Kryptographie und Komplexitat
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Einheit 5.4 -.:; Eﬁg
Endliche Korper und Elliptische Kurven e

1. Endliche Korper
2. Elliptische Kurven tiber R
3. Elliptische Kurven tiber Z,,



SCHWACHEN VON ELGAMAL VERFAHREN UBER Lip |

Nicht wesentlich besser als RSA

e Schlussel miussen sehr grof3 werden

— Faktorisierungsalgorithmen sind auf diskrete Logarithmen tubertragbar
— Schlussel bis 1024 Bit sind heutzutage angreitbar
— Wachsende Blockgrofie macht Verschlusselung ineffizient

- Zeit fur Verschlusselung langer Nachrichten wachst linear
- Implementierung auf SmartCards nur mit Coprozessor moglich

e Die besten Angriffe basieren auf Zahlen
— Einfache Algorithmen wie Shanks, Pollard p und Pohlig-Hellman
sind gleich gut fur alle Gruppen geeignet
— Die Index-Calculus Methode und das Zahlkorpersieb benotigen
schnelle arithmetische Operationen, um effizient sein zu konnen

e Verwende andere Gruppen als Basis fur ElGamal
— GF(p"): Endliche Kérper mit p™ Elementen
— E(p, a,b): Punkte einer elliptischen Kurve tiber GF(p)
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MATHEMATIK: ENDLICHE KORPER DER GROSSE "' (g 1)

Korper der Polynome mit Koeflfizienten aus Z,

e F'iir jede Primzahl p ist (Zp, +p, -p) ein Korper
~(Z,,+,) ist abelsche Gruppe der Ordnung p
— (23, -p) ist abelsche Gruppe der Ordnung p—1
— Das Distributivgesetz gilt fur +, und -,

e K|[x|: Polynome iiber Korper K in Variable x
— Ausdriicke der Form f(x) = a,2" + a,_12"* + a1z + ag
mit Koefhizienten a; und Belegungen der Variablen x aus K
—n ist der Grad von [ (n = deg f)
— Monome sind Polynome, fiir die a;=0 fiir alle i#£n gilt
— Eine Nullstelle von f ist ein Element r € K mit f(r) =0
z.B. hat f(z) = z?+1 tiber Q keine Nullstelle, iiber Z, die Nullstelle 1

KRYPTOGRAPHIE UND KOMPLEXITAT §5.4 2 ENDLICHE KORPER UND ELLIPTISCHE KURVEN




MATHEMATIK: POLYNOMRINGE I

e Addition und Multiplikation in K|x]

—Sei f(x) =>" ax" und g(z) = > bz’ (0.B.dA. n>m)
(f+g)(x) =S (aitb;)x! O(n) Additionen
(fo)) =S e’ mit = S0F Jaibp_;  O(nem) Add./Mult.

—2z.B.ist (2*4+22+1)-(23—22° + 2) = 2° =3 +4x + 2

o (K[x],+,-) ist ein Ring mit Division

— (K|z], +) ist eine abelsche Gruppe

— (K [x],-) ist nullteilerfreie abelsche Halbgruppe mit Einselement 1

— Das Distributivgesetz gilt fiir + und -

— Division: Fiir f, g € K|x] gibt es eindeutige Polynome ¢, r € K |x]

mit f =q-g+7r und r=0 oder degr < deg g

— Beweis: Konstruktion durch schriftliche Division O(m-(n—m)) Ops.

— Bezeichung: ¢ = | f/g|, r= f mod g

—7z.B. 2322242 / 2°4+2| = 22, 2°—22°+2 mod 2*+2 = —22+6
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MATHEMATIK: POLYNOMKORPER I

e Konstruktion verallgemeinert Z,
— Restklassen modulo eines Ringelements f € K|x] (anstelle von peZ)

— Ringelement f muf} irreduzibel sein (anstelle von “p Primzahl”)
d.h. f darf nicht durch ein g mit deg f > deg g > 1 teilbar sein

—2.B.ist fi(x) = 2341 reduzibel in Zs|x|, da fi(z) = (z+1)(z*+2+1)
— h(x) = *+x+1 ist irreduzibel in Zs[z], da h =1 €Zo, aber fiir jeden
echten Teiler g(z) = z+a der Wert a Nullstelle von h in Zs wére
o (K[z]/f,+,-) ist Kérper mit |K|%9 f Elementen
—g = h mod f falls f | g—h
— gl = g+ f-K[z] == {h|h=g mod [} ist die Restklasse von g modulo f
— K[x|/ f ist die Menge aller Restklassen modulo f

