
Conference Record of the Fifth Annual ACM Symposium on Primci.pies of Programming Languages

Abstract

A SIMPLIFIER BASED ON
EFFICIENT DECISION ALGORITHMS

Greg Nelson
and

Derek C.Oppen

Artificial intelligence Laboratory
Computer Science Department

Stanford University
Stanford, California

We describe a simplifier for use in program manipulation

and verification. The simplifier finds a normal form for any

expression over the language consisting of individual variables,

the usual boolean connective, the conditional function cond

(denoting if-then-else), the integers (numerals), the arithmetic

functiotls and predicates +,-and <, the LISP constants, funcliom

and predicates nil, car, crfr, cons and atom, the functions store

and select for storing into and selecting from arrays, and

uninterpreted function symbols. Individual variables range over

the union of the rationals, the set of arrays, the LISP s-expressions

and the booleans true and false. The constant, function and

predicate symb,~ls take their natural interpretations.

The simphfier is coraplete; that is, it simplifies every valid

formula to true. Thus it % also a decision procedure for the

quantifier-free theory of rationals, arrays and s-expression sunder

the above functions and predicates.

The organization of the simplifier is based on a method for

coinbinin~- ciecisiun algcuitnrns for several theories into :. single

decision algorithm for a larger theory containing the original

theories. More precisely, given a set S of functions and predicates

over a fixed domain, a satisjiability program for S is a program

which determines the satisfiability of conjunctions of literals

(signed atomic formulas) whose predicates and function signs are

in S. We give a general procedure for combining satisfiabiiity

programs for sets S and T into asingle satisfiability program for

S uT, given certain conditions on S and T. We show how a

satisfiability program for a set S can be used to write a complete

simplifier for expressions containing functions and predicates of S

as well as uninterpreted function symbols.

The simplifier described in this paper is currently used in

the Stanford Pascal Verifier.

This researcf~ was supported by the Advanced Research Projects

Agency of lhe Department of Defense under Contract

MDA903-76-C-0206 and by the National Science Foundation

under contract MIX 76-000327.

1. Introduction

In this section wewilldefine thesyntax andsemantics of the

language accepted by our simplifier, and give some examples of

simplifications. We will also define awtisfiubility)rogram for a set

S of functions, predicates, and constants. Essentially, such a

progralm determines the satisfiability of conjunctions of hterals

(signed atomic formulas) whose predicates and function signs are

in S. The formal definition specifies the interpretations of the

elements of S in such a way that it makes sense to “merge”

satisfiability procedures for two sets S and T into one for S uT.

Section 2 gives our method for doing this, based on Craig’s

interpolation iemma ([Craig 19.571). S@Orr 3 shows how a

satisfiability procedure can be used to implement a simplifier for

arbitrary expressions. Section 4 contains some concluding remarks.

1.1 Language Accepted by the simplifier

The simplifier accepts the usual boolean connective and

also the three-argument function cond (cond(p,a,b) means if p

then a eke b). The other functions, predicates, and constants to

which the simplifier currently gives an interpretation are those of

the following theories: the theory of rationals under addition, the

theory of list structure with car, cdr, cons, atom and nil, and the

theory of arrays under storing (store) and selecting (select), The

foHowing a.%iolmsare assumed for these functions.

Arithmetic: 2

Vx Vy Vz

[X+o=x

Ax+-x=o
A(X+Y)+Z=X+(Y+Z)

AX+ Y=Y+X

Ax5x

A(XSYVYSX)

A(X<y A~<X~X=y)

A(XSy Ay<Z~X <Z)

A(X<J’=X+Z<Y+Z)

Ar)#l

A051]

141

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.© 1978 ACM 0-12345-678-9…$5.00

We also allow the other arithmetic relations c, >, and ?,

mukiphcallon by a scalwi, and the numerals 2, 3, ... The&e can be

defined in terms of O, +,-and sin the usual way. The above

axiom is the axiom for a commutative group with a

translation-invariant totai order. A model for the theory with this

axiom is the theory of rationals under addition and s.(Z is called

Z instead of ~ for historical reasons.)

Arrays: V

Qv Ve Vi Vj

select(store(v, i, e), j) = cond(i=j, e, select(v, j))

The simplifier accepts store and select, functions which

operate on arrays or vectors. seIect(V,I) denotes the Ith component

of the vector V. We may write VIII for select(V,I). store(V,I,E) is

the vector whose Ith component is equal to E and whose Jth

component, for J # I, is the Jth component of V.

List Structure: d’

Vx Vy

[car(cons(X, Y)) = X

A cdr(cons(X, Y)) = Y

A - atom(X) ~ cons(car(X), cclr(X)) = X

A + aLom(cons(X, Y))

A atom(nil)l

Note that acycbcity is not assumed; for instance, car(X) = X

is regarded as satisfiable.

Let # be the conjunction of the above axioms. Given a

quantifier-free expression F, the simplifier tries to find the

simplest F’ such that ~ entails F = F’ and returns F’. In particular,

if ~ entails F, the simplest F’ such that ~ entails F = F’ is the

boolean constant true, which the simplifier will return. Thus the

simplifier is a decision procedure for the quantifier-free theory

axiomatized by ~.

The results in this paper apply to many logical theories, but

we will illustrate them with the theories which our simplifier

currently handles. We use z, V, and ~ as names for the theories

of rationals, arrays and list structure. We also use these letters for

the axioms for these theories (note that each theory has exactly one

axiom) and for their satisfiability programs.

