
Simplification by Cooperating Decision
Procedures

GREG NELSON and DEREK C. OPPEN

Stanford University

A method for combining decision procedures for several theories into a single decision procedure for
their combination is described, and a simplifier based on this method is discussed. The simplifier finds
a normal form for any expression formed from individual variables, the usual Boolean connectives,
the equality predicate =, the conditional function if-then-else, the integers, the arithmetic functions
and predicates +, - , and _<, the Lisp functions and predicates car, cdr, cons, and atom, the functions
store and select for storing into and selecting from arrays, and uninterpreted function symbols. If
the expression is a theorem it is simplified to the constant true, so the simplifier can be used as a
decision procedure for the quantifier-free theory containing these functions and predicates. The
simplifier is currently used in the Stanford Pascal Verifier.

Key Words and Phrases: program verification, program manipulation, theorem proving, decidability,
simplification
CR Categories: 4.12, 5.21, 5.24, 5.25, 5.7

1. INTRODUCTION

P r o g r a m verifiers, symbol ic evaluators , p rog r a m t r a n s f o r m a t i o n sys tems, a n d
s imi la r h igh- level " p r o g r a m m a n i p u l a t i o n " sys tems will m a k e the p r o g r a m m i n g
process more au tomat i c , less er ror prone, and c h e a p e r - - i f t hey can ever be m a d e
pract ical . T h e m a i n r eason they have no t ye t progressed b e y o n d the e x p e r i m e n t a l
stage is t h a t t h e y d e p e n d on m e c h a n i c a l t h e o r e m provers , a n d these have b e e n
too slow and unre l iab le .

T h e o r e m provers are r equ i red by p r o g r a m m a n i p u l a t i o n sys tems to ver i fy
rou t ine facts a b o u t n u m b e r s , arrays , lists, and o the r c o m m o n da ta s t ruc tures . We
give two examples of the sor t of t h e o r e m s which arise. First , cons ider the loop

for i ~- 0 to n do v[i] ~-- f(i),

where f is a f unc t i on wi th no side effects. Usu a l l y the tes t i = 0 compi les b e t t e r
t h a n the tes t i = n, so a p rog ram t r a n s f o r m a t i o n sys t em mi gh t t ry to change the
loop to r u n i f rom n to 0 ins t ead of f rom 0 to n. To jus t i fy th is t r a n s f o r ma t i on , i t

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract MDA903-76-C-0206, by the National Science Foundation under Contract
MCS78-02835, and by the Fannie and John Hertz Foundation.
Authors' address: Artificial Intelligence Laboratory, Computer Science Department, Stanford Uni-
versity, Stanford, CA94305.
© 1979 ACM 0164-0925/79/1000-0245 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979, Pages 245-257.

246 G. Nelson and D. C. Oppen

must prove that two consecutive loop executions "commute"; that is, that they
can be executed in either order with the same effect. Let store(v, i, e) denote the
array whose ith element is e and whose j t h element, for j ~ i, is v[j]. The
theorem which must be proved is

store(store(v, i, f(i)), i + 1, f (i + 1)) -- store(store(v, i + 1, f{i + 1)), i, f(i)).

The second example is from program verification. If a random integer in the
range [a, b] is generated from a random real number ~, in the range [0, 1) by the
formula [a + ~,(b - a + 1}J, the verification that the output is in the correct range
may require proving the "theorem":

O < ~ A ~ < l ~ a < _ [a + ~ (b - a + 1) J A [a + ~ (b - a + 1)J~b.

A verifier will reject this theorem, alerting the user to the fact that critical
assumptions are missing--the assumptions that a and b are integers and that
a<_b.

Neither of the above theorems is mathematically interesting. Mechanical
reasoning is used in program manipulation to verify routine facts or to catch
slippery errors, not to prove mathematically interesting theorems.

Notice that the formulas above are "quantifier free"--their variables are
implicitly universally quantified. The theorem-proving methods described in this
paper apply only to quantifier-free formulas.

An algorithm for determining whether a formula is valid in a logical theory is
called a decision procedure for the theory. Decision procedures are known for
many quantifier-free theories important in program manipulation. For example,
there are decision procedures for the theory of integers under ÷ and <_, for the
theory of arrays under s tore and select, and for the theory of equality with
uninterpreted function symbols. Unfortunately, the expressions which arise in
program manipulation often do not fall within any of these naturally defined
theories--they usually involve "mixed" terms containing functions and predicates
from several theories. For example, the first theorem above contained the
arithmetic function +, the array function store, and the uninterpreted function
symbol f.

There has been some research on decision procedures for specific quantifier-
free theories with mixed terms: Kaplan [4] gives a decision procedure for the
theory of arrays with constant indices, Shostak [11] for Presburger arithmetic
with uninterpreted function symbols, and Suzuki and Jefferson [12] for Presbur-
ger arithmetic with arrays and uninterpreted function symbols.

