Koordinate liefert

Ergebnis R = P+Q

• Addition, algebraisch

– Beschreibe Konstruktion der Komponenten (xR, yR) von R

– Berücksichtige Sonderfälle xP=xQ für P 6=Q und P=Q
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Addition auf elliptischen Kurven, algebraisch

• Standardsituation xP 6=xQ

– Bestimme Gerade g(x) = m·x+k durch P und Q

Steigung m =
yQ−yP

xQ−xP
, Nullwert k = yP−m·xp

– Bestimme Schnittpunkt −R mit Kurve

Löse (g(x))2 = x3+a·x+b

also x3−m2·x2+(a−2m·k)·x + b−k2 = 0

Ergibt nach Einsetzen xR = m2−xP−xQ (und xR = xP bzw. xR = xQ)

– Koordinaten von R sind (xR, m·(xP−xR)−yP )

• Sonderfall xP=xQ und yP 6=yQ

– Nach Definition elliptischer Kurven

muß yP = −yQ sein

– Steigung der Geraden ist unendlich

– Definiere P+Q = O
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Addition auf elliptischen Kurven (II)

• Sonderfall P=Q (Verdoppelung)

– Gerade zwischen P und Q ist Tangente in P

Löse Tangentengleichung d
dxy

2 = d
dxx

3+a·x+b

bzw. 2y·dy
dx

= 3x2+a für den Punkt P

– Steigung der Geraden in P ist m = dy
dx ==

3x2
P+a

2yP

– Koordinaten (xR, yR) von R sind wie zuvor

xR = m2−2xP und yR = m·(xP−xR)−yP

• Verdoppelung an Randpunkten

– y-Koordinate von P hat den Wert 0

– Tangente in P hat unendliche Steigung

– Definiere P+P = O
• Skalare Multiplikation n·P

– Iterierte Addition von P mit sich selbst
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Elliptische Kurven bilden eine abelsche Gruppe

• Abgeschlossenheit von E(a, b) unter Addition

– Per Konstruktion ist P + Q ∈E(a, b) für alle P,Q ∈E(a, b)

• Assoziativität der Addition

– Ergibt sich durch Einsetzen der Gleichungen für Addition (mühsam)

• Kommutativität der Addition

– Reihenfolge von P und Q ist irrelevant in geometrischer Konstruktion

• O ist neutrales Element der Addition

– Gerade zwischen P und O liefert −P als eindeutigen Schnittpunkt
(Zeigt warum P+Q nicht einfach der Schnittpunkt der Geraden mit E(a, b) sein darf)

• Existenz inverser Elemente

– Per Konstruktion ist −P = (xP ,−yP ) invers zu P
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Elliptische Kurven über Zp

• Kryptographie benötigt endliche Klartexträume

– Reale Computer und Smartcards sind endlich

– Berechnungen müssen schnell und exakt durchgeführt werden können

• Reelle Zahlen sind ungeeignet

– R ist ein unendlicher (überabzählbar großer) Körper

– Berechnungen auf “reellen” Zahlen im Computer sind unpräzise

– Elliptische Kurven müssen über endlichen Körpern definiert werden

• Übertrage Definitionen auf Zp und GF (pn)

– E(p; a, b) ist die Menge der Punkte (x, y) ∈Zp×Zp für die

y2 ≡ x3+a·x+b mod p

gilt, zusammen mit einem speziellen Punkt des Unendlichen O,

wobei a, b ∈Zp mit 4a3+27b2 mod p6=0
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Beispiele elliptischer Kurven über Zp

• Elliptische Kurve y2 ≡ x3+7·x+8 mod 23
29 Punkte erfüllen die Gleichung

(0, 10); (0, 13); (1, 4); (1, 19); (4, 10);

(4, 13); (6, 6); (6, 17); (7, 3); (7, 20);

(8, 1); (8, 22); (9, 8); (9, 15); (11, 6);

(11, 17); (12, 7); (12, 16); (17, 7); (17, 16);

(18, 3); (18, 20); (19, 10); (19, 13); (20, 11);

(20, 12); (21, 3); (21, 20); (22, 0)

Wie bei R maximal zwei Punkte
(x, y) und (x,−y) je x-Wert
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• Elliptische Kurve y2 ≡ x3+2·x+8 mod 23
– Nur 15 Punkte erfüllen die Gleichung

(0, 10); (0, 13); (3, 8); (3, 15); (6, 11); (6, 12); (10, 4); (10, 19);

(11, 2); (11, 21); (12, 9); (12, 14); (13, 0); (15, 3); (15, 20)
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Elliptische Kurve y2≡x3+2·x+8 mod 499 (535 Punkte)
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Die Gruppe elliptischer Kurven über Zp

