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A method for combining decision procedures for several theories into a single decision procedure for 
their combination is described, and a simplifier based on this method is discussed. The simplifier finds 
a normal form for any expression formed from individual variables, the usual Boolean connectives, 
the equality predicate =, the conditional function if-then-else, the integers, the arithmetic functions 
and predicates +, - ,  and _<, the Lisp functions and predicates car, cdr, cons, and atom, the functions 
store and select for storing into and selecting from arrays, and uninterpreted function symbols. If 
the expression is a theorem it is simplified to the constant true, so the simplifier can be used as a 
decision procedure for the quantifier-free theory containing these functions and predicates. The 
simplifier is currently used in the Stanford Pascal Verifier. 
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1. INTRODUCTION 

P r o g r a m  verifiers, symbol ic  evaluators ,  p rog r a m t r a n s f o r m a t i o n  sys tems,  a n d  
s imi la r  h igh- level  " p r o g r a m  m a n i p u l a t i o n "  sys tems  will m a k e  the  p r o g r a m m i n g  
process  more  au tomat i c ,  less er ror  prone,  and  c h e a p e r - - i f  t hey  can  ever  be m a d e  
pract ical .  T h e  m a i n  r eason  they  have  no t  ye t  progressed b e y o n d  the  e x p e r i m e n t a l  
stage is t h a t  t h e y  d e p e n d  on  m e c h a n i c a l  t h e o r e m  provers ,  a n d  these  have  b e e n  
too slow and  unre l iab le .  

T h e o r e m  provers  are r equ i red  by  p r o g r a m  m a n i p u l a t i o n  sys tems  to ver i fy 
rou t ine  facts a b o u t  n u m b e r s ,  arrays ,  lists, and  o the r  c o m m o n  da ta  s t ruc tures .  We  
give two examples  of the  sor t  of t h e o r e m s  which  arise. First ,  cons ider  the  loop 

for  i ~- 0 to n do v[ i]  ~-- f(i),  

where  f is a f unc t i on  wi th  no side effects. Usu a l l y  the  tes t  i = 0 compi les  b e t t e r  
t h a n  the  tes t  i = n, so a p rog ram t r a n s f o r m a t i o n  sys t em mi gh t  t ry  to change  the  
loop to r u n  i f rom n to 0 ins t ead  of f rom 0 to n. To  jus t i fy  th is  t r a n s f o r ma t i on ,  i t  
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246 G. Nelson and D. C. Oppen 

must prove that two consecutive loop executions "commute"; that  is, that they 
can be executed in either order with the same effect. Let store(v, i, e) denote the 
array whose ith element is e and whose j t h  element, for j ~ i, is v[j]. The 
theorem which must be proved is 

store(store(v, i, f(i)), i + 1, f ( i  + 1)) -- store(store(v, i + 1, f{i + 1)), i, f(i)). 

The second example is from program verification. If a random integer in the 
range [a, b] is generated from a random real number ~, in the range [0, 1) by the 
formula [a + ~,(b - a + 1}J, the verification that the output is in the correct range 
may require proving the "theorem": 

O < ~ A ~ < l ~ a < _ [ a + ~ ( b - a +  1 ) J A [ a + ~ ( b - a +  1)J~b. 

A verifier will reject this theorem, alerting the user to the fact that  critical 
assumptions are missing--the assumptions that  a and b are integers and that  
a<_b. 

Neither of the above theorems is mathematically interesting. Mechanical 
reasoning is used in program manipulation to verify routine facts or to catch 
slippery errors, not to prove mathematically interesting theorems. 

Notice that the formulas above are "quantifier free"--their variables are 
implicitly universally quantified. The theorem-proving methods described in this 
paper apply only to quantifier-free formulas. 

An algorithm for determining whether a formula is valid in a logical theory is 
called a decision procedure for the theory. Decision procedures are known for 
many quantifier-free theories important in program manipulation. For example, 
there are decision procedures for the theory of integers under ÷ and <_, for the 
theory of arrays under s tore  and select, and for the theory of equality with 
uninterpreted function symbols. Unfortunately, the expressions which arise in 
program manipulation often do not fall within any of these naturally defined 
theories--they usually involve "mixed" terms containing functions and predicates 
from several theories. For example, the first theorem above contained the 
arithmetic function +, the array function store,  and the uninterpreted function 
symbol f. 

There has been some research on decision procedures for specific quantifier- 
free theories with mixed terms: Kaplan [4] gives a decision procedure for the 
theory of arrays with constant indices, Shostak [11] for Presburger arithmetic 
with uninterpreted function symbols, and Suzuki and Jefferson [12] for Presbur- 
ger arithmetic with arrays and uninterpreted function symbols. 

