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Abstract. In this paper we generalize a heuristic that we have intro-
duced previously for solving efficiently random 3-SAT formulae. Our
heuristic is based on the notion of backbone, searching variables be-
longing to local backbones of a formula. This heuristic was limited to
3-SAT formulae. In this paper we generalize this heuristic by introduc-
ing a sub-heuristic called a re-normalization heuristic in order to handle
formulae with various clause lengths and particularly hard random k-sat
formulae with k ≥ 3. We implemented this new general heuristic in our
previous program cnfs, a classical dpll algorithm, renamed kcnfs. We
give experimental results which show that kcnfs outperforms by far the
best current complete solvers on any random k-SAT formula for k ≥ 3.

1 Introduction

In [1] we presented a new branching variable selection heuristic for solving ran-
dom 3-SAT formulae using a dpll-type procedure. This heuristic relied on the
notion of local backbones of a SAT formula, derived from a notion introduced
in a statistical physics study [2]. The heuristic described in [1] was designed
and works efficiently only on 3-SAT formulae. It cannot work on formulae with
different clause lengths. In this paper we present a generalization of our pre-
vious heuristic covering formulae with clauses of any length and in particular
for solving the classical random k-SAT formulae with k ≥ 3. The generalization
consists in inserting in our previous ”backbone-search heuristic” (bsh for short),
a sub-heuristic, which we call a renormalization heuristic, taking account of the
various lengths of clauses. We describe in this paper such a renormalization
heuristic and integrating it into the backbone-search heuristic, we get a general
heuristic. We show that this general heuristic quite markedly improves the best
current performances of solving of random k-SAT formulae as far as values of k
can be handled in reasonable time.
The paper is organized as follows. In section 2 we first recall the principle of
the backbone-search heuristic, we illustrate how it works differently from the
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classical heuristics and we resume and update the experimental results of per-
formances of this heuristic implemented in the program cnfs [1], a dpll-type
procedure. Then, in section 3 we describe our renormalization heuristic. Hav-
ing implemented it in a general program which we renamed kcnfs, we give the
performance results obtained on solving hard 3-SAT, 4-SAT, 5-SAT . . . random
formulae as compared with those obtained with the best known solvers.

2 The Backbone-Search Heuristic for Solving Random
3-SAT Formulae

2.1 The Principle of the Computation of the Backbone-Search
Heuristic (bsh)

Let F be a 3-SAT formula and consider a dpll-type algorithm ([3], [4]), for
solving F . Such an algorithm develops a solving tree until all clauses of F are
satisfied by values 0 or 1 assigned to the variables of F at nodes of the tree or
until no satisfying truth assignment has been found. This type of algorithm is
called a complete algorithm since it gives an answer for unsatisfiable as well as
satisfiable formulae. To solve efficiently satisfiable formulae, right truth values
to be assigned to the variables are to be found. To solve efficiently unsatisfiable
formulae, an implicit solving tree with a size as small as possible is to be devel-
oped. It appears that these two goals are hard and even somewhat incompatible
to reach by a same heuristic. However developing a solving tree leads automat-
ically to a solution of a formula if it is satisfiable. Trying to find right truth
values for satisfying a formula does not lead automatically to be able to answer
that the formula is unsatisfiable if it cannot be satisfied. Moreover developing a
solving tree cannot be less efficient in the worst case (and in fact in any case for
random formulae) for a satisfiable formula than for an unsatisfiable formula with
the same size. For these reasons, designing an efficient heuristic for a complete
dpll-type algorithm amounts to supposing that one tries to solve only unsatis-
fiable formulae. This is exactly the way we designed the heuristic bsh which we
describe below.
Let x be one of variables of the 3-SAT formula F . The idea behind bsh is to
measure the correlations of the literal x on the one hand and the literal x̄ on
the other hand with all the other variables of the formula through the clauses
where x and x̄ appear. More precisely let us take for example a clause where
the literal x appears : (x ∨ u ∨ v). If both literals u and v can be true in most
truth assignments satisfying many (possibly all) clauses, then x is a little cor-
related with the other variables. If one of the literals u and v must be false if
the other one is true in most truth assignments satisfying many clauses, then
x is a little more correlated with the other variables than in the previous case.
Finally if both literals u and v are false in most truth assignments satisfying
many clauses, then x is strongly correlated to the other variables. Our heuristic
bsh is intended to identified the variables for which both associated literals are
strongly correlated with the others, by means of the function h(t) we gave in [1]
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Set i← 0, let t be a literal and let MAX be an integer.
Integer h(t)
begin

i← i + 1
compute I(t)
if i < MAX

return
∑

(u∨v)∈I(t)

h(ū)× h(v̄)

else
return

∑

(u∨v)∈I(t)