In this paper we give a general method for combining decision procedures for
two quantifier-free theories into a single decision procedure for their combination,
which contains the functions and predicates of both theories. The method is
based on a technique which we call equality propagat ion. Using this technique,
we have implemented a simplifier which finds a simplified, normal form for any
expression formed from individual variables, the usual Boolean connectives, the
equality predicate =, the conditional function if-then-else, the integers, the
arithmetic functions and predicates +, - , and _<, the Lisp functions and predicates
car, cdr, cons, and atom, the functions s tore and select, and uninterpreted
function symbols. If the expression is a theorem, it is simplified to true; if it is
unsatisfiable, it is simplified to false. If it is neither, or if it is not a Boolean-
ACM Transact ions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

Simplification by Cooperating Decision Procedures 247

(-~(x -< y) A
(x - 1 < _ y A t a k (x - 1, y, z) = Y V

y < x - l A
(y < - - z A t a k (x - l , y , z) = z v

z < y A t a k (x - l , y , z) -- x - 1)) A

(y - l < _ z A t a k (y - l , z , x) - - - z v

z < y - l A
(z < _ x A t a k (y - l , z , x) = x v

x < z A t a k (y - l , z , x) = y - 1)) A

(z - l < - x A t a k (z - l , x , y) = x V
x < z - l A

(x<_ y A t a k (z - 1 , x , y) = y V

y < x A t a k (z - 1, x , y) = z - 1)) A
(t a k (x - 1, y, z) <_ t a k (y - 1, z, x) A

t a k (t a k (x - 1, y, z) , t a k (y - 1, z, x) , t a k (z - 1, x , y)) = t a k (y - 1, z, x) V

t a k (y - 1, z, x) < t a k (x - 1, y, z) A
(t a k (y - 1, z, x) <_ t a k (z - 1, x, y) A

t a k (t a k (x - 1, y, z) , t a k (y - 1, z, x) , t a k (z - 1, x, y)) = t a k (z - 1, x, y) V

t a k (z - 1, x, y) < t a k (y - 1, z, x) A

t a k (t a k (x - 1, y, z), t a k (y - 1, z, x), t a k (z - 1, x, y)) = t a k (x - 1, y , z)))

D

x <_ y A t a k (t a k (x - 1, y, z), t a k (y - 1, z, x) , t a k (z - 1, x, y)) = y V
y < x A

(y <_ z A t a k (t a k (x - 1, y, z) t a k (y - 1, z, x), t a k (z - 1, x , y)) = z V
z < y A t a k (t a k (x - 1, y, z), t a k (y - 1, z, x) , t a k (z - 1, x, y)) = x))

Fig. 1.

valued expression, the simplifier returns a simplified, normal form of the expres-
sion. T h u s we call our program a simplifier rather than a t h e o r e m prover. T h e
simplifier is present ly used in the Stanford Pascal Verifier, an interact ive s y s t e m
for reasoning about Pascal programs.

Here are examples o f s o m e relat ively trivial simplifications:

2 + 3 , 5
17

P D "~P
- ~ p

x ~ x
f a l s e

x = f (x) D f (f (f (x))) = x
t r u e

c o n s (x , y) = z D c a r (z) + c d r (z) - x - y = 0
t r u e

x <_ y A y + d <_x A 3 * d _ > 2 * d D V [2 * x - y] = V [x + d]
t r u e

(In the last example , the first two literals imply that d __ 0, the third that d _ 0.
Hence d = 0 and x = y.)

T h e fol lowing is a s o m e w h a t artificial example involving a larger formula. Ikuo
T a k e u c h i [13] def ined the function:

tak(x , y, z) = if x _< y then y e lse t a k (t a k (x - 1, y, z), t a k (y - 1, z, x), t a k (z - 1, x, y)) .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

248 G. Nelson and D. C. Oppen

John McCar thy proved tha t the function satisfies

t a k (x , y, z) -- if x _ y then y else if y _ z then z else x. (1)

A key step in the proof is the verification tha t if x > y and (1) holds for each of
the four recursive calls in t a k , then (1) holds for t a k (x , y , z) . We wrote t a k as a
recursive Pascal program and used the Stanford Pascal Verifier to produce the
actual formula to be proved; it is shown in Figure 1. Th e simplifier described in
this paper simplifies this formula to t rue , requiring 0.8 CPU seconds on a DEC
KL-10 running compiled MACLISP.

2. THE THEORIES ~, ~', ~, AND #

Our simplifier contains decision procedures for four quantifier-free theories: the
theory of real numbers under ÷ and _<, the theory of arrays under s t o r e and
select , the theory of list s t ructure with ear , cdr , cons , and a t o m , and the theory
of equali ty with unin terpre ted function symbols. We call these theories ~ , d , ~ ,
and #, respectively.

The theories are formalized in classical first-order logic with equality, extended
to include the three-argument conditional function i f - then-e l se . Th e symbols
=, A, V, -~, ~, i f - then-e l se , V, and 3 are common to all theories; we call t hem the
l o g i c a l s y m b o l s . Each theory is characterized in the usual way by its set of
n o n l o g i c a l s y m b o l s and n o n l o g i c a l a x i o m s .