In this paper we give a general method for combining decision procedures for 
two quantifier-free theories into a single decision procedure for their combination, 
which contains the functions and predicates of both theories. The method is 
based on a technique which we call equality propagat ion.  Using this technique, 
we have implemented a simplifier which finds a simplified, normal form for any 
expression formed from individual variables, the usual Boolean connectives, the 
equality predicate =, the conditional function if-then-else, the integers, the 
arithmetic functions and predicates +, - ,  and _<, the Lisp functions and predicates 
car, cdr, cons, and atom, the functions s tore  and select, and uninterpreted 
function symbols. If the expression is a theorem, it is simplified to true; if it is 
unsatisfiable, it is simplified to false. If it is neither, or if it is not a Boolean- 
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(-~(x -< y)  A 
( x -  1 < _ y A  t a k ( x -  1, y, z)  = Y V  

y < x - l A  
( y < - - z A t a k ( x -  l , y , z ) =  z v  

z < y A t a k ( x  - l , y ,  z )  -- x - 1 ) )  A 

( y -  l < _ z A t a k ( y -  l , z , x ) - - -  z v  

z < y - l A  
( z < _ x A t a k ( y -  l , z , x )  = x v  

x < z  A t a k ( y -  l , z , x )  = y - 1 ) )  A 

( z - l < - x A t a k ( z - l , x , y ) = x  V 
x < z - l A  

(x<_ y A t a k ( z  - 1 , x , y )  = y V  

y < x A  t a k ( z  - 1, x , y )  = z -  1)) A 
( t a k ( x  - 1, y, z)  <_ t a k ( y  - 1, z, x) A 

t a k ( t a k ( x  - 1, y, z) ,  t a k ( y  - 1, z, x ) ,  t a k ( z  - 1, x , y ) )  = t a k ( y  - 1, z, x)  V 

t a k ( y  - 1, z, x )  < t a k ( x  - 1, y, z) A 
( t a k ( y  - 1, z, x)  <_ t a k ( z  - 1, x, y )  A 

t a k ( t a k ( x  - 1, y, z) ,  t a k ( y  - 1, z, x ) ,  t a k ( z  - 1, x, y ) )  = t a k ( z  - 1, x, y )  V 

t a k ( z  - 1, x, y )  < t a k ( y  - 1, z, x)  A 

t a k ( t a k ( x  - 1, y, z), t a k ( y  - 1, z, x),  t a k ( z  - 1, x, y ) )  = t a k ( x  - 1, y ,  z)))  

D 

x <_ y A t a k ( t a k ( x  - 1, y, z),  t a k ( y  - 1, z, x ) ,  t a k ( z  - 1, x, y) )  = y V 
y < x A  

( y  <_ z A t a k ( t a k ( x  - 1, y, z )  t a k ( y  - 1, z, x),  t a k ( z  - 1, x ,  y))  = z V 
z < y A t a k ( t a k ( x  - 1, y, z),  t a k ( y  - 1, z, x ) ,  t a k ( z  - 1, x, y) )  = x))  

Fig. 1. 

valued expression,  the  simplifier returns a simplified, normal  form of  the  expres- 
sion. T h u s  we  call our program a simplifier rather than a t h e o r e m  prover.  T h e  
simplifier is present ly  used in the  Stanford Pascal  Verifier, an interact ive s y s t e m  
for reasoning about  Pascal  programs.  

Here are examples  o f  s o m e  relat ively  trivial simplifications: 

2 + 3 , 5  
17 

P D  "~P 
- ~ p  

x ~ x  
f a l s e  

x = f ( x )  D f ( f ( f ( x ) ) )  = x 
t r u e  

c o n s ( x ,  y )  = z D c a r ( z )  + c d r ( z )  - x - y = 0 
t r u e  

x <_ y A y + d <_x A 3 * d _  > 2 * d D  V [ 2 * x - y ] =  V [ x  + d]  
t r u e  

(In the  last example ,  the  first two literals imply  that  d __ 0, the  third that  d _ 0. 
Hence  d = 0 and x = y.) 

T h e  fol lowing is a s o m e w h a t  artificial example  involving a larger formula.  Ikuo 
T a k e u c h i  [13] def ined the  function: 

tak(x ,  y, z)  = if  x _< y then  y e lse  t a k ( t a k ( x  - 1, y, z), t a k ( y  - 1, z, x), t a k ( z  - 1, x, y ) ) .  
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John  McCar thy  proved tha t  the function satisfies 

t a k ( x ,  y, z) -- if x _ y then y else if  y _ z then z else x. (1) 

A key step in the proof  is the verification tha t  if x > y and (1) holds for each of 
the four recursive calls in t a k ,  then  (1) holds for t a k ( x ,  y ,  z ) .  We wrote t a k  as a 
recursive Pascal program and used the Stanford Pascal Verifier to produce the 
actual formula to be proved; it is shown in Figure 1. Th e  simplifier described in 
this paper  simplifies this formula to t rue ,  requiring 0.8 CPU seconds on a DEC 
KL-10 running compiled MACLISP.  

2. THE THEORIES ~,  ~', ~,  AND # 

Our simplifier contains decision procedures for four quantifier-free theories: the 
theory  of real numbers  under  ÷ and _<, the theory  of arrays under  s t o r e  and 
select ,  the theory  of list s t ructure  with ear ,  cdr ,  cons ,  and a t o m ,  and the theory  
of equali ty with unin terpre ted  function symbols. We call these theories ~ ,  d ,  ~ ,  
and #, respectively. 

