
J Autom Reasoning (2006) 37:261–276
DOI 10.1007/s10817-006-9025-2

An Efficient Approach to Solving Random
k-SAT Problems

Gilles Dequen · Olivier Dubois

Published online: 20 October 2006
© Springer Science + Business Media B.V. 2006

Abstract Proving that a propositional formula is contradictory or unsatisfiable is
a fundamental task in automated reasoning. This task is coNP-complete. Efficient
algorithms are therefore needed when formulae are hard to solve. Random k-sat
formulae provide a test-bed for algorithms because experiments that have become
widely popular show clearly that these formulae are consistently difficult for any
known algorithm. Moreover, the experiments show a critical value of the ratio of
the number of clauses to the number of variables around which the formulae are the
hardest on average. This critical value also corresponds to a ‘phase transition’ from
solvability to unsolvability. The question of whether the formulae located around or
above this critical value can efficiently be proved unsatisfiable on average (or even
for a.e. formula) remains up to now one of the most challenging questions bearing
on the design of new and more efficient algorithms. New insights into this question
could indirectly benefit the solving of formulae coming from real-world problems,
through a better understanding of some of the causes of problem hardness. In this
paper we present a solving heuristic that we have developed, devoted essentially to
proving the unsatisfiability of random k-sat formulae and inspired by recent work in
statistical physics. Results of experiments with this heuristic and its evaluation in two
recent sat competitions have shown a substantial jump in the efficiency of solving
hard, unsatisfiable random k-sat formulae.

Key words satisfiability · solving · heuristic

G. Dequen (B)
LaRIA, Université de Picardie Jules Verne, 33 Rue St Leu, 80039 Amiens Cedex 1, France
e-mail: gilles.dequen@u-picardie.fr

O. Dubois
LIP6, CNRS-Université Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France
e-mail: Olivier.Dubois@lip6.fr

262 J Autom Reasoning (2006) 37:261–276

1. Introduction

The past decade has seen a fast growth of theoretical as well as algorithmic inves-
tigations on random k-sat formulae [3–5, 11, 17, 19, 20, 26, 34]. A random k-sat
formula consists of a subset of clauses chosen uniformly, independently and with
replacement, from the set of all possible clauses containing k distinct literals over
a set of n variables. Indeed, these formulae provide a rich model for exploring many
aspects of computing complexity. Even a link has been recently established between
average-case complexity and approximation complexity using random 3-sat formulae
[14]. Random formulae have, in contrast with formulae from the real world, some
typical structure that can be characterized by parameters giving means to determine
the source of the difficulty of solving these formulae. For example, it is now well
known that clause density, that is, the ratio of the number of clauses to the number of
variables, concentrates the hardest formulae on average around a critical value where
the probability that a formula has a solution drops rapidly from 1 to 0, producing a
transition from solvability to unsolvability. Also, it appears that it is easier for random
formulae to capture and to analyze features relevant to computational complexity
[2, 5, 13, 30, 35]. On the other hand, in the processing of formulae from the real
world, a part of the difficulty of solving can come from features specific to the original
problem [1, 12, 18]. The structural advantages that random sat formulae appear to
have probably account for the vast number of studies that they elicit. Confirming
this trend, over the past few years statistical physicists have shed new light on these
random formulae by focusing on the structure of the space of solutions. Let us
mention that a ‘solution’ from the physicists’ point of view can be, in a general sense,
an assignment to the variables of the formula that falsifies the minimum number
of clauses. They showed that variables could become locally or globally ‘frozen’
(i.e., have a unique value in some groups or all solutions) as a function of parameters,
foremost among which is the ratio of clauses to variables. These frozen variables lead
to a well-defined structure of the space of solutions in a typical random formula. Such
studies have led to theoretical as well as empirically convincing results [4, 27, 28]. The
new vision brought by these statistical physics studies has inspired us to design a new
heuristic for a dpll-type algorithm taking into account the structure of the space of
solutions.

It has been observed that in recent years, significant progress, sometimes dramatic,
has been achieved for satisfiable random formulae below the satisfiability threshold
[4, 19, 32]. On the other side, for random unsatisfiable formulae around or above the
threshold, advances observed in the same period have seemed much more difficult
[6, 9, 16, 24, 25]. Some misgivings had even been expressed as to the actual feasibility
of any significant improvement, for example, solving hard random unsatisfiable
formulae up to 700 variables. Yet, efficiently proving unsatisfiability of formulae is of
crucial importance in some fields such as automated reasoning, multiagent systems.
In this respect, unsatisfiable hard random formulae are challenging and represent
a valuable test-bed for new algorithms. As mentioned above, based on work in
statistical physics, we developed a new heuristic for proving unsatisfiability, which
has yielded a very significant increase in the efficiency of solving random unsatisfiable
formulae, making it possible, for example, to handle formulae with 700 variables
[31]. In the following sections of this paper, we first present an overview of how our
new heuristic on 3-sat formulae works. We then show how it has been generalized
for k-sat formulae and, more generally, for processing formulae with clauses having

J Autom Reasoning (2006) 37:261–276 263

various lengths. Finally, we present a summary of the performance of our heuristic
as implemented in the solver named kcnfs, which we have developed. We provide an
experimental comparison with a selection of the best current or previous solvers.