The nonlogical symbols of ~ are +, - , _<, 0, and 1. Its axioms are

VX x + O = x

Vx x + --x = 0
V x V y V z (x + y) + z = x + (y + z)
Y x Y y x + y = y + x
V x x < _ x
V x V y x < _ y v y < _ x
V x V y x < _ y A y < _ x D x = y
V x V y V z x <_y A y <_ z ~ x <_ z
V x V y V z x < y ~ x + z <_y + z

0 # 1
0 < 1

Of course, the numerals and the common relations are allowed but are formally
regarded as abbreviations: 2 abbreviates 1 + 1 and x < y abbreviates -~y _< x.
Multiplication by integer constants is also allowed; 2 . x abbreviates x + x.

S ta tements which are valid over the integers but not over the reals, such as
x + x # 5, are not consequences of the above axioms and will not be simplified to
t r u e by our simplifier. Luckily such formulas occur relatively infrequent ly in
program manipulation. Decision procedures exist for the theory of the integers
under + and <_, but we have not tr ied implementing any of them, since they are
considerably more complicated than decision procedures for ~. Our simplifier
includes some simple heuristics for dealing with integers (such as convert ing
x < y into x < y - 1 when both variables are known to be integers) which work
well in practice.

A more annoying problem is tha t only multiplication by constants is handled.
To some extent this incompleteness is inherent, since no decision procedure can
exist for the quantifier-free theory of integers under addit ion and multiplication
(see Matiyasevich [5]). The theory of the real numbers under addition and
ACM Transact ions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

Simplification by Cooperating Decision Procedures 249

mult ipl icat ion is decidable (see Tarsk i [14]), bu t we have not tr ied to implement
a decision procedure for this theory.

The theory of arrays, d , has the nonlogical symbols s t o r e and s e l e c t and the
axioms

VvVeViVj select(store(v, i, e),j) = i f / = j then e else seleet(v, j)
VvVi store(v, i, select(v, i)) = v
VvViVeVf store(store(v, i, e), i, f) = store(v, i, f)
VvViVjVeVf i # j D store(store(v, i, e),j, f) = s tore(s tore(v, j , f), i, e)

We write v[i] for se lec t (v , i). A two-dimensional a r ray can be t rea ted as an
ar ray of arrays, so A[i, j] is shor thand for A [i] [j] . T h e last three axioms are only
needed if equalities be tween a r ray t e rms are allowed.

The theory of list s tructure, ~ , has the nonlogical symbols ca r , cdr , cons , and
a t o m and the axioms

VxVy car(cons(x, y)) = x
VxVy cdr(cons(x, y)) = y
Vx -~atom(x) D cons(car(x), cdr(x)) = x
VxVy -~ a t o m (c o n s (x , y))

T h a t is, cons (x , y) is the ordered pair (x, y); c a r (z) and c d r (z) are the
components of the ordered pair z; and a t o m (z) is t rue if and only if z is not an
ordered pair. Notice t ha t acyclicity is not assumed; for instance, c a r (x) ffi x is
regarded as satisfiable.

Finally, we define the theory ~ whose nonlogical symbols are all un in te rpre ted
function, constant, and predicate symbols. 8 h a s no axioms, so it is jus t the theory
of equality.

3. TWO EXAMPLES OF EQUALITY PROPAGATION

I f J i s a theory, the terms, literals, and formulas of the language of ~9 ~ will be
called 5Z-terms, ~-literals, and $Z-formulas. (A literal is an a tomic formula or its
negation.) For example, x = y and x __ y + 3 are ~- l i te ra ls but x _< c a r (y) is not.

A satisfiabilityprocedure for a theory :7 is a decision procedure for determining
the satisfiability of conjunctions of~-l i terals . (The general quantif ier-free decision
problem for 5z can easily be reduced to this problem.) Our simplifier contains
satisfiability procedures for the theories described Section 2. We use ~ , d , ~ , and

for the names of the satisfiability procedures as well as for the names of the
theories.

A formula F entails a formula G if G is a logical consequence of F; tha t is, if
F D G is a t heo rem of f irst-order logic. A formula F entails a formula G within a
theory ~ if F D G is a t heo rem in ~. I f the context is clear, we omi t specifying the
theory; for instance, we say tha t x - y = 0 entails x = y wi thout specifying "in the
theory ~ . "

The satisfiabili ty procedures in our simplifier also detect, and "p ropaga te" to
the other satisfiability procedures, certain equalities entai led by the conjunct ion
being decided. The detect ion of these equalities is the key to our me thod of
combining decision procedures. To i l lustrate this process, we describe how ~ , ~ ,
and g together detect the unsatisfiabil i ty of the following conjunct ion F:

x <_y A y _< x + car(cons(0, x)) A P(h(x) - h(y)) A _np(o).
ACM Transac t ions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