Besides the satisfiability programs Z, ~, and ~, our

simplifier contains a program, called ~, which determines the

satisfiability of conjunctions of equalities and diseq ualities between

terms containing uninterpreted functions and predicates. For

instance, ~ will return unsatisfiable given the formula

x = y A f(x) # f(y). ~ is therefore a satisfiability program for the

quantifier-free theory of equality with uninterpreted function

symbols.

1.2 Examples of the Use of the Simplifier

Here are some examples of simplifications.

X = F(X) ~ F(F(F(X))) = X;

true;

cons(X,Y) = Z o car(Z) + cdr(Z) - X - Y = O;

true

xsYAY+D<x A3*D22*D 3V[2*X-YI=VIX+DI;

true;

v = store(store(V, I, VIJI), J, VII]) =JVIII = V[JJ

true;

This formula expresses the theorem that if the Ith and Jth

elements of a vector V are swapped, and if the resulting vector is

identical to the original vector, then the Ith and Jth elements were

the same.

1.3 Satisfiability .Programs

The logical Jymboh are A, v, -, ~, =, cond, V and 3. A

panztneter of a forlmula is any non-logical atomic symbol which

occurs free in the formula. Thus the parameters of the formula

Qv Vx P(x, f(x)) = a are Q, P, f, and a. The parameters of the

axiom for a theory are the primitive constants, functions, and

predicates of the theory. For instance, the parameters of ~ are car,

cdr, cons, atom ?nd nil.

If ~ is an axiom, then a term is an _.J?-term if and only if

each of its parameters is a parameter of ~ or an individual

variable. We define ~-ljteral and fl-formula analogously. For

example, x = y and x s y + 3 are Z-literals but x s car(y) is not.

We call a term an L’-term if none of its parameters are

parameters of any axiom, that is, if all its parameters are

uninterpreted. We similarly define &-/iteru/ and &-formula. (Note

that this definition only makes sense if we have already fixed the

other theories we are interested in; we will assume we have fixed

,?, ~’ and V.)

A Satisfiabi[ity program for ~ is a program which

determines whether a conjunction L1 A ,.. A Lk of ~-li[erals k

satisfiable in the theory axiomatized by ~, that is, whether

~ A LI A ... A Lk is satisfiable. # specifies a set of functions and

predicates and also their interpretation; \his makes precise the

definition given in the introduction.

There are efficient satisfiability programs for z, V and ~.

For z, the simplex algorithm is very fast in practice ([Nelson

19?6]). [Nelson and Oppen 1977] describe satisfiabiiity algorithms

for ~ and & which determine the satisfiability of conjunctions of

length n in time 0(n2). [Johnson and Tarjan 19?7] have

ilmproved the underlying algorithm to O(n log2 n). [Oppen 1978]

142

describes an algorithm which runs in linear time if list structure is

assumed to be acyclic. The satisfiability problem for ‘/) is

NP-complete [Dowrmy and Sethi 1976], but the expensive cases do

not seem to arise in practice.

2. Merging Satisfiabiiity Programs

In this section, we show how to write a satisfiability program

for, say, Z A d, given one for z and one for ~’. It is not obvious

how to do this since there may be “mixed” terms in the conjunction

like car(x) < cdr(x) + 1. Our method for merging satisfiability

programs for two theories will work whenever their sets of

parameters are disjoint. This is the case for z, V and ~.

We will also show how a satisfiability program for a theory

can be used in conjunction with & to decide the satisfiabiiity of

conjunctions of Iiterals which contain uninterpreted function

symbols as well as parameters of the theory.

We will first illustrate how we merge satisfiability programs.

2.1 Example

Let F be the following unsatisfiable conjunction:

x s Y A Y s X + car(cons(O,X)) A P(F(X)-F(Y)) A ~ p(o)

The first step is to make each atomic formula /rrrmogeneous,

that is, contain only parameters of one theory. We do this by

introducing new variables to replace terms of the wrong ‘type’ and

adding equalities defining these new variables. For instance, the

second conjunct would be a z-literal except that it contains a

term car(cons(O,X)), which is not a z-term. We replace

car(cons(O,X)) by a new variable G 1, say, and add to the

conjunction the equality G 1 = car(cons(O,X)) defining G 1. By

continuing in this fashion we eventually obtain a formula F’ which

is satisfiable if and only if F is, such that each literal of F’ is

homogeneous. In our example, F’ is

X< YAY<X+Gl AP(G2)A-p(G5)

A G 1 = car(cons(G5,X)) A ~~ = ~?I - G’i

AG3=F(X) AG4=F(Y)AG5=Q

We next divide F’ up into three conjunctions FE, FZ and FL.

F contains all the ~-literals, FZ all the ~-literals and FL all the

~-literals. Here is F’ divided up into homogeneous parts:

Fz ‘E ‘L

X<y P(G2) = true G 1 = car(cons(G5,X))
Y< X+G1 P(G5) = fake

G2=G3-G4 G3 = F(X)

G5=0 G4 = F(Y)

These three conjunctions are given to the three satisfiability

programs z, ~, and ~’. Since each conjunction is satisfiable by

itself, there must be interaction between the programs to detect the

unsatisfiability. The interaction takes a particular, restricted form.

We require that each satisfiability program deduce and propagate

to the other satisfiability programs all (new) equalities between

variables entailed by the conjunction it K considering. For

example, if X s Y and Y s X are asserted to z, it must deduce

and propagate to the other satisfiability programs the fact that

X = Y. The other satisfiability programs add X = Y to their

conjunctions and the process continues. Eventually, either some

satisfiability program will find that the conjunction it has received

is Unsatisfiable (in which case the original formula WaS

unsatisfiable) or else the propagations will stop with each

conjunction satisfiable. In this case, one more test, described in the

next sectlorr, must be made to guarmi tee that the origiri ai formu!a

is satisfiable. (In our example, this test is not needed.)