— K[xz|/f ist Korper, da zu jedem 0#£¢g € K|x|/f ein Inverses mit dem
erweiterten euklidischen Algorithmus konstruiert werden kann (rolie 15, 52.1)

— |K x|/ f| = |K|"9] | weil jedes [g]f ein h mit deg h < deg f enthilt
und die Restklassen dieser Polynome paarweise verschieden sind
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MATHEMATIK: POLYNOMKORPER DER GROSSE p" I

e Eindeutige Konstruktion moglich
— Wéhle Korper K mit p Elementen, wobei p Primzahl (z.B. (Z,, +,, »))
— Bestimme ein irreduzibles Polynom f € K[z] mit Grad n
— GF(p") = Klx]/f ist bis auf Isomorphie eindeutig bestimmt
Insbesondere ist GF'(p) isomorph zu (Z,,, +,, )

— Satz: Fir jeden endlichen Korper K gibt es eine Primzahl p sodaf
K isomorph zu GF(p") fir ein n ist

e Eindliche Korper sind zyklisch
— Satz: Ist (K, +, ) Kérper und ¢ = |K| so ist (K™, -) eine zyklische

Gruppe der Ordnung g—1 mit ¢(g—1) Erzeugern
(Buchmann, Theorem 3.21.1)

— (GF(p"),-) ist eine zyklische Gruppe der Ordnung p"—1

— Fiir ungerade Primzahlen ist p"—1 gerade, aber fir p=2 kann 2" —1

eine Primzahl sein

— Konstruktion zyklischer Gruppen mit Primzahlordnung
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BEISPIEL: KONSTRUKTION VON GF(2°%)

¢ Es gibt 8 Polynome f(x)=x3+a2x’*+ajx+ag
— Polynome mit ay=0 sind teilbar durch g(x) = x
— fi(x) = 2’41 ist reduzibel, da fi(z) = (z+1)(2*+2+1)
folz) = 2’ +2°+1 und f3(r) = 2°+2+1 sind irreduzibel (fo= f3=1)
fi(z) = 23 +2*+2+1 ist reduzibel, da fy(z) = (z+1)(z*+1)
— fo und f3 sind geeignet als Basis fir die Konstruktion
e Operationen auf Koeffizienten reichen aus
— GF(2%) enthalt nur Polynome g(z) = asz*+a'z+ag mit a; € Zs
— Additions- und Multiplikation sind als Bitblockoperationen darstellbar
2.B. (2?+1)-(2*+2+1) mod f3 = z'+2’+x+1mod f3 = z*+x

entspricht 101-111 mod 1011 = 11011 mod 1011 = 110
-1001 010 011 100 101 110 111

001 001 010 011 100 101 110 111
010|010 100 110 011 001 111 101

011|011 110 101 111 100 001 010 s Zahl
100|100 011 111 110 010 101 001 als Za
101|101 001 100 010 111 011 110

110|110 111 001 101 011 010 100

111|111 101 010 001 110 100 011

~NO O P WN |
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NP NOTOYWW
OO N WD
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WO~ N OTNN
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— Liefert Korper mit Basis Zg und Nichtstandard-Multiplikation
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FEIGNUNG ENDLICHER KORPER FUR ELGAMAL VERFAHRENI

e GF(2") scheint am besten geeignet
— Addition und Multiplikation sind effizient implementierbar

— Ver- /Entschliisselung nahezu genauso schnell wie in Z,

e Sicherheit von GF'(p") wenig grofler als bei Zj

— Wenn 2"—1 Primzahl ist oder grofie Primfaktoren enthalt,
bleibt der Pohlig-Hellman Algorithmus erfolglos

— Index-Calculus Methode nach wie vor anwendbar
0(2(1+o(1>>-n1/2-1ogn1/2)

— Fr festes n, wachsendes p ist das Zahlkorpersieb anwendbar
0(21.92-n1/3-10gn2/3)

— Fr festes p, wachsendes n ist Zahlkorpersieb erweiterbar zu

Funktionenkorpersieb O (21'92%1/3' tog n2/3)

— Bei simultaner Erhohung verwende Index-Calculus Methode

Einfache endliche Korper reichen nicht aus
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ELLIPTISCHE KURVEN I

e Begriff der mathematischen Funktionentheorie
— Nutzen fur Kryptographie enteckt von N. Koblitz und V. Miller

e Grundlage fiir effiziente ElGamal Verfahren
— Zyklische Gruppe mit relativ effizienten, aber hochgradig unstetigen
Additions- und Multiplikationsoperationen
— Problem diskreter Logarithmen viel schwerer zu losen als fiir GF(p™)
160 Bit Schliissel sind genauso sicher wie 1024 Bit Schliissel iiber Z,,