250 G. Nelson and D. C. Oppen

The first step is to construct three conjunctions F~, F~, and F~, such that F~
contains only 8-1iterals, F,~ only ~-literals, F~ only ~,q~-literals, and F is satisfiable
if and only if F~ A F~ A F~ is. We do this by introducing new variables to replace
terms of the wrong "type" and adding equalities defining these new variables.
For instance, the second conjunct above would be an ~-literal except that it
contains the term car(cons(0, x)), which is not an ~-term. We therefore replace
car(cons(0, x)) by a new variable, say g,, and add to the conjunction the equality
g~ = car(cons(0, x)) defining gl. By continuing in this fashion we eventually
obtain the following three conjunctions:

F~ F ~

x <_ y P (g 2) = true
y <- x + g~ P (g ~) = f a l s e

g2 = g3 - g4 g3 = h (x)
g ~ = O g 4 = h (y)

g l - - car(cons(gs, x))

These three conjunctions are given to the three satisfiability procedures ~, 8,
and ~. Since each conjunction is satisfiable by itself, there must be interaction
between the procedures for the unsatisfiability to be detected. The interaction
takes a particular, restricted form: we require that each satisfiability procedure
deduce and p r o p a g a t e to the other satisfiability procedures all equalities between
variables entailed by the conjunction it is considering. For example, if x _< y and
y _< x are given to ~, it must deduce and propagate to the other satisfiability
procedures the fact that x = y. The other satisfiability procedures add x -- y to
their conjunctions and the process continues.

In our example, neither F~ nor F~ entail any equalities between variables, but
F z entails gl = gs. £z propagates this equality. ~ uses this equality to deduce and
propagate x = y. ~ then propagates ga = g4. ~2 then propagates g2 = gs. Now e has
an inconsistent conjunction, and signals unsa t i s f iab le . The following shoves the
literals received by the satisfiability procedures, and the propagated equalities
listed in the order in which they were propagated.

x <_y P (g 2) = true
y <_ x + g , P (g ~) = false
g2 = g3 - g4 g3 = h (x)
g~ = 0 g4 = h (y)
x = y g3 = g4

g2 = g~ u n s a t i s f i a b l e

gl = c a r (c o n s (g s , x))
g, = g5

If one of the conjunctions F~, F~, or F z becomes unsatisfiable as a result of
equality propagation, the original conjunction must be unsatisfiable. For ~, ~,
and ~, the converse holds as well: if the original conjunction is unsatisfiable, then
one of the conjunctions F~, F~, or F z will become unsatisfiable as a result of
propagations of equalities between variables. For some other theories, such as
d , the converse does not hold. For such theories, "case splitting" is required. As
an example of case splitting, suppose that the theories being combined are d and
ACM Transact ions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

Simplification by Cooperating Decision Procedures 251

and tha t the conjunction to be shown unsatisfiable is

store(v, i, e)[j] = x A v [j] = y A x > e A x > y.

As before, the formula is first divided into two conjunctions:

F~: store(v, i, e)[j] = xA v i i i = y

F~: x > e A x > y

Each formula is satisfiable, the whole conjunction is unsatisfiable, but there
are no equalities to propagate. However, F~ entails the disjunction x = e V x =
y. Since neither x = e nor x = y is consistent with F~, the original formula can be
shown to be unsatisfiable by considering both cases.

Regardless of whether or not case splitting is required, it is never necessary to
propagate "disequalities," nor equalities other than those between variables. For
instance, in the first example there was no need for ~ to propagate y _< x or x =
y + g5 after receiving gl = gs, al though these were deducible facts. None of the
other satisfiability procedures could make use of this information, since none of
them knows anything about _< or +. Further, no disequality need be propagated,
even though every theory shares = and -~. A disequality x ~ y is needed to prove
inconsistency only if x = y is deduced. If some procedure deduces x = y, it will
propagate this fact to the other procedures, and the one tha t has deduced x ~ y
will detect the inconsistency.

In Section 4 we specify precisely how equality propagation and case splitting
can be used to combine decision procedures.

4. EQUALITY PROPAGATION PROCEDURE

If ~ and Y-are two theories with no common nonlogical symbols, their c o m b i -

n a t i o n is the theory whose set of nonlogical symbols is the union of the sets of
nonlogical symbols of ~ and J , and whose set of axioms is the union of the sets
of axioms of 5z and J . We do not consider combining theories which share
nonlogical symbols. Let F be a conjunction of literals whose nonlogical symbols
are among those of ~ and Y-:. The following algorithm determines whether F is
satisfiable in the combination of Y~and ~ The algorithm uses the variables F~
and F~-which contain conjunctions of literals.

Equality Propagation Procedure

1. Assign conjunctions to F,~ and F~ by the method described in Section 3 so that F~
contains a conjunction of ~-literals, F~- a conjunction of J-literals, and F~ A F~ is
satisfiable if and only if F is.