2. The Backbone-Search Heuristic

In [11], we presented a new branching variable selection heuristic for solving random
3-sat formulae using a dpll-type procedure [7]. We implemented our heuristic in a
solver named cnfs. We generalized this heuristic for solving random k-sat formulae
(k ≥ 3) in a new implementation named kcnfs [8]. The general ideas having led to the
development of cnfs and kcnfs are the following.

Let F be a 3-sat formula, and consider a dpll-type algorithm [7] for solving
F . Such an algorithm develops a solving tree until all clauses of F are satisfied by
values true or false assigned to the variables of F at nodes of the search tree, or
until no satisfying truth assignment has been found. It is called a complete algorithm
because it is able to give an answer for unsatisfiable as well as satisfiable formulae.
However, the approach to efficiently solve an unsatisfiable formula is quite different
from finding a satisfying assignment of truth values to the variables. In order to
solve unsatisfiable formulae efficiently, an implicit solving tree with as small a size
as possible is to be constructed. This is exactly the way we designed the heuristic
BSH that we describe below. The intuitive idea behind BSH is that a variable of the
backbone of a formula (if it exists) belongs to some cycles of a hypergraph for which
the vertices correspond to the literals and the hyperedges correspond to the clauses
of the formula. A variable that belongs to two symmetric cycles can be set neither to
true nor to false without producing a contradiction. In the subset of clauses, Figure 1,
from a given formula, the literal ā belongs to a cycle of the associated hypergraph and
then, if it is set to true, a contradiction occurs. It is a backbone variable for this set of
clauses. The backbone variables play a crucial role for the size of a refutation tree. If
the literal a, Figure 1, is chosen as the root of a subtree, as in the one on the left in
Figure 2, the contradiction generated by setting a to false is detected only once. On
the contrary, if a is chosen as an intermediate node, as in the subtree on the right in
Figure 2, then the contradiction due to a = false is detected several times. Now we
give a description of the heuristic BSH.

Figure 1 In the above set of 10
clauses the literal a has the
value true in all satisfying
assignments; a is called a
backbone variable of
these clauses.

264 J Autom Reasoning (2006) 37:261–276

a

a

aa

aa

a

a

the backbone variable ‘a’ of clauses the backbone variable ‘a’ of clauses

DPLL refutation subtree in which DPLL refutation subtree in which

in Figure 1 is chosen first in Figure 1 is not chosen first

Figure 2 Typical DPLL refutation tree according to whether the literal a of the set of clauses in
Figure 1 is given top priority or not for branching.

Let t be a variable of F ; t and t are the positive and negative literals respectively,
associated to the variable t. The main idea behind the BSH heuristic is as follows.
BSH(t) aims to measure the correlations of the literal t with all the other variables
of the formula through the clauses where t appears. In a practical way, the measure
of the correlation of a literal t with other variables is viewed as an estimation of the
number of possibilities that the literal t is forced to true, lest a contradiction occurs,
as a function of the truth values assigned to the other variables. More precisely, let
us take, for example, a clause where the literal t appears : (t ∨ u ∨ v). If both literals
u and v can be true in most truth assignments satisfying many (possibly all) clauses,
then t is a little correlated with the other variables. If one of the literals u and v must
be false and the other one is true in most truth assignments satisfying many clauses,
then t is a little more correlated with the other variables than in the previous case.
Finally, if both literals u and v are false in most truth assignments satisfying many
clauses, then t is strongly correlated to the other variables. Our heuristic is intended
to identify the variables for which both associated literals are strongly correlated with
the other variables, by means of the function BSH(t) given in Figure 3, and described
with a cinematic approach in the diagram, Figure 4. The branching variable chosen to
be assigned successively true and false at a current node of the solving tree is one of
the variables t having the highest score BSH(t) × BSH(t̄). The computation carried
out by BSH(t) is as follows.

The variable t is any literal not assigned a value at a current node of the solving
tree and BSH(t), its score. The evaluation of BSH(t) is based on the set I(t) of binary
clauses, any of which being false forces t to be true unless a contradiction occurs.
There are two cases to be considered. The first case is that one of the occurrences

J Autom Reasoning (2006) 37:261–276 265

Figure 3 Function BSH(t) of
the 3-sat branching variable
selection heuristic.

of t appears in a ternary clause such as (t ∨ u ∨ v). Then, if the binary clause (u ∨ v)

is false, t is necessary true, so that (t ∨ u ∨ v) is satisfied. The binary clause (u ∨ v)

is therefore put in the set I(t). The second case is that one of the occurrences of
t appears in a binary clause such as (t ∨ w). Then, one searches recursively for the
binary clauses that can force w̄ to be true. Such binary clauses consequently force t to
be true through the unary clause w or through a chain of unary clauses. These binary
clauses are also put in the set I(t). In this way, I(t) is the union of all binary clauses
that, if false, will force t to true either directly or indirectly (through unary clauses). A
sector of the circles in Figure 4 represents one binary clause of I(t) and takes part in
the evaluation of BSH(t) represented in the centers of the circles. The evaluation of
BSH(t) (independently of the level of accuracy) is the sum of the values computed
in all sectors.