— Auch sehr effizient fiir Signaturverfahren

e “Komplizierte” Gruppenstruktur
— Elemente sind Punkte einer elliptischen Kurve uiber einem Korper K
Motivation entstammt elliptischen Kurven tiber reellen Zahlen

— Kryptographische Verfahren verwenden Kurven uber endlichen Korpern
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ErLipTisSCHE KURVEN UBER R I

e Umkehrfunktion elliptischer Integrale

— Konzept fir die Berechnung der Bogenlange von Ellipsen

e Algebraisch: Gleichung dritten Grades iiber R
— Menge E(a,b) der Punkte (z,y) e RxR fiir die y? = z*+a-z+b
ilt, zusammen mit einem speziellen Punkt des Unendlichen O
— Nichtsingulire elliptische Kurve, wenn 4a3427b%#0 ist

yi=x*- 3x+ 3

f//f

s e

i

G 7\

yZ=x*- 4x

'
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—3 -2 -1 0 1 2 3 4 5 -3 -2 -1 0 1 2 3 4 5

— Singulare elliptische Kurven haben weniger als 3 (komplexe) Nullstellen
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BEISPIELE ELLIPTISCHER KURVEN I

e Nichtsingulare Kurven
yi=x>-1 yi=x°+ 3
0r 0t /_ J
Yo,

° Singulﬁre Kurven

10

y2

x3

-10
-3
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DIE GRUPPE DER ELLIPTISCHEN KURVEN I

e Verknupfung ist Addition von Punkten
— Definiere Addition, skalare Multiplikation und Inverse von Punkten
— Punkt des Unendlichen O ist neutrales Element

— Beweise Gruppeneigenschaften

e Addition von Punkten, geometrisch
- Ziehe Gerade durch P und ()
- Bestimme Schnittpunkt — R mit Kurve

- Invertierung der y-Koordinate liefert
Ergebnis R = P+(Q)

I L 1 I L
0 1 2 3 4

e Addition, algebraisch
— Beschreibe Konstruktion der Komponenten (z g, yr) von R
— Berticksichtige Sonderfalle x p=z¢ fir P#Q) und P=Q)
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ADDITION AUF ELLIPTISCHEN KURVEN, ALGEBRAISCH I

e Standardsituation x p7xg

— Bestimme Gerade g(x) = m-x+k durch P und Q)
YQ—yp
rQ—xp’
— Bestimme Schnittpunkt — R mit Kurve

Lose (g(x))* = 2°+a-z+b

also 3 —m?-2*+(a—2m-k)-x + b—k*> =0 B N B

Steigung m = Nullwert & = yp—m-x,

Ergibt nach Einsetzen xp = m*—xp—1x¢ (und 25 = xp bzw. x5 = ()

— Koordinaten von R sind (zg, m-(xp—xr)—yp)

e Sonderfall x p=xg und yp#yq
— Nach Definition elliptischer Kurven = —P;
mufl yp = —yo sein /

— Steigung der Geraden ist unendlich \

— Definiere P+() = O

-10
-3
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ADDITION AUF ELLIPTISCHEN KURVEN (IT)

e Sonderfall P=( (Verdoppelung)
— Gerade zwischen P und @) ist Tangente in P

Lose Tangentengleichung d%y2 = %x?’-l—aw—l—b
bzw. 2y-g—z — 32%+a fiir den Punkt P

: . . dy 3:U2P+a
— Steigung der Geraden in P ist m = 52 == —F—
dx 2yp
— Koordinaten (zz,yr) von R sind wie zuvor B R R R

rp=m’—2rp und yp =m-(xp—rp)—yp

e Verdoppelung an Randpunkten
— y-Koordinate von P hat den Wert 0

— Tangente in P hat unendliche Steigung
— Definiere P+P = O

e Skalare Multiplikation n-P

— Iterierte Addition von P mit sich selbst R R

KRYPTOGRAPHIE UND KOMPLEXITAT §5.4 13 ENDLICHE KORPER UND ELLIPTISCHE KURVEN




ELLIPTISCHE KURVEN BILDEN EINE ABELSCHE (GRUPPE I

e Abgeschlossenheit von FE(a,b) unter Addition
— Per Konstruktion ist P + @ € E(a, b) fir alle P, Q € F(a,b)

e Assoziativitat der Addition

— Ergibt sich durch Einsetzen der Gleichungen fiir Addition (miihsam)

