@ Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages

A SIMPLIFIER BASED ON
EFFICIENT DECISION ALGORITHMS

Greg Nelson

and

Derek C. Oppen

Artificial Intelligence Laboratory
Computer Science Department
Stanford University
Stanford, California

Abstract

We describe a simplifier for use in program manipulation
and verification. The simplifier finds a normal form for any
expression over the language consisting of individual variables,
the usual boolean connectives, the conditional function cond
(denoting if-then-else), the integers (numerals), the arithmetic
functions and predicates +, - and <, the LISP constants, functions
and predicates nil, car, edr, cons and atom, the functions store
and select for storing into and selecting from arrays, and
uninterpreted function symbols. Individual variables range over
the union of the rationals, the set of arrays, the LISP s-expressions
and the booleans true and false. The constant, function and
predicate symbols take their natural interpretations.

The simphfier is complete; that is, it simplifies every valid
formula to true. Thus it s also a decision procedure for the
quantifier—free theory of rationals, arrays and s-expressions under
the above functions and predicates.

The organization of the simplifier is based on a method for
coinbining decisivn algorithrns for several theories into &« single
decision algorithm for a larger theory containing the original
theories. More precisely, given a set $ of functions and predicates
over a fixed domain, a satisfiability program for § is a program
which determines the satisfiability of conjunctions of literals
(signed atomic formulas) whose predicates and function signs are
in S. We give a general procedute for combining satisfiability
programs for sets S and T into a single satisfiability program for
S u T, given certain conditions on § and T. We show how a
satisfiability program for a set S can be used to write a complete
simplifier for expressions containing functions and predicates of S
as well as uninterpreted function symbols.

The simplifier described in this paper is currently used in
the Stanford Pascal Verifier.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense under Contract
MDAS03-76-C-0206 and by the National Science Foundation
under contract MCS 76-000327.

141

1. Introduction

In this section we will define the syntax and semantics of the
language accepted by our simplifier, and give some examples of
simplifications. We will also define a satisfiability program for a set
S of functions, predicates, and constants. Essentially, such a
program determines the satisfiability of conjunctions of literals
(signed atomic formulas) whose predicates and function signs are
in 3. The formal definition specifies the interpretations of the
elements of S in such a way that it makes sense to "merge"
satisfiability procedures for two sets S and T into one for Su T.
Section 2 gives our method for doing this, based on Craig’s
interpolation lemma ([Craig 1957)). Section $ shows how a
satisfiability procedure can be used to implement a simplifier for
arbitrary expressions. Section 4 contains some concluding remarks.

1.1 Language Accepted by the simplifier

The simplifier accepts the usual boolean connectives and
also the three-argument function cond (cond(p,a,b) means il p
then a else b). The other functions, predicates, and constants to
which the simplifier currently gives an interpretation are those of
the following theories: the theory of rationals under addition, the
theory of list structure with car, cdr, cons, atom and nil, and the
theory of arrays under storing (store) and selecting (select). The
following axioms are assumed for these functions.

Arithmetic: Z

Vx Yy Vz

[x+0=x
AX+-%x=0
Ax+Y+z=x+(y+1)
AX+Y=Y+X
AXSX
AXxSyvysx)
A{XSYyAY<KDX=Y)
AXSyAayszoxs51)
AXSYy2X+1SYy+1)
AO=1

A0 s 1]


 
Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.  To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1978 ACM 0-12345-678-9…$5.00



We also allow the other arithmetic relations <, », and z,
multiplication by a scalar, and the nuraerals 2, 3, .. These can be
defined in terms of 0, +, - and < in the usual way. The above
axiom is the axiom for a commutative group with a
translation-invariant total order. A model for the theory with this
axiom is the theory of rationals under addition and <. (Z is called
Z instead of Q for historical reasons.)

Arrays: V/

Yv VeViVj
select(store(v, i, e), j) = cond(i=}, e, select(v, j)

The simplifier accepts store and select, functions which
operate on arrays or vectors. select(V I) denotes the Ith component
of the vector V. We may write V[I] for select(V I). store(V LE) is
the vector whose Ith component is equal to E and whose Jth
component, for J # I, is the Jth component of V.

List Structure: L

¥x Vy

[ear(cons(X, Y)) = X

A edr{cons(X, Y)) = Y

A = atom(X) o> cons(ear(X), cdr(X)) = X
A = atom{cons(X, Y))

A atom(nil)]

Note that acychcity is not assumed; for instance, car(X) = X
is regarded as satisfiable.

Let A be the con junction of the above axioms. Given a
quantifier-free expression F, the simplifier tries to find the
simplest F* such that _4 entails F = F’ and returns F'. In particular,
if _4 entails F, the simplest F* such that A entails F = F’ is the
boolean constant true, which the simplifier will return. Thus the
simplifier is a decision procedure for the quantifier-free theory
axiomatized by _A.

The results in this paper apply to many logical theories, but
we will illustrate them with the theories which our simplifier
currently handles. We use Z, U/, and of as names for the theories
of rationals, arrays and list structure. We also use these letters for
the axioms for these theories (note that each theory has exactly one
axiom) and for their satisfiability programs.

Besides the satisfiability programs Z, L, and U, our
simplifier contains a program, called £, which determines the
satisfiability of conjunctions of equalities and disequalities between
terms containing uninterpreted functions and predicates. For
instance, & will return unsatisfiable given the formula
X =y Af(x)=f(y). £ is therefore a satisfiability program for the
quantifier-free theory of equality with uninterpreted function
symbols.