estimation at Level N

Level N–1
Accuracy of
Level N–1

Accuracy of
Level N–1

Accuracy of
Level N–1

A
ccuracy of

L
evel N

–1
A

ccuracy of
L

evel N
–1

bsh0(v)

bsh0(u)1

1
*

4th clause (u v)4 4

11st clause (u v)1

2
2

2nd clause (u v)

3r
d

cl
au

se
 (u

 v

)
3

3

*
bsh0(u)2
bsh0(v)2

bsh0(u)
*

3
bsh0(v)3

bsh0(v)

bsh0(u)
*

4

4

(u v) i i (u v) i i
BSH(t) BSH(t)

*

*

*BSH(u1) BSH(v1)

B
SH

(u2)
B

SH
(v2)

BSH(v3)BSH(u3)

clause

in I(t)

clause

in I(t)

For all binary For all binary

estimation at Level 1

Accuracy of

Figure 4 Cinematic description of the function BSH(t) of the 3-sat branching variable selection
heuristic.

266 J Autom Reasoning (2006) 37:261–276

BSH(t) is evaluated at different levels of accuracy. The measure resulting from
BSH is considered the more accurate as the level of recursive computation increases
(see the circle on the right-hand side of Figure 4 and the line labeled (1) in Figure 3).
Practically, this recursion is limited to an empirical value in order to avoid conflicting
assignments at leaves of the recursive tree of computation. Nevertheless, if this case
occurs before the limit value is reached, a control subroutine aborts the current
BSH evaluation, and then the next candidate variable is evaluated. Moreover, BSH
evaluation is applied only within the top part of the refutation tree, since it is time-
consuming. This limitation is defined as a function of the proportion of clauses of
length 2 among the remaining clauses. At level 1, BSH(t) is given directly by the
sum of the products computed in the sectors of the circle on the left-hand side of
Figure 4, corresponding to the line labeled (2) in Figure 3. For a given literal x, let
bsh0(x) be the function 2 × p2(x) + p3(x), where p2(x) and p3(x) are the numbers
of binary and ternary clauses, respectively, and where x appears in the subformula
at the current node. The weighting of p2 by 2 is due to the fact that as a rough
estimate (for a uniform distribution of assignments), x has twice the probability of
being forced to true in a binary clause as against a ternary clause. Each product of
sectors of Figure 4 (for the left-hand side and right-hand side estimations) represents
the weighted number of possibilities that a binary clause (ui ∨ vi) of I(t) is false if
one assumes that every occurrence of ūi and every occurrence of v̄i are forced to be
true in the clauses where ūi and v̄i appear. To illustrate the computation of BSH at
level 1, let us consider, for example, the subset of clauses from a 3-sat formula in
Figure 5. The estimation BSH(a) on this subset of clauses is described in Figure 6.
For an estimation with level-1 accuracy (see the top of the Figure 6), the set I(a)

contains the clause (d ∨ e) derived from C1 by a direct implication of a set to false,
and the clause (h ∨ i) derived by successive implications from C2, C3, and C4. The
estimation of BSH(a) with level-2 accuracy is described at the bottom of Figure 6.
On the whole, BSH(t) may be interpreted as a measure of some correlation between
t and all other variables that can force t to be true, in the subformula at the current
node where BSH(t) is being evaluated. This measure can be computed recursively
at different levels of accuracy, as mentioned in the right-hand side circle of Figure 4.
The estimation of BSH(t) with level-N accuracy remains based on the set I(t) and

Figure 5 Set of clauses that
BSH is applied to in Figure 6.

J Autom Reasoning (2006) 37:261–276 267

estimation of BSH(a) with Level–1 accuracy

*
bsh0(h)

bsh0(i)

bsh0(d)

bsh0(e)
*

I(a)={(d e), (h i)}

BSH(i)

BSH(a)

I(d)={(b c)} I(e)={(h j), (r s)} I(i)={(l j)} I(h)={(k l), (m n), (o p)}

BSH(a)

* *

*
bsh0(b)
bsh0(c) * * * * * *

bsh0(h)
bsh0(j)

bsh0(r)
bsh0(s)

BSH(d) BSH(e) BSH(h)

bsh0(l)
bsh0(j)

bsh0(k)
bsh0(l)

bsh0(m)
bsh0(n)

bsh0(o)
bsh0(p)

estimation of BSH(a) with Level–2 accuracy

Figure 6 Estimation of BSH(a) on the set of clauses in Figure 5, with different levels of accuracy.

consists of the sum of the products computed in all sectors of the right-hand side
circle. Finally, if t must be true in all assignments satisfying the maximum number
of clauses (possibly all) of the subformula at the current node where BSH(t) is
evaluated, the correlation that BSH(t) intends to estimate must be the strongest,
and then BSH(t) should have one of the highest values among all values which it can
take at the node under consideration. In this sense, BSH(t) tends to find the variables
belonging to the local backbone of the subformula at the node being considered. The

268 J Autom Reasoning (2006) 37:261–276

chosen branching variable t is the one that has the highest score BSH(t) × BSH(t̄). In
other words, this final product tends to select for branching, the variable that has the
most chances of belonging to a local backbone of the subformula under its positive
and negative signs. This has an intuitive (and practical) consequence. It tends to
maximize the chances of producing unary clauses where t and t̄ appear in a refutation
subtree with a small mean depth. Then, backtracking is activated sooner than with
usual branching heuristics.