e Kommutativitat der Addition

— Reihenfolge von P und () ist irrelevant in geometrischer Konstruktion

e O ist neutrales Element der Addition

— Gerade zwischen P und O liefert — P als eindeutigen Schnittpunkt
(Zeigt warum P+() nicht einfach der Schnittpunkt der Geraden mit E(a,b) sein darf)

e FExistenz inverser Elemente

— Per Konstruktion ist —P = (zp, —yp) invers zu P

KRYPTOGRAPHIE UND KOMPLEXITAT §5.4 14 ENDLICHE KORPER UND ELLIPTISCHE KURVEN




ErripTiscHE KURVEN UBER Zp |

e Kryptographie benotigt endliche Klartextraume
— Reale Computer und Smartcards sind endlich

— Berechnungen miissen schnell und exakt durchgetfithrt werden konnen

® Reelle Zahlen sind ungeeignet
— R ist ein unendlicher (iiberabzéhlbar grofer) Korper
— Berechnungen auf “reellen” Zahlen im Computer sind unprazise

— Elliptische Kurven missen iiber endlichen Korpern definiert werden

e Ubertrage Definitionen auf Zp und GF(p")
~ E(p; a,b) ist die Menge der Punkte (x,y) € Z,xZ, fiir die
y2 = x3+a-z+b mod p
gilt, zusammen mit einem speziellen Punkt des Unendlichen O,
wobel a, beZ, mit 4a°+27b* mod p#£0
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:BEHHHELEIﬂﬂﬂPTHKHHH%I(URVEN’ﬁBERJZp |

e Elliptische Kurve y2 = :1:3—|—7-:13—|—8 mod 23
29 Punkte erfiillen die Gleichung i' Y

0, 10); (0, 13): (1, 4); (1, 19); (4, 10): -

4, 13); (6, 6); (6, 17): (7, 3); (7, 20); % e

8, 1); (8, 22): (9, 8); (9, 15); (11, 6);

11, 17): (12, 7); (12, 16); (17, 7); (17, 16); -

18, 3); (18, 20); (19, 10); (19, 13); (20, 11);

20, 12); (21, 3); (21, 20); (22, 0) PUNEEPY RN

e R e e

Wie bei R maximal zwei Punkte Py o o
(z,y) und (x, —y) je x-Wert * °

e Elliptische Kurve y2 = :1:3—|—2-:13—|—8 mod 23
— Nur 15 Punkte erfiillen die Gleichung

(0, 10); (0, 13); (3, 8); (3, 15); (6, 11); (6, 12); (10, 4); (10, 19);
(11, 2): (11, 21); (12, 9): (12, 14): (13, 0): (15, 3); (15, 20)
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ELLIPTISCHE KURVE 2= 2°+42-2+48 mod 499 (535 Punkte)

° L] e o ° °
" ° * e <’ ° o$ .. o 0 o :
PRIPS ° ) & ) [ ] .Q... ° °
° . ° o o A .,
¢ e, ° :.:n'.ﬂ "o 0 e ° e %
... [ ] ) d [ ]
® e K ° ° °. °
. ° ° ° ; ° °s % ° ) o. ° ° 3
. ’ ° ’ e ° ’ *e : *
° b i o © ° ’ ® ° ()

* e o ¢ N ® ¢ o..o. .
° i ° e®%e o % °®
° : ... .... L ¢ [ I J y

y :o‘o o ‘o * .o ¢ ° °..
° oo
) o . [ ] [ JPS o . ° . .. o ® . . °
[ J ) [ ] ° [ J
° L) . ° ° L
. Sc., s . . . s . o
°
o ® o ® o ° .o ° () *e %
° °°® o o o ° . o0
¢ o ° “ s . . ® . ° .S °e
° ° e o o
° o o ° . LI i
o’ % ° ‘.o. ® ° .“.o ‘:
.. [ ] ° .. ~. ) .. ? ° .. [ _J
.. L] [ ] [ ™Y [ ] b ° ' °
L [ ] ° ° [ ] ° ' oo ° ® [ L ° :
P o % o ° . : °
°® ° .o ‘oo. o.o & oo ¢ .‘.
.: ... %o'(o. ° '.. . ©o° o.. ..' .
. .. ; ¢ o . ° o o' ¢ .
g ° e ° Qo ° °
[ [ ] L] L ° ° [
0.. ° o o ° [

KRYPTOGRAPHIE UND KOMPLEXITAT §5.4 17 ENDLICHE KORPER UND ELLIPTISCHE KURVEN




DIE GRUPPE ELLIPTISCHER KURVEN UBER Zp |

e Ahnliche Konstruktion wie bei R

— Ubertrage Definitionen von Addition, Skalarmultiplikation, Inverse
— Konstruiere Algorithmen fiir schnelle Ausfiihrung