(2p2(ū) + p3(ū))× (2p2(v̄) + p3(v̄)) (1)

end if
end

Fig. 1. Function h(t) of the 3-sat backbone search heuristic BSH

and described in Fig. 1, where t represents the literal x or x̄. bsh chooses as a
branching variable to be assigned successively 0 and 1 at a current node of the
solving tree, one of the variables x having the highest score h(x) × h(x̄).

The computation carried out by h(t) is as follows. t is any literal not assigned
a value at a current node of the solving tree and h(t) is the score of t. The
evaluation h(t) is based on the set I(t) of binary clauses such that for each of
them if it is false then it forces t to be true unless a contradiction occurs.
There are two cases to be considered. The first case is one of the occurrences
of t appears in a ternary clause such as (t ∨ u ∨ v). Then, if the binary clause
(u ∨ v) is false, as a result t is necessary true so that (t ∨ u ∨ v) is satisfied.
The binary clause (u ∨ v) is therefore put in the set I(t). The second case is
one of the occurrences of t appears in a binary clause such as (t∨ u). Then, one
searches recursively for the binary clauses which can force ū to be true. Such
binary clauses force consequently t to be true through the unary clause u or a
chain of unary clauses. These binary clauses are also put in the set I(t). In this
way, I(t) is the union of all binary clauses which can force t to be true directly
or indirectly (through unary clauses) if they were false.
h(t) is said to be evaluated at the level 1, 2, 3 . . . if the integer MAX is set to 1,
2, 3, . . . . At the level 1, h(t) is given directly by the sum of products (1) in Fig.
1. p2(ū) and p3(ū) are the numbers of binary and ternary clauses, respectively,
where ū appears in the sub-formula at the current node where h(t) is evaluated.
It is the same for p2(v̄) and p3(v̄). Each term of the sum (1) represents the
weighted number of possibilities that a binary clause (u ∨ v) of I(t) is false if
one assumes that every occurrence of ū and every occurrence of v̄ can be forced
to be true in the clauses where ū and v̄ appear. The weighting of p2 by 2 is due
to the fact that as a rough estimate (for a uniform distribution of assignments) ū
has a double probability to be forced to be true in a binary clause with respect
to a ternary clause. On the whole, h(t) can be interpreted as a measure of some
correlation between t and all the other variables which can force t to be true, in
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the sub-formula at the current node where h(t) is evaluated. This measure can
be computed at level 1, 2, 3 . . . recursively by setting MAX at 1, 2, 3 . . . . The
measure is considered all the more accurate as the level of recursive computation
is high. However it must be noticed that in the computation of h(t), it is not
taken into account that the same variable can be met several times with the same
sign or opposite signs. One can imagine that this event occurs all the more often
as the evaluation level is high. That is the reason why the level of evaluation must
be limited in order that h(t) as a measure of some correlation is not distorted
(see next section). Finally if t should be true in all assignments satisfying the
maximum number of clauses (possibly all) of the sub-formula at the current
node where h(t) is evaluated, the correlation that h(t) is intended to measure
must be the strongest and then h(t) should have one of the highest values among
all values which it can take at the considered node. In this sense h(t) tends to
find out the variables belonging to the local backbone of the sub-formula at the
considered node.

2.2 Limitations in the Implementation of the Heuristic bsh

There are two limitations which must restrict the use of the heuristic bsh for
an efficient implementation. First it can be noticed that if at a current node
of the solving tree the sub-formula associated with the considered node has
many binary clauses, the computation of h(t) can be too time-consuming with
respect to simpler heuristics essentially based on the binary clauses. In kcnfs a
limitation has been defined empirically as a function of the proportion of binary
clauses in a sub-formula. The second limitation concerns the level of evaluation
of h(t) defined by the constant MAX. It is due both to the formal argument
mentioned in the previous section and again to the cost of the computation. A
good limitation must be a compromise between the accuracy of the evaluation
which must remain significant so that it is not distorted by variables taken into
account more than one time and the cost of the computation. In kcnfs this
limitation has been defined empirically as a function of the number of variables
and the maximum length of the clauses in the formula.