The  theories are formalized in classical first-order logic with equality, extended 
to include the three-argument  conditional function i f - then-e l se .  Th e  symbols 
=, A, V, -~, ~, i f - then-e l se ,  V, and 3 are common to all theories; we call t hem the 
l o g i c a l  s y m b o l s .  Each theory  is characterized in the usual way by its set of 
n o n l o g i c a l  s y m b o l s  and n o n l o g i c a l  a x i o m s .  

The  nonlogical symbols of ~ are +, - ,  _<, 0, and 1. Its axioms are 

VX x + O = x  

Vx x + --x = 0 
V x V y V z  (x + y)  + z = x + ( y  + z) 
Y x Y y  x + y = y + x 
V x  x < _ x  
V x V y  x < _ y v y < _ x  
V x V y  x < _ y A y < _ x D x  = y  
V x V y V z  x <_y A y  <_ z ~ x <_ z 
V x V y V z  x < y  ~ x + z <_y + z 

0 # 1  
0 < 1  

Of course, the numerals  and the common relations are allowed but  are formally 
regarded as abbreviations: 2 abbreviates 1 + 1 and x < y abbreviates -~y _< x. 
Multiplication by integer constants  is also allowed; 2 .  x abbreviates  x + x. 

S ta tements  which are valid over  the integers but  not  over  the reals, such as 
x + x # 5, are not  consequences of the above axioms and will not  be simplified to 
t r u e  by our  simplifier. Luckily such formulas occur relatively infrequent ly  in 
program manipulation. Decision procedures  exist for the theory  of the integers 
under  + and <_, but  we have not  tr ied implementing any of them, since they  are 
considerably more complicated than  decision procedures  for ~.  Our simplifier 
includes some simple heuristics for dealing with integers (such as convert ing 
x < y into x < y - 1 when both  variables are known to be integers) which work 
well in practice. 

A more annoying problem is tha t  only multiplication by constants  is handled. 
To  some extent  this incompleteness is inherent,  since no decision procedure  can 
exist for the quantifier-free theory  of integers under  addit ion and multiplication 
(see Matiyasevich [5]). The  theory  of the real numbers  under  addition and 
ACM Transact ions  on Programming  Languages  and  Systems, Vol. 1, No. 2, October  1979. 



Simplification by Cooperating Decision Procedures 249 

mult ipl icat ion is decidable (see Tarsk i  [14]), bu t  we have  not  tr ied to implement  
a decision procedure  for this theory.  

The  theory  of arrays,  d ,  has  the  nonlogical symbols  s t o r e  and s e l e c t  and the 
axioms 

VvVeViVj select(store(v, i, e),j)  = i f / = j  then  e else seleet(v, j )  
VvVi store(v, i, select(v, i)) = v 
VvViVeVf store(store(v,  i, e), i, f) = store(v, i, f) 
VvViVjVeVf i # j  D store(store(v,  i, e),j, f) = s tore(s tore(v, j ,  f), i, e) 

We write v[i] for se lec t (v ,  i). A two-dimensional  a r ray  can be t rea ted  as an 
ar ray  of arrays,  so A[i,  j]  is shor thand  for A [ i ] [ j ] .  T h e  last  three  axioms are only 
needed if equalities be tween  a r ray  t e rms  are allowed. 

The  theory  of list s tructure,  ~ ,  has  the nonlogical symbols  ca r ,  cdr ,  cons ,  and 
a t o m  and the  axioms 

VxVy car(cons(x, y)) = x 
VxVy cdr(cons(x, y)) = y 
Vx -~atom(x) D cons(car(x),  cdr(x)) = x 
VxVy -~ a t o m  ( c o n s ( x ,  y ) ) 

T h a t  is, cons (x ,  y)  is the ordered pair  (x, y); c a r ( z )  and c d r ( z )  are the  
components  of the  ordered pair  z; and a t o m ( z )  is t rue if and only if z is not  an 
ordered pair. Notice t ha t  acyclicity is not  assumed; for instance, c a r ( x )  ffi x is 
regarded as satisfiable. 

Finally, we define the theory  ~ whose nonlogical symbols  are all un in te rpre ted  
function, constant,  and predicate  symbols.  8 h a s  no axioms, so it is jus t  the theory  
of equality. 

3. TWO EXAMPLES OF EQUALITY PROPAGATION 

I f  J i s  a theory,  the terms,  literals, and formulas  of the language of ~9 ~ will be 
called 5Z-terms, ~-literals, and $Z-formulas. (A literal is an a tomic  formula  or its 
negation.) For  example,  x = y and x __ y + 3 are ~- l i te ra ls  but  x _< c a r ( y )  is not. 

A satisfiabilityprocedure for a theory  :7 is a decision procedure  for determining 
the satisfiability of conjunctions of~-l i terals .  (The general  quantif ier-free decision 
problem for 5z can easily be reduced to this problem.)  Our simplifier contains 
satisfiability procedures  for the theories  described Section 2. We use ~ ,  d ,  ~ ,  and 

for the names  of the satisfiability procedures  as well as for the names  of the 
theories. 