— Beweise Gruppeneigenschaften von (F(p;a,b), +)
¢ Addition von P = (zp,yp) und Q = (zg,yQ)
— Falls xp=x¢ und yp=—yq, dann ist P+Q = O
Genauso gilt P+P = O (Verdopplung) fiir P = (zp,0)
— Ansonsten gilt fir die Koordinaten (2, yz) von R = P+Q)

TR = mQ—ZUP—fUQ und yr = m-(xp—2xRr)—yr

b { (yo—yp)(zo—zp)" falls PAQ
(Brp+a)(2yp)—  somst Rechenzeit: O(|[p[?)

e Gruppeneigenschaften gelten wie zuvor

— Gleichungen nahezu identisch zu denen der elliptischen Kurven tiber R
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ADDITION UND ITERATION AUF F(23;2,8)

e Additionstabelle

(0,10) (0,13) (3,8) (3,15) (6,11) (6,12) (10,4) (10,19) (11,2) (11,21) (12,9) (12,14) (13,0) (15,3) (15,20)

)
(3,8) (15,3) (13,0) (15,20) (6,11) (11,2) (12,14)(11,21)
(6,11) (13,0) (15,20) (6,12) (15,3) (11,21) (11,2) (12,9)
(12,14)(11,21) (12,9) (10,4) (11,2) (15,20) (13,0) (6,12
(3,15)[(10,4) (0,10) © (6,12) (3,8) (15,20) (12,9) (0,13) (12,14) (11,2) (11,21)(10,19) (15,3) (6,11) (13,0
(6,11)|(10,19)(12,14) (15,3) (3,8) (13,0) © (0,13) (11,2) (12,9) (10,4) (0,10) (11,21) (6,12) (15,20) (3,15
(6,12)](12,9) (10,4) (3,15) (15,20) ©  (13,0) (11,21) (0,10) (10, 19)(12,14) (11,2) (0,13) (6,11) (3,8) (15,3
(10,4)|(6,12) (3,15) (0,10) (12,9) (0,13) (11,21)(15,20) ©  (6,11) (15,3) (13,0) (3,8) (12,14)(10,19) (11,2
(10,19)| (3,8) (6,11) (12,14) (0,13) (11,2) (0,10) ©  (15,3) (15,20) (6,12) (3,15) (13,0) (12,9) (11,21) (10,4
(11,2)](15,3) (13,0) (11,21)(12,14) (12,9) (10,19) (6,11) (15,20) (3,15) ©  (3,8) (6,12) (0,10) (10,4) (0,13)
(11,21)[(13,0) (15,20) (12,9) (11,2) (10,4) (12,14) (15,3) (6,12) ©  (3,8) (6,11) (3,15) (0,13) (0,10) (10,19)
(12,9)|(15,20) (6,12) (10,4) (11,21) (0,10) (11,2) (13,0) (3,15) (3,8) (153) © (10,19) (0,13) (12,14)
(12,14)[(6,11) (15,3) (11,2) (10,19)(11,21) (0,13) (3,8) (13,0) (6,12) O (15,20 (10,4) (12,9) (0,10)
(13,0)](11,2) (11,21)(15,20) (15,3) (6,12) (6,11) (12,14) (12,9) (0, 10) (10,19) (10,4) © (3,15) (3,8)
(15,3)|(12,14) (11,2) (13,0) (6,11) (15,20) (3,8) (10,19)(11,21) (10,4) (0,10) (0,13) (12,9) (3,15) (6,12) O
(15,20)|(11,21) (12,9) (6,12) (13,0) (3,15) (15,3) (11,2) (10,4) (0,13) (10,19)(12,14) (0,10) (3,8) © (6,1

6,12
3,15
0,10

(6,
(0,10)|(3,15) © (0,13) (10,4) (10,19) (12,9
(0,13)| ©  (3,8) (10,19) (0,10) (12,14) (10,4
(3,8) |(0,13) (10,19) (6,11) © (15,3) (3,15

R N

(
(
(
(

~— N N N N N

e e R R e T
~— — — ~— — ~—

(6,
(3,
(0,13

11)
15)
)
)

1)

e Iterierte Addition von P = (0,10)
~ P =(0,10), 2P = (3, 15), 3P = (10, 4), 4P = (6, 12), 5P = (12, 9), 6P = (15, 20),
7P = (11, 21), 8P = (13, 0), 9P = (11, 2), 10P = (15, 3), 11P = (12, 14),
12P = (6, 11), 13P = (10, 19), 14P = (3, 8), 15P = (0, 13), 16P = O