Let us illustrate this by continuing with our example. The

satisfiability programs z, & and ~’ have just received,

respectively, Fz, FE and FL. (V is not needed since there are no

V-terms.)

At first, only ~ can deduce an equality between variables:

the equality G 1 = G5. It propagates this equality. z can make use

of this fact and propagates X . Y. / now propagates G3 = G4.

When z receives this new equality, it propagates G2 = G5. & now

has an inconsistent conjunction, and signals unsatisfiable.

The following shows the Iiterals. received by the satisfiability

programs, together with the propagated equalities listed in the

order in which they were propagated.

z & J’

x~y P(G2) . true G 1 = car(cons(G5,X))

Y<x+G1 P(G5) = false

G2=G3-G4 G3 = F(X)

G5=0 G4 = F(Y)

G1=G5

X=Y
G3 = G4

G2 = G5

unsatisfiable

There are several important observations to make

First, the only interactions that take place between

satisfiability programs is by propagations of equalities between

variables. We prove in section 2.3 that this is sufficient for

completeness (it is sometimes necessary to do a “case-split” as

described in section 2.2).

It is important to realize that it is never necessary to

propagate disequalities, nor equalities other than those between

variables. This is intuitively plausible. For instance, after receiving

G 1 = G5, there was no need for z to propagate that Y s X or

that X = Y + G 5, even though these were deducible facts, since

none of the other satisfiability programs could make use of this

information - none of them knows anything about < or +. Further,

it is plausible that no disequality, such as x # Y, need be

propagated, even though every theory shares = and =: the

disequality x # y is needed to prove inconsistency only if x = y is

deduced. But if some program deduces that x = y, it will propagate

143

this fact to the other programs, in particular the one that has

deduced x # y; the latter will deduce the inconsistency.

Finally, the only satisfiability programs that made use of a

new equality, such as x = y, were those programs whose

conjunctions contained occurrences of both x and y. For instance,

when .# propagated G 1 = G5, only Z ever made direct use of this

equality. It is in fact the case that when equalities are propagated,

the only satisfiability programs that need to receive the equality

are those which already “know” about both variables in the

equality.

2.2 Joint Satisfiability Procedure

In this section we present a joint satisfiability procedure

which combines satisfiability algorithms for several theories. We

assume that we have just two theories ~ and ~f with no common

parameters (the general case follows easily) and that we have

satisfiability procedures for determining if ~-literals, ~)-literals

and ~-literals are satisfiable.

Given a conjunction F of Iiterals, the joint satisfiability

procedure determines whether ~ A (f A F is satisfiable. FA, FB

and FE are program variables containing conjunctions of literals.

1. [Make F homogeneous] Assign conjunctions to Fp FA, and FB

by the method described in section 2.1, so that FE contains an

E-formula,
‘A

an J-formula, a e?-formula, and
‘B

FE A FA A FB A ~ A L??is satisfiable iff F A ~ A # is.

2. [Unsatisfiable?] If any of FP ~ A FA, ~ A FB are unsatisfiable,

return unsatisfiable,

3. [Propagate equalities] If any of the formulas F,_, ~ A FA,

A FB entail some equality between variables which is not

entailed by both of the other formulas, then add the equality as a

new conjunct to whichever of FA, FB and FE do not entail it. Go to

2.

4. [Case split necessary] If any of the formulas F~ ~ A FA,

8 A FB entail a disjunction U1 = VI v ... v Uk = Vk of equalities

between variables, without entailing any of the equalities alone,

then apply the joint satisfiability procedure recursively to the k

formulas FA A FBA FEA U1 = VI, FAA FBAFEAUk = Vk. If

any of these formulas are satisfiable, return satisfiable. Otherwise

return unsatisfiable.

5. (If this step M reached, there are no equalities to propagate and

no case splits to be done, and FE, F& FB are each satisfiable.)

Return satisfiable.

Clearly if the procedure returns unsatisfiable, then F is

unsatisfiable. We will prove in the next section that the procedure

is also correct if it returns satisfiable.

The joint satisfiability procedure we have described here IS

too crude to be implemented; it will be subsumed by the

simplification algorithm described in section 3.1.

We conclude this section with an example, involving V and

Z, which illustrates case splitting. Suppose that after step 1, the

formulas are:

Fv: store(v,i,e)[j] = x A V[j] = y

FZ: x>e Ax>y

‘E:
true

Each formula is satisfiable and the whole conjunction is

unsatisfiable, but there are no equalities to propagate in step 3. In

step 4, V propagates the disjunction x E e v x M y; each case leads

to a contradiction in Z.

As this example shows, case splitting is essential to the

completeness of the method. It is potentially very expensive, but we

have found that it does not occur frequently. In fact, V is the only

satisfiability procedure in our system which can cause a split. Z
cannot, since a conjunction of linear inequalities in rationals can

never entail a disjunction of equalities, unless it entails one of the

disjuncts. (Otherwise we would have a convex set contained in the

union of two hyperplanes but not in either of them alone, which is

impossible.) We can also prove that < and ~ never produce splits.

We call theories which never produce splits convex.

When Z is extended to be a satisfiability program for the

integers, it will no longer be convex, since for example

x=l Ay=2Alsz Azs2 entails thedisjunctionx=zv y=z

without entailing either disjunct alone. However, since we need

propagate only equalities between variables, not between variables

and constants, Iiterals such as 1 < z < 100 will not cause splits

(unless there are 100 variables equal to 1, 2, 100 respectively!).

