
Programming J .J . Horning
Languages Editor

An Algorithm for
Reasoning About
Equality
Robert E. Shostak
Stanford Research Institute

A simple technique for reasoning about equalities
that is fast and complete for ground formulas with
function symbols and equality is presented. A proof of
correctness is given as well.

Key Words and Phrases: theorem proving,
deduction, program verification, equality

CR Categories: 3.64, 3.66, 5.21

1. Introduction

To be useful for program verification, a deductive
system must be able to reason proficiently about equality.
Important as its semantics are, equality is often handled
in an ad hoc and incomplete way--most commonly with
a rewrite rule that substitutes equals for equals with some
heuristic guidance. This article presents a simple algo-
rithm for reasoning about equality that is fast, complete
(for ground formulas with function symbols and equal-
ity), and useful in a variety of theorem-proving situa-
tions. A proof of the theorem on which the algorithm is
based is given as well.

2. An Example

Let us first consider an example formula and how
one could go about proving it. The formula given below
is of the kind one encounters in verifying programs
involving array indexing:

(I - - J A K = L AA[I] = B[K] A

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM's copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

This work was supported in part by AFOSR Contract F44620-73-
C-0068.

Author's address: Stanford Research Institute, Menlo Park, CA
94025.
© 1978 ACM 0001-0782/78/0700-0583 $00.75

583

J = A [J] A M = B[L]) D A [M] = B[K]).

Here, A and B are function symbols (corresponding to
arrays) while I, J, K, L, and M are universally quantified
variables (correponding to program variables).

One might approach such a formula by working
backwards from the conclusion, substituting equals for
equals until the left-hand side is transformed into the
right-hand side. With a little patience, the following
proof is obtained:

AIM]
= A[B[L]] (using M = B[L])
= A[B[K]] (using K = L)
= A[A[I]] (using A[I] = B[K])
= A[A[J]] (using I = J)
= A[J] (using J = A[J])
= A [I] (using I = J again)
= B[K] (using A[I] = B[K] again).

Of course, one could just as easily work from B[K]
rather than from A[M], or work from both simultane-
ously; the links needed in the chain are the same in either
case.

While this "backward substitution" method and
other methods that transform formulas through a se-
quence of substitutions are logically sound, they are not
particularly well suited to machine deduction simply
because there is no easy way of knowing what substitu-
tion is the "right" one to make at each step. Indeed, a
program working on the formula given above could
grind on forever (for example, by repeated application
of the substitution J ~ A[J]), generating terms of ever-
increasing depth of nesting.

Intuitively, it would not seem necessary to generate
terms beyond a certain depth. It is easy, however, to
construct examples showing that the critical depth (the
smallest depth necessary to consider) cannot be calcu-
lated solely as a function of the depths of the terms
appearing in the original formula; in particular, the
critical depth is not simply the maximum of these depths.
The reader can easily convince himself, for example, that
no backward-substitution proof can be carried out for
the formula given above without generating a term of at
least depth 3. (The maximum depth of terms occurring
in the formula is only 2.) Even if one could conveniently
calculate the critical depth, one would still, in general,
generate many more terms than are necessary.

Fortunately, this difficulty with substitution-transfor-
mation methods is not inherent in the problem. The next
section presents a more efficient method that considers
only the terms appearing in the original formula.

3. The Procedure

The method given here may be described formally as
a decision procedure for the subclass of predicate calcu-
lus with function symbols and equality whose formulas
have only universal quantifiers in prenex form. While
the decidability of this subclass is well known, the clas-

Communications July 1978
of Volume 21
the ACM Number 7

sical decision procedure for it [1] produces a combina-
tional explosion that makes that method computationally
infeasible for nontrivial problems.

Since the decision procedure presented here operates
on the negation of the formula to be proved, it can also
be viewed as a refutation procedure for ground formulas
with function symbols and equality. The universally
quantified variables become Skolem constants in the
Skolemization of the negation.

The procedure is carried out as follows. The matrix
of the formula F to be decided is first negated and placed
in disjunctive normal form (d.n.f.). Next, all atomic
formulas other than equalities are replaced by equalities
as follows. For each n-ary predicate symbol P7 occurring
in the formula, a new n-ary function symbol f ? is intro-
duced. Each atomic formula P? (tl, t2 tn) occurring
in the formula is then replaced by the equality
f n (/1, t2 In) = C, where c is a constant. The modified
d.n.f, is clearly intersatisfiable with the original one, and
is satisfiable if and only if one of its disjuncts is satisfia-
ble. Each disjunct, moreover, consists of a conjunction
of equalities and negations of equalities. The problem is
thus reduced to testing the satisfiability of each such
conjunction.

For example, suppose the formula to be proved is:

[(Pc V x = z) A Px] D [Pg(y) V Z =/= g(y)].

Putting the negation into disjunctive normal form, we
have:

(P, A Px A --apg(y) A z = g(y))
V (x = z A Px A -,Pg(y) A z = g(y)) .