A formula  F entails a formula  G if G is a logical consequence of F; tha t  is, if 
F D G is a t heo rem  of f irst-order logic. A formula  F entails a formula  G within a 
theory ~ if F D G is a t heo rem in ~. I f  the context  is clear, we omi t  specifying the 
theory;  for instance, we say tha t  x - y = 0 entails x = y wi thout  specifying "in the 
theory  ~ . "  

The  satisfiabili ty procedures  in our simplifier also detect,  and "p ropaga te"  to 
the other  satisfiability procedures,  certain equalities entai led by the conjunct ion 
being decided. The  detect ion of these equalities is the key  to our me thod  of 
combining decision procedures.  To  i l lustrate this process, we describe how ~ ,  ~ ,  
and g together  detect  the unsatisfiabil i ty of the following conjunct ion F:  

x <_y A y  _< x + car(cons(0, x)) A P(h(x) - h(y)) A _np(o). 
ACM Transac t ions  on Programming  Languages  and  Systems, Vol. 1, No. 2, October  1979. 
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The first step is to construct three conjunctions F~, F~, and F~, such that F~ 
contains only 8-1iterals, F,~ only ~-literals, F~ only ~,q~-literals, and F is satisfiable 
if and only if F~ A F~ A F~ is. We do this by introducing new variables to replace 
terms of the wrong "type" and adding equalities defining these new variables. 
For instance, the second conjunct above would be an ~-literal except that  it 
contains the term car(cons(0,  x)), which is not an ~-term. We therefore replace 
car(cons(0,  x)) by a new variable, say g,, and add to the conjunction the equality 
g~ = car(cons(0,  x)) defining gl. By continuing in this fashion we eventually 
obtain the following three conjunctions: 

F~ F ~  

x <_ y P ( g 2 )  = true 
y <- x + g~ P ( g ~ )  = f a l s e  

g2 = g3 - g4 g3 = h ( x )  
g ~ = O  g 4 = h ( y )  

g l  - -  car(cons(gs, x ) )  

These three conjunctions are given to the three satisfiability procedures ~,  8, 
and ~. Since each conjunction is satisfiable by itself, there must be interaction 
between the procedures for the unsatisfiability to be detected. The interaction 
takes a particular, restricted form: we require that each satisfiability procedure 
deduce and p r o p a g a t e  to the other satisfiability procedures all equalities between 
variables entailed by the conjunction it is considering. For example, if x _< y and 
y _< x are given to ~,  it must deduce and propagate to the other satisfiability 
procedures the fact that  x = y. The other satisfiability procedures add x -- y to 
their conjunctions and the process continues. 

In our example, neither F~ nor F~ entail any equalities between variables, but 
F z  entails gl = gs. £z propagates this equality. ~ uses this equality to deduce and 
propagate x = y. ~ then propagates ga = g4. ~2 then propagates g2 = gs. Now e has 
an inconsistent conjunction, and signals unsa t i s f iab le .  The following shoves the 
literals received by the satisfiability procedures, and the propagated equalities 
listed in the order in which they were propagated. 

x <_y P ( g 2 )  = true 
y <_ x + g ,  P ( g ~ )  = false 
g2 = g3 - g4 g3 = h ( x )  
g~ = 0 g4 = h ( y )  
x = y g3 = g4 

g2 = g~ u n s a t i s f i a b l e  

gl = c a r ( c o n s ( g s ,  x ) )  
g,  = g5 

If one of the conjunctions F~, F~, or F z  becomes unsatisfiable as a result of 
equality propagation, the original conjunction must be unsatisfiable. For ~,  ~, 
and ~, the converse holds as well: if the original conjunction is unsatisfiable, then 
one of the conjunctions F~, F~, or F z  will become unsatisfiable as a result of 
propagations of equalities between variables. For some other theories, such as 
d ,  the converse does not hold. For such theories, "case splitting" is required. As 
an example of case splitting, suppose that the theories being combined are d and 
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and tha t  the conjunction to be shown unsatisfiable is 

store(v, i, e)[j] = x A v [ j ]  = y A x > e A x > y. 

As before, the formula is first divided into two conjunctions: 

F~: store(v, i, e)[j] = xA v i i i  = y 

F~: x > e A x > y  

Each formula is satisfiable, the whole conjunction is unsatisfiable, but  there 
are no equalities to propagate. However, F~  entails the disjunction x = e V x = 
y. Since neither x = e nor x = y is consistent with F~, the original formula can be 
shown to be unsatisfiable by considering both cases. 

Regardless of whether  or not case splitting is required, it is never necessary to 
propagate "disequalities," nor equalities other than those between variables. For 
instance, in the first example there was no need for ~ to propagate y _< x or x = 
y + g5 after receiving gl = gs, al though these were deducible facts. None of the 
other satisfiability procedures could make use of this information, since none of 
them knows anything about  _< or +. Further,  no disequality need be propagated, 
even though every theory  shares = and -~. A disequality x ~ y is needed to prove 
inconsistency only if x = y is deduced. If  some procedure deduces x = y, it will 
propagate this fact to the other procedures, and the one tha t  has deduced x ~ y 
will detect the inconsistency. 

In Section 4 we specify precisely how equality propagation and case splitting 
can be used to combine decision procedures. 