142

1.2 Examples of the Use of the Simplifier
Here are some examples of simplifications.

Po-P;
- P

X = F(X) o F(F(F(X))) = X;
true;

cons(X,Y)=Z > car(Z) + cdr(Z) - X -Y = 0,
true;

XsYAY+D<XA3%xD22%xD>V[2xX-Y]=V[X+D}
true;

V= st;re(store(V, LV, §, VI - VI = V(]}
true;

This formula exptesses the theorem that if the Ith and Jth
elements of a vector V are swapped, and if the resulting vector is
identical to the original vector, then the Ith and Jth elements were
the same.

1.3 Satisfiability Programs

The logical symbols are A, v, =, D, =, cond, Y and 3. A
parameter of a formula is any non-logical atomic symbol which
occurs free in the formula. Thus the parameters of the formula
Qv Vx P(x, f(x)) =a are Q, P, f, and a. The parameters of the
axiom for a theory are the primitive constants, functions, and
predicates of the theory. For instance, the parameters of o' are car,
cdr, cons, atom 3nd nil.

If A4 is an axiom, then a term is an _d-term if and only if
each of its parameters is a parameter of 4 or an individual
variable. We define _4-literal and _d-formula analogously. For
example, x = y and x < y + 3 are Z-literals but x < car(y) is not.

We call a term an &-term if none of its parameters are
parameters of any axiom, that is, if all its parameters are
uninterpreted. We similarly define {-literal and &~formula. (Note
that this definition only makes sense if we have already fixed the
other theories we are interested in; we will assume we have fixed

Z, L and V)

A satisfiability program for A s a program which
determines whether a conjunction Ly A.. AL, of A-literals is
satisfiable in the theory axiomatized by _/4, that is, whether
A A LiAawn L,
predicates and also their interpretation; this makes precise the
definition given in the introduction.

is satisfiable. 4 specifies a set of functions and

There are efficient satisfiability programs for £, U and f.
For Z, the simplex algorithm is very fast in practice ([Nelson
1976]). [Nelson and Oppen 1977] describe satisfiability algorithms
for o' and £ which determine the satisfiability of conjunctions of
length n in time om?) [Johnson and Tarjan 1977] have
improved the underlying algorithm to O(n ]og2 n). [Oppen 1978]



describes an algorithm which runs in linear time if list structure is
assumed to be acyclic. The satisfiability problem for U is
NP-complete [Downey and Sethi 1976}, but the expensive cases do
not seem to arise in practice.

2. Merging Satisfiability Programs

In this section, we show how to write a satisfiability program
for, say, Zad, given one for Z and one for oL’. It is not obvious
how te do this since there may be "mixed” terms in the con junction
like car(x) < edr(x) + I. Our method for merging satisfiability
programs for two theories will work whenever their sets of
parameters are disjoint. This is the case for Z, V and £

We will also show how a satisfiability program for a theoty
can be used in conjunction with £ to decide the satisfiability of
conjunctions of literals which contain uninterpreted function
symbols as well as parameters of the theory.

We will first illustrate how we merge satisfiability programs.
2.1 Example

Let F be the following unsatisfiable con junction:

X Y AY X + car{cons(0,X)) A PF(X)-F(Y)) A ~ P(0);

The first step is to make each atomic formula somogeneous,
that is, contain only parameters of one theory. We do this by
introducing new variables to replace terms of the wrong ‘type’ and
adding equalities defining these new variables. For instance, the
second conjunct would be a Z-literal except that it contains a
term car{cons(0,X)), which not a Z-term. We replace
car(cons(0,X)) by a new variable Gi, say, and add to the
conjunction the equality Gl = car{cons(0,X)) defining G1. By
continuing in this fashion we eventually obtain a formula F’ which
is satisfiable if and only if F is, such that each literal of F’ is
homogeneous. In our example, F’ is

is

X<sYAY <X+ GlaPG2) A~ P(GH)
A Gl = car(cons(GHX)) A G2 = G3 - G4
AG3=F(X)AG4=FY)AnGh=(;

We next divide F' up into three con junctions Fp, Foand F|.
F_ contains all the £-literals, F; all the Z-literals and F|_all the
j—literals. Here is F’ divided up into homogeneous parts:

F; Fg F

X<gY P(G2) = true Gl = car{cons(G5,X))
Y <X+ Gl P(GbH) = false

G2=G3-G4 G3%=FX)

G5=0 G4 = F(Y)

These three conjunctions are given to the three satisfiability
programs 2, £, and ['. Since each conjunction is satisfiable by
itself, there must be interaction between the programs to detect the
unsatisfiability. The interaction takes a particular, restricted form.
We require that each satisfiability program deduce and propagate

143

to the other satisfiability programs all (new) equalities between
variables entailed by the conjunction it 1s considering. For
example, if X s Y and Y < X are asserted to Z, it must deduce
and propagate to the other satisfiability programs the fact that
X =Y. The other satisfiability programs add X =Y to their
con junctions and the process continues. Eventually, either some
satisfiability program will find that the conjunction it has received
is unsatisfiable (in which case the original formula was
unsatisfiable) or else the propagations will stop with each
conjunction satisfiable. In this case, one more test, described in the
next section, must be made to guarantee that the originai formula
is satisfiable. (In our example, this test is not needed.)

Let us illustrate this by continuing with our example. The
satisfiability programs Z, &£ and ' have just received,
respectively, F, Fe and F. (V is not needed since there are no
UV -terms.)