2.3 Effect of bsh Compared with Basic Heuristics

One can give a small example in order to illustrate the quite different effect of
the backbone-search heuristic bsh compared with usual rules of choosing of a
branching variable which heuristics implemented in many SAT solvers use. In
Table 1, an unsatisfiable 3-SAT formula with 7 variables and 13 clauses is given.

Consider the choice of the first variable at the root of the tree to be developed
by a dpll-type algorithm for solving this formula. A basic heuristic consists in
choosing a variable having the maximum number of occurrences in minimum size
clauses (moms for short). All clauses of the formula being of the same length at
the root, all variables are regarded equally. In Table 2, the first four highest num-
bers of occurrences per variable and the corresponding variables are given. An
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Table 1. Unsatisfiable 3-sat formula with 7 variables and 13 clauses

(ā ∨ b ∨ f̄) ∧ (ā ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ ḡ) ∧ (ā ∨ c̄ ∨ d)∧
(a ∨ c̄ ∨ d) ∧ (a ∨ c̄ ∨ d̄) ∧ (a ∨ b ∨ f) ∧ (a ∨ b ∨ g)∧

(b ∨ d ∨ ē) ∧ (b ∨ d ∨ e) ∧ (b ∨ c ∨ d̄)∧
(b̄ ∨ c ∨ e) ∧ (b̄ ∨ c ∨ ē)

additional criterion, with respect to the previous one for the choice of a branch-
ing variable, is also quite commonly used in the heuristics. It is the respective
proportions of the positive (uncomplemented) and negative (complemented) oc-
currences of each variable. A classical heuristic choice tends to maximize both
the number of occurrences and the balance of the proportions of opposite liter-
als of the chosen variable. A simple function which tries to combine these two
criterions is for example the product of the numbers of occurrences of opposite
literals of the variables. The Table 2 lists, according to this product heuristic,
the highest four scores which correspond to the same variables as the first four
ones according to the moms heuristic. Finally as comparison, the highest four
scores obtained with bsh applied to all variables of the formula are also listed
in Table 2. These highest four scores correspond again to the same variables.

Table 2. comparison of the highest four scores obtained for the variables in the
formula of Table 1, between a basic heuristic and bsh

variable #occ (pos ; neg) Product bsh

a 8 (4+ ; 4−) 16 810
b 9 (6+ ; 3−) 18 800
c 7 (3+ ; 4−) 12 2016
d 7 (4+ ; 3−) 12 1296

As noted, on the whole, for the three heuristics the highest four scores corre-
spond to the same variables. However with the scores of bsh the variables are put
in a different order from the one corresponding to the two other basic heuristics
and above all, bsh is able to differentiate strongly the four variables between
them, while they look alike for the two other heuristics. The latter point is the
most important effect of bsh which helps to distinguish better a good branch-
ing variable with respect to the size of the solving tree. In our example this is
particularly clear because as usual at the root of a solving tree, many variables
look very similar for heuristics and this is the case for the four variables in Table
2. However bsh distinguishes the variable c as a much better variable than the
three other ones. This is essentially due to the fact that the nature of the evalu-
ation of the variables by bsh is quite different from the classical heuristics. bsh
evaluates the correlation of a variable with the other variables, in other words
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the message sent by the variables of a formula, through the clauses, to a specific
variable to be set at some value.

’Moms’ Heuristic

b

c

a

a

d d

c

b a

b

c

a

a

d d

c

b a

’BSH’ heuristic

Fig. 2. Solving trees of a dpll-type procedure developed with moms and bsh
heuristics on the formula given in Table 1.

Practically the benefit brought by bsh can be seen for our example on the
solving trees Fig. 2. At the left hand, one of the possible solving trees developed
with the moms heuristic is drawn and at the right hand, the root of the tree
is chosen as being the variable c selected with bsh and then for the subsequent
nodes, each branching variable is chosen also with the moms heuristic. As it can
be seen for the examples drawn on the Fig. 2, one can check that the size of
the tree with the root variable c, chosen with bsh, is smaller than any other
tree developed with moms. The more sophisticated heuristics implemented in
the best current solvers tend to improve the evaluation of the possible branching
variables with respect to moms but not as bsh can do it. Let us take for example
the heuristic of the solver satz which is one of the best current solvers for random
formulae [5]. The evaluation by this heuristic of the variables of our example
Table 1, is given Table 3 in comparison with the Product heuristic and bsh.
With the satz heuristic the variable c has the best score as with bsh. But the
differences of score with the other variables are not as definite as with bsh. For
this reason one can easily suppose that on large formulae and not a toy as our
illustration example, the satz heuristic distinguishes less accurately than bsh
the best variables to choose as branching variables. This is clearly confirmed
by the comparison of solving performances of hard random formulae related in
Section 3. Thus what is seen on the Fig. 2, illustrates what happens on large
size formulae even with heuristics more sophisticated than moms.