The theory of sets, which we intend to add to the simplifier,

is another example of a non-convex theory; for example, x e {y, z}

causes a case split.

2.3 Correctness of the Joint Satisfiability Procedure

The proof of correctness requires several lemmas. Our first

goal is to define the rtsidue of a forimula. Essentially the residue is

the strongest boolean combination of equalities between variables

which the formula entails. For example the residue of the formula

x = f(a) A y = f(b) is a = b ~ x = y, and the residue of

x5y Ay<xisx=y.

We make the following assumptions about the underlying

formal system: (1) Individual variables are distinguishable from

function variables, and propositional variables are di$tmguishable

from other individual variables, and (2) There is no quantification

over functions or predicates. The results of this section hold

without these restrictions, but the proofs are easier using (2) and

less tedious using (l).

We define a simple formula to be one whose only parameters

are individual variables. For instance, x * y v z = y is silmple, but

x<y is not. Thus an unquantified simple formula is a

propositional formula whose atomic formulas are either

144

propositional variables or equalities between individual variables.

Because of the next lemma, this also characterizes arbitrary simple

formulas.

Lemma 1: Every quantified simple formula F is equivalent

to some unquantified simple formula G. G can be chosen so that

its individual variables are all free individual variables of F.

Proof: Suppose F is of the form 3X ~(x). If x is a

propositional variable, we can take ~(true) v ~(false) as G,

Otherwise, let ~0 be the formula resulting from ?! by first

replacing any occurrences of x = x and x * x by true and false

respectively, and then replacing any remaining equality involving

x by false. Then, if VI, vk are the parameters of ~, F is

equivalent to *O v W(v ~) v .. v V(vk), since, in any interpretation,

x will either equal one of the vi or else be different from all of

them. By repeatedly eliminating quantifiers in this manner, we will

eventually obtain an equivalent quantifier-free formula whose

only variables are free variables of F.

(If restriction (2) above is lifted, Lemma 1 holds only if we

allow simple formulas to contain equalities between function

variables. For example, Vx f(x) = g(x) is a quantified simple

formula equivalent to the simple formula f = g.)

Lemma 2: (Craig’s interpolation lemma) If F entails G, then

there exists a formula H such that F entails H and H entails G,

and each parameter of H is a parameter of both F and G.

Proofi see [Craig, 19571.

Lemma 3: If F is any formula, then there exists a simple

formula F.es(F), the re$idue of F, which is the strongest simple

formula that F entails; that is, if H is any simple formula entailed

by F, then Res(F) entails H. Res(F) can be written so that its only

variables are free individual variables of F.

Proof Let {Gk} be the set of all simple formulas which F

entails. For each Gx, choose Hx so that F o Hx o G ~, the only

parameters of HX are parameters of both F and GA, and Hk is

unquantified. The existence of Hx is guaranteed by lemmas 1 and

2. Now, each Hk is a propositional formula whose atomic formulas

are propositional variables which are parameters of F or else

equalities between individual parameters of F. An infinite

conjunction of propositional formulas over a finite set of atomic

formulas is always equivalent to some finite propositional ~ormula

over these atomic forimulas, so there is a finite formula H which is

equivalent to the conjunction of all the HA, whose only parameters

are free individual parameters of F. But any simple formula Gk

entailed by F is entailed by some HA, and so by H. We can

therefore take H to be the residue of F.

If ~ is an axiom, the ~-residue of F is the residue of

~ A F. Thus the Z-residue of X s Y A Y s X is X = Y. When

no confusion can result, we will not specify the axiom.

Here are some examples of residues.

Res(x=f(a) A y= f(b)) = a=b =1x=y

Res(x=store(v, i, e)[j]) = i=j =1X=e

Res(x=store(v, i, e)[j] A y=v[j]) = cond(i=j, X=e, x=y).

(Note that the addition of an individual variable as a “label”

affects the residue.)

Res(x + y - a - b > O) ❑ --(x=a A y=b) A T (x=b A y=a)

As a final example to relate the notion of residue to that of

joint satifiability, here are the residues of the formulas which

appeared in the example of section Z. I:

z L’ J’

X<y P(G2) G 1 = car(cons(G5,X))
Y< X+G1 -P(G5)

G2=G3-G4 G3 = F(X)

G5=0 G4 = F(Y)

G5=G1 . X=Y A G3=C4 = G2=G5

G2e G5AX=Y~G3=G4

G1=G5

As we found in section 2.1, the residues are inconsistent. An

essential fact needed for proving the correctness of the joint

satisfiability procedure is that these residues are always inconsistent

if the original formula is. This is a consequence of the following

lemma.

Lemma 4: If A and B are formulas whose only common

parameters are individual variables, then Res(A A B)

s Res(A) A Res(B).

ProoE Obviously the left side of the equivalence entails the

right side, so we need only show the converse.

From A A B ~ Res(A A B) we get A =1(B ~ Res(A A B)) and

so, by CNaig’s interpolation lemma, there IS a formula H entaiied

by A which entails B =1Res(A A B) and whose only parameters are

parameters of A and B. But these must be individual variables, so

H is simple and therefore Res(A) ~ (B =1Res(A A B)). Writing this

as B o (Res(A) a Res(A A B)), and observing that the right hand

side of this is simple, we have Res(B) ~ (Res(A) ~ Res(A A B)), or

Res(A) A Res(B) ~ Res(A A B), which proves the lemma.

Now we are ready to prove the correctness of the Joint

Satisfiability Procedure.