• Ähnliche Konstruktion wie bei R

– Übertrage Definitionen von Addition, Skalarmultiplikation, Inverse

– Konstruiere Algorithmen für schnelle Ausführung

– Beweise Gruppeneigenschaften von (E(p; a, b), +)

• Addition von P = (xP , yP ) und Q = (xQ, yQ)

– Falls xP=xQ und yP=−yQ, dann ist P+Q = O
Genauso gilt P+P = O (Verdopplung) für P = (xP , 0)

– Ansonsten gilt für die Koordinaten (xR, yR) von R = P+Q

xR = m2−xP−xQ und yR = m·(xP−xR)−yP

wobei m =

{

(yQ−yP )(xQ−xP )−1 falls P 6=Q

(3x2
P+a)(2yP )−1 sonst Rechenzeit: O(||p||2)

• Gruppeneigenschaften gelten wie zuvor

– Gleichungen nahezu identisch zu denen der elliptischen Kurven über R
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Addition und Iteration auf E(23; 2, 8)

• Additionstabelle
(0, 10) (0, 13) (3, 8) (3, 15) (6, 11) (6, 12) (10, 4) (10, 19) (11, 2) (11, 21) (12, 9) (12, 14) (13, 0) (15, 3) (15, 20)

(0, 10) (3, 15) O (0, 13) (10, 4) (10, 19) (12, 9) (6, 12) (3, 8) (15, 3) (13, 0) (15, 20) (6, 11) (11, 2) (12, 14)(11, 21)

(0, 13) O (3, 8) (10, 19) (0, 10) (12, 14) (10, 4) (3, 15) (6, 11) (13, 0) (15, 20) (6, 12) (15, 3) (11, 21) (11, 2) (12, 9)

(3, 8) (0, 13) (10, 19) (6, 11) O (15, 3) (3, 15) (0, 10) (12, 14)(11, 21) (12, 9) (10, 4) (11, 2) (15, 20) (13, 0) (6, 12)

(3, 15) (10, 4) (0, 10) O (6, 12) (3, 8) (15, 20) (12, 9) (0, 13) (12, 14) (11, 2) (11, 21)(10, 19) (15, 3) (6, 11) (13, 0)

(6, 11) (10, 19)(12, 14) (15, 3) (3, 8) (13, 0) O (0, 13) (11, 2) (12, 9) (10, 4) (0, 10) (11, 21) (6, 12) (15, 20) (3, 15)

(6, 12) (12, 9) (10, 4) (3, 15) (15, 20) O (13, 0) (11, 21) (0, 10) (10, 19)(12, 14) (11, 2) (0, 13) (6, 11) (3, 8) (15, 3)

(10, 4) (6, 12) (3, 15) (0, 10) (12, 9) (0, 13) (11, 21)(15, 20) O (6, 11) (15, 3) (13, 0) (3, 8) (12, 14)(10, 19) (11, 2)

(10, 19) (3, 8) (6, 11) (12, 14) (0, 13) (11, 2) (0, 10) O (15, 3) (15, 20) (6, 12) (3, 15) (13, 0) (12, 9) (11, 21) (10, 4)

(11, 2) (15, 3) (13, 0) (11, 21)(12, 14) (12, 9) (10, 19) (6, 11) (15, 20) (3, 15) O (3, 8) (6, 12) (0, 10) (10, 4) (0, 13)

(11, 21) (13, 0) (15, 20) (12, 9) (11, 2) (10, 4) (12, 14) (15, 3) (6, 12) O (3, 8) (6, 11) (3, 15) (0, 13) (0, 10) (10, 19)

(12, 9) (15, 20) (6, 12) (10, 4) (11, 21) (0, 10) (11, 2) (13, 0) (3, 15) (3, 8) (6, 11) (15, 3) O (10, 19) (0, 13) (12, 14)

(12, 14) (6, 11) (15, 3) (11, 2) (10, 19)(11, 21) (0, 13) (3, 8) (13, 0) (6, 12) (3, 15) O (15, 20) (10, 4) (12, 9) (0, 10)

(13, 0) (11, 2) (11, 21)(15, 20) (15, 3) (6, 12) (6, 11) (12, 14) (12, 9) (0, 10) (0, 13) (10, 19) (10, 4) O (3, 15) (3, 8)

(15, 3) (12, 14) (11, 2) (13, 0) (6, 11) (15, 20) (3, 8) (10, 19)(11, 21) (10, 4) (0, 10) (0, 13) (12, 9) (3, 15) (6, 12) O
(15, 20)(11, 21) (12, 9) (6, 12) (13, 0) (3, 15) (15, 3) (11, 2) (10, 4) (0, 13) (10, 19)(12, 14) (0, 10) (3, 8) O (6, 11)