At first, only o' can deduce an equality between variables:
the equality G1 = Gb. It propagates this equality. Z can make use
of this fact and propagates X =Y. £ now propagates G3 = G4.
When Z receives this new equality, it propagates G2 = G5. & now
has an inconsistent con junction, and signals unsatisfiable.

The following shows the literals.received by the satisfiability
programs, together with the propagated equalities listed in the
order in which they were propagated.

Z £ L
X <Y P(G2) = true G1 = car{cons(G5X))
Y <X+ Gl P(G5) = false
G2=0G3-G4 G3=F(X)
G5=0 G4 = F(Y)
Gl =Gh

X=Y

G3% =G4
G2 =0Gbh

unsatisfiable

There are several important observations to make.

First, the only interactions that take place between
satisfiability programs is by propagations of equalities between
variables. We prove in section 2.3 that this is sufficient for
completeness (it is sometimes necessary to do a "case-split” as
described in section 2.2).

It is important to realize that it is never necessary to
propagate disequalities, nor equalities other than those between
variables. This is intuitively plausible. For instance, after receiving
G1 = G5, there was no need for Z to propagate that Y s X or
that X =Y + G5, even though these wete deducible facts, since
none of the other satisfiability programs could make use of this
information - none of them knows anything about < or +. Further,
it ic plausible that no disequality, such as X =Y, need be
propagated, even though every theory shares = and -: the
disequality x = y is needed to prove inconsistency only if x =y is
deduced. But if some program deduces that x =y, it will propagate



this fact to the other programs, in particular the one that has
deduced x = y; the latter will deduce the inconsistency.

Finally, the only satisfiability programs that made use of a
new equality, such as x =y, were those programs whose
con junctions contained occurrences of both x and y. For instance,
when [’ propagated G1 = G5, only Z ever made direct use of this
equality. It is in fact the case that when equalities are propagated,
the only satisfiability programs that need to receive the equality
are those which already "know" about both variables in the
equality.

2.2 Joint Satisfiability Procedure

In this section we present a joint satisfiability procedure
which combines satisfiability algorithms for several theories. We
assume that we have just two theories A and £ with no common
parameters (the general case follows easily) and that we have
satisfiability procedures for determining if _#-literals, &-literals
and &-literals are satisfiable.

Given a conjunction F of literals, the joint satisfiability
procedure determines whether A AL AT is satisfiable. FA’ FB
and Fg are program variables containing con junctions of literals.

1. [Make F homogeneous] Assign con junctions to Fp, Fy, and Fg

by the method described in section 2.1, so that ¥ contains an

E-formula, F, an _d-formula, F, a &-formula, and
7. P . B3 >

FenF aFga A A8 is satisfiable iff F A 4 A & is.

2. [Unsatisfiable?] If any of FE’ A A FA, 2N FB are unsatisfiable,
return unsatisfiable.

3. [Propagate equalities] If any of the formulas FE’ Aa FA’
£ A Fy entail some equality between variables which is not
entailed by both of the other formulas, then add the equality as a
new con junct to whichever of FA, FB and FE do not entail it. Go to
2.

4. [Case split necessary] If any of the formulas Fp, A AFp
LA Fg entail a disjunction u; = v, v..vu =v_of equalities
between variables, without entailing any of the equalities alone,
then apply the joint satisfiability procedure recursively to the k
formulas F, A F AFeAu =V, w FpaFgaFpau =v . If
any of these formulas are satisfiable, return satisfiable. Otherwise
return unsatisfiable.

5. (If this step is reached, there are no equalities to propagate and
no case splits to be done, and F, F,, Fy are each satisfiable)

Return satisfiable.

Clearly if the procedure returns unsatisfiable, then F is
unsatisfiable. We will prove in the next section that the procedure
is also correct if it returns satisfiable.

The joint satisfiability procedure we have described here 1s
too crude to be implemented; it will be subsumed by the
simplification algorithm described in section 3.1.

144

We conclude this section with an example, involving UV and
Z, which illustrates case splitting. Suppose that after step 1, the
formulas are:

F,;, store(vieljl=xnavljl=y

\%
FZ: X>€AX>Y
FE: true

Each formula is satisfiable and the whole conjunction is
unsatisfiable, but there are no equalities to propagate in step 3. In
step 4, U propagates the disjunction x = e v X = y; each case leads
to a contradiction in Z.

As this example shows, case splitting is essential to the
completeness of the method. It is potentially very expensive, but we
have found that it does not occur frequently. In fact, U is the only
satisfiability procedure in our system which can cause a split. z
cannot, since a con junction of linear inequalities in rationals can
never entail a disjunction of equalities, uniess it entails one of the
disjuncts. (Otherwise we would have a convex set contained in the
union of two hyperplanes but not in either of them alone, which is
impossible.) We can also prove that £ and ' never produce splits.
We call theories which never produce splits convex.

When £ is extended to be a satisfiability program for the
integers, it no longer be convex, since for example
x=1lAay=2alsza252 entajls the disjunction x =z v y=2z
without entailing either disjunct alone. However, since we need
propagate only equalities between variables, not between variables
and constants, literals such as 12z 2100 will not cause splits
(unless there are 100 variables equal to 1, 2, .., 100 respectively!).

will

The theory of sets, which we intend to add to the simplifier,
is another example of a non-convex theory; for example, X € {y, z}
causes a case split.