2.4 Local Treatments: Picking and Pickback, in Addition to bsh

As said above, the heuristic bsh is intended to measure in some way the corre-
lation of a variables with the other variables through clauses of a formula. But
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Table 3. Comparison of the highest four scores obtained for the variables in the
formula of Table 1, between the Product heuristic, satz heuristic and bsh

variable Product satz heuristic bsh

a 16 504 810
b 18 561 800
c 12 690 2016
d 12 256 1296

this measurement does not take into account two things, the size of the neigh-
borhood containing the correlated variables and the variables for which only one
associated literal is strongly correlated with the other variables. If the size of the
neighborhood is small a contradiction might be detected with a small tree and
then to lead to a backtrack. If one literal associated with a variable is strongly
correlated in a small neighborhood then the variable might be set to a fixed
truth value by developing also a small tree. Picking and pickback are local treat-
ments to detect such contradictions or such variables to be fixed. These local
treatments are only applied on variables having the highest scores of correlation.
They consist for the former in a look ahead and for the latter in a look back.

2.5 Performance Comparison Results on Random 3-SAT Formulae

The Tables 4 and 5 list performances comparative results of cnfs against several
of the best current solvers : posit [6], csat [7], satz [8]and OkSolver [9] which was
the winner of the SAT 2002 competition3 in the category of random formulae.
For information, we give also the performances of known solvers as zchaff (v.
2003.7.1) [10] and sato [11] not being specifically devoted to solving random
formulae. The performance results are given in terms of mean sizes of trees
(Table 4) and mean solving times (Table 5) on sample of 1000 random 3-SAT
formulae with 200, 300 and 400 variables at a ratio, clauses to variables, equal to
4.25 which corresponds to the SAT-UNSAT transition area where the formulae
are on average the hardest. These results show that cnfs outperforms the other
solvers. Moreover it is interesting to note that the detailed results showed that
cnfs was systematically faster than the other solvers on any solved unsatisfiable
formula. On hard formulae larger than 400 variables the gap of performance
between cnfs and the other solvers increases as a function of size of the formula.
Finally cnfs was able to solve formulae up to 700 variables which were until now
out of reach with any other solver.

3 http://www.satlive.org/SATCompetition/2002/

http://www.satlive.org/SATCompetition/2002/
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Table 4. Mean tree sizes on hard random 3-sat formulae having 200, 300 and
400 variables with sato, csat, posit, satz, OkSolver and cnfs solvers

SAT
Solvers

unsat (N)
sat (Y)

200 V 850 C 300 V 1275 C 400 V 1700 C
(482 N) (518 Y) (456 N) (534 Y) (245 N) (255 Y)

mean #nodes mean #nodes mean #nodes in
(std dev.) (std dev.) millions (std dev.)

zchaff
unsat 57666 (23708) 1.7 106

(0.9 106) -
sat 9365 (11435) 512687 (405756) -

sato
unsat 14076 (5225) 443313 (109694) -

sat 4229 (4754) 151728 (157102) -

csat
unsat 2553 (997) 90616 (37729) 3.6 (1.7)

sat 733 (763) 26439 (31224) 1.8 (2.4)

OkSolver
unsat 1346 (430) 36137 (12181) 1.1 (0.5)

sat 314 (381) 8454 (8594) 0.3 (0.4)

posit
unsat 1992 (754) 82572 (35364) 3.4 (1.7)

sat 789 (694) 34016 (31669) 1.5 (1.4)

satz
unsat 623 (206) 18480 (7050) 0.5 (0.2)

sat 237 (216) 6304 (6541) 0.2 (0.2)

cnfs
unsat 470 (156) 12739 (4753) 0.3 (0.1)

sat 149 (154) 3607 (4089) 0.1 (0.1)

Table 5. Mean solving times on hard random 3-sat formulae having 200, 300,
400 variables with sato, csat, posit, satz and cnfs solvers