2.1. BSH vs MOMS Heuristic

The aim of this section is to give an accurate idea of the impact of the BSH heuristic
implemented alone in a basic dpll procedure. For this, we carried out experimental
comparisons with the well-known MOMS heuristic, which forms the basis of the
heuristics of complete solvers developed to solve random SAT formulae. The dpll
procedure that we implemented corresponds to the one described in [7], namely: Let
F be a SAT formula,

dpll(F)

1) If F contains at least one empty clause, then return UNSAT; if F is empty, then
return SAT.

2) Assign the truth value true to pure literals or literals of unit clauses and
consequently reduce the formula F . Iterate this operation while it is possible.

3) Select a branching variable x according to the heuristic MOMS/BSH.
4) dpll(F ∧ x); if UNSAT then dpll(F ∧ x̄).

Regarding the MOMS heuristic, let us recall that it selects, among the variables not
yet assigned a truth value, the one having the most occurrences in the shortest clauses.
In the framework of our comparative experiments, in order that the comparison is
as accurate and as rigorous as possible, we have implemented a modified MOMS
heuristic, more efficient than the basic version. Indeed, the computation of our BSH
heuristic includes a kind of look-ahead treatment. For this reason, in the implemen-
tation of MOMS, we added a look-ahead treatment that simulates what is done in
the computation of BSH. This additional treatment in MOMS consists, for each
literal under evaluation, in carrying out all possible unit propagations from setting
the evaluated literal to true. This treatment can detect early contradictions, therefore
leading to earlier backtracks, or can detect variables with a fixed truth value. These
experimental conditions guarantee as much as possible that the comparison of results
is actually based on the strategies of choice of branching variables by MOMS and
BSH. The experiments were done on random 3-SAT formulae located around the
satisfiability threshold, having 100, 200, 300, and 400 variables and 430, 850, 1,275, and
1,700 clauses. The computer used was equipped with an Intel Pentium IV, 2.6 GHz
processor and ran under a Linux operating system. The mean numbers of nodes of
search trees and the mean computing times obtained for MOMS and BSH are given
in Tables I and II, respectively.

The mean numbers of nodes in Table I for SAT as well as UNSAT formulae are
clearly in favor of BSH. Thus the sizes of trees developed by MOMS can be up to 14
times larger than with BSH on UNSAT formulae with 400 variables. Moreover, we
note that for each formula, the size of the search tree developed by BSH is always
much smaller than with MOMS. The gain factor with BSH in terms of tree size
increases as the number of variables of the formulae increases.

J Autom Reasoning (2006) 37:261–276 269

Table I Mean numbers of nodes developed by dpll with the MOMS and BSH branching heuristics
on 100 random formulae with 100, 200, 300, and 400 variables around the satisfiability threshold.

No. of variables No. of clauses Sat/Unsat MOMS mean nodes BSH mean nodes

100 430 Unsat 32 19
Sat 17 13

200 850 Unsat 1, 719 548
Sat 546 199

300 1, 275 Unsat 78, 721 12, 292
Sat 20, 341 3, 664

400 1, 700 Unsat 4, 252, 782 303, 448
Sat 827, 606 87, 650

Regarding the mean computing times given in Table II, comparisons turn out in
favor of BSH, as in the case of tree size. Note, in particular, that under the conditions
of these experiments, the BSH heuristic has been applied all along the develop-
ment of the search tree, which is very time consuming and so penalizes the global
efficiency of BSH. That is the reason that in cnfs or kcnfs, BSH is applied only
within the top part of the tree. In spite of this penalty, the computing time with
BSH can be eight times smaller than with MOMS on unsatisfiable formulae with
400 variables. As for the size of search trees, it can also be observed that the gain
factor in computing time with BSH increases as the number of variables increases.
Moreover the experiments have shown that limiting the use of BSH to the choice of a
branching variable where clauses of length 3 are involved, and stopping its use as soon
as this choice depends on clauses of length 2, the mean solving time for unsatisfiable
formulae with 400 variables already goes down to 122 s, which is better than any
solver of Figure 8. For example, for satz in its complete version the running time
is 145 s. All in all, these experimental results show clearly and with no ambiguity
that BSH carries out a selection of branching variable that is superior to the classical
strategies.

3. k-SAT Formulae

The measure of correlation of the literal t with other variables of a subformula,
computed by BSH(t), depends, on the one hand, on the length of the clause under

Table II Mean computing times of dpll with MOMS and BSH branching heuristics on 100 random
formulae with 100, 200, 300, and 400 variables around the satisfiability threshold.