We will prove that if step 5 is reached, F is satisfiable. It

follows, by induction on the depth of recursion, that the procedure

is also correct whenever step 4 returns satisfiable.

To show that F is satisfiable, it suffices to show that

Res(FE A A A FA A B A FB) is not false. But by lemma 4, this is

equivalent to Res(FE) A Res(A A FA) A Res(B A FB). Thus it

suffices to show that when step 5 is reached, the conjunction of the

145

residues of the three formulas is satisfiable.

If step 5 is reached, F~ FN and F
B

all entail the same set of

equalities between variables. Let S be this set of equalities, and let

T be the set of all other equalities between variables of F. We

claim that the interpretation which makes every equality in S true

and every equality in T fake will satisfy Res(FE), Res(A A FA),

and Res(B A FB). For if it does not satisfy, say, Res(FE), then

Res(FE) would entail the disjunction of all equalities in T. But if

this were the case, step 4 would have caused a case split and step 5

would never have been reached.

3. Simplification based on %tisfiability Programs.

In section 3.1 we define what we mean by an incremental,

resettabie satisfiability program. In section 3,2, we describe how

such programs can be used to implement a simplification

procedure, which is a generalization of a joint satisflability

procedure. In section 3.3 we discuss some aspects of the efficiency

of our simplification procedure. In section 3.4 we discuss some of

its deficiencies.

3.1 Incremental, Resettable Satisfiability Programs

An inc?’etrtentat satisfiability procedure is one which accepts

literals one by one and which can determine at any tilme whether

their conjunction is satisfiable. If in addition it can mark its state,

accept more literals, and later return to the marked state by

“undoing” the Iiterals which were asserted after the mark, it is

called resettable.

Frolm now on we will assume that all the satisfiability

programs we use are incremental and resettable, and that they

propagate the equalities and disjunctions of equalities which are

errtailed by the conjunctions they have received, More precisely, a

satisfiability program for a theory ~ consists of a global data

structure, CONTEXTA, for representing conjunctions of

#-literals, together with the following functions for manipulating

it.

If Q is the conjunction currently represented by

CONTEXTN then:

A SSERTA(P) where P is a literal, changes CONTEXTA to

represent Q A P. If Q A P is unsatisfiable, ASSERTA(P) returns

false. Otherwise, if there are any equalities between variables

which are entailed by QA P but not by Q then ASSERTA(P)

returns the conjllnction of all silch equalities. Otherwice, if there

are any disjunctions of equalities between variables which are

entailed by QA P, then ASSERTA(P) returns one of these

disjunctions. Otherwise, ASSERTA(P) returns true.

PUSHA() saves the current state of CONTEXTA without

changing the conjunction that it represents.

POPA() restores CONTEXTA to the state it was in just

before the last call to PUSHA().

SIMPA TO MA(F), where F is a non-boolean expression or a

boolean constant, returns an expression F’ equivalent to F in this

CONTEXTA F’ is the normal form for F in this context. For

example, SIMPATOMZ(X + O) returns x and

SIMPATOMZ(X - y) returns O if x = y is entailed by CL

(SIMPATOMA will only be called when Qis consistent).

Any decision algorithm can theoretically be used to

implement a satisfiability program with these properties. However,

it generally requires considerable effort to construct an efficient

satisfiability program from an efficient decision algorithm.

We have implemented satisfiability procedures for z, V, ~,
and ~. The program for ,? is described m detail in [Nelson 1976].

[Nelson and Oppen 1977] describe the data structure used by all

programs except Z, and describes the programs for ~ and ~.

The satisfiabihty program for V is trivial: it signafi splits

whenever it finds a term of the form select(store(...);.); that is, it

does the obvious split required by its axiom.

Before giving the simplification algorithm, we define the

auxiliary function ASSERT*, which accepts an arbitrary literal,

splits it into homogeneous pieces, and calls the appropriate

assertion functions. We define it for the case where there are

satisfiability programs for two theories ~ and Lo.

In this program, PE, PA, PB ~, ~, ~ are variables

containing formulas.

ASSERTx(~:

1. Divide Q into homogeneous pieces ~, ~, and ~ as described

in section 2.

2. Set PE + ASSERTE(~k PA+ ASSERTA(~);

PB + ASSERTB(~)

3. If any of P A, PB PE are false, return false.

4. If any of PA, PB, PE are disjunctions, return one of these

disjunctions.

5. If all of PA, PB PE are true, return true

6. (One or more of the formulas are conjunctions of equalities, and

the others are true. This step will propagate the equalities.) Set

each of the variables ~, ~, and ~ to be the formula

PE A PA A PB, and go to 2.

We define the functions PUSH* and POP*; they call the

push and pop functions for each of the satisfiability algorithms.

We also assume the existence of a function SIMPATOM* which

takes an arbitrary term and simplifies it using the information in

CONTEXTA, CONTEXTE, and CONTEXTB. It does this by

calling the SIMPATOM functions for these three theories. We

omit the details. ASSERT*, PUSH*, POP*, and SIMPATOM*

are used by the simplifier as a satisflability program accepting

arbitrary Iiterals of the language.

We have four observations to make about these functions.

146

First, a term t in an inhomogeneous literal which has been

replaced by a new variable v in step 1 of some call to ASSERT*

may in a subsequent call be replaced by another new variable w.

This is all right, since both t = v and t = w are sent to the relevant

satisfiability program.

Second, a record is kept of the individual variables

generated as labels for terms in step 1, so that SIMPATOM* can

put the hterals back together, repl$ccing generated labels by the

terms rhey represent.