SAT
Solvers

unsat (N)
sat (Y)

200 V 850 C 300 V 1275 C 400 V 1700 C
(482 N) (518 Y) (456 N) (534 Y) (245 N) (255 Y)

mean time mean time mean time
(std dev.) (std dev.) (std dev.)

zchaff
unsat 18.9s (21.5s) 2h 54m (2h) -

sat 1.4s (2.1s) 20m (22m) -

sato
unsat 89.2s (84.6s) 18h 27m (7h) -

sat 13.2s (38.0s) 4h (6h 40m) -

csat
unsat 0.5s (0.2s) 29.6s (13.3s) 29m 01s (14m 36s)

sat 0.1s (0.1s) 9.0s (10.7s) 7m 47s (10m 01s)

OkSolver
unsat 0.6s (0.2s) 32.1s (11.2s) 26m 03s (12m 14s)

sat 0.1s (0.2s) 7.6s (7.7s) 5m 58s (9m 23s)

posit
unsat 0.3s (0.1s) 15.1s (6.6s) 13m 07s (6m 35s)

sat 0.1s (0.1s) 6.3s (5.9s) 5m 56s (5m 36s)

satz
unsat 0.2s (0.1s) 4.9s (1.8s) 2m 44s (1m 09s)

sat 0.1s (0.1s) 1.7s (1.7s) 1m 05s (1m 03s)

cnfs
unsat 0.1s (0.0s) 3.7s (1.3s) 1m 50s (0m 43s)

sat 0.0s (0.0s) 1.1s (1.2s) 0m 37s (0m 40s)
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3 Renormalization in the Search-Backbone Heuristic bsh
for Formulae with Clauses Having Various Lengths

3.1 The Principle of the Renormalization Computation

Recall that the function h(t) of bsh described in Section 2.1 is intended to
measure some correlation of the literal t with the other variables in the considered
sub-formula. This correlation of one occurrence of t depends intuitively on the
length of the clause where the considered t appears and on the correlation of
the other literals themselves associated with t in this clause. For example in the
following clause of length 6 : (t∨ u1 ∨ u2 ∨ u3 ∨ u4 ∨ u5), t is likely (in a random
formula) much less correlated through (u1 ∨ u2 ∨ u3 ∨ u4 ∨ u5) with the rest
of the variables than in the following clause of length 3 : (t ∨ v1 ∨ v2) through
(v1 ∨ v2). In contrast, if in this latter clause v1 and v2 are weakly correlated
with the other variables of the formula, for example (which is extreme) if they
are pure literals, then through a clause of any length, as large as it can be,
where t occurs, t is more correlated with the rest of the variables than through
(v1 ∨ v2). We have just identified two factors of correlation of an occurrence of
t, the length of the clause where t appears and the correlation of the literals
associated with t. This latter factor is naturally taken into account by the level
of evaluation defined for h(t) in section 2.1, whose principle extends directly
to clauses with various lengths. The first factor is linked to the computation
of h(t) itself. We have seen in section 2.1 that this computation is based on
the set I(t) only consisting in clauses of length 2. The number of possibilities
that each of the clauses of I(t) is false, is estimated as the product of two
terms associated with each literal of a binary clause. Considering a formula with
clauses of various lengths and applying the same principle described in Section
2.1, the set I(t) contains also clauses of various lengths. This can brings about
disparities in estimating the correlations of different occurrences of t with the
rest of the variables. For example if two occurrences of t can be forced to be
true through two clauses of different lengths, say z1 and z2, with z2 ≥ z1, a
direct generalization of the computation of h(t) in Section 2.1 could yield a larger
number of possibilities that t is forced to be true by the clause having the largest
length z2 than by the clause with the length z1. This seeming incoherence does
not mean that the principle of computation described in Section 2.1 is not sound.
The reason is merely that the correlations are not estimated at the same scale
and therefore must be normalized. First, we point out that the reason the lengths
of clauses in I(t) are homogeneous and equal to 2 for 3-SAT formulae is that if
an occurrence of t occurs in a binary clause associated with only one literal, then
binary clauses which could forced t to be true are searched recursively through
only a chain of unary clauses preserving thereby the number of possibilities that
t is forced to be true. In presence of clauses with various lengths this property
no longer holds. More sophisticate structures could be considered such as trees,
but the computation of h(t) would turn out probably prohibitive. To overcome
the difficulty, we introduce a ”fictitious” literal with which we fill the clauses in
the set I(t) such that they have all the same length equal to the largest possible
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length of clauses in the sub-formula with which h(t) is evaluated. Then it must
be associated a reasonable value with this fictitious literal so that the evaluation
of the correlation of t makes sense. We choose to assign to it the mean value
of all values computed for the literals in the clauses where t appears. Finally
since the literal is fictitious we can choose adequately its truth value as false.
Hence there is no uncertainty about its truth value, the probability of being
false is 1, whereas the probability for ”real” literals to be false or true can
be roughly estimated (in a random assignment) at 1/2. Consequently each time
the fictitious literal is used its value is weighted by a factor 2. Thus we obtain a
complete normalization in the computation of the correlation of t with the rest
of variables. The normalization computation is to be done at every node of the
solving tree and is specific for each sub-formula associated with the considered
node. That is the reason why we say that we have to renormalize in the course
of the development of the solving tree.