No. of variables No. of clauses Sat/Unsat MOMS mean time BSH mean time

100 430 Unsat 0.01 0.01
Sat 0.01 0.01

200 850 Unsat 0.59 0.33
Sat 0.19 0.12

300 1,275 Unsat 43.19 11.18
Sat 11.24 3.56

400 1,700 Unsat 3, 291.04 416.33
Sat 640.32 120.60

270 J Autom Reasoning (2006) 37:261–276

consideration where t appears and, on the other hand, on the correlations of the other
literals themselves associated to t in this clause. Let us give the intuitive meaning of
these two factors of correlation. For the first factor, that is, the length of clauses, if t
occurs in the following clause of length 6, (t ∨ u1 ∨ v1 ∨ w1 ∨ x1 ∨ y1), its correlation
with the rest of the variables through (u1 ∨ v1 ∨ w1 ∨ x1 ∨ y1) is likely weaker in a
random formula than if it occurs in the following clause of length 3 : (t ∨ u2 ∨ v2)

through (u2 ∨ v2). As an extreme example, if t is a unit clause in a formula, t must
be set to true with any truth assignment to the other variables in order to satisfy
the maximum number of clauses of the formula. For the second factor, that is, the
correlations of other literals of the clause where t appears, if in the above clause, u2

and v2 are weakly correlated with the other variables of the formula, for example
if they are pure literals (which is an extreme case), then through a clause of any
length, however large, where t occurs, t is more correlated with the rest of the
variables than through (u2 ∨ v2). This latter factor is naturally taken into account
by the level of evaluation defined for BSH(t) in Figure 4, Section 2, whose principle
extends directly to clauses with various lengths (see also Figure 7). Contrary to the
principle described in the previous section, where the computation of BSH(t) on
a 3-sat formula (possibly simplified by a partial truth assignment to the variables)
is based on the set I(t) consisting solely of clauses of length 2, the computation of
BSH(t) on a formula with clauses of various lengths is based on a set I(t), which also
contains clauses of various lengths. This can bring about disparities in estimating the
correlations of distinct occurrences of t with the rest of the variables. For example,

estimation at Level N

2 *

1st clause (u v w ...)
1 1 1

tht clause (u v)
t t

K–P–1
2 *

1st clause (u v w ...)
1 1 1

RBSH(u1)
virtual
literal...

virtual
literal * ...*

K–P–1 virtual terms

Accuracy of
Level N–1

Accuracy of
Level N–1

K–3
*

virtual
literal*rbsh0(u)t rbsh0(v)t

RBSH(t)
P– clause (1 <P<K)

from I(t)
iiu v w i ...

1 * 1 * 1 * ...

K–P–1 virtual terms

* *...*
virtual
literal

virtual
literal

for a K-SAT formulafor a K-SAT formula

RBSH(t)

* *2 *
K–P–1

P– clause (1 <P<K)

from I(t)
iiu v w i ...

For all

For all

rbsh0(u) rbsh0(v) rbsh0(w)
RBSH(v1)

estimation at Level 1

K–3

Figure 7 Function RBSH(t) of the k-sat branching variable selection heuristic.

J Autom Reasoning (2006) 37:261–276 271

if two occurrences of t can be forced to true through two clauses of different lengths,
say z1 and z2, with z2 ≥ z1, a direct generalization of the computation of BSH(t) in
Section 2 could give a larger number of possibilities that t is forced to true in the
clause having the largest length, z2, than in the clause with length z1. This seeming
incoherence does not mean that the principle of computation described in Section 2
is not sound. The reason is merely that the correlations are not estimated at the same
scale and therefore must be normalized. As indicated in Figure 7, this normalization
consists in introducing a ‘virtual’ literal with which we fill the clauses in the set I(t)
so that they all have the same length, equal to K − 1 where K is the largest possible
clause length in the subformula associated with the current node. A reasonable value
of RBSH must be associated with this virtual literal, so that the evaluation of the
correlation of t makes sense. We choose to assign it, for a given level of accuracy,
the mean of all values computed for the literals belonging to clauses in the sets I
associated with a literal under evaluation at a current node of the search tree. Finally,
since the literal is virtual, we can choose adequately its truth value as false. Hence
there is no uncertainty about its truth value; the probability of it being false is 1,
whereas the probability for ‘real’ literals to be false or true can be roughly estimated
(in a random assignment) at 1

2 . Consequently, each time the virtual literal is used, its
value is weighted by a factor 2 (see the term 2K−P−1 of the products associated to
each sector of the circles of Figure 7). Thus we obtain a complete normalization in
the computation of the correlation of t with the rest of variables. The normalization
is to be done at every node of the solving tree and is specific for each subformula
associated with the node under consideration. That is what we mean when we say
that we have to renormalize in the course of the development of the solving tree.

