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1. Introduction 

To be useful for program verification, a deductive 
system must be able to reason proficiently about equality. 
Important as its semantics are, equality is often handled 
in an ad hoc and incomplete way--most  commonly with 
a rewrite rule that substitutes equals for equals with some 
heuristic guidance. This article presents a simple algo- 
rithm for reasoning about equality that is fast, complete 
(for ground formulas with function symbols and equal- 
ity), and useful in a variety of theorem-proving situa- 
tions. A proof of the theorem on which the algorithm is 
based is given as well. 

2. An Example 

Let us first consider an example formula and how 
one could go about proving it. The formula given below 
is of the kind one encounters in verifying programs 
involving array indexing: 

( I - -  J A  K = L AA[I] = B[K] A 
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J = A [J] A M = B[L]) D A [M] = B[K]). 

Here, A and B are function symbols (corresponding to 
arrays) while I, J, K, L, and M are universally quantified 
variables (correponding to program variables). 

One might approach such a formula by working 
backwards from the conclusion, substituting equals for 
equals until the left-hand side is transformed into the 
right-hand side. With a little patience, the following 
proof is obtained: 

AIM] 
= A[B[L]] (using M = B[L]) 
= A[B[K]] (using K = L) 
= A[A[I]] (using A[I] = B[K]) 
= A[A[J]] (using I = J) 
= A[J] (using J = A[J]) 
= A [ I ]  (using I = J again) 
= B[K] (using A[I] = B[K] again). 

Of course, one could just as easily work from B[K] 
rather than from A[M], or work from both simultane- 
ously; the links needed in the chain are the same in either 
case. 

While this "backward substitution" method and 
other methods that transform formulas through a se- 
quence of substitutions are logically sound, they are not 
particularly well suited to machine deduction simply 
because there is no easy way of knowing what substitu- 
tion is the "right" one to make at each step. Indeed, a 
program working on the formula given above could 
grind on forever (for example, by repeated application 
of the substitution J ~ A[J]), generating terms of ever- 
increasing depth of nesting. 

Intuitively, it would not seem necessary to generate 
terms beyond a certain depth. It is easy, however, to 
construct examples showing that the critical depth (the 
smallest depth necessary to consider) cannot be calcu- 
lated solely as a function of the depths of the terms 
appearing in the original formula; in particular, the 
critical depth is not simply the maximum of these depths. 
The reader can easily convince himself, for example, that 
no backward-substitution proof can be carried out for 
the formula given above without generating a term of at 
least depth 3. (The maximum depth of terms occurring 
in the formula is only 2.) Even if one could conveniently 
calculate the critical depth, one would still, in general, 
generate many more terms than are necessary. 

Fortunately, this difficulty with substitution-transfor- 
mation methods is not inherent in the problem. The next 
section presents a more efficient method that considers 
only the terms appearing in the original formula. 

3. The Procedure 

The method given here may be described formally as 
a decision procedure for the subclass of predicate calcu- 
lus with function symbols and equality whose formulas 
have only universal quantifiers in prenex form. While 
the decidability of this subclass is well known, the clas- 
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sical decision procedure for it [1] produces a combina- 
tional explosion that makes that method computationally 
infeasible for nontrivial problems. 

Since the decision procedure presented here operates 
on the negation of  the formula to be proved, it can also 
be viewed as a refutation procedure for ground formulas 
with function symbols and equality. The universally 
quantified variables become Skolem constants in the 
Skolemization of  the negation. 

The procedure is carried out as follows. The matrix 
of  the formula F to be decided is first negated and placed 
in disjunctive normal form (d.n.f.). Next, all atomic 
formulas other than equalities are replaced by equalities 
as follows. For each n-ary predicate symbol P7 occurring 
in the formula, a new n-ary function symbol f ?  is intro- 
duced. Each atomic formula P? (tl, t2 . . . .  tn) occurring 
in the formula is then replaced by the equality 
f n  (/1, t2 . . . .  In) = C, where c is a constant. The modified 
d.n.f, is clearly intersatisfiable with the original one, and 
is satisfiable if and only if one of  its disjuncts is satisfia- 
ble. Each disjunct, moreover, consists of a conjunction 
of  equalities and negations of  equalities. The problem is 
thus reduced to testing the satisfiability of each such 
conjunction. 

For  example, suppose the formula to be proved is: 

[(Pc V x = z) A Px] D [Pg(y) V Z =/= g(y)]. 

Putting the negation into disjunctive normal form, we 
have: 

(P,  A Px A --apg(y) A z = g(y)) 
V (x = z A Px A -,Pg(y) A z = g(y)) .  

Introducing the new function s y m b o l f  to replace P, we 
obtain: 

( f ( z )  = c A f ( x )  = c A f ( g ( y ) )  # c A z = g (y ) )  

V (x = z A f ( x )  = c Af(g(y))  # c A z = g(y)) .  