3.2 The Backbone-Search Renormalized Heuristic bsrh

From a practical viewpoint the backbone-search renormalized heuristic is de-
scribed by the function hr(t) in Fig. 3.

This presentation of bsrh should not be considered as an implementation (it
would be very inefficient), it is just a formal description for the sake of clarity.
The computation carried out by hr(t) is as follows. t is any literal not assigned
a value at a current node of the solving tree and hr(t) is the score of t. k is the
maximum length of the clauses in the sub-formula associated with the considered
node.

The evaluation hr(t) is based on the sets Ij(t) of clauses of length j such
that for each of them if it is false then it forces t to be true unless a contra-
diction occurs. j varies from 2 (using the principle of the chains of unary clauses
described in section 2.1) up to at most k − 1 (the clauses containing at least t).
As previously for h(t), hr(t) can be evaluated at the level 1, 2, 3 . . . according to
a recursive computation, by setting the integer MAX to 1, 2, 3, . . . . The mea-
sure is considered all the more accurate as the level of recursive computation
is high. hr(t) is the result of a computation based on every set Ij(t). At level
1, this computation is given directly by the sum of products (1) in Fig. 3. The
literals l̄i are evaluated by the function eval(t), described in Fig. 4, which is a
generalization of the computation in the corresponding sum (1) in Fig. 1. pj(t)
is the number of occurrences of t in the clauses of length j. Each term of the
sum (1) represents the weighted number of possibilities that a clause of length j
of I(t) is false if one assumes that every occurrence of its negated literals can
be forced to be true in the clauses where they appear. The sum (2) adds all the
values associated with every evaluated literal of the clauses in all the sets Ij(t)
and (3) compute the renormalization coefficient. Finally (4) gives the evaluation
of hr(t) according to the renormalization computation principle described in the
preceding section. it must be noticed that, as for h(t), in the computation of
hr(t), it is not taken into account that a same variable can be met several times
with the same sign or opposite signs. As said previously in section 2.1, one can



496 Gilles Dequen and Olivier Dubois

Set i← 0, let t be a literal, let k be the maximum clause length of the considered
formula and let MAX, Sumeval and Cardeval be integers.
Integer hr(t)
begin

i← i + 1
Sumeval ← 0, Cardeval ← 0
for j ∈ {2, . . . , k − 1}

compute Ij(t)
if i < MAX
Sj ←

∑

(l1∨...∨lj)∈Ij(t)

hr(l̄1)× . . .× hr(l̄j)

Sumeval ← Sumeval +
∑

(l1∨...∨lj)∈Ij(t)

hr(l̄1) + . . . + hr(l̄j)

else
Sj ←

∑

(l1∨...∨lj)∈Ij(t)

eval(l̄1)×. . .×eval(l̄j) (1)

Sumeval← Sumeval+
∑

(l1∨...∨lj)∈Ij(t)

eval(l̄1) + . . . + eval(l̄j) (2)

end if
Cardeval ← Cardeval + j × |Ij(t)|

end for

E(lv)← Sumeval

Cardeval
(3)

return
∑

j∈{2, ... ,k−1}
Sj×E(lv)k−j−1×2k−j (4)

end

Fig. 3. the function hr(t) of the backbone-search renormalized heuristic

imagine that this event occurs all the more often as the evaluation level is high
and therefore the level must be limited in order that hr(t), as a measure of some
correlation, is not distorted. For that as well as for efficiency reasons, we have
applied in the implementation of the heuristic bsrh in kcnfs the two types of
limitations described in section 2.2.