— F(23;2,8) ist zyklische Gruppe und P ist ein erzeugendes Element
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STRUKTUR ELLIPTISCHER KURVEN UBER Zp |

e Wieviele Punkte hat eine elliptische Kurve?
~ Gruppenordnung ist Zahl der Losungen von y* = z9+a-x+b in Z,xZ,
— Satz von Hasse: Fiir die Ordnung n der Gruppe E(p;a,b) gilt
p+1-2./p <n < p+1+2,/p
- Fiir p=23 liegt die Gruppenordnung von E(p; a,b) zwischen 14 und 33
- Fir p=499 liegt die Gruppenordnung zwischen 456 und 544
— Genaue Gruppenordnung berechnet Algorithms von Schoof in O(|p[®)
— E(p; a, b) ist zyklisch, wenn Ordnung Produkt verschiedener Primzahlen

e Welche Gruppenstruktur ist zu erwarten?
— Satz: Fiir Primzahlen p>3 gibt es k, m €N mit k|m und
k|(p—1), so da3 ( E(p;a,b),+ ) isomorph zu Z, X7, _ist
— Die Zahlen k£ und m konnen aus p, a, b berechnet werden
— E(p; a,b) ist zyklisch, wenn k=1 ist
— Ansonsten gibt es eine zyklische Untergruppe der Ordnung m
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ELGAMAL SYSTEME MIT ELLIPTISCHEN KURVEN I

Potenzierung wird skalare Multiplikation

e Schlusselerzeugung
— Wahle eine zyklische elliptische Kurve E = F(p;a,b) der Ordnung n
und einen erzeugenden Punkt P
— Waihle ein zufilliges a €{0,..,n—1} und berechne A = a-P
— Lege E/, P, A offen, halte a geheim

e Verschliisselung
— Gesamtschliissel ist K = (E, P,a, A), wobei F, P, A offentlich
— Textblocke der Léange log, n/8 werden auf Punkte von E abgebildet
— Absender wahlt zufilliges b e {0, ..,n—1} und berechnet B := b-P
— Absender verschlusselt Punkt X zu Y := X+0-A
— Erzeugter Schliisseltext ist ein Punktepaar ex(X,b) =(B,Y)

e Entschlusselung
— Empfanger berechnet dr(B,Y) =Y —(aB)
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DAs ELGAMAL VERFAHREN AM BEISPIEL I

e Schlisselerzeugung
— Alice wahlt E' = F/(23;2,8) (Ordnung 16)
und P = (0, 10) als erzeugenden Punkt
— Alice wéhlt a = 6 und berechnet A = 6-(0, 10) = (15, 20)
— Alice veroffentlicht den Schliissel K = ( F/(23;2,8),(0,10), (15,20) )

e Verschliisselung
— Bob wiéhlt b = 3 und berechnet B = 3-(0,10) = (10, 4)
und b-A = 3-(15,20) = (3, 15)
— Verschliisselung von X = (10,19) ergibt Y = (10,19)-+(3,15) = (0, 13)
— Bob versendet als Schliisseltext ey (X,b) = (B,Y) = ( (10,4), (0,13) )

e Entschlusselung
— Alice berechnet —(a-B) = —6-(10,4) = —(3,15) = (3, 8)
— Entschliisselung von Y liefert Y —(a-B) = (0, 13)+(3,8) = (10, 19)
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SCHNELLE SKALARMULTIPLIKATION AUF E(p;a,b)

e EC-Verschliisselung verwendet =~ 2190 Punkte
— Signifikant weniger als RSA oder ElGamal Systeme iiber Z, / GF(q")
— Dennoch wesentlich zu viele fiir einfache iterative Berechnung von k- P
— Rechenzeit muf in der Groenordnung von |p|| liegen

e Variante der schnellen Potenzierung fiir (Zy, n)

— Direkte Ubertragung wiirde Quadrieren durch Verdopplung P+—2-P
und Multiplikation durch Addition von Punkten ersetzen