2. [Unsatisfiable?] If either F,p or F~ is unsatisfiable, return unsatisfiable.
3. [Propagate equalities.] If either F~ or F~ entails some equality between variables not

entailed by the other, then add the equality as a new conjunct to the one that does not
entail it. Go to step 2.

4. [Case split necessary?] If either F~ or F~ entails a disjunction ul = vl V -" • V uk = vk
of equalities between variables, without entailing any of the equalities alone, then apply
the procedure recursively to the k formulas F~ A F~ A ul = Vl F~ A F~ Auk = vk.
If any of these formulas are satisfiable, return satisfiable. Otherwise return unsatis-
fiable.

5. Return satisfiable.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

252 G. Nelson and D. C. Oppen

If the procedure returns unsatisfiable, it is clear tha t F is unsatisfiable. We
prove in Section 5 tha t the procedure is also correct if it re turns sa t i s f i ab le . Th e
procedure always halts, since each repeti t ion of step 3 or recursive call in step 4
conjoins an equality to one of the conjunctions F~ or F : not previously entailed
by the conjunction. This can happen at most n - 1 times, where n is the number
of variables appearing after step 1, since there can be no more than n - 1
nonredundant equalities between n variables.

We call a formula F n o n c o n v e x if it would cause a case split; tha t is, if there
exist 2n variables x l , y l , • . . , x , , Yn, such tha t F entails xl = yl V "" • V X n "~- yn but
for no i between 1 and n does F entail xi = yi. Otherwise, F is c o n v e x . Step 4
causes a case split whenever F~ or F : becomes nonconvex. A theory :~ is c o n v e x

if every conjunction of ~-literals is convex. As we shall see, ~ , 8, and ~ are
convex, so they never cause case splitting. Th e example in Sect ion 3 showed tha t
d is not convex.

In theory, any decision procedures for 5: and Y-can be used to determine the
equalities and disjunctions of equalities tha t need to be propagated in steps 3 and
4 simply by testing which of the finitely many equalities and disjunctions of
equalities between variables are entailed. Much be t te r methods are generally
possible, and our satisfiability procedures ~ , 8, d , and ~ determine the propa-
gated equalities and disjunctions rapidly, using different methods for each theory.

uses the simplex algori thm to determine the satisfiability of conjunctions of
linear inequalities. This algori thm is fast in practice and can be modified in a
fairly straightforward manner so tha t it detects the equalities which are conse-
quences of the linear inequalities. I t is not difficult to see tha t ~ is convex: the
solution set of a conjunction of linear inequalities is a convex set; the solution set
of a disjunction of equalities is a finite union of hyperplanes; and a convex set
cannot be contained in a finite union of hyperplanes unless it is contained in one
of them.

In [7] we describe satisfiability procedures for ~ and ~ and prove tha t 8 and
are convex. Both these satisfiability procedures take t ime O(n 2) to determine

the satisfiability of, and the equalities entailed by, a conjunct ion of length n.
Downey et al. [3] have improved the underlying algori thm to O (n log 2 n). Oppen
[9] describes a satisfiability procedure for ~q~ which runs in l inear t ime if list
s t ructure is assumed to be acyclic.

The satisfiability problem for conjunctions of d- l i tera ls is N P complete [2].
The algori thm for ~¢ is not difficult (it just does the obvious case splits) but can
be very costly.

Most of the theories we would like to add to our simplifier are nonconvex. Th e
theory of the reals under multiplication is not convex; for example, x y = 0 A z =

0 entails the disjunction x = z k/Y = z. Nei ther is the t h e o r y o f the integers under
+ and _<. For example, x = 1 A y = 2 A 1 _< z A z _ 2 entails the disjunction
x = z V Y = z. However, since we need only propagate equalities between
variables, not between variables and constants, conjunctions such as 1 _< z _< 100
will not cause hundred-way splits {unless there are 100 variables equal to 1, 2,
. . . . 100, respectively!). The theory of sets is wantonly nonconvex; for example,
{a, b, c} N {c, d, e} ~ { } forces a nine-way case split.

Oppen [8] shows how the complexity of a combinat ion of theories is de termined
ACM Transact ions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

Simplification by Cooperating Decision Procedures 253

by the complexity of the individual theories and their convexity. In particular, it
is shown tha t the decision problem for the theory decided by our simplifier is N P
complete.

5. CORRECTNESS OF THE EQUALITY PROPAGATION PROCEDURE

The proof of correctness requires several lemmas. Our first goal is to define the
residue of a formula. Essentially the residue is the strongest Boolean combination
of equalities between variables entailed by the formula. For example, the residue
of the formula x = f(a) A y = f(b) is a -- b D x = y, and the residue of x _ y A
y < _ x i s x = y .

We assume tha t there are no proposit ional variables. This restr ict ion is not
essential, but it simplifies the proof.

A parameter of a formula is any nonlogical symbol which occurs free in the
formula. Thus the parameters of a -- b V Vxf(x) < c are a, b, f, <, and c.