3.3 Performance Comparison Results on Random 4-SAT, 5-SAT,
. . . Formulae

In the same line of the comparative experiments carried out for random 3-SAT
formulae, we compared the performances of kcnfs against most of the solvers
used for 3-SAT comparisons, which are also the best known solvers on random
k-SAT formulae for k > 3. Tables 6, 7 and Tables 8, 9 give the mean tree sizes
and the mean computing times respectively on samples of 1000 random 4-SAT
and 5-SAT formulae with a ratio clauses to variables around the SAT-UNSAT
transition. It appears that apart from kcnfs, the other solvers are not in the
same order according to their performances relating to the tree sizes or to the
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Let t be a literal, let k be the maximum clause length of the considered formula
and s be an integer.
Integer eval(t)
begin

s← 0
for j ∈ {2, . . . , k}

s← s + (pj(t)× 2k−j)
end for
return s

end

Fig. 4. Final evaluation function of a literal t

computing times. In contrast kcnfs has both the best performances relating to
the two criterions. Moreover as for 3-SAT formulae, the detailed results showed
that kcnfs was systematically faster than the others on any solved unsatisfiable
formula. Further experiments were carried out on formulae up to 8-SAT against
posit which appeared to be the best among the other solvers. The Fig. 6 show the
curves representing the ratio of the computing times of cnfs to those of posit as
a function of the numbers of variables of formulae from 4-SAT up to 8-SAT with
a ratio again around the SAT-UNSAT transition. It can be observed that the
steepness of the curves increases as the length of clauses becomes larger. This
confirms that the gap of performances of kcnfs with the other known solvers
enlarges as the length of clauses in random formulae grows.

Table 6. Mean tree sizes on hard random 4-sat formulae having 100, 130 and
150 variables with the solvers csat, posit, satz, OkSolver and kcnfs solvers

SAT
Solvers

unsat (N)
sat (Y)

100 V 988 C 130 V 1285 C 150 V 1482 C
(106 N) (94 Y) (80 N) (120 Y) (85 N) (115 Y)

mean #nodes mean #nodes in mean #nodes in
(std dev.) millions (std dev.) millions (std dev.)

csat
unsat 52080 (9298) 0.966 (0.151) 6.062 (0.967)

sat 15976 (16867) 0.342 (0.286) 2.361 (2.012)

posit
unsat 38016 (6443) 0.744 (0.124) 5.496 (0.906)

sat 17396 (9585) 0.385 (0.255) 2.778 (1.811)

satz
unsat 30610 (5144) 0.484 (0.081) 3.173 (0.531)

sat 9049 (7076) 0.159 (0.128) 1.249 (1.048)

OkSolver
unsat 24989 (4543) 0.375 (0.064) 2.381 (0.386)

sat 7040 (7781) 0.119 (0.119) 0.913 (0.751)

kcnfs
unsat 10450 (1740) 0.174 (0.026) 1.111 (1.903)

sat 2616 (2957) 0.051 (0.047) 0.410 (0.381)
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Table 7. Mean tree sizes on hard random 5-sat formulae having 60, 80, 95
variables with csat, posit, satz, OkSolver and kcnfs solvers

SAT
Solvers

unsat (N)
sat (Y)

100 V 988 C 130 V 1285 C 150 V 1482 C
(106 N) (94 Y) (80 N) (120 Y) (85 N) (115 Y)

mean #nodes mean #nodes in mean #nodes in
(std dev.) millions (std dev.) millions (std dev.)

csat
unsat 52080 (9298) 0.966 (0.151) 6.062 (0.967)

sat 15976 (16867) 0.342 (0.286) 2.361 (2.012)

posit
unsat 38016 (6443) 0.744 (0.124) 5.496 (0.906)

sat 17396 (9585) 0.385 (0.255) 2.778 (1.811)

satz
unsat 30610 (5144) 0.484 (0.081) 3.173 (0.531)

sat 9049 (7076) 0.159 (0.128) 1.249 (1.048)

OkSolver
unsat 24989 (4543) 0.375 (0.064) 2.381 (0.386)

sat 7040 (7781) 0.119 (0.119) 0.913 (0.751)

kcnfs
unsat 10450 (1740) 0.174 (0.026) 1.111 (1.903)

sat 2616 (2957) 0.051 (0.047) 0.410 (0.381)