It remains to show how to test each conjunction for 
satisfiability. Let S be the set of equalities and negations 
of  equalities occurring in the conjunction to be tested. 
Let T be the set of  terms and subterms of  terms occurring 
in S, and define the binary relation -" as the smallest 
relation over T X T (where Ul, U 2  . . .  /gn, tl, I2, Vl, 
V2 ... Vn denote terms and f denotes a function symbol) 
that: 

(1) Contains all pairs <6,  t2> for which 'tl = t2' E S 
(2) Is reflexive, symmetric, and transitive. 
(3) Contains the pair <f(ul, uz . . .  Ur), f(Vl, V2 . . .  Vr)> 
whenever it contains the pairs <ui, vi>, 1 <_ i _< r, and 
f lu , ,  uz . . .  Ur), flVl, V2 . . .  Vr) are both in T. 

The test for satisfiability of S depends on the follow- 
ing theorem (to be proven later): 
THEOREM. S is unsatisfiable ¢~ there exist terms ta, t2 E 
T such that 

'/1 ~;~ tz' E S and t, "- tz. 

The theorem tells us that to determine the satisfia- 
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bility of  S it suffices to consider the negated equalities 
of S one at a time. If one is found (say tl # t2) for which 
t~ -" t2, S is unsatisfiable; otherwise S is satisfiable. Note 
that the definition of -"  involves only terms in T. 

In order to use the theorem, it is necessary to be able 
to calculate whether a given pair of  terms is in the 
relation -'. This can be done in a straightforward way by 
building the relation from the definition. Condition (1) 
is used as a basis, and (2) and (3) are repeatedly applied 
until no new terms are generated. Since -" is an equiva- 
lence relation, one can conveniently represent it during 
the construction as a collection of sets of  elements of  T, 
each set containing elements known to be in the relation 
with the other elements of  that set. 

As an illustration, consider the set S = ( I  = J, K = 
L, A[ I ]  = B[K],  J = A[J],  M = B[L], A [ M ]  ~ B[K]} 
that arises from the example given earlier. The corre- 
sponding set T is (I,  J, K, L, A[I] ,  B[K],  A[J],  M, 
B[L], A[M]}. The relation "-- is constructed from its 
definition as follows. 

From the basis (1), one obtains: 
{(/,  J},  {K, L}, (A[I], BIg]} ,  {J, A[J]}, {M, B(L)}} 

Using (2): 
{{I, J, A[J]} {K, L} {A[I], B[K]},  {M, B[L])}  

Using (3): 
{{L J, A[J]}(K, L}(A[I], B[K]) ,  (M, B[L]}, {A[I],  
A[J]}, (B[K], B[L]}} 

Using (2): 
( ( I ,  J, A[J], A[I], B[K], B[L], M}, (K, L}} 

Using (3): 
{{I, J, A[J],  A[I] ,  B[K], B[L], M},  {K, L,},  {A[M], 
A[I]}, (A[M], A[J]}} 

Using (2): 
{{I, J, A[J],  A[I] ,  B[K],  B[L], A[M]) ,  (K, L}} 

Since (3) yields no new pairs, the construction is 
complete. Since A [ M ]  ~ B[K], S must be unsatisfiable. 

The rules for building up -" can be implemented 
efficiently. The authors of  [3] have recently coded a very 
fast implementation that represents terms as graphs and 
uses the set-union algorithm [5] in the closure step. In [3] 
it is also shown that their implementation requires only 
order n 2 deterministic time and linear space, where n is 
the length of  the input S. 

It should be noted that while the satisfiability of each 
set S can thus be determined quite quickly, the procedure 
as a whole (and the expansion into disjunctive normal 
form in particular) is of  exponential time complexity. 
This is not surprising, of course, since the decision prob- 
lem for the class is NP-complete. 

The author has coded the procedure in Interlisp for 
the DEC-10 using a matrix representation of  -'. The 
program has been tested on a few dozen examples of  the 
kind that arise in program verification applications. It 
was found that most examples four or five lines long 
could be handled in just a few seconds. The example 
presented at the beginning of  the paper required less 
than a second. 
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4. Proof of the Theorem 

The main import of the theorem on which the algo- 
ri thm is based is that it suffices to "consider" only the 
terms occurring in formula to be decided. The proof  of  
the theorem is largely concerned with extending the 
model provided by the relation -" from the finite set T to 
the entire Herbrand Universe. We now restate the theo- 
rem and give its proof. 
THEOREM S is satisfiable ¢=~ ~ ta, t2 E T such that ta "-- t2 
and  ' t l  ~,a t2' E S. 
PROOF 

Suppose S is satisfiable, tl, t2 E T and ta -" t2. Let M 
be a model for S. Because M satisfies the reflexivity, 
symmetry, transitivity and substitutivity axioms of equal- 
ity, tl -" t2 implies that t~ and 12 must have the same 
values in M. Hence, 't~ # tz' cannot be a member  of  S. 