2.3 Correctness of the Joint Satisfiability Procedure

The proof of correctness requires several lemmas. Qur first
goal is to define the residue of a formula. Essentially the residue is
the strongest boolean combination of equalities between variables
which the formula entails. For example the residue of the formula
X =fla)ay="fb) is and the residue of
XSYyAYyEXISK =Y.

a=box-=y,

We make the following assumptions about the underlying
formal system: (1) Individual variables are distinguishable from
function variables, and propositional vatiables are distinguishable
from other individual variables, and (2) There is no quantification
over functions or predicates. The results of this section hold
without these restrictions, but the proofs are easier using (2) and
less tedious using (1).

We define a simpie formula to be one whose only parameters
are individual variables. For instance, x = y v z = y is simple, but
X<y not. Thus an unquantified simple formula is a
propositional  formula atomic formulas either

is

whose are



propositional variables or equalities between individual variables.
Because of the next lemma, this also characterizes arbitrary simple
formulas.

Lemma 1: Every quantified simple formula F is equivalent
to some unquantified simple formula G. G can be chosen so that
its individual variables are all free individual variables of F.

Proof: Suppose F is of the form 3x ¥(x). If x is a
propositional varjable, we can take W(true)v ¥(false) as G.
Otherwise, let ¥, be the formula resulting from W by first
replacing any occurrences of X = X and X = X by true and false
respectively, and then replacing any remaining equality involving
X by false. Then, if v, ., v, are the parameters of ¥, F is
equivalent to ‘I/O v \I/(vl) VoV ‘I’(vk), since, in any interpretation,
x will either equal one of the v, or else be different from all of
them. By repeatedly eliminating quantifiers in this manner, we will
eventually obtain an equivalent quantifier-free formula whose
only variables ave free variables of F.

(If restriction (2) above is lifted, Lemma 1 holds only if we
allow simple formulas to contain equalities between function
variables. For example, Vx f(x)=g(x) is a quantified simple
formula equivalent to the simple formula f = g.)

Lemma 2: (Craig’s interpotation lemma) If F entails G, then
there exists a formula H such that F entails H and H entails G,
and each parameter of H is a parameter of both F and G.

Proof: see [Craig, 1957].

Lemma 3: If F is any formula, then there exists a simple
formula Res(F), the residue of F, which is the strongest simple
formula that F entails; that is, if H is any simple formula entailed
by F, then Res(F) entails H. Res(F) can be written so that its only
variables are free individual variables of F.

Proof: Let {G,} be the set of all simple formulas which F
entails. For each G)\, choose H>\ so that Fo H)\ > G)c the only
parameters of H, are parameters of both F and G,, and H, is
unquantified. The existence of H, is guaranteed by lemmas | and
2. Now, each H, is a propositional formula whose atomic formulas
are propositional variables which are parameters of F or else
equalities between individual parameters of F. An infinite
conjunction of propositional formulas over a finite set of atomic
formulas is always equivalent to some finite propositional formuia
over these atomic formulas, so there is a finite formula H which is
equivalent to the con junction of all the H,, whose only parameters
are free individual parameters of F. But any simple formula G,
entailed by F is entailed by some H,, and so by H. We can
therefore take H to be the residue of F.

1f 4 is an axiom, the _{-residue of F is the residue of
A AF. Thus the Z-residue of X <Y AY <X is X =Y. When
no confusion can result, we will not specify the axiom.

Here are some examples of residues.

Res(x=f(a) A y=f(b)) = a=b > x=y
Res{x=store(v, i, e)[j]) = i=j > x=e
Res(x=store(v, i, e)[j1 A y=v[j}} = cond(i=j, x=e, x=y).

(Note that the addition of an individual variable as a "label"
affects the residue.)

Res(x + y-a=-b>0) = ~(x=any=b) A~ (x=b A y=a)
As a final example to relate the notion of residue to that of

joint satifiability, here are the residues of the formulas which
appeared in the example of section 2.1:

bd £ L

X <Y P(G2) G1 = car{cons(G5,X))
Y<X+Gl -P(G5)

G2=0G3-G4 G%=FX)

Gh=0 G4 = F(Y)

G5=G1l = X=Y A G3=G4 = G2=-G5
G2%xGhAX=Y>G3=04
Gl =Gb

As we found in section 2.1, the residues are inconsistent. An
essential fact needed for proving the correctness of the joint
satisfiability procedure is that these residues are always inconsistent
if the original formula is. This is a consequence of the following
lemma.

Lemma & If A and B are formulas whose only common
parameters are individual variables, then Res(A A B)

= Res(A) A Res(B).

Proof: Obviously the left side of the equivalence entails the
right side, so we need only show the converse.

From A A B > Res(A A B) we get A > (B o Res(A A B)) and
so, by Craig’s interpolation lemma, there is a formula H entaiied
by A which entails B > RestA A B) and whose only parameters are
parameters of A and B. But these must be individual variables, so
H is simple and therefore Res(A) > (B » Res(A A B)). Writing this
as B o (Res(A) » Res(A A B)), and observing that the right hand
side of this is simple, we have Res(B) > (Res(A) o Res(A A B)), or
Res(A) A Res(B) > Res(A A B), which proves the lemma.

Now we are ready to prove the correctness of the Joint
Satisfiability Procedure.

We will prove that if step 5 is reached, F is satisfiable. It
follows, by induction on the depth of recursion, that the procedure
is also correct whenever step 4 returns satisfiable.