Thircl, it is not necessary to send all the equalities to all the

satisfiability programs in step 6. As mentioned in section 2.2, an

equality need only be sent to a satisfiabihty program if both

variables in the equality are parameters of the conjunction

represented in the program.

Fourth, it is important to note that ASSERT*, PUSH*,

POP*, and SIMPATOM* do not form a satisfiability program,

since ASSERT* may return a disjunction without doing a case

split to determine if any of the disjoncts are satisfiable. It would be

possible to change ASSERT* to investigate each branch of the

disjunction, but this is not delicate enough to be of use in a

simplifier. When a case split occurs for which some, but not all, of

the cases are satisfiable, the simplifier needs to ktlow whit/L

branches of the split are satisfiable. For example, consider the

problem of simplifying’ x e {4, -6] A x >0 to x = 4. The simplifier

must discover that the satisfiable branch of the split is the one in

which x = 4. This is why ASSERT* returns the disjunction to the

simplifier; the latter does the case split as described in the next

section.

3.2 Cond-style simplification

In this section we will use LISP list notation for expressions.

Our simplifier first puts expressions into cond normal jhm.

(This is similar, but not identical, to the cond normal form in

[McCarthy 1963].) An expression is defined to be in cond normal

form if the following holds.

(1) The expression does not contain any boolean connective

other than cond. Thus A A B is replaced by the equivalent (cond

A B false), and -A try (cond A false true).

(2) No first argument to a cond is a cond, Thus (cond

(cond P A B) C D) is replaced by (cond P (cond A CD) (cond B

C D)),

(3) No expression of the form (cond P ,4 B) is the argument

to any function other than cond; thus (F (cond P A B)) is replaced

by (cond P (F A) (F B)).

(4) Every boolean subexpression (other than constant

subexpressions true and false) is the first argument to a cond. For

instance, a single atomic formula P which is not the first argument

to a cond is replaced by (cond P true false). F(X=Y) is

successively replaced by (F (cond (= X Y) true false)) and (cond

(= X Y) (F true) (F false)).

(In practice, the transformation required by clause 4 is not

carried out if the subexpression is a second or third argument to

cond, since this would waste space, The cond normal form of

(cond P A B), if A and B are boolean, is (cond P (cond A true

false) (cond B true false)) but we store it as (cond P A B). In the

discussion below, we assume that the transformation has been

made. We will not consider here ho-w to determine whether a

subexpression is boolean.)

Cond norlmal form is not a canonical form, since two

syntactically different expressions, each in cond normal form, may

be logically equivalent.

An expression in cond normal form corresponds naturally to

a binary tree whose nodes are labelled with atomic formulas. We

call this tree the corral tree for the expression. To the expression

(cond P A B) corresponds the tree whose root is Iabeiled with P,

whose left son is the tree for the expression A, and whose right son

is the tree for the expression B. The tree for any non-cond

expression E is a node with outdegree zero Iabelled with E. Thus

every node in a cond tree is either an internal node with two sons

and a boolean expression as label, or a leaf node whose label is

either non-boolean or one of the constants true or false.

The maximum number of nodes in the cond tree for an

expression of length n may be exponential in n. But, by sharing

structure, the tree can be represented as a directed graph, and the

amount of storage required is linear in n.

Let N be a node of the tree. Then <Nl N2 .,. Nk> is the

branch to N if N, is th~ root of the tree, Nk = N, and, for each

l<i<k, Ni+l is a son of Ni. The context at N is defined to be the

conjunction L1 A ,.. A Lk-l, where each Li is the label of Ni if

Ni+l is the left son of Ni, and the negation of the label of Ni

otherwise.

The context of a node is exactly the condition that must

hold for an evaluator to reach the node during evaluation of the

expression. That is, if the conditional expression is regarded as a

program fragment, the context of a node is the strongest “invariant

assertion” on the arc leading to the node. For example, consider the

following expression in cond normal form: (cond P (cond QA B)

(cond R C D)). The context of the node for B, that is, P A -Q IS

the condition that B would be evaluated if the whole expression

were evaluated.

It follows that the disjunctive normal form of a formula is

the disjunction of the contexts of the leaves labelled with true in

the cond tree for the formula. Cond normal form is much more

compact than (traditional) disjunctive normal form because, in the

former, disjuncts are represented as branches in a tree (or paths in

a directed graph) and thus may share structure.

To simplify an expression, the simplifier traverses its cond

tree, maintaining as it does so a representation for the context of

the node it is visiting. It ignores nodes whose contexts are

inconsistent.

147

Besides pruning away the branches which are inconsistent,

the simplifier collapses together branches to leaves with equivalent

labels. lf the expression is a valid formula, every leaf which IS

reached will be labelled true; all these branches will be collapsed,

and true will be returned. Similarly an unsatisfiable formula

simplifies to false.

The following algorithm simplifies a formula F, which we

assume is in cond normal form. NORMALIZE is a function which

returns the cond normal form of its argument.

SIMPLIFY(F):

1. If F is not of the form (cond P A B), return SIMPATOM(F).

2. F is of the form (cbnd P A B). Call PUSH* (). Set

Q+ ASSERT*(P). If Q,= false, then POP*() and return

SIMPLIFY(B). (P cannot be true, so F is equivalent to B in the

context in which it appears. Furthermore, the context of B is

equivalent to the context of F)

If Q = true then set AA + SIMPLIFY(A). Otherwise, set

AA + SIMPLIFY(NORMALIZE((cond Q A NIL))). (In this case,

Q is a disjunction. The third argument to the cond is irrelevant,

as explained below.) Call POP*(), and go on to step 3.