¢== 

Suppose there are no terms tl, t2 in T such that ta - '  
t2 and 'tl # t2' E S. We will show that S is satisfiable by 
constructing a model M for S. The model must assign a 
value v~(t) to each term t in the Herbrand Universe of  
S in such a way that: 
(1) 'tl = t2' E S implies VM(tl)  = VM(tZ) 
(2) 'tl ~ t2' E S implies Vg(tl)  # VM(tZ) 
(3) VM(Xi) = VM(yi), 1 <-- i <-- r, 
implies VMOC(xl . . . .  X~)) = VM(f(y l  . . . . .  yr)) (where f 
ranges over all function symbols and xi, y~ over all terms) 

The first two conditions require that M satisfies each 
atomic formula of  S. The third condition requires M to 
satisfy the substitutivity axiom of equality. 

Before defining VM we first construct the term universe 
i=0 T~ of S inductively as follows: 

T o =  T 
Ti+~ = {f( t~,  . . . ,  t~)lti ~ Ti} t.J Ti 

(where f ranges over all function symbols occurring in 
S.) Note that the term universe T= is identical as a set to 
the Herbrand Universe, but is constructed differently. 

Next, pick a representative term from each of  the 
equivalence classes induced by --" on T, and define the 
function a : T--* T that assigns to each term in T the 
representative of  its class. 

The inductive construction of  model M follows: 

I. I f  t E To, let v~t(t) = a(t) 
II. I f t  C ~+~ - Tj,j_> 0, and t = f ( t a ,  t2 . . . .  tr), then let 

f V M ( f ( X l , . . . ,  Xr)) i f 3 f ( x l  . . . . .  X~)E T) 
VM(t) = ~ and VM~) = VM(ti), 1 <-- i <  r 

Lf(vM(tl) . . . . .  VM(t~)) otherwise. 

Note that M is a Herbrand model, i.e., it always 
assigns values from the Herbrand Universe. The notation 
" f (vM(t l )  . . . . .  VM(t~))" is intended to represent the func- 
tion symbol denoted b y f  followed by the terms obtained 
by evaluating VM(t~) for each i. 

Note also that VM would not seem to be uniquely 
defined, owing to the existential choice implicit in the 
definition. In a moment,  however, it will be clear that 
only one choice is possible. 
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Now, we need to show that M satisfies (1), (2), and 
(3) above. (1) and (2) hold since 'tl = t2' E S :=~ tl --" t2 

a(tx) = a(t2) ~ vM(tl) = VM(t2) and 'h ~ tz' E S ~  tl 
Z tz ~ a(tl) # a(t2) =~ VM(tl) ~ VM(tZ). 

It remains to show that (3) holds, i.e., that VM(Xi) = 
VM(yi), 1 <<_ i <_ r, implies that VM(f(x l  . . . . .  Xr)) = VM 
( f (y l  . . . .  yr)). This is proved by induction on the maxi- 
m u m  m of the term universe heights of f (x1 . . . . .  xr), 

f ( y l  . . . . .  y~): 

BASlS: m = 0 
Then xi, y i , f ( x ~  . . . . .  X r ) , f ( y l  . . . . .  fir) are all in T, and 
so 

VM(Xi)  = VM(y i )  ~ a ( x i )  = a ( y i )  =~ x i  "-- y i  

~ f ( x l  . . . . .  xr)  "- f ( y l  . . . . .  yr)  ~ a ( f ( x l  . . . . .  X r ) )  = 

a ( f ( y l  . . . . .  yr)) 
V M ( f ( X l ,  - . .  , X r ) )  = V M ( f ( y l  . . . . .  y r ) )  

as required. 
INDUCTION STEP: m > 0. 

First consider the case in which the height o f f (x1 ,  
. . . .  x~) is strictly greater than that o f f (y~  . . . . .  y~). In 
this case, vM(f(x l  . . . . .  Xr)) = VM(f(zl  . . . . .  Zr)), where 

f ( z l  . . . . .  z~) is o f  lesser height t h a n f ( x l  . . . . .  x~), and 
VM(Xi) = VM(Zi). (Note thatf(za . . . . .  zr) is possibly the 
same as f ( y l  . . . . .  yr) .)  NOW since VM(yi) = VM(Xi) ---- 
VM(Zi), we have by induction hypothesis that 

• M ( f ( X l  . . . . .  X r ) )  

= V M ( f ( Z l , . . . ,  Z~)) = vMOC(Yl . . . . .  )Jr)) 

as required. 
In the remaining case, f (x l  . . . . .  Xr) a n d f ( y l  . . . . .  y~) 

are of  the same height. Now if there exists a term f ( z~ ,  
. . . .  Zr) of  lower height such that VM(Zi) = VM(Xi), 
the argument above can be used. Otherwise, VM(f(x~, 
. . . .  Xr)) = f(VM(X,)  . . . . .  VM(Xr))  = f ( l / M ( y l  ) . . . . .  
vM(yr))  = VM(f(yx . . . . .  y~)) as required. [] 

It might be noted that (3) implies the uniqueness of  
M as it has been defined above. Of  course, the uniqueness 
was not essential to the proof. 
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