To show that F is satisfiable, it suffices to show that
Res(FE AA AF, AB AFy) is not false. But by lemma 4, this is
equivalent to Res(FE) A Res(A A FA) A Res(B A FB). Thus it
suffices to show that when step 5 is reached, the con junction of the

145



residues of the three formulas is satisfiable.

If step b is reached, FE, FA’ and FB all entail the same set of
equalities between variables. Let $ be this set of equalities, and let
T be the set of all other equalities between variables of F. We
claim that the interpretation which makes every equality in S true
and every equality in T false will satisfy Res(FE), Res(A A FA),
and Res(B A Fg). For if it does not satisfy, say, Res(Fg), then
Res(FE) would entail the disjunction of all equalities in T. But if
this were the case, step 4 would have caused a case split and step 5
would never have been reached.

3. Simplification based on Satisfiability Programs.

In section 3.1 we define what we mean by an incremental,
resettable satisfiability program. In section 3.2, we describe how
such programs can be used to implement a simplification
procedure, which is a generalization of a joint satisfiability
procedure. In section 3.8 we discuss some aspects of the efficiency
of our simplification procedure. In section 3.4 we discuss some of
its deficiencies.

3.1 Incremental, Resettable Satisfiability Programs

An incremental satisfiability procedure is one which accepts
literals one by one and which can determine at any time whether
their conjunction is satisfiable. If in addition it can mark its state,
accept more literals, and later return to the marked state by
"undoing” the literals which were asserted after the mark, it is
called resettable.

From now on we wiil assume that all the satisfiability
programs we use are incremental and resettable, and that they
propagate the equalities and disjunctions of equalities which are
entailed by the conjunctions they have received. More precisely, a
satisfiability program for a theory A consists of a global data
structure, CONTEXTA, representing  con junctions of
A-literals, together with the following functions for manipulating
it.

for

If Q is the
CONTEXT,, then:

conjunction currently represented by

ASSERTA(P) where P is a literal, changes CONTEXT, to
represent Q A P. If Q A P is unsatisfiable, ASSERTA(P) returns
false. Otherwise, if there are any equalities between variables
which are entailed by Q A P but not by Q, then ASSERTA(P)
returns the conjinction of all such equalities. Otherwice, if there
are any disjunctions of equalities between variables which are
entailed by QA P, then ASSERT,(P) returns one of these
disjunctions. Otherwise, ASSERT ,(P) returns true.

PUSHA() saves the current state of CONTEXTA without
changing the con junction that it represents.

POPA() restores CONTEXTA to the state it was in just
before the last call to PUSHA().

SIMPA TOMA(F). where F is a non-boolean expression or a

146

boolean constant, returns an expression F equivalent to F in this
CONTEXTA. F’ is the normal form for F in this context. For
example, SIMPATOM (x + 0) returns X and
SIMPATOM(x -y) returns 0 if x=y fis entailed by Q.
(SIMPATOMA will only be called when @ is consistent).

Any decision algorithm can theoretically be used to
implement a satisfiability program with these properties. However,
it generally requires considerable effort to construct an efficient
satisfiability program from an efficient decision algorithm.

We have implemented satisfiability procedures for 2,0,
and &. The program for £ is described in detail in [Nelson 1976].
[Nelson and Oppen 1977] describe the data structure used by all
programs except Z, and describes the programs for & and JL.
The satisfiability program for U is trivial it signals splits
whenever it finds a term of the form select(store(..)..); that is, it
does the obvious split required by its axiom.

Before giving the simplification algorithm, we define the
auxiliaty function ASSERT*, which accepts an arbitrary literal,
splits it into homogeneous pieces, and calls the appropriate
assertion functions. We define it for the case where there are
satisfiability programs for two theories A and 8.

In this program, PE’ PA, PB, QE’ QA’ QB are variables
containing formulas.

ASSERTX(Q):

1. Divide Q into homogeneous pieces QE, QA, and QB as described
in section 2.

2. Set P_« ASSERTE(QE); PA « ASSERTA(QA);
PB « ASSERTB(QB)

3. If any of PA, PB, PE are false, return false.

4. If any of P,, Pg, Pp are disjunctions, return one of these
dis junctions.

5. If all of PA' PB, PE are true, return true.

6. (One or more of the formulas are con junctions of equalities, and
the others are true. This step will propagate the equalities.) Set
each of the variables QE QA' and Q{3 to be the formula
P_ APy A Pp andgoto 2.

We define the functions PUSHx and POPx; they call the
push and pop functions for each of the satisfiability algorithms.
We also assume the existence of a function SIMPATOMx which
takes an arbitrary term and simplifies it using the information in
CONTEXTA, CONTEXTE, and CONTEXTB. It does this by
calling the SIMPATOM functions for these three theories. We
omit the details. ASSERTx%, PUSHx, POP%, and SIMPATOMx
are used by the simplifier as a satisfiability program accepting
arbitrary literals of the language.

We have four observations to make about these functions.



First, a term t in an inhomogeneous literal which has been
replaced by a new variable v in step 1 of some call to ASSERT*
may in a subsequent call be replaced by another new variable w.
This is all right, since both t = v and t = w are sent to the relevant
satisfiability program.

Second, a record is kept of the individual variables
generated as labels for terms in step 1, so that SIMPATOMx can
put the literals back together, replacing generated labels by the
terms they represent.

Third, it is not necessary to send all the equalities to all the
satisfiability programs in step 6. As mentioned in section 2.2, an
equality need only be sent to a satisfiability program if both
variables in the equality are parameters of the conjunction
represented in the program.