3. Call PUSH* (). Set Q+ ASSERT. If Q= false, then

POP*() and return AA. (P cannot be false, so F is equivalent to A

in the context in which it appears, and the context of A is

equivalent to the context of F.)

If Q= true then set BB c SIMPLIFY(B). Otherwise, set

BB + SIMPLIFY(NORMALIZE((cond Q B NIL))). Call POPX(),

and go on to step 3.

4. If AA = BB, return AA. Otherwise, let P = SIMPATOM(P). If

AA = true and BB = false, return P. Otherwise return the

expression (cond P AA BB),

Note how plopagatlons aue “spliced” into the fo~niula. ~oi

instance, suppose that ASSERT*(P) returns a disjunction D v E in

step 2. We simplify the normalized form of (cond (D v E) A NIL),

which is (cond D A (cond E A NIL)), In simplifying this

expressicm, A is simplified twice, once assuming D and once

assuming E. The NIL is never reached, since its context, -D A -E,

is inconsistent with the context of F.

We will now sketch the proof of the completeness of the

algorithm. We say that the context of a node is convex if it does

not entail any disjunction of simple equalities without entailing

one of the disjuncts. Whenever the context of its argument is

non-convex, SIMPLIFY calls itself recursively on some cond

expression. Thus whenever its argument is not a cond expression,

its context is convex. The proof of correctness of the joint

sa.tisfiability algorlthm shows that if a context is convex, and no

satisfiability algorithm has propagated false, then it is consistent.

Therefore whenever SIMPLIFY returns from step 1, the context is

consistent. If F is valid, every leaf of its cond tree with a consistent

context is Iabelled with true, so every term returned in step 1 is

true. Itfollows by induction that AA and BB are always true,

and therefore that the algorithm is complete.

3.3 Comparison with DNF-style Theorem Proving

We do not know how to give an adequate analysis of our

simplifier; since its behavlour in practice is much better than its

worst case behaviour.

Ir.steacl, wc wdl con,pare our app;oach, using co,Id r,orma~

form, with an obvious alternative approach, using disjunctive

normal form, which we call a DNF-style approach. We assume

that we are only interested in proving validity of formulas and are

not interested in simplifications of arbitrary expressions,

We assume that the formula is represented as a cond tree

with n internal nodes.

The most obvious algorithm to prove the formula is to put

its negation into disjunctive normal form and to test each disjunct

for unsatisfiability. This corresponds to testing that the context of

each leaf Iabelled with false is unsatisfiable. The standard

DNF-style approach builds up the context for each leaf from

scratch, that is, from the root of the cond tree. The number of call!

to ASSERT equals the sum, taken over all leaf nodes Iabelled with

false, of the length of the branch to the leaf. This sum varies frorr

O(n) to 0(n2), and has an average value of O(n 1’5), if om

considers all binary trees with n internal nodes and all externa

node Iabellings with true or false to be equally likely. There ar<

no calls to PUSH or POP. A non-resettable satisfiability program

can be used.

Our algorithm makes n calls to PUSH, n calls to POP, am

2n calls to ASSERT, Therefore, DNF-style algorithms minimiu

(to zero) the number of calls to PUSH and POP, while ou

a]gorithim minimizes the number of calls to ASSERT, TI

determine which method is better, we would need to know th

expected number of calls to ASSERT which each algorithm make

on realistic input distributions and the relative costs of resettabl

satisfiability algorithms and non-resettable ones.

The fonmulas which arise in the Stanford Verifier are oftei

implications between conjunctions of Iiterals. (Formulas with thi

structure arise in program verification whenever the invarian

assertion on a simple loop is a conjunction of Iiterals.) If there ar

n conjuncts in the antecedent of such a formula and m conjunct

in tlw consequent, then the disjunctive normal forml of th

negation of the formula has length m(n + 1), while the cond tre

has only m + n internal nodes. A DNF-style algorlthm ca

therefore make as many as m(n+ 1) calls to ASSERT, while ou

algorithm will make at most m + n calls t~ ASSERT, PUSH an

POP. On this sort of example, our approach seems superior.

148

3.4 Finding the Simplest Form

In this section, we will note some problems with our present

simplification algorithm. These problems do not arise when our

simplifier is used as a theorem prover, but only when it is being

used to simplify expressions which do not simplify to an atomic

symbol such as true. These problems arise in the design of any

simplification algorithm.

First, a problem common to all normal forms is that they

may lose some of the structure of the original expression. It 1shard

to recover this structure if the expression does not significantly

simplify. For instance, using cond normal form, the formula

(A v B v C) A (D v E v F) is “simplified’” to

(cond A (cond E true (cond D true F))

(cond B (cond E true (cond D true F))

(cond C (cond E true (cond D true F))

false)))

and (cond E true (cond D true F)) is duplicated in three places.

Our simplifier actually converts this formula back to a formula

involving the usual boolean connective, but the present version of

the simplifier does not find the original (and simplest) form of the

expression. This has not been a serious problem in our system; it

only becomes a problem when the original formula is not

simplifiable and is in a form close to conjunctive normal form.

Another problem occurs when simplifying conjunctions like

x < y A y s x A x = y. The simplifier discovers that the last

equahty is redundant and simplifies the conjunction to

x s y A y s x instead of to x = y. (Had the equality appeared first,

both inequalities would have been removed as redundant.) There

does not seem to be any way to handle this problem without

extending the set of primitives for manipulating contexts. For

example, if a call to ASSERT made earlier conjuncts in the

context redundant, this might be detected and exploited. It

probably would not be too difficult to modify ASSERT in this

manner, but it might create unacceptable complications in the

simplification algorithm.