Following the description we have made for BSH in Figure 4, the Renormalized
Backbone-Search Heuristic RBSH is described in Figure 7. The computation carried
out by RBSH is as follows. As with BSH, RBSH is the result of a computation based
on the set I(t). t is any literal not assigned a value at a current node of the solving
tree, and RBSH(t) is the score of t. K is the maximum length of the clauses in the
sub-formula associated with the node under consideration. For clauses of the set I(t),
any of which being false forces t to be true unless a contradiction occurs, P is the
length of the clause being considered. P varies from 2 (using the principle of the
chains of unary clauses described in Section 4) up to at most K − 1. As previously
for BSH, RBSH can be evaluated at different levels of accuracy using a recursive
computation (see the right-hand side circle of Figure 7). The higher the level of
recursive computation, the more accurate the measure is considered to be. At level
1 (see the left-hand side circle of Figure 7), this measure is given directly by the
sum of the values computed in the sectors of Figure 7. The function rbsh0(t) is a
generalization of bsh0(t) in Figure 4, described in the previous section. Thus rbsh0(t)
is defined as

∑
j∈{2,~...,K−1}

pj(t) × 2k− j, where pj(t) is the number of occurrences of t
in the clauses of length j. Each sector in Figure 7 represents the weighted number of
possibilities that a clause of length P of I(t) is false. Finally, the branching variable
chosen to be assigned successively true and false at a current node of the solving
tree is one of the variables having the highest score RBSH(t) × RBSH(t̄). Let us
take an example showing specifically how the renormalization is done. Consider
that x appears in the two following clauses: {(x ∨ a ∨ b ∨ d), (x ∨ c ∨ e)}; then the set
I(t) = (a ∨ b ∨ d), (c ∨ e). The renormalization consists in adding a virtual literal as
many times as necessary so that all clauses in I(t) have the same length. In the present
example, α is added to (c ∨ e) giving (c ∨ e ∨ α). Then the value associated with the

272 J Autom Reasoning (2006) 37:261–276

virtual literal α, namely rbsh0(α), is the mean (rbsh0(a) + rbsh0(b) + rbsh0(d) +

rbsh0(e))/4.

4. Experimental Results and Conclusion

The solver kcnfs is the dpll implementation we have first proposed in [11]. It
integrates BSH and RBSH into its branching variable selection heuristic. To date,
kcnfs remains the most efficient and robust solver for the purpose of determining
whether a random k-sat formula is unsatisfiable for arbitrary k.

Figures 8 and 9 provide comparative results in terms of mean computation times
between kcnfs and the solvers csat [9], posit [16], satz [24, 25], OkSolver [21] and
zchaff [29, 36]. These solvers are the best-known complete solvers for solving random
k-sat formulae. We have compared the performance of these solvers with kcnfs on
proving contradiction of unsatisfiable random 3-sat, 4-sat, 6-sat, and 8-sat formulae
where the ratio #clauses

#vars is set around the satisfiability threshold (i.e., respectively equal
to 4.25, 9.66, 44.2 and 180 [10, 15]).

Table III provides, for all solvers, the mean sizes of the refutation trees developed,
in terms of numbers of nodes, numbers of branches, or numbers of leaves. First, these
comparative results confirm that satz is designed especially to solve random 3-sat,
for which it yields good performance. The performance of satz decreases significantly
as k increases. For example, it can be observed in the comparison chart of mean
computing times on hard random unsatisfiable 8-sat formulae (Figure 9) that satz
is, on average, over twice slower than posit. It appears that posit, which is the more
generic implementation of dpll (with csat), remains for large k the best competitor
of kcnfs. zchaff was not able to respond in a reasonable time (less than 3 h). The
experiments involved random k-sat formulae up to k = 8. kcnfs exhibits each time
the best performance, such that the ratio mean time of the best competitor

mean time of kcnf s increases as k
increases. This observation shows that the advantage of kcnfs is mainly due to its
branching heuristic. Indeed, the more k increases, the fewer unit propagations and
various local treatments such as look-ahead, picking, and pickback [11], are executed

Figure 8 Comparison of mean
solving times between the best
of the main specialized solvers
on a set of 100 unsatisfiable
hard random formulae with
400 variables and 1,700 clauses.

[Li and Anbulagan, 97]

Solvers kcnfs
[Dequen and Dubois, 01 and 03]

M
ea

n
so

lv
in

g
tim

e
(i

n
m

in
ut

es
)

of
 H

ar
d

R
an

do
m

 U
ns

at
is

fi
ab

le
3-

SA
T

 f
or

m
ul

ae
 w

ith
 4

00
 v

ar
ia

bl
es

 a
nd

 1
,7

00
 c

la
us

es

zchaff
[Malik and Zhang, 01 and 04]

10

8

6

4

2

OkSolver v1.2
[Kullman, 02]

csat
[Dubois et al., 96]

posit
[Freeman, 96]

satz214/satz215.*

J Autom Reasoning (2006) 37:261–276 273

8-
SA

T
 U

N
SA

T
 f

or
m

ul
ae

 w
ith

 5
0

va
ri

ab
le

s
an

d
9,

00
0

cl
au

se
s

1500

1000

500

2000

kcnfs

zchaff

Solvers

>11800 s.