Table 8. Mean computation time on hard random 4-sat formulae having 100,
130, 150 variables with csat, posit, satz, OkSolver and kcnfs solvers

SAT
Solvers

unsat (N)
sat (Y)

60 V 1290 C 80 V 1720 C 95 V 2042 C
(102 N) (98 Y) (123 N) (77 Y) (131 N) (69 Y)

mean #nodes mean #nodes in mean #nodes in
(std dev.) millions (std dev.) millions (std dev.)

csat
unsat 33511 (2210) 0.721 (0.054) 7.246 (0.602)

sat 15629 (8843) 0.316 (0.191) 2.960 (1.981)

posit
unsat 20729 (1419) 0.473 (0.035) 4.925 (0.437)

sat 11478 (6652) 0.236 (0.148) 2.989 (1.673)

satz
unsat 33645 (2954) 0.697 (0.075) 6.887 (0.668)

sat 16132 (9933) 0.314 (0.188) 2.53 (1.721)

OkSolver
unsat 19537 (1397) 0.364 (0.023) 3.310 (0.286)

sat 9046 (5656) 0.144 (0.110) 1.233 (1.042)

kcnfs
unsat 7902 (543) 0.147 (0.011) 1.456 (0.125)

sat 3096 (2263) 0.059 (0.044) 0.593 (0.414)

3.4 SAT 2003 Competition

kcnfs has been submitted to the SAT 2003 competition in the category of random
formulae. In this category, the performances of 34 solvers have been appreciated
on 316 benchmarks. 222 out of the 316’s have been solved by at least one solver
and 30 by only one. As stressed already in the experiments given before in this
paper, all solved unsatisfiable benchmarks have been solved by kcnfs. Moreover
kcnfs has solved the greatest number of benchmarks with respect to its competi-
tors. In terms of computing time kcnfs has been on average 35% faster than its
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Table 9. Mean computation time on hard random 5-sat formulae having 60,
80, 95 variables with csat, posit, satz, OkSolver and kcnfs solvers

SAT
Solvers

unsat (N)
sat (Y)

100 V 988 C 130 V 1285 C 150 V 1482 C
(106 N) (94 Y) (80 N) (120 Y) (85 N) (115 Y)

mean time mean time mean time
(std dev.) (std dev.) (std dev.)

satz
unsat 8.8s (1.5s) 188.1s (119.3s) 23m 16s (3m 50s)

sat 2.6s (2.1s) 62.1s (49.9s) 9m 05s (7m 32s)

OkSolver
unsat 7.7s (1.4s) 166.4s (26.1s) 21m 54s (3m 30s)

sat 0.1s (0.2s) 7.6s (7.7s) 5m 58s (9m 23s)

csat
unsat 5.3s (1.0s) 119.3s (18.9s) 15m 22s (2m 28s)

sat 1.6s (1.7s) 42.2s (35.5s) 5m 57s (5m 13s)

posit
unsat 3.9s (0.6s) 92.2s (15.5s) 12m 30s (2m 07s)

sat 1.9s (1.1s) 43.2s (30.1s) 6m 27s (4m 12s)

kcnfs
unsat 2.6s (0.4s) 57.7s (8.5s) 7m 12s (1m 12s)

sat 0.7s (0.7s) 16.7s (15.5s) 2m 33s (2m 23s)

best competitors (respectively for each formula). It has been declared the winner
in the random category as a complete solver.
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4 Conclusion

The new heuristic presented in this paper has yielded improvements in the per-
formances of solving hard random formulae with any length of clauses, on a scale
which had not been observed since a long time ago. This heuristic, as mentioned
in Section 2.1, has been designed with respect of the solving of unsatisfiable
formulae. Very efficient algorithms processing specifically satisfiable formulae as
walksat, [12], or sp, [13], for very large size of formulae, could be combined
with our heuristic in a dpll-type algorithm without damaging significantly the
performances on unsatisfiable formulae reported in this paper. It would be a
worthwhile operation to enhance on the whole the solving of random formulae.
In a more long-term view our feeling is that, in contrast with some pessimistic
conclusion having given previously in the literature as in [14], one can expect
much more considerable improvements than those reported in this paper, for
random as well as for structured formulae. This should come from a much more
understanding both of the structure of the space of solutions and the combinato-
rial structure of formulae. Contributions of various communities could be helpful
as progresses already achieved regarding the structure of space of solutions by
statistical physics studies in [15, 16].
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