4. EQUALITY PROPAGATION PROCEDURE 

If  ~ and Y-are two theories with no common nonlogical symbols, their c o m b i -  

n a t i o n  is the theory whose set of nonlogical symbols is the union of the sets of 
nonlogical symbols of ~ and J ,  and whose set of axioms is the union of the sets 
of axioms of 5z and J .  We do not consider combining theories which share 
nonlogical symbols. Let  F be a conjunction of literals whose nonlogical symbols 
are among those of ~ and Y-:. The  following algorithm determines whether  F is 
satisfiable in the combination of Y~and ~ The algorithm uses the variables F~ 
and F~-which contain conjunctions of literals. 

Equality Propagation Procedure 

1. Assign conjunctions to F,~ and F~ by the method described in Section 3 so that F~ 
contains a conjunction of ~-literals, F~- a conjunction of J-literals, and F~ A F~ is 
satisfiable if and only if F is. 

2. [Unsatisfiable?] If either F,p or F~ is unsatisfiable, return unsatisfiable. 
3. [Propagate equalities.] If either F~ or F~ entails some equality between variables not 

entailed by the other, then add the equality as a new conjunct to the one that does not 
entail it. Go to step 2. 

4. [Case split necessary?] If either F~ or F~ entails a disjunction ul = vl V -" • V uk = vk 
of equalities between variables, without entailing any of the equalities alone, then apply 
the procedure recursively to the k formulas F~ A F~ A ul = Vl . . . . .  F~ A F~ Auk = vk. 
If any of these formulas are satisfiable, return satisfiable. Otherwise return unsatis- 
fiable. 

5. Return satisfiable. 
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If  the procedure returns  unsatisfiable, it is clear tha t  F is unsatisfiable. We 
prove in Section 5 tha t  the procedure is also correct  if it re turns  sa t i s f i ab le .  Th e  
procedure always halts, since each repeti t ion of step 3 or recursive call in step 4 
conjoins an equality to one of the conjunctions F~ or F :  not  previously entailed 
by the conjunction. This  can happen at  most  n - 1 times, where n is the number  
of variables appearing after  step 1, since there  can be no more than  n - 1 
nonredundant  equalities between n variables. 

We call a formula F n o n c o n v e x  if it would cause a case split; tha t  is, if there  
exist 2n variables x l ,  y l ,  • . . ,  x , ,  Yn, such tha t  F entails xl = yl V "" • V X n  "~- yn  but  
for no i between 1 and n does F entail xi = yi. Otherwise, F is c o n v e x .  Step 4 
causes a case split whenever  F~  or F :  becomes nonconvex. A theory  :~ is c o n v e x  

if every conjunction of ~-literals is convex. As we shall see, ~ ,  8, and ~ are 
convex, so they  never  cause case splitting. Th e  example in Sect ion 3 showed tha t  
d is not  convex. 

In theory,  any decision procedures  for 5:  and Y-can be used to determine the 
equalities and disjunctions of equalities tha t  need to be propagated in steps 3 and 
4 simply by testing which of the finitely many  equalities and disjunctions of 
equalities between variables are entailed. Much  be t te r  methods  are generally 
possible, and our satisfiability procedures  ~ ,  8, d ,  and ~ determine the propa- 
gated equalities and disjunctions rapidly, using different methods  for each theory.  

uses the simplex algori thm to determine the satisfiability of conjunctions of 
linear inequalities. This  algori thm is fast in practice and can be modified in a 
fairly straightforward manner  so tha t  it detects  the equalities which are conse- 
quences of the linear inequalities. I t  is not  difficult to see tha t  ~ is convex: the 
solution set of a conjunction of linear inequalities is a convex set; the solution set 
of a disjunction of equalities is a finite union of hyperplanes;  and a convex set 
cannot  be contained in a finite union of hyperplanes  unless it is contained in one 
of them. 

In [7] we describe satisfiability procedures  for ~ and ~ and prove tha t  8 and 
are convex. Both  these satisfiability procedures  take t ime O(n  2) to determine 

the satisfiability of, and the equalities entailed by, a conjunct ion of length n. 
Downey et al. [3] have improved the underlying algori thm to O ( n  log 2 n). Oppen 
[9] describes a satisfiability procedure  for ~q~ which runs in l inear t ime if list 
s t ructure  is assumed to be acyclic. 

The  satisfiability problem for conjunctions of d- l i tera ls  is N P  complete [2]. 
The  algori thm for ~¢ is not  difficult (it just  does the obvious case splits) but  can 
be very costly. 

Most  of the theories we would like to add to our  simplifier are nonconvex. Th e  
theory  of the reals under  multiplication is not  convex; for example, x y  = 0 A z = 

0 entails the disjunction x = z k/Y = z. Nei ther  is the t h e o r y o f  the integers under  
+ and _<. For  example, x = 1 A y = 2 A 1 _< z A z _ 2 entails the disjunction 
x = z V Y = z. However,  since we need only propagate  equalities between 
variables, not  between variables and constants, conjunctions such as 1 _< z _< 100 
will not  cause hundred-way splits {unless there  are 100 variables equal to 1, 2, 
. . . .  100, respectively!). The  theory  of sets is wantonly nonconvex; for example, 
{a, b, c} N {c, d, e} ~ { } forces a nine-way case split. 