• Iterierte Addition von P = (0, 10)
– P = (0, 10), 2P = (3, 15), 3P = (10, 4), 4P = (6, 12), 5P = (12, 9), 6P = (15, 20),

7P = (11, 21), 8P = (13, 0), 9P = (11, 2), 10P = (15, 3), 11P = (12, 14),

12P = (6, 11), 13P = (10, 19), 14P = (3, 8), 15P = (0, 13), 16P = O
– E(23; 2, 8) ist zyklische Gruppe und P ist ein erzeugendes Element
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Struktur elliptischer Kurven über Zp

• Wieviele Punkte hat eine elliptische Kurve?

– Gruppenordnung ist Zahl der Lösungen von y2 = x3+a·x+b in Zp×Zp

– Satz von Hasse: Für die Ordnung n der Gruppe E(p; a, b) gilt

p+1−2
√

p ≤ n ≤ p+1+2
√

p

· Für p=23 liegt die Gruppenordnung von E(p; a, b) zwischen 14 und 33

· Für p=499 liegt die Gruppenordnung zwischen 456 und 544

– Genaue Gruppenordnung berechnet Algorithms von Schoof in O(||p||8)
– E(p; a, b) ist zyklisch, wenn Ordnung Produkt verschiedener Primzahlen

• Welche Gruppenstruktur ist zu erwarten?

– Satz: Für Primzahlen p>3 gibt es k, m ∈N mit k|m und

k|(p−1), so daß ( E(p; a, b), + ) isomorph zu Zm×Z
k
ist

– Die Zahlen k und m können aus p, a, b berechnet werden

– E(p; a, b) ist zyklisch, wenn k=1 ist

– Ansonsten gibt es eine zyklische Untergruppe der Ordnung m
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ElGamal Systeme mit elliptischen Kurven

Potenzierung wird skalare Multiplikation

• Schlüsselerzeugung
– Wähle eine zyklische elliptische Kurve E = E(p; a, b) der Ordnung n

und einen erzeugenden Punkt P

– Wähle ein zufälliges a ∈{0, .., n−1} und berechne A = a·P
– Lege E, P,A offen, halte a geheim

• Verschlüsselung
– Gesamtschlüssel ist K := (E,P, a,A), wobei E, P,A öffentlich

– Textblöcke der Länge log2 n/8 werden auf Punkte von E abgebildet

– Absender wählt zufälliges b ∈{0, .., n−1} und berechnet B := b·P
– Absender verschlüsselt Punkt X zu Y := X+b·A
– Erzeugter Schlüsseltext ist ein Punktepaar eK(X, b) = (B, Y )

• Entschlüsselung
– Empfänger berechnet dK(B, Y ) = Y −(a·B)
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Das ElGamal Verfahren am Beispiel

• Schlüsselerzeugung

– Alice wählt E = E(23; 2, 8) (Ordnung 16)

und P = (0, 10) als erzeugenden Punkt

– Alice wählt a = 6 und berechnet A = 6·(0, 10) = (15, 20)

– Alice veröffentlicht den Schlüssel K = ( E(23; 2, 8), (0, 10), (15, 20) )

• Verschlüsselung

– Bob wählt b = 3 und berechnet B = 3·(0, 10) = (10, 4)

und b·A = 3·(15, 20) = (3, 15)

– Verschlüsselung von X = (10, 19) ergibt Y = (10, 19)+(3, 15) = (0, 13)

– Bob versendet als Schlüsseltext eK(X, b) = (B, Y ) = ( (10, 4), (0, 13) )

• Entschlüsselung

– Alice berechnet −(a·B) = −6·(10, 4) = −(3, 15) = (3, 8)

– Entschlüsselung von Y liefert Y −(a·B) = (0, 13)+(3, 8) = (10, 19)
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Schnelle Skalarmultiplikation auf E(p; a, b)

• EC-Verschlüsselung verwendet ≈ 2160 Punkte
– Signifikant weniger als RSA oder ElGamal Systeme über Zq / GF (qn)

– Dennoch wesentlich zu viele für einfache iterative Berechnung von k·P
– Rechenzeit muß in der Größenordnung von ||p|| liegen

• Variante der schnellen Potenzierung für (Zn, ·n)
– Direkte Übertragung würde Quadrieren durch Verdopplung P 7→2·P

und Multiplikation durch Addition von Punkten ersetzen

– Optimierung nutzt, daß Invertierung auf E(p; a, b) konstante Zeit

benötigt (anstelle von O(||n||2) für (Zn, ·n) )