satz214/satz215.*

OkSolver
csat

posit

1500

1200

900

600

300

Solvers

kcnfs

posit

5000

3750

2500

1250

zchaff
10000 s.
csat

>11800 s.
OkSolver

satz214/satz215.*

kcnfs

Solvers

OkSolver

csat

posit

satz214/satz215.*

>11800 s.zchaff

4-
SA

T
 U

N
SA

T
 f

or
m

ul
ae

 w
ith

 1
50

 v
ar

ia
bl

es
 a

nd
 1

,4
50

 c
la

us
es

6-
SA

T
 U

N
SA

T
 f

or
m

ul
ae

 w
ith

 7
0

va
ri

ab
le

s
an

d
3,

10
0

cl
au

se
s

Figure 9 Comparison of mean solving times between the best of the main specialized solvers on
sets of 100 unsatisfiable hard random k-sat formulae for k equal to 4, 6, and 8, with 150, 70, and 50
variables, respectively, and with 1,450, 3,100, and 9,000 clauses, respectively.

Table III Comparison of mean sizes of search trees between the best of the main specialized solvers
on sets of unsatisfiable hard random k-sat formulae for k equal to 3, 4, 6, and 8 with 400, 150, 70, and
50 variables, respectively, around the threshold of satisfiability.

csat in #nodes
(std. dev.)

posit
in #nodes
(std. dev.)

satz in #nodes
(std. dev.)

OkSolver
in #nodes
(std. dev.)

kcnfs
in #nodes
(std. dev.)

3-sat, 400v,
1,700c

2.8 × 106 3.9 × 106 0.7 × 106 1.0 × 106 0.2 × 106

4-sat, 150v,
1,450c

8.6 × 106 7.7 × 106 4.3 × 106 3.4 × 106 1.9 × 106

6-sat, 70v,
3,100c

5.2 × 106 3.4 × 106 6.8 × 106 2.9 × 106 1.4 × 106

8-sat, 50v,
9,000c

5.8 × 106 3.3 × 106 7.0 × 106 3.5 × 106 1.9 × 106

274 J Autom Reasoning (2006) 37:261–276

in solving a formula. Hence, for large k the performance is mainly due to the branch-
ing choice heuristic. Finally, these experimental results clearly show the progress
achieved by the community over the last decade with regard to the resolution of
random problems.

All comparative experiments were made on a 1 GHz Linux PC. To date, kcnfs
remains the only solver able to answer the first challenge of Selman and Kautz
[31], initially proposed in [33]. Moreover, kcnfs won the international SAT ′2003
[22], SAT ′2004 [23] competitions in the category of UNSAT random formulae
with 34 and 55 competitors, respectively, and won SAT ′2005 in the whole random
category, sat and UNSAT with 43 competitors. The detailed results of the SAT ′2003
competition1 show that kcnfs solved all the UNSAT formulae solved by at least one
other competitor and that it solved formulae that were solved by none of the other
solvers. During the SAT ′2004 competition2 kcnfs remained the best solver in the
random UNSAT category. Moreover, for all random formula categories, kcnfs solved
the most new problems since the SAT ′2003 competition.2 These results confirm that
kcnfs, because of its branching variable selection heuristic, has a robust approach to
proving the unsatisfiability of random formulae.

Acknowledgments We thank the anonymous reviewers for their very useful comments, which
helped to improve the readability of the paper, and we are particularly grateful to one of them for his
very careful suggestions.

References

1. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints. In: Princi-
ples and Practice of Constraint Programming–CP2003: 9th Internatioanl Conference, LNCS, vol.
2833, pp. 108–122 (2003)

2. Beame, P., Karp, R., Pitassi, T., Saks, M.: The efficiency of resolution and Davis–Putnam proce-
dures. SIAM 31(4), 1048–1075 (2002)

3. Boufkhad, Y., Dubois, O.: Length of prime implicants and number of solutions of random CNF
formulae. Theor. Comp. Sci. 215(1–2), 1–30 (1999)

4. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiability.
Random Struct. Algorithms 27, 201–206 (2005)

5. Cocco, S., Monasson, R.: Heuristic average-case analysis of the backtrack resolution of random
3-satisfiability instances. Theor. Comp. Sci. 320(2–3), 345–372 (2004)

6. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in satisfiability prob-
lems. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 21–27 (1993)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. J. Assoc.
Comput. Mach. 5, 394–397 (1962)

8. Dequen, G., Dubois, O.: kcnfs: An efficient solver for random k-SAT formulae. In: International
Conference on Theory and Applications of Satisfiability Testing (SAT), Selected Revised Papers,
LNCS, vol. 6, pp. 486–501 (2003)

1 http://www.satcompetition.org
2 http://www.lri.fr/~simon/contest/results/

http://www.satcompetition.org
http://www.lri.fr/~simon/contest/results/

J Autom Reasoning (2006) 37:261–276 275

9. Dubois, O., Andre, P., Boufkhad, Y., Carlier, J.: SAT versus UNSAT. In: DIMACS Series in
Discr. Math. and Theor. Computer Science, pp. 415–436 (1993)