A significant problem concerns implementing the test

AA = BB in step [41 of our simplification algorithm. This is

intended to collapse branches of the cond tree which lead to

identical resultq for example (cond P 1 1) should simplify to 1. If

AA or BB are atomic symbols, there is no problem. If they contain

conds, testing for logical equivalence is possible but probably

impractical. If they contain no conds, then testing them for

equality (using the lisp EQUAL) will usually be sufficient, if

SIMPATOM puts expressions into a canonical form. However

there is a difficulty: consider (cond (= X 1) (F 1) (F X)), which we

would like to simplify to (F X). Our SIMPATOM chooses (F 1),

not (F X), as the canonical form when X = 1 is known, so in step 4

AA is (F 1) and BB is (F X). A completely adequate test for

collapsing the two branches would require testing whether QA P

entailed AA = BB, in which case BB should be returned,

otherwise whether QA -P entailed AA = BB, in which case AA

should be returned. (Q is the context of F, which is of the form

(cond P A B).) Again the overhead may be prohibitive This

problem actually arises frequently and is more troublesome in

practice than any of the other problems we have mentioned in this

section.

4. Notes

The language accepted by the simplifier is richer than that

described in section 1, All predicates (including =) and boolean

connective are considered boolean-valued functions (that is,

functions which evaluate to the booleans true and false). Terins

are allowed to contain arbitrary boolean-valued expressions,

Expressions are allowed as functions. The following simplifications

illustrate this generality.

F(true) 2 F(X v - X}

true;

cond(true, F, G)(X)

F(X);

The axio[ms assumed by our simplifier do not enforce strict

typing. For instance, cons(X, Y) + store(V, 1, E) is an acceptable

expression (that the simplifier will simplify to itself) We plan to

add type predicates (or type corlstants and a type fund,oil) to tl?c

next version of our simplifier.

The simplifer does not store conjunctions of atomic formulas

as strings or LISP s-expressions, but in a graph with one vertex

for each term and subterm in the conjunction. Another data

structure is used to represent an equivalence relation on the

vertices. Two vertices are equivalent if the terms they represent are

known to be equal in this context. To propagate an equality, a

satisfiability procedure merges two equivalence classes this can be

done very efficiently. The details of this representation are given

in [Nelson and Oppen 19771.

Using this representation, it is not necessary to generate

“labels” for terms which appear in inhomogeneous Iiterals.

This representation also allows the efficient implementation

of other routines in our simplifier more efficient, such as PUSH

and POP. Obviously, one way to implement PUSH would be to

have it make a physical copy of the existing context equally

obviously this is not very satisfactory. The approach we take is to

keep a history of all changes we make to our global data structur~

popping then involves undoing these changes until we reach the

context of the last call to PUSH.

The simplifier includes a decision procedure for the theory

of the rationals, but not for the theory of the integers, In this

respect, our simplifier does not differ from most theorem provers.

A satisfiability program for the integers would have to be able to

determine whether a conjunction of linear inequalities is satisfiable

over the integers. This]s commonly called the integer

programming problem; it is much more difficult in practice than

the rational linear programming problem.

149

Luckily, most formulas that tend to arise in practice (at least

in program verification and program manipulation) do not depend

on subtle properties of the integers, Further, there are some

easily-implemented heuristics (such as converting’ x < y into

x + 1 s y) which treat integer variables as rationals and work well

in practice.

We also wish to handle multiplication in our simplifier

(multiplication of two variables muttiphcation by a constant is

correctly handled). One approach would be to include some

heuristics to handle the cases that arise in practice. Another

approach, which we prefer, would be to implement a decision

procedure for the reals under addition and multiplication.

Our simplifier is not a general purpose theorem prover; it

cannot prove quantified theorems of the predicate calculus.

However, in the Stanford Verifier, it is used in conjunction with a

program called the ru.khunder which accepts user-supplied

lemmas. During a simplification, the rulehandler instantiates the

free variables of the lemmas and sends the instantiated lemmas to

the simplifier, In our system, the rule handler stands in the same

relation to the simplifier as the satisfiability programs. The rule

handler can be viewed as a satisfiability program driven by

user-supplied axioms.

Acknowledgment

We thank the Stanford Verification group for their patience

in waiting two years for this simplifier.

References

[Craig 19571 W. Craig, “Three Uses of the Herbrand-Gentzen

Theorem in Relating Model Theory and Proof Theory”, Journal

of Symbolic Logic, volume 22,

[Downey and Sethi 1976] P. Downey and R. Sethi, “Assignment

Commands and Array Structures”, manuscript.

[Johnson and Tarjan 1977] D. S. Johnson and R. E. Tarjan,

“Finding Equivalent Expressions”, manuscript.

[McGarth y 1963] J. McCarthy, “A Basis for a Mathematical

Theory of Computation”, in Computing Programming and Formal

Systems, edited by P. Braffort and D. Hirshberg, North-Holland

Amsterdam.

[Nelson 19761 C. G. Nelson, “Documentation for Z“, unpublished

memorandum.

[Nelson and Oppen 1977] C. G. Nelson and D. C. Oppen, “Fast

Decision Algorithms based on Un]on and Find”, Proceedings of

the 18th Annual IEEE Symposium on Foundations of Computer

Science, October 1977.

[Oppen 19781D. C, C)ppen, “Reasoning about Recursively Defined

Data Structures”, Proceedings of the Fifth ACM Symposium on

Principles of Programming Languages, January 1978.

150