• Verwende Binärdarstellung mit Vorzeichen
– Eine Zahl k ∈Zn wird dargestellt als k =

∑l
i=0 ai2

i mit ai ∈{0, 1,−1}
– Bei NAF-Darstellung (non-adjacent form) ist von zwei

aufeinanderfolgenden Koeffizienten ai maximal einer 1 oder −1

– z.B.: Binärdarstellung von 311 ist 256+32+16+4+2+1 = 100110111

NAF-Darstellung ist 256+64-8-1 = 10100-100-1
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Optimierte schnelle Skalarmultiplikation

• Iterierte Verdoppelung, Addition, Subtraktion
– Zur Berechung von k·P erzeuge NAF Darstellung

∑l
i=0 ai2

i von k

– Verdoppele für jedes ai, addiere/subtrahiere zusätzlich für ai=1/−1

• Funktionale Implementierung
let rec ecc mult point a list
= if a list = [] then O

else let a i::rest = a list
and qpoint = ecc mult (ecc add point point) rest
in
if a i=1 then ecc add qpoint point

else if a i=0 then qpoint
else ecc sub qpoint point

• Laufzeit O(||p||3)
– Eine Verdoppelung pro ci, eine Addition/Subtraktion für ci 6=0

– Insgesamt maximal 2 log2 k Additionen auf E(p; a, b)

– Additionen sind (bis auf konstanten Faktor) genauso schnell wie in Zp

• Effekt der Optimierung 11% schneller
– Im statistischen Mittel sind 2/3 aller Koeffizienten Null (statt 1/2)

– Nur 4
3l Additionen/Subtraktionen nötig statt 3

2l Additionen
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Datenkompression

• EC-Verschlüsselung vergrößert Nachrichten

– Punkte von E(p; a, b) werden durch zwei Zahlen in Zp dargestellt

– ElGamal Verschlüsselung verdoppelt Klartext durch DH-Teilschlüssel

– Schlüsseltext ist etwa vier mal so lang wie ursprünglicher Klartext

• E(p; a, b) hat maximal 2p Punkte

– Ist P = (xP , yP ) ∈E(p; a, b) dann ist −P = (xP , p−yP )

der einzige Punkt mit derselben x Koordinate

– Da p Primzahl sein muß, ist yP gerade g.d.w. p−yP ungerade ist

• Komprimiere Darstellung von Punkten

– Repräsentation von P = (xP , yP ) ist (xP , yP mod 2)

– Nur ein Bit mehr als Darstellung von Texten durch Elemente von Zp

– Kompression kann effizient invertiert und in die ElGamal

Verschlüsselung integriert werden
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Integrierte EC-Verschlüsselung

• Dekompression komprimierter Punkte
– Bei Eingabe der Punktkompression (x, y′) berechne z = x3+a·x+b

– Falls z ein quadratischer Rest modulo p ist berechne y =
√

z mod p

– Wenn y′≡ y mod 2 dann gebe (x, y) aus und ansonsten (x, p−y)

– z ist quadratischer Rest modulo p g.d.w. z(p−1)/2 ≡ 1 mod p

– Wenn p≡ 3 mod 4, dann ist
√

z = z(p+1)/4 (vgl. Rabin Verfahren §4.4)

• Vereinfachtes ECIES Verfahren
Komprimierter ECDH Teilschlüssel & verkürzte Nachrichtenchiffre

– Gegeben zyklische elliptische Kurve E = E(p; a, b) der Ordnung n

ein erzeugender Punkt P , ein zufälliges a ∈{0, .., n−1} und A = a·P
– Schlüssel ist K := (E,P, a,A, n), wobei nur E,P,A, n öffentlich

– Verschlüsselung: für ein zufälliges b ∈{0, .., n−1} und ein x ∈Zp sei

eK(X, b) = (Compress(b·P ), x·xq mod p), wobei b·A = (xq, yq)

– Entschlüsselung: für einen Schlüsseltext (B, y) sei

dK(B, y) = y·(xq)
−1 mod p, wobei a·DeCompress(B) = (xq, yq)
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ECIES Verfahren am Beispiel

• Schlüsselerzeugung
– Alice wählt E = E(23; 2, 8) (Ordnung 16)

und P = (0, 10) als erzeugenden Punkt

– Alice wählt a = 6 und berechnet A = 6·(0, 10) = (15, 20)

– Alice veröffentlicht K = ( E(23; 2, 8), (0, 10), (15, 20), 16 )

• Verschlüsselung
– Bob wählt b = 3 und berechnet B = Compress(3·(0, 10)) = (10, 0)

und b·A = 3·(15, 20) = (3, 15)