Oppen [8] shows how the complexity of a combinat ion of theories is de termined 
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by the complexity of the individual theories and their  convexity. In particular, it 
is shown tha t  the decision problem for the theory  decided by our simplifier is N P  
complete.  

5. CORRECTNESS OF THE EQUALITY PROPAGATION PROCEDURE 

The  proof  of correctness requires several lemmas. Our first goal is to define the 
residue of a formula. Essentially the residue is the strongest Boolean combination 
of equalities between variables entailed by the formula. For  example, the residue 
of the formula x = f(a) A y = f(b) is a -- b D x = y, and the residue of x _ y A 
y < _ x i s x = y .  

We assume tha t  there  are no proposit ional variables. This  restr ict ion is not  
essential, but  it simplifies the proof. 

A parameter of a formula is any nonlogical symbol which occurs free in the 
formula. Thus  the parameters  of a -- b V Vxf(x)  < c are a, b, f, <, and c. 

We define a simple formula to be one whose only parameters  are variables. For  
instance, x ~ y V z = y and Vx x ~ y are simple, but  x < y and f(x) = y are not. 
Thus  an unquantif ied simple formula is a proposit ional formula whose atomic 
formulas are equalities between variables. Lem m a  1 characterizes quantified 
simple formulas. 

LEMMA 1. Every quantified simple formula F is equivalent to some unquan- 
tified simple formula G. G can be chosen so that its variables are all free 
variables ofF. 

PROOF. Suppose F is of the form 3x xI'(x). Le t  9o be the formula resulting from 
by first replacing any occurrences of x = x and x ~ x by t r u e  and fa lse ,  

respectively, and replacing any remaining equali ty involving x by fa lse .  Then,  if 
vl . . . . .  vk are the parameters  o f ~ ,  F i s  equivalent to xI,0 V ~t'(vl) V " '"  V ~(vk),  
since, in any interpretat ion,  x ei ther  equals one of the vi or differs f rom all of 
them. By repeatedly  eliminating quantifiers in this manner,  we eventual ly obtain 
an equivalent  quantifier-free simple formula whose only variables are free varia- 
bles of F. 

LEMMA 2. (Craig's Interpolat ion Lemma).  I f  F and G are formulas such that 
F entails G, then there exists a formula H such that F entails H and H entails 
G, and each parameter of H is a parameter of both F and G. 

PROOF. See Craig [1] or Shoenfield [10]. 
LEMMA 3. I f  F is any formula, then there exists a simple formula Res(F),  the 

residue ofF,  which is the strongest simple formula that F entails; that is, if  H 
is any simple formula entailed by F, then Res(F) entails H. Res(F) can be 
written so that its only variables are free variables ofF. 

PROOF. Le t  { Gx } be the set of all simple formulas entailed by F. For  each G~, 
choose / Ix  so tha t  F D H~ D G~, the only parameters  of Hx are parameters  of both  
F and Gx, a n d / I x  is unquantified. The  existence o f / Ix  is guaranteed by Lemmas  
1 and 2. E a c h / I x  is a proposit ional formula whose atomic formulas are equalities 
between parameters  of F. I t  is easy to show tha t  an infinite conjunction of 
proposit ional formulas over a finite set of atomic formulas is equivalent  to some 
finite subconjunction.  Therefore  the conjunction of the Hx is equivalent  to some 
finite subconjunct ion H. Any simple formula Gx entailed by F is entailed by some 
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H~, and so by H. The  only parameters  of H are free variables of F. Thus  H is the 
residue of F. 

Here  are some examples of residues: 

Formula 
x = f(a)  A y  = f(b) 
x + y - a - b > O  
x = s t o r e ( v ,  i, e ) [ j ]  
x = s t o r e ( v ,  i, e ) [ j ]  A y = v [ j ]  

Residue 
a = b D x = y  
"~(x = a A y = b) A ~ ( x  = b a y  = a) 
i = j D x = e  
i f i  = j t h e n  x = e else x = y  

Notice in the last two formulas how the addition of a variable as a "label" 
affects the residue. 

As a final example to relate the notion of residue to tha t  of equali ty propagation, 
here  are the residues 
Section 3: 

x _ y P(g2) 
y <_ x + gl -~P(gs) 
g2 = g~ - g4 g3 = h(x)  
g~ = O g4 = h ( y )  
gs = g~ -~ x = y A g2 ~ g~ A 

g3 = g4 ==- g2 = g5 x f y D ga = g4 

of the formulas which appeared in the example of 

Zz 

gl = c a r ( c o n s ( g s ,  x ) )  
gl = g~ 

As we found in Section 3, the residues are inconsistent. An essential fact in the 
proof  of correctness of the equali ty propagat ion procedure  is tha t  these residues 
are always inconsistent if the original formula is. This  fact  is a consequence of the 
following lemma. 

LEMMA 4. If A a n d  B are f o r m u l a s  whose  on ly  c o m m o n  p a r a m e t e r s  are 

variables ,  then  R e s ( A  A B)  =- R e s ( A )  A R e s ( B ) .  