We define a simple formula to be one whose only parameters are variables. For
instance, x ~ y V z = y and Vx x ~ y are simple, but x < y and f(x) = y are not.
Thus an unquantif ied simple formula is a proposit ional formula whose atomic
formulas are equalities between variables. Lem m a 1 characterizes quantified
simple formulas.

LEMMA 1. Every quantified simple formula F is equivalent to some unquan-
tified simple formula G. G can be chosen so that its variables are all free
variables ofF.

PROOF. Suppose F is of the form 3x xI'(x). Le t 9o be the formula resulting from
by first replacing any occurrences of x = x and x ~ x by t r u e and fa lse ,

respectively, and replacing any remaining equali ty involving x by fa lse . Then, if
vl vk are the parameters o f ~ , F i s equivalent to xI,0 V ~t'(vl) V " '" V ~(vk),
since, in any interpretat ion, x ei ther equals one of the vi or differs f rom all of
them. By repeatedly eliminating quantifiers in this manner, we eventual ly obtain
an equivalent quantifier-free simple formula whose only variables are free varia-
bles of F.

LEMMA 2. (Craig's Interpolat ion Lemma). I f F and G are formulas such that
F entails G, then there exists a formula H such that F entails H and H entails
G, and each parameter of H is a parameter of both F and G.

PROOF. See Craig [1] or Shoenfield [10].
LEMMA 3. I f F is any formula, then there exists a simple formula Res(F), the

residue ofF, which is the strongest simple formula that F entails; that is, if H
is any simple formula entailed by F, then Res(F) entails H. Res(F) can be
written so that its only variables are free variables ofF.

PROOF. Le t { Gx } be the set of all simple formulas entailed by F. For each G~,
choose / Ix so tha t F D H~ D G~, the only parameters of Hx are parameters of both
F and Gx, a n d / I x is unquantified. The existence o f / Ix is guaranteed by Lemmas
1 and 2. E a c h / I x is a proposit ional formula whose atomic formulas are equalities
between parameters of F. I t is easy to show tha t an infinite conjunction of
proposit ional formulas over a finite set of atomic formulas is equivalent to some
finite subconjunction. Therefore the conjunction of the Hx is equivalent to some
finite subconjunct ion H. Any simple formula Gx entailed by F is entailed by some

ACM Transactions on Programming Languages and Systems, Vol. l, No. 2, October 1979.

254 G. Nelson and D. C. Oppen

H~, and so by H. The only parameters of H are free variables of F. Thus H is the
residue of F.

Here are some examples of residues:

Formula
x = f(a) A y = f(b)
x + y - a - b > O
x = s t o r e (v , i, e) [j]
x = s t o r e (v , i, e) [j] A y = v [j]

Residue
a = b D x = y
"~(x = a A y = b) A ~ (x = b a y = a)
i = j D x = e
i f i = j t h e n x = e else x = y

Notice in the last two formulas how the addition of a variable as a "label"
affects the residue.

As a final example to relate the notion of residue to tha t of equali ty propagation,
here are the residues
Section 3:

x _ y P(g2)
y <_ x + gl -~P(gs)
g2 = g~ - g4 g3 = h(x)
g~ = O g4 = h (y)
gs = g~ -~ x = y A g2 ~ g~ A

g3 = g4 ==- g2 = g5 x f y D ga = g4

of the formulas which appeared in the example of

Zz

gl = c a r (c o n s (g s , x))
gl = g~

As we found in Section 3, the residues are inconsistent. An essential fact in the
proof of correctness of the equali ty propagat ion procedure is tha t these residues
are always inconsistent if the original formula is. This fact is a consequence of the
following lemma.

LEMMA 4. If A a n d B are f o r m u l a s whose on ly c o m m o n p a r a m e t e r s are

variables , then R e s (A A B) =- R e s (A) A R e s (B) .

Notice tha t the condition of the lemma is satisfied when A and B are f rom
different theories which have no nonlogical symbols in common.

PROOF. Obviously the left side of the equivalence entails the right side, so we
need only show the converse. F rom A A B ~ R e s (A A B) follows A ~ (B
R e s (A A B)). So, by Craig's interpolat ion lemma, there is a formula H entailed
by A which entails B ~ R e s (A A B), and whose only parameters are parameters
of A and B. These must be variables, so H is simple. Therefore R e s (A) ~ (B
R e s (A A B)). Writing this as B ~ (R e s (A) ~ R e s (A A B)), and observing tha t
the r ight-hand side is simple, we deduce tha t R e s (B) ~ (R e s (A) ~ R e s (A A B)) ,

or, equivalently, tha t R e s (A) A R e s (B) ~ R e s (A A B) , which proves the lemma.
LEMMA 5. L e t F a n d G be s imple , sat is f iable , convex formulas , a n d let V be

the set o f a l l var iab les a p p e a r i n g in e i ther F or G. S u p p o s e t h a t for a l l x a n d y
in V, e i ther both F a n d G en ta i l x = y or ne i ther do. T h e n F A G is sat is f iable .