Fourth, it is important to note that ASSERT*, PUSHx,
POPx, and SIMPATOMx do not form a satisfiability program,
since ASSERTx* may return a disjunction without doing a case
split to determine if any of the disjuncts are satisfiable. It would be
possible to change ASSERT* to investigate each branch of the
disjunction, but this is not delicate enough to be of use in a
simplifier. When a case split occurs for which some, but not all, of
the cases are satisfiable, the simplifier needs to kuow whick
branches of the split are satisfiable. For example, consider the
problem of simplifying x < {4, -6} A x > 0 to x = 4. The simplifier
must discover that the satisfiable branch of the split is the one in
which x = 4. This is why ASSERT* returns the disjunction to the
simplifier; the latter does the case split as described in the next
section.

3.2 Cond-style simplification
In this section we will use LISP list notation for expressions.

QOur simplifier first puts expressions into cond normal form.
(This is similar, but not identical, to the cond normal form in
[McCarthy 1963]) An expression is defined to be in cond normal
form if the following holds.

(1) The expression does not contain any boolean connectives
other than cond. Thus A A B is replaced by the equivalent (cond
A B false), and ~A by (cond A false true).

(2) No first argument to a cond is a cond. Thus (cond
(cond P A B) G D) is replaced by (cond P (cond A C D) (cond B
C D).

(3) No expression of the form (cond P A B) is the argument
to any function other than cond; thus (F (cond P A B)) is replaced
by (cond P (F A) (F B)).

(4) Every boolean subexpression (other than constant
subexpressions true and false) is the first argument to a cond. For
instance, a single atomic formula P which is not the first argument
to a cond is replaced by (cond P true false). F(X=Y) is
successively replaced by (F (cond (= X Y) true false)) and (cond

147

(= X Y) (F true) (F false)).

(In practice, the transformation required by clause 4 is not
carried out if the subexpression is a second or third argument to
cond, since this would waste space. The cond normal form of
(cond P A B), if A and B are boolean, is {cond P (cond A true
false) (cond B true false)) but we store it as (cond P A B). In the
discussion below, we assume that the transformation has been
made. We will not consider here how to determine whether a
subexpression is boolean.)

Cond normal form is not a canonical form, since two
syntactically different expressions, each in cond normal form, may
be logically equivalent.

An expression in cond normal form corresponds naturally to
a binary tree whose nodes are labelled with atomic formulas. We
call this tree the cond tree for the expression. To the expression
(cond P A B) corresponds the tree whose root is labelled with P,
whose left son is the tree for the expression A, and whose right son
is the tree for the expression B. The tree for any non-cond
expression E is a node with outdegree zero labelled with E. Thus
every node in a cond tree is either an internal node with two sons
and a boolean expression as label, or a leaf node whose label is
either non-boolean or one of the constants true or false.

The maximum number of nodes in the cond tree for an
expression of length n may be exponential in n. But, by sharing
structure, the tree can be represented as a directed graph, and the
amount of storage required is linear in n.

Let N be a node of the tree. Then <N1 N2 Nk> is the
branch to N if N1 is the root of the tree, Nk = N, and, for each
1gi<k, Ni+1 is a son of Ni' The context at N is defined to be the
con junction L1 A ALy, where each L, is the label of N, if
N;,q is the left son of N, and the negation of the labei of N,
otherwise.

The context of a node is exactly the condition that must
hold for an evaluator to reach the node during evaluation of the
expression. That is, if the conditional expression is regarded as a
program fragment, the context of a node is the strongest “invariant
assertion” on the arc leading to the node. For example, consider the
following expression in cond normal form: (cond P (cond Q A B)
(cond R C D)). The context of the node for B, that is, P A ~Q, is
the condition that B would be evaluated if the whole expression
were evaluated.

It follows that the disjunctive normal form of a formula is
the disjunction of the contexts of the leaves labelled with true in
the cond tree for the formula. Cond normal form is much more
compact than (traditional) disjunctive normal form because, in the
former, disjuncts are represented as branches in a tree (or paths in
a directed graph) and thus may share structure.

To simplify an expression, the simplifier traverses its cond
tree, maintaining as it does so a representation for the context of
the node it is visiting. It ignores nodes whose contexts are
inconsistent.



Besides pruning away the branches which are inconsistent,
the simplifier collapses together branches to leaves with equivalent
labels. If the expression is a valid formula, every leaf which 1s
reached will be labelled true; all these branches will be collapsed,
and true will be returned. Similarly an unsatisfiable formula
simplifies to [alse.

The following algorithm simplifies a formula F, which we
assume is in cond normal form. NORMALIZE is a function which
returns the cond normal form of its argument.

SIMPLIFY(F):
1. If F is not of the form (cond P A B), return SIMPATOM(F).

2. F is of the form {(cond P A B). Call PUSHx(). Set
Q « ASSERTx(P). If Q =false, then POPx() and return
SIMPLIFY(B). (P cannot be true, so F is equivalent to B in the
context in which it appears. Furthermore, the context of B is
equivalent to the context of F.)

If Q =true then set AA « SIMPLIFY(A). Otherwise, set
AA « SIMPLIFY(NORMALIZE({cond Q A NIL)). (In this case,
Q_is a disjunction. The third argument to the cond is irrelevant,
as explained below.) Call POPx(), and go on to step 3.