10. Dubois, O., Boufkhad, Y.: A general upper bound for the satisfiability threshold of random
r-SAT formulae. J. Algorithms 24(2), 395–420 (1997)

11. Dubois, O., Dequen, G.: A backbone search heuristic for efficient solving of hard 3-SAT Formu-
lae. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence. Seattle,
pp. 248–253 (2001a)

12. Dubois, O., Dequen, G.: The non-existence of (3,1,2)-conjugate orthogonal idempotent Latin
square of order 10. In: Proceedings of CP’2001, pp 108–120 (2001b)

13. Dubois, O., Mandler, J.: The 3-XORSAT threshold. In: Proceedings of the 43rd Symposium on
Foundations of Computer Science, pp. 769–778 (2002)

14. Feige, U.: Relations between average case complexity and approximation complexity. In: Pro-
ceedings of the Thirty-fourth Annual ACM Symposium on Theory of Computing, Montreal,
Quebec, Canada, pp. 534–543 (2002)

15. Freeman, J.W.: Improvements to propositional satisfiability search Algorithms. Ph.D. thesis,
Department of Computer and Information Science, University of Pennsylvania, Philadelphia
(1995)

16. Freeman, J.W.: Hard random 3-SAT problems and the Davis–Putnam procedure. Artif. Intell.
81(1–2), 183–198 (1996)

17. Goerdt, A., Jurdzinski, T.: Some results on random unsatisfiable k-SAT instances and approxi-
mation algorithms applied to random structures. Comb. Probab. Comput. 12(3), 245–267 (2003)

18. Grégoire, E., Ostrowski, R., Mazure, B., Sais, L.: Automatic extraction of functional dependen-
cies. In: Testing: 7th International Conference (SAT’04), Revised Selected Papers, LNCS, vol.
3542, Springer, pp. 122–132 (2005)

19. Hoos, H.H.: An adaptive noise mechanism for walkSAT. In: Eighteenth National Conference on
Artificial Intelligence, pp. 655–660 (2002)

20. Hoos, H.H., Stutzle, T.: Local search algorithms for SAT: An empirical evaluation. J. Autom.
Reason. 24(4), 421–481 (2000)

21. Kullman, O.: Heuristics for SAT algorithms: A systematic study. In: Extended abstract for the
Second Workshop on the Satisfiability Problem (SAT’98) (1998)

22. Leberre, D., Simon, L.: The essentials of the SAT 2003 competition. In: International Conference
on Theory and Applications of Satisfiability Testing (SAT), Revised Selected Papers, LNCS,
vol. 6 (2003)

23. Leberre, D., Simon, L.: Fifty-five solvers in Vancouver: The SAT 2004 Competition. In: Proceed-
ings of the 7th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2004, Revised Selected Papers, LNCS, vol. 3542, Springer, pp 321–344 (2005)

24. Li, C.M.: Exploiting yet more the power of unit clause propagation to solve the 3-SAT problem.
In: Proceedings of European Conference on Artificial Intelligence. pp. 11–16 (1996)

25. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence. Nagoya, Japan, pp.
366–371 (1997a)

26. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Lecture Notes
in Computer Science 1330, pp 341–355 (1997b)

27. Mezard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solutions of random satisfiability
problems. Science 297, 812–815 (2002)

28. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: 2+p-SAT: Relation of
typical-case complexity to the nature of the phase transition. RSA: Random Struct. Algorithms
15, 414–440 (1999)

29. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT
solver. In: Proceedings of 9th Design Automation Conference. Las Vegas (2001)

30. Rosenthal, J.W., Plotkin, J.W., Franco, J.: The probability of pure literals. J. Log. Comput. 9(4),
501–513 (1999)

31. Selman, B., Kautz, H.A.: Ten challenges redux: Recent progress in propositional reasoning and
search. Invited paper, Ninth International Conference on Principles and Practice of Constraint
Programming (CP 2003). Cork (Ireland) (2003)

32. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings
of the 12th National Conference on Artificial Intelligence, vol. 1, pp. 337–343. Menlo Park,
California (1994)

276 J Autom Reasoning (2006) 37:261–276

33. Selman, B., Kautz, H.A., McAllester, D.A.: Ten challenges in propositional reasoning and
search. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence
(IJCAI’97), pp. 50–54 (1997)

34. Singer, J., Gent, I., Smail, A.: Backbone fragility and the local search cost peak. J. Artif. Intell.
Res. 12, 235–270 (2000)

35. Slaney, J., Walsh, T.: Backbones in optimization and approximation. In: Proceedings of the 17th
International Joint Conference on Artificial Intelligence. Seattle, pp. 254–259 (2001)

36. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a boolean
satisfiability solver. In: Proceedings of ICCAD, 279–285, IEEE Press, Piscataway, NJ

	An Efficient Approach to Solving Random
	Abstract
	Introduction
	The Backbone-Search Heuristic
	BSH vs MOMS Heuristic

	K-SAT
	Experimental Results and Conclusion
	References