— Optimierung nutzt, dafl Invertierung auf E(p;a,b) konstante Zeit
benotigt (anstelle von O(|n|?) fir (Z,, ) )

e Verwende Binardarstellung mit Vorzeichen
— Eine Zahl k €Z,, wird dargestellt als k = Zﬁzo a;2' mit a; €{0,1, —1}
— Bei NAF-Darstellung (non-adjacent form) ist von zwei
aufeinanderfolgenden Koefhizienten a; maximal einer 1 oder —1
— z.B.: Binardarstellung von 311 ist 256+32+16+4+-2+1 = 100110111
NAF-Darstellung ist 2564-64-8-1 = 10100-100-1
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OPTIMIERTE SCHNELLE SKALARMULTIPLIKATION I

e Iterierte Verdoppelung, Addition, Subtraktion
— Zur Berechung von k-P erzeuge NAF Darstellung Zizo a;2" von k
— Verdoppele fiir jedes a;, addiere/subtrahiere zusatzlich fir a;=1/—1

e Funktionale Implementierung

let rec eccmult point a_list
= if a list = [] then O
else let ai::rest = a_list
and gpoint = eccmult (ecc_add point point) rest
in
if a i=1 then ecc_add qgqpoint point
else if a i=0 then qgpoint
else ecc_sub qpoint point

e Laufzeit O(HPHS>

— Eine Verdoppelung pro ¢;, eine Addition /Subtraktion fiir ¢;#0
— Insgesamt maximal 2 log, & Additionen auf E(p;a,b)
— Additionen sind (bis auf konstanten Faktor) genauso schnell wie in Z,,

e Effekt der Optimierung 11% schneller
— Im statistischen Mittel sind 2/3 aller Koeffizienten Null (statt 1/2)
— Nur %l Additionen /Subtraktionen notig statt %l Additionen
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DATENKOMPRESSION I

e EC-Verschliisselung vergroflert Nachrichten
— Punkte von E(p;a,b) werden durch zwei Zahlen in Z, dargestellt
— ElGamal Verschliisselung verdoppelt Klartext durch DH-Teilschliissel

— Schlusseltext ist etwa vier mal so lang wie ursprunglicher Klartext

e F(p;a,b) hat maximal 2p Punkte
~1Ist P = (zp,yp)e E(p;a,b) dann ist —P = (zp, p—yp)
der einzige Punkt mit derselben x Koordinate

— Da p Primzahl sein muf3, ist yp gerade g.d.w. p—yp ungerade ist

e Komprimiere Darstellung von Punkten
— Représentation von P = (zp,yp) ist (xp, yp mod 2)
— Nur ein Bit mehr als Darstellung von Texten durch Elemente von 7,

— Kompression kann effizient invertiert und in die ElGamal
Verschlisselung integriert werden
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INTEGRIERTE EC-VERSCHLUSSELUNG I

e Dekompression komprimierter Punkte
— Bei Eingabe der Punktkompression (z,v’) berechne z = 23+a-2+b
— Falls z ein quadratischer Rest modulo p ist berechne y = y/z mod p
— Wenn ¢y’ =y mod 2 dann gebe (x,y) aus und ansonsten (x, p—y)

— 7 ist quadratischer Rest modulo p g.d.w. 2®P~V/2=1mod p
~ Wenn p=3mod 4, dann ist y/z = 2P*V/4  (ygl. Rabin Verfahren §4.4)

e Vereinfachtes ECIES Verfahren
Komprimierter ECDH Teilschlussel & verkiirzte Nachrichtenchiffre

— Gegeben zyklische elliptische Kurve F = E(p;a, b) der Ordnung n
ein erzeugender Punkt P, ein zufilliges a €{0,..,n—1} und A = a-P
— Schliissel ist K = (E, P,a, A,n), wobei nur E, P, A, n offentlich
— Verschliisselung: fiir ein zufalliges b€{0,..,n—1} und ein x € Z, sei
erx(X,b) = (Compress(b-P), z-z, mod p), wobei b-A = (x4, y,)
— Entschliisselung: fiir einen Schliisseltext (B, y) sei
di(B,y) = y-(x,)"' mod p, wobei a-DeCompress(B) = (x, y,)

KRYPTOGRAPHIE UND KOMPLEXITAT §5.4 26 ENDLICHE KORPER UND ELLIPTISCHE KURVEN




ECIES VERFAHREN AM BEISPIEL I

e Schlusselerzeugung
— Alice wahlt £ = F/(23;2,8) (Ordnung 16)
und P = (0,10) als erzeugenden Punkt
— Alice wahlt @ = 6 und berechnet A = 6-(0,10) = (15, 20)
— Alice veroffentlicht K = ( E(23;2,8),(0,10), (15,20), 16 )

e Verschliisselung
— Bob wihlt b = 3 und berechnet B = Compress(3-(0,10)) = (10, 0)
und b-A = 3-(15,20) = (3, 15)
— Verschliusselung von © = 22 ergibt y = 22-3 mod 23 = 20
— Bob versendet als Schliisseltext ey (X,b) = (B,y) = ( (10,0), 20 )