3. Call PUSHx(). Set Q « ASSERTx(-P). If Q = false, then
POPx() and return AA. (P cannot be false, so F is equivalent to A
in the context in which it appears, and the context of A is
equivalent to the context of F.)

If Q-=true then set BB « SIMPLIFY(B). Otherwise, set
BB « SIMPLIFY(NORMALIZE((cond Q B NIL))). Cali POPx(),
and go on to step 3.

4. If AA = BB, return AA. Otherwise, let P = SIMPATOM(P). If
AA =true and BB =false, return P. Otherwise return the
expression (cond P AA BB).

Note how propagations are "sphced” into the forniula. Fou
instance, suppose that ASSERT(P) returns a disjunction D v E in
step 2. We simplify the normalized form of (cond (D v E) A NIL),
which is (cond D A (cond E A NIL)). In simplifying this
expression, A is simplified twice, once assuming D and once
assuming E. The NIL is never reached, since its context, ~D A -E,
is inconsistent with the context of F.

We will now skeich the proof of the completeness of the
algorithm. We say that the context of a node is convex if it does
not entail any disjunction of simple equalities without entailing
one of the disjuncts. Whenever the context of its argument is
non-convex, SIMPLIFY calls itself recursively on some cond
expression. Thus whenever its argument is not a cond expression,
its context is convex. The proof of cotrectness of the joint
satisfiability algorithm shows that if a context is convex, and no
satisfiability algorithm has propagated false, then it is consistent.
Therefore whenever SIMPLIFY returns from step I, the context is
consistent, If F is valid, every leaf of its cond tree with a consistent

148

context is labelled with true, so every term returned in step 1 is
true. It follows by induction that AA and BB are always true,
and therefore that the algorithm is complete.

3.3 Comparison with DNF-style Theorem Proving

We do not know how to give an adequate analysis of our
simplifier; since its behaviour in practice is much better than its
worst case behaviour.

Irstead, we will compare our approach, using coad normai
form, with an obvious alternative approach, using disjunctive
normal form, which we call a DNF-style approach. We assume
that we are only interested in proving validity of formulas and are
not interested in simplifications of arbitrary expressions.

We assume that the formula is represented as a cond tree
with n internal nodes.

The most cbvious algorithm to prove the formula is to put
its negation into disjunctive normal form and to test each disjunct
for unsatisfiability. This corresponds to testing that the context of
each leaf labelled with false is unsatisfiable. The standard
DNF-style approach builds up the context for each leaf from
scratch, that is, from the root of the cond tree. The number of calls
to ASSERT equals the sum, taken over all leaf nodes labelled with
false, of the length of the branch to the leaf. This sum varies fromw
O(n) to O(n“), and has an average value of O(n1'5), if one
considers all binary trees with n internal nodes and all externa
node labellings with true or false to be equally likely. There ar
no calls to PUSH or POP. A non-resettable satisfiability progran
can be used.

Qur algorithm makes n calls to PUSH, n calls to POP, anc
on calis to ASSERT. Therefore, DNF-style algorithms minimiz
(to zero) the number of calls to PUSH and POP, while ow
algorithm minimizes the number of calls to ASSERT. Tt
determine which method is better, we would need to know the
expected number of cails to ASSERT which each algorithm make
on realistic input distributions and the relative costs of resettabl
satisfiability aigorithms and non-resettable ones.

The formulas which arise in the Stanford Verifier are oftel
implications between conjunctions of literals. (Formulas with thi
structure arise in program verification whenever the invarian
assertion on a simple loop is a conjunction of literals.) If there ar
n conjuncts in the antecedent of such a formula and m con junct
in the consequent, then the disjunctive normal form of th
negation of the formuia has length m{n + 1), while the cond tre
has only m+ n internal nodes. A DNF-style algorithm ca
therefore make as many as m{n+1) calls to ASSERT, while ou
algorithm will make at most m + n calls t6 ASSERT, PUSH an
POP. On this sort of example, our approach seems superior.



3.4 Finding the Simplest Form

In this section, we will note some problems with our present
simplification algorithm. These problems do not arise when our
simplifier is used as a theorem prover, but only when it is being
used to simplify expressions which do not simplify to an atomic
symbol such as true. These problems arise in the design of any
simplification algorithm.

First, a problem common to all normal forms is that they
may lose some of the structure of the original expression. It 1s hard
to recover this structure if the expression does not significantly
simplify. For instance, using cond normal form, the formula
(A vBvC)a(DvEvF)is "simplified” to

(cond A (cond E true (cond D true F))
(cond B (cond E true {cond D true F))
(cond C (cond E true {(cond D true F))
false)))

and (cond E true (cond D true F)) is duplicated in three places.
Our simplifier actually converts this formula back to a formula
involving the usual boolean connectives, but the present version of
the simplifier does not find the original (and simplest) form of the
expression. This has not been a serious problem in our system; it
only becomes a problem when the original formula is not
simplifiable and is in a form close to conjunctive normal form.