PROOF. Let S be the set of equalities between variables in V entailed by F
(hence also by G), and let T be the set of all o ther equalities between variables
of V. We claim tha t any interpreta t ion which makes every equali ty in S t rue and
every equali ty in T false satisfies bo th F and G. If it does not satisfy, say, F, then
F entails the disjunction of all equalities in T. We now consider three cases: If T
is empty, F is unsatisfiable. If T contains only one equality, it is entailed by F and
so it is in S. If T contains more than one equality, F is nonconvex. Each case
contradicts our assumptions.

ACM Transact ions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

Simplification by Cooperating Decision Procedures 255

We now complete the proof of correctness of the equali ty propagat ion procedure
by showing tha t if it re turns sa t i s f i ab le , F is satisfiable. Suppose tha t F~ A F j
is unsatisfiable. Then there is a finite conjunction S of axioms of ~ and a finite
conjunction T of axioms of J - such tha t S A F~ A T A F j is unsatisfiable. Thus
Res(S A F~ A T A Fg-) is the constant fa lse . F rom Lem m a 4, it follows tha t the
conjunction of Res (S A F~) with Res (T A F]) is unsatisfiable. But if step 5 of the
equali ty propagation procedure is reached, each of these residues must be convex,
since step 4 did not cause a case split. Fur thermore , the residues entail the same
set of equalities and are each satisfiable, since steps 2 and 3 were passed. Lem m a
5 implies tha t the conjunction of the residues is satisfiable, contrary to our
assumption. Thus F is satisfiable if the algori thm returns from step 5. I t follows,
by induction on the depth of recursion, tha t F is satisfiable whenever step 4
returns sa t i s f i ab le .

6. SIMPLIFYING BOOLEAN STRUCTURE

Simplifying a formula is more difficult than just determining whether it is
satisfiable. If a formula is valid, its simplest equivalent is t rue ; if it is unsatisfiable,
its simplest equivalent is fa lse ; but if it is neither, the choice of the "simplest"
form is a ma t t e r of taste. For example, A A (B V C) and A A B V A A C are
equivalent, but it is not easy to decide which is simpler. When an expression does
not simplify to a constant such as t r ue , our simplifier re turns a variant of cond
normal form (see McCar thy [6]), a l though this is not necessarily the most
satisfactory form.

We assume in this section tha t the expression given to the simplifier is Boolean
valued.

The simplifier first replaces A, V, -% and D by i f - t hen -e l s e using the rules:

a A b --* if a then b else false
a V b --* if a then t rue else b
a D b ~ if a then b else t rue (2)
-la --> if a then false else t rue

It also uses the following t ransformation recursively until the first a rgument of
a conditional expression is not itself a proper conditional expression:

if (ifp then a else b) t h e n c else d
--* i f p t h e n (i f a t h e n c e l s e d) e l s e (i f b t h e n c e l s e d).

(This t ransformation may double the "print length" of the formula, since c and
d each occur once on the left and twice on the right. But in a conventional list-
s t ructure representat ion, the two occurrences can share storage.)

Finally, each atomic formula p which is not the test of an i f - t hen -e l s e is
replaced by i f p t h e n t r u e e l se fa lse .

The cost of normalizing the formula by these t ransformations is l inear in t ime
and space.

Once the formula has been normalized, the simplifier "symbolically evaluates"
the resulting conditional expression. The following function simpli fy(f) is a
simplified version of the symbolic evaluator we use. I t uses a rout ine simpatom
which simplifies atomic formulas; for example, s impatom(P(x + 0)) = P(x) .

ACM Transact ions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

256 G. Nelson and D. C. Oppen

simplify(f):

1. If f is t rue or false, then return f. Otherwise, f is of the form i fp then a else b, where
p is an atomic formula. Se tp *-s impatom(p) .

2. Assume p is true. If this assumption is inconsistent with the existing context of
assumptions, then remove this assumption and return simplify(b). Otherwise, set a ~-
simplify (a) and remove the assumption that p is true.

3. Assume p is false. If this assumption is inconsistent with the existing context of
assumptions, then remove this assumption and return a. Otherwise, set b ~ simplify (b)
and remove the assumption that p is false.

4. If a and b are identical, return a. If a is t rue and b is false, then return p. If the
expression i fp then a else b matches one of the right-hand sides of (2), then return the
corresponding left-hand side. Otherwise, return i f p then a else b.

For example, to simplify p D -~p, the simplifier first normalizes it to the
condit ional expression

i f p then (i fp then false else true) else true.

This expression is symbolical ly evaluated. Under the assumpt ion t ha t p is t r u e ,
the subexpression i f p t h e n f a l s e e l s e t r u e is recursively simplified to fa l se . T h e
o ther b ranch (the e l s e branch) remains t r u e , so the whole expression simplifies
to i f p t h e n f a l s e e l s e t r u e , hence, by s tep 4, to ~ p .

To simplify x = x, the simplifier first normalizes it to f f x = x t h e n t r u e e l s e
fa lse . T h e assumpt ion x ~ x is inconsistent, so the expression is simplified to
t r u e .