e Entschlusselung
— Alice berechnet a-DeCompress(B) = 6-(10,4) = (3, 15)
— Entschliisselung von v liefert 20-37! mod 23 = 20-8 mod 23 = 22
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KOMPLEXITAT VON ECIES I

e Korrektheit: Ver-/Entschliisselung sind invers
~Esist dg(B,y) = y-(x,) ' mod p  wobei 2, = (a-DeCompress(B));
und ex (X, b) = (Compress(b-P), x-x, mod p) wobei z, = (b-A);
— Fiir beliebige b ist dy(ex(x,b)) = y-((a-DeCompress(B));)~* mod p
= (z+(b-A); mod p)-(((a-DeCompress(Compress(b-P)))1) ! mod p)
= (z+(b-a-P)1 mod p)-(((a-b-P)1)~" mod p) = x

e Aufwand fur Ver- und Entschlisselung
— Kein Aufwand fiir Umwandlung zwischen Text und Zahlen (!)
— Skalarmultiplikation in E(p;a, b) und Multiplikation in Z,,
fur 8[w]/[n] Blocke O(|w|-|p]*)
— Schneller als ElGamal iiber Z,, wegen Verwendung kleinerer Blocke

— Nachrichtenexpansion um Faktor 2
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SICHERHEIT VON EC-ELGAMAL SYSTEMEN I

e Standard DL Algorithmen sind universell

— Ordnung der Gruppe E(p;a, b) liegt in Grofenordnung von p
hat aber keinen trivialen Zusammenhang zu p, a und b

— Shanks und Pollard p sind anwendbar, aber zu ineffizient fiir grofe p
— Pohlig-Hellman kann erfolgreich sein, wenn Ordnung von F(p; a,b)
nur kleine Primfaktoren hat
e Index-Calculus Methode nicht anwendbar
— EC-Addition fithrt zu “chaotischen” Spriingen in Z,x 7,
— Keine einfache Verwendung von “Faktorbasen” moglich
— Zahlkorpersiebe und ahnliche arithmetisch basierte Methoden
konnen (bisher) nicht tibertragen werden
e Spezielle Methoden greifen nur Sonderfalle an

— MOV / Frey-Riick-Methode iibertragen ECDLP auf DL Problem
fur Z,x wenn Gruppenordnung n Teiler von pF—1

— Zahlentheoretische Methode von Satoh, Araki & Smart ubertragt
ECDLP auf DL Problem fir Z  wenn n=p

— Algebraische Methode von Semaev & Riick
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KRYPTOGRAPHISCH GEEIGNETE ELLIPTISCHE KURVEN I

e 163 Bit Schlussel reichen aus
~ Beste Attacke auf ECC DL hat Laufzeit in O(2171/2)
— ECC Schliissel nur doppelt so grof§ wie bei symmetrischen Verfahren

— 160 Bit ECC Schliissel genauso sicher wie 1024 Bit RSA Schliissel
224 Bit ECC Schliissel genauso sicher wie 2048 Bit RSA Schliissel
256 Bit ECC Schliissel genauso sicher wie 3072 Bit RSA Schliissel

— Faktor zwischen ECC und RSA wachst mit Schliissellange

e Empfehlungen fiir Auswahl der Kurven
— Gruppenordnung von E(p;a,b) mufl Primfaktor grofer als 2% haben

(Pohlig-Hellman)
— Kurve darf nicht supersingular oder anomal sein

supersinguldr: Gruppenordnung Teiler von p¥*—1  (Mezenes, Okamoto, VanStone)
anomal: Gruppenordnung ist p (Satoh, Araki & Smart)

— Geheimer Schliissel aus {0, ..,n—1} muf} grol sein (Brute-Force Suche)
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ELGAMAL VERFAHREN IM RUCKBLICK I

e Effizientes Public-Key Kryptosystem
— Potenzierung von Elementen einer (beliebigen) zyklischen Gruppe
— Sicherheit der Schliissel basiert auf Problem des diskreten Logarithmus
— Erhohte semantische Sicherheit durch Randomisierung

— Nachrichtenexpansion um Faktor 2

e Effizienter als RSA
— Bei ‘nichtarithmetischen’” Gruppen mit schwerem DL Problem
hat die beste Attacke eine Laufzeit von O(21"1/2)
— Schlussellangen von 160 Bit gelten als sicher
— Implementierbar aut Smartcards mit geringer Prozessorleistung

— Elliptische Kurven gelten derzeit die beste Grundlage
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