Notice tha t  the condition of the lemma is satisfied when A and B are f rom 
different theories which have no nonlogical symbols in common. 

PROOF. Obviously the left side of the equivalence entails the right side, so we 
need only show the converse. F rom A A B ~ R e s ( A  A B)  follows A ~ (B 
R e s ( A  A B)). So, by Craig's interpolat ion lemma, there  is a formula H entailed 
by A which entails B ~ R e s ( A  A B), and whose only parameters  are parameters  
of A and B. These  must  be variables, so H is simple. Therefore  R e s ( A )  ~ (B  
R e s ( A  A B)). Writing this as B ~ ( R e s ( A )  ~ R e s ( A  A B)), and observing tha t  
the r ight-hand side is simple, we deduce tha t  R e s ( B )  ~ ( R e s ( A )  ~ R e s ( A  A B)) ,  

or, equivalently, tha t  R e s ( A )  A R e s ( B )  ~ R e s ( A  A B) ,  which proves the lemma. 
LEMMA 5. L e t  F a n d  G be s imple ,  sat is f iable ,  convex  formulas ,  a n d  let  V be 

the set  o f  a l l  var iab les  a p p e a r i n g  in e i ther  F or G. S u p p o s e  t h a t  for  a l l  x a n d  y 
in V, e i ther  both F a n d  G en ta i l  x = y or ne i ther  do. T h e n  F A G is sat is f iable .  

PROOF. Let  S be the set of equalities between variables in V entailed by F 
(hence also by G), and let T be the set of all o ther  equalities between variables 
of V. We claim tha t  any interpreta t ion which makes every equali ty in S t rue and 
every equali ty in T false satisfies bo th  F and G. If  it does not  satisfy, say, F, then  
F entails the disjunction of all equalities in T. We now consider three cases: If T 
is empty,  F is unsatisfiable. If T contains only one equality, it is entailed by F and 
so it is in S. If T contains more than  one equality, F is nonconvex. Each case 
contradicts  our assumptions. 
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We now complete the proof  of correctness of the equali ty propagat ion procedure  
by showing tha t  if it re turns  sa t i s f i ab le ,  F is satisfiable. Suppose tha t  F~  A F j  
is unsatisfiable. Then  there  is a finite conjunction S of axioms of ~ and a finite 
conjunction T of axioms of J - such  tha t  S A F~ A T A F j  is unsatisfiable. Thus  
Res(S  A F~ A T A Fg-) is the constant  fa lse .  F rom Lem m a  4, it follows tha t  the 
conjunction of Res (S A F~) with Res (T  A F]) is unsatisfiable. But  if step 5 of the 
equali ty propagation procedure is reached, each of these residues must  be convex, 
since step 4 did not  cause a case split. Fur thermore ,  the residues entail  the same 
set of equalities and are each satisfiable, since steps 2 and 3 were passed. Lem m a  
5 implies tha t  the conjunction of the residues is satisfiable, contrary  to our 
assumption. Thus  F is satisfiable if the algori thm returns  from step 5. I t  follows, 
by induction on the depth  of recursion, tha t  F is satisfiable whenever  step 4 
returns  sa t i s f i ab le .  

6. SIMPLIFYING BOOLEAN STRUCTURE 

Simplifying a formula is more difficult than  just  determining whether  it is 
satisfiable. If a formula is valid, its simplest equivalent  is t rue ;  if it is unsatisfiable, 
its simplest equivalent  is fa lse ;  but  if it is neither,  the choice of the "simplest" 
form is a ma t t e r  of taste. For  example, A A (B V C) and A A B V A A C are 
equivalent, but  it is not  easy to decide which is simpler. When an expression does 
not  simplify to a constant  such as t r ue ,  our simplifier re turns  a variant  of cond 
normal form (see McCar thy  [6]), a l though this is not  necessarily the most  
satisfactory form. 

We assume in this section tha t  the expression given to the simplifier is Boolean 
valued. 

The  simplifier first replaces A, V, -% and D by i f - t hen -e l s e  using the rules: 

a A b --* if a then  b else false 
a V b --* if  a then  t rue  else b 
a D b ~ if  a then  b else t rue  (2) 
-la --> if  a then  false else t rue  

It  also uses the following t ransformation recursively until  the first a rgument  of 
a conditional expression is not  itself a proper  conditional expression: 

if ( ifp then a else b) t h e n  c else d 
--* i f p  t h e n  ( i f  a t h e n  c e l s e  d) e l s e  ( i f  b t h e n  c e l s e  d). 

(This t ransformation may  double the "print  length" of the formula, since c and 
d each occur once on the left and twice on the right. But  in a conventional  list- 
s t ructure representat ion,  the two occurrences can share storage.) 

Finally, each atomic formula p which is not  the test  of an i f - t hen -e l s e  is 
replaced by i f p  t h e n  t r u e  e l se  fa lse .  

The  cost of normalizing the formula by these t ransformations is l inear in t ime 
and space. 