The equal i ty propagat ion procedure is used to de te rmine a t any stage whe the r
the conjunct ion of assumpt ions is satisfiable. To make this practical, the satisfi-
abili ty procedures we use have two proper t ies in addit ion to thei r abil i ty to
de te rmine the satisfiabili ty of conjunctions and to p ropaga te the equalities and
disjunctions of equalities entai led by the conjunctions. First, they are i n c r e m e n t a l ,
t ha t is, they accept li terals one by one, main ta in a represen ta t ion of thei r
conjunction, and detect unsatisfiabil i ty of this conjunct ion as soon as it occurs.
Second, they are rese t tab le , t ha t is, they can m a r k their state, accept fur ther
literals, and then re turn to the m arked s ta te by removing the literals received
af ter the mark .

T h e a lgor i thms we use for ~ , 8, ~ , and d are incrementa l and reset table. T h e
data s t ructure for the simplex a lgor i thm used in ~ is a sparse matrix; adding and
removing assumpt ions f rom ~ 's conjunct ion is achieved by adding and removing
rows of the matrix. Our a lgor i thms for 8 and ~ are also incrementa l and
reset table; given a conjunct ion of length n, the total t ime required to assume the
literals one by one and then remove the assumpt ions one by one is O(n2) .

T h e definition of s i m p l i f y given above does not t r ea t case splitting. Case
splitting is necessary whenever the conjunct ion in one of the satisfiabili ty proce-
dures becomes nonconvex. I f this happens, the res t of the subformula is recur-
sively simplified once for each b ranch of the case split. For example, consider the
formula

store(v, i, e)[j] = x A v[j] = f A (x <_ e V x <_ f) ,

which is normalized to

if store(v, i, e)[j] = x
then if v[j] = f t h e n (i fx _< e then t rue else x -< f) else false
else false.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

Simplification by Cooperating Decision Procedures 257

W h e n v[j] = f is assumed, the con junc t ion in d becomes nonconvex , and d
signals the split x = e k / x = f. Ins t ead of going on to eva lua te i f x _ e t h e n t r u e
e l s e x _< f, t he simplifier evalua tes the expression:

i f x = e t h e n (i f x _< e t h e n t rue else x _< f)
else (i f x ~ e t h e n t rue else x _< f) .

T h u s simplify is called twice wi th the a r g u m e n t (i f x _< e t h e n t r u e e l s e x _< f) ,
once u n d e r the a s sumpt ion x = e and once u n d e r the a s s u m p t i o n x @ e. W h e n x

e is assumed, d p ropaga te s x = f, t hus effect ing the case split. B o t h calls r e t u r n
t r u e , so the final resul t is

s t o r e (v , / , e) [j] = x A v [j] =

ACKNOWLEDGMENT

We t h a n k the m e m b e r s of the S t an fo rd Verif icat ion Group for the i r careful
cri t icism of earl ier draf ts of this pape r and of earl ier vers ions of the simplifier.

REFERENCES

1. CRAIG, W. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. Symbolic Logic 22 (1955).

2. DOWNEY, P.J., AND SETHI, R. Assignment commands with array references. J. ACM 25, 4 (Oct.
1978}, 652-666.

3. DOWNEY, P., SETHI, R., ANn TARJAN, R. Variations on the common subexpression problem. To
appear in J. A CM.

4. KAPLAN, D.M. Some completeness results in the mathematical theory of computation. J. ACM
15, 1 (Jan. 1968), 124-134.

5. MATIYASEVICH, Y.V. Diophantine representation ofrecursively enumerable predicates. Proc. 2nd
Scandinavian Logic Symposium, North-Holland Publ. Co., 1970.

6. MCCARTHY, J. A basis for a mathematical theory of computation. In Computing Programming
and Formal Systems, P. Braffort and D. Hirshberg, Eds. North-Holland Publ. Co., 1963.

7. NELSON, C.G., AND OPPEN, D.C. Fast decision algorithms based on congruence closure. CS Rep.
STAN-CS-77-646, Stanford U., 1978.

8. OPPEN, D.C. Convexity, complexity, and combinations of theories. To appear in Theoretical
Comptr. Sci.

9. OPPEN, D.C. Reasoning about recursively defined data structures. To appear in J. ACM.
10. SCHOENFIELD, J.R. Mathematical Logic. Addison-Wesley, Reading, Mass., 1967.
11. SHOSTAK, R.E. An practical decision procedure for arithmetic with function symbols. J. ACM26,

2 (April 1979), 351-360.
12. SUZUKI, N., AND JEFFERSON, D. Verification decidability of Presburger array programs. Proc.

Conf. on Theoretical Computer Science, U. of Waterloo, Aug. 1977.
13. TAKEUCHI, I. Private communication to J. McCarthy.
14. TARSKI, A. A decision method for elementary algebra and geometry. Berkeley, 1951.

Received April 1978; revised January 1979

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979.