– Verschlüsselung von x = 22 ergibt y = 22·3 mod 23 = 20

– Bob versendet als Schlüsseltext eK(X, b) = (B, y) = ( (10, 0), 20 )

• Entschlüsselung
– Alice berechnet a·DeCompress(B) = 6·(10, 4) = (3, 15)

– Entschlüsselung von y liefert 20·3−1 mod 23 = 20·8 mod 23 = 22
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Komplexität von ECIES

• Korrektheit: Ver-/Entschlüsselung sind invers

– Es ist dK(B, y) = y·(xq)
−1 mod p wobei xq = (a·DeCompress(B))1

und eK(X, b) = (Compress(b·P ), x·xq mod p) wobei xq = (b·A)1

– Für beliebige b ist dK(eK(x, b)) = y·((a·DeCompress(B))1)
−1 mod p

= (x·(b·A)1 mod p)·(((a·DeCompress(Compress(b·P )))1)
−1 mod p)

= (x·(b·a·P )1 mod p)·(((a·b·P )1)
−1 mod p) = x

• Aufwand für Ver- und Entschlüsselung

– Kein Aufwand für Umwandlung zwischen Text und Zahlen (!)

– Skalarmultiplikation in E(p; a, b) und Multiplikation in Zp

für 8|w|/||n|| Blöcke O(|w|·||p||2)
– Schneller als ElGamal über Zp wegen Verwendung kleinerer Blöcke

– Nachrichtenexpansion um Faktor 2
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Sicherheit von EC-ElGamal Systemen

• Standard DL Algorithmen sind universell
– Ordnung der Gruppe E(p; a, b) liegt in Größenordnung von p

hat aber keinen trivialen Zusammenhang zu p, a und b

– Shanks und Pollard ρ sind anwendbar, aber zu ineffizient für große p

– Pohlig-Hellman kann erfolgreich sein, wenn Ordnung von E(p; a, b)
nur kleine Primfaktoren hat

• Index-Calculus Methode nicht anwendbar
– EC-Addition führt zu “chaotischen” Sprüngen in Zp×Zp

– Keine einfache Verwendung von “Faktorbasen” möglich

– Zahlkörpersiebe und ähnliche arithmetisch basierte Methoden
können (bisher) nicht übertragen werden

• Spezielle Methoden greifen nur Sonderfälle an
– MOV / Frey-Rück-Methode übertragen ECDLP auf DL Problem

für Zpk wenn Gruppenordnung n Teiler von pk−1

– Zahlentheoretische Methode von Satoh, Araki & Smart überträgt
ECDLP auf DL Problem für Zpk wenn n=p

– Algebraische Methode von Semaev & Rück
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Kryptographisch geeignete elliptische Kurven

• 163 Bit Schlüssel reichen aus

– Beste Attacke auf ECC DL hat Laufzeit in O(2||n||/2)

– ECC Schlüssel nur doppelt so groß wie bei symmetrischen Verfahren

– 160 Bit ECC Schlüssel genauso sicher wie 1024 Bit RSA Schlüssel

224 Bit ECC Schlüssel genauso sicher wie 2048 Bit RSA Schlüssel

256 Bit ECC Schlüssel genauso sicher wie 3072 Bit RSA Schlüssel

– Faktor zwischen ECC und RSA wächst mit Schlüssellänge

• Empfehlungen für Auswahl der Kurven

– Gruppenordnung von E(p; a, b) muß Primfaktor größer als 2160 haben
(Pohlig-Hellman)

– Kurve darf nicht supersingulär oder anomal sein

supersingulär: Gruppenordnung Teiler von pk−1 (Mezenes, Okamoto, VanStone)

anomal: Gruppenordnung ist p (Satoh, Araki & Smart)

– Geheimer Schlüssel aus {0, .., n−1} muß groß sein (Brute-Force Suche)
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ElGamal Verfahren im Rückblick

• Effizientes Public-Key Kryptosystem

– Potenzierung von Elementen einer (beliebigen) zyklischen Gruppe

– Sicherheit der Schlüssel basiert auf Problem des diskreten Logarithmus

– Erhöhte semantische Sicherheit durch Randomisierung

– Nachrichtenexpansion um Faktor 2

• Effizienter als RSA

– Bei ‘nichtarithmetischen’ Gruppen mit schwerem DL Problem

hat die beste Attacke eine Laufzeit von O(2||n||/2)

– Schlüssellängen von 160 Bit gelten als sicher

– Implementierbar auf Smartcards mit geringer Prozessorleistung

– Elliptische Kurven gelten derzeit die beste Grundlage