Once the formula has been normalized, the simplifier "symbolically evaluates" 
the resulting conditional expression. The  following function simpli fy( f)  is a 
simplified version of the symbolic evaluator  we use. I t  uses a rout ine simpatom 
which simplifies atomic formulas; for example, s impatom(P(x  + 0)) = P(x) .  
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simplify( f): 

1. If f is t rue  or false, then return f. Otherwise, f is of the form i fp  then  a else b, where 
p is an atomic formula. Se tp  *-s impatom(p) .  

2. Assume p is true. If this assumption is inconsistent with the existing context of 
assumptions, then remove this assumption and return simplify(b).  Otherwise, set a ~- 
simplify (a) and remove the assumption that p is true. 

3. Assume p is false. If this assumption is inconsistent with the existing context of 
assumptions, then remove this assumption and return a. Otherwise, set b ~ simplify (b) 
and remove the assumption that p is false. 

4. If a and b are identical, return a. If a is t rue  and b is false, then return p. If the 
expression i fp  then  a else b matches one of the right-hand sides of (2), then return the 
corresponding left-hand side. Otherwise, return i f p  then  a else b. 

For  example,  to simplify p D -~p, the simplifier first normalizes  it to the  
condit ional expression 

i f p  then  ( i fp  then  false else true) else true. 

This  expression is symbolical ly evaluated.  Under  the assumpt ion  t ha t  p is t r u e ,  
the subexpression i f p  t h e n  f a l s e  e l s e  t r u e  is recursively simplified to fa l se .  T h e  
o ther  b ranch  (the e l s e  branch)  remains  t r u e ,  so the  whole expression simplifies 
to i f p  t h e n  f a l s e  e l s e  t r u e ,  hence,  by  s tep 4, to ~ p .  

To  simplify x = x, the  simplifier first normalizes  it to f f  x = x t h e n  t r u e  e l s e  
fa lse .  T h e  assumpt ion  x ~ x is inconsistent,  so the  expression is simplified to 
t r u e .  

The  equal i ty propagat ion  procedure  is used to de te rmine  a t  any  stage whe the r  
the  conjunct ion of assumpt ions  is satisfiable. To  make  this practical,  the satisfi- 
abili ty procedures  we use have  two proper t ies  in addit ion to thei r  abil i ty to 
de te rmine  the satisfiabili ty of conjunctions and to p ropaga te  the  equalities and 
disjunctions of equalities entai led by  the conjunctions. First, they  are i n c r e m e n t a l ,  
t ha t  is, they  accept  li terals one by  one, main ta in  a represen ta t ion  of thei r  
conjunction, and detect  unsatisfiabil i ty of this conjunct ion as soon as it occurs. 
Second, they  are rese t tab le ,  t ha t  is, they  can m a r k  their  state,  accept  fur ther  
literals, and then  re turn  to the  m arked  s ta te  by  removing  the  literals received 
af ter  the  mark .  

T h e  a lgor i thms we use for ~ ,  8, ~ ,  and d are incrementa l  and reset table.  T h e  
data  s t ructure  for the  simplex a lgor i thm used in ~ is a sparse matrix;  adding and 
removing assumpt ions  f rom ~ 's conjunct ion is achieved by  adding and removing 
rows of the matrix.  Our a lgor i thms for 8 and ~ are also incrementa l  and 
reset table;  given a conjunct ion of length n, the  total  t ime required to assume the  
literals one by  one and then  remove  the  assumpt ions  one by  one is O(n2) .  

T h e  definition of s i m p l i f y  given above does not  t r ea t  case splitting. Case 
splitting is necessary whenever  the conjunct ion in one of the  satisfiabili ty proce- 
dures  becomes  nonconvex.  I f  this happens,  the res t  of the subformula  is recur- 
sively simplified once for each b ranch  of the case split. For  example,  consider the  
formula  

store(v, i, e)[j]  = x A v[j]  = f A (x <_ e V x <_ f) ,  

which is normalized to 

if  store(v, i, e)[j] = x 
then  if v[j] = f t h e n  ( i fx  _< e then  t rue  else x -< f) else false 
else false. 

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979. 



Simplification by Cooperating Decision Procedures 257 

W h e n  v[j] = f is assumed,  the  con junc t ion  in d becomes  nonconvex ,  and  d 
signals the  split  x = e k / x  = f. Ins t ead  of  going on to eva lua te  i f x  _ e t h e n  t r u e  
e l s e  x _< f, t he  simplifier evalua tes  the  expression:  

i f  x = e t h e n  ( i f  x _< e t h e n  t rue  else x _< f )  
else ( i f  x ~ e t h e n  t rue  else x _< f ) .  

T h u s  simplify is called twice wi th  the  a r g u m e n t  ( i f  x _< e t h e n  t r u e  e l s e  x _< f) ,  
once u n d e r  the  a s sumpt ion  x = e and  once u n d e r  the  a s s u m p t i o n  x @ e. W h e n  x 

e is assumed,  d p ropaga te s  x = f, t hus  effect ing the  case split. B o t h  calls r e t u r n  
t r u e ,  so the  final resul t  is 

s t o r e ( v , / ,  e ) [ j ]  = x A v [ j ]  = 
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