Another problem occurs when simplifying conjunctions like
XSyAany<xax=y The simplifier discovers that the last
equality is redundant and
X <y Ay<XR instead of to X = y. (Had the equality appeared first,
both inequalities would have been removed as redundant.) There
does not seem to be any way to handle this problem without
extending the set of primitives for manipulating contexts. For
example, if a call to ASSERT made earlier conjuncts in the
context redundant, this might be detected and exploited. It
probably would not be too difficult to modify ASSERT in this
manner, but it might create unacceptable complications in the
simplification algorithm.

simplifies the conjunction to

A significant problem concerns implementing the test
AA = BB in step [4] of our simplification algorithm. This is
intended to collapse branches of the cond tree which lead to
identical results; for example (cond P 1 1) should simplify to 1. If
AA or BB are atomic symbols, there is no problem. If they contain
conds, testing for logical equivalence is possible but probably
impractical. If they contain no conds, then testing them for
equality (using the lisp EQUAL) will usually be sufficient, if
SIMPATOM puts expressions into a canonical form. However
there is a difficulty: consider (cond (= X 1) (F 1) (F X)), which we
would like to simplify to (F X). Qur SIMPATOM chooses (F 1),
not (F X), as the canonical form when X = 1 is known, so in step 4
AA is (F 1) and BB is (F X). A completely adequate test for
collapsing the two branches would require testing whether Q A P
entailed AA = BB, in which case BB should be returned,
otherwise whether Q A -~P entailed AA = BB, in which case AA
should be returned. (Q is the context of F, which is of the form
(cond P A B)) Again the overhead may be prohibitive. This

problem actually arises frequently and is more troublesome in
practice than any of the other problems we have mentioned in this
section.

4. Notes

The language accepted by the simplifier is richer than that
described in section 1. All predicates (including =) and boolean
connectives are considered boolean-valued functions (that is,
functions which evaluate to the booleans true and false). Terms
are allowed to contain arbitrary boolean-valued expressions.
Expressions are allowed as functions. The following simplifications
illustrate this generality.

F(true) o F(X v - X}
true;

cond(true, F, G)(X)
F(XO;

The axioms assumed by our simplifier do not enforce strict
typing. For instance, cons(X, Y) + store(V, I, E) is an acceptable
expression (that the simplifier will simplify to itself) We plan to
add type predicaes (or type constants and a type function) to the
next version of our simplifier.

The simplifer does not store con junctions of atomic formulas
as strings or LISP s-expressions, but in a graph with one vertex
for each term and subterm in the conjunction. Another data
structure is used to represent an equivalence relation on the
vertices. Two vertices are equivalent if the terms they represent ate
known to be equal in this context. To propagate an equality, a
satisfiability procedure merges two equivalence classes; this can be
done very efficiently. The details of this representation are given
in [Nelson and Oppen 1977]

Using this representation, it is not necessary io generate
"labels" for terms which appear in inhomogeneous literals.

This representation also allows the efficient implementation
of other routines in our simplifier more efficient, such as PUSH
and POP. Obviously, one way to implement PUSH would be to
have it make a physical copy of the existing context; equaily
obviously this is not very satisfactory. The approach we take is to
keep a history of all changes we make to our global data structure;
popping then involves undoing these changes until we reach the
context of the last call to PUSH.

The simplifier includes a decision procedure for the theoty
of the rationals, but not for the theory of the integers. In this
respect, our simplifier does not differ from most theorem provers.
A satisfiability program for the integers would have to be able to
determine whether a conjunction of linear inequalities is satisfiable
over the integers. This is commonly called the integer
programming problem; it is much more difficult in practice than

the rational linear programming problem.

149



Luckily, most formulas that tend to arise in practice (at least
in program verification and program manipulation) do not depend
on subtle properties of the integers. Further, there are some
easily-implemented heuristics (such as converting X <y into
X + 1 s y) which treat integer variables as rationals and work well
in practice.

We also wish to handle multiplication in our simplifier
(multiplication of two variables: multiplication by a constant is
correctly handled). One approach would be to include some
heuristics to handle the cases that arise in practice. Another
approach, which we prefer, would be to implement a decision
procedure for the reals under addition and multiplication.

Our simplifier is not a general purpose theorem prover; it
cannot prove quantified theorems of the predicate calculus.
However, in the Stanford Verifier, it is used in conjunction with a
program called the rulehandler which accepts user-supplied
lemmas. During a simplification, the rulehandler instantiates the
free variables of the lemmas and sends the instantiated lemmas to
the simplifier. In our system, the rule handler stands in the same
relation to the simplifier as the satisfiability programs. The rule
handler can be viewed as a satisfiability program driven by
user-supplied axioms.

Acknowledgment

We thank the Stanford Verification group for their patience
in waiting two years for this simplifier.

References

[Craig 1957] W. Craig, "Three Uses of the Herbrand-Gentzen
Theorem in Relating Model Theory and Proof Theory", Journal
of Symbolic Logic, volume 22.

[Downey and Sethi 1978] P. Downey and R. Sethi, "Assignment
Commands and Array Structures”, manuscript.

[Johnson and Tarjan 1977] D. S. Johnson and R. E. Tarjan,
"Finding Equivalent Expressions”, manuscript.

[McCarthy 1963] J. McCarthy, "A Basis for a Mathematical
Theory of Computatien”, in Computing Programming and Formal
Systems, edited by P. Braffort and D. Hirshberg, North~Holland
Amsterdam.

[Nelson 1976] C. G. Nelson, "Documentation for Z", unpublished

memorandum,

[Nelson and Oppen 1977] C. G. Nelson and D. C. Oppen, "Fast
Decision Algorithms based on Union and Find", Proceedings of
the 18th Annual IEEE Symposium on Foundations of Computer
Science, October 1977.

[Oppen 1978] D. C. Oppen, "Reasoning about Recursively Defined
Data Structures”, Proceedings of the Fifth ACM Symposium on
Principles of Programming Languages, January 1978.

150