Introducing the new function s y m b o l f to replace P, we
obtain:

(f (z) = c A f (x) = c A f (g (y)) # c A z = g (y))

V (x = z A f (x) = c Af(g(y)) # c A z = g(y)) .

It remains to show how to test each conjunction for
satisfiability. Let S be the set of equalities and negations
of equalities occurring in the conjunction to be tested.
Let T be the set of terms and subterms of terms occurring
in S, and define the binary relation -" as the smallest
relation over T X T (where Ul, U 2 . . . /gn, tl, I2, Vl,
V2 ... Vn denote terms and f denotes a function symbol)
that:

(1) Contains all pairs <6, t2> for which 'tl = t2' E S
(2) Is reflexive, symmetric, and transitive.
(3) Contains the pair <f(ul, uz . . . Ur), f(Vl, V2 . . . Vr)>
whenever it contains the pairs <ui, vi>, 1 <_ i _< r, and
f lu , , uz . . . Ur), flVl, V2 . . . Vr) are both in T.

The test for satisfiability of S depends on the follow-
ing theorem (to be proven later):
THEOREM. S is unsatisfiable ¢~ there exist terms ta, t2 E
T such that

'/1 ~;~ tz' E S and t, "- tz.

The theorem tells us that to determine the satisfia-

584

bility of S it suffices to consider the negated equalities
of S one at a time. If one is found (say tl # t2) for which
t~ -" t2, S is unsatisfiable; otherwise S is satisfiable. Note
that the definition of -" involves only terms in T.

In order to use the theorem, it is necessary to be able
to calculate whether a given pair of terms is in the
relation -'. This can be done in a straightforward way by
building the relation from the definition. Condition (1)
is used as a basis, and (2) and (3) are repeatedly applied
until no new terms are generated. Since -" is an equiva-
lence relation, one can conveniently represent it during
the construction as a collection of sets of elements of T,
each set containing elements known to be in the relation
with the other elements of that set.

As an illustration, consider the set S = (I = J, K =
L, A[I] = B[K], J = A[J], M = B[L], A [M] ~ B[K]}
that arises from the example given earlier. The corre-
sponding set T is (I, J, K, L, A[I] , B[K], A[J], M,
B[L], A[M]}. The relation "-- is constructed from its
definition as follows.

From the basis (1), one obtains:
{(/, J}, {K, L}, (A[I], BIg]} , {J, A[J]}, {M, B(L)}}

Using (2):
{{I, J, A[J]} {K, L} {A[I], B[K]}, {M, B[L])}

Using (3):
{{L J, A[J]}(K, L}(A[I], B[K]) , (M, B[L]}, {A[I],
A[J]}, (B[K], B[L]}}

Using (2):
((I , J, A[J], A[I], B[K], B[L], M}, (K, L}}

Using (3):
{{I, J, A[J], A[I] , B[K], B[L], M}, {K, L,}, {A[M],
A[I]}, (A[M], A[J]}}

Using (2):
{{I, J, A[J], A[I] , B[K], B[L], A[M]) , (K, L}}

Since (3) yields no new pairs, the construction is
complete. Since A [M] ~ B[K], S must be unsatisfiable.

The rules for building up -" can be implemented
efficiently. The authors of [3] have recently coded a very
fast implementation that represents terms as graphs and
uses the set-union algorithm [5] in the closure step. In [3]
it is also shown that their implementation requires only
order n 2 deterministic time and linear space, where n is
the length of the input S.

It should be noted that while the satisfiability of each
set S can thus be determined quite quickly, the procedure
as a whole (and the expansion into disjunctive normal
form in particular) is of exponential time complexity.
This is not surprising, of course, since the decision prob-
lem for the class is NP-complete.

The author has coded the procedure in Interlisp for
the DEC-10 using a matrix representation of -'. The
program has been tested on a few dozen examples of the
kind that arise in program verification applications. It
was found that most examples four or five lines long
could be handled in just a few seconds. The example
presented at the beginning of the paper required less
than a second.

Communications July 1978
of Volume 21
the ACM Number 7

4. Proof of the Theorem

The main import of the theorem on which the algo-
ri thm is based is that it suffices to "consider" only the
terms occurring in formula to be decided. The proof of
the theorem is largely concerned with extending the
model provided by the relation -" from the finite set T to
the entire Herbrand Universe. We now restate the theo-
rem and give its proof.
THEOREM S is satisfiable ¢=~ ~ ta, t2 E T such that ta "-- t2
and ' t l ~,a t2' E S.
PROOF

Suppose S is satisfiable, tl, t2 E T and ta -" t2. Let M
be a model for S. Because M satisfies the reflexivity,
symmetry, transitivity and substitutivity axioms of equal-
ity, tl -" t2 implies that t~ and 12 must have the same
values in M. Hence, 't~ # tz' cannot be a member of S.

¢==

Suppose there are no terms tl, t2 in T such that ta - '
t2 and 'tl # t2' E S. We will show that S is satisfiable by
constructing a model M for S. The model must assign a
value v~(t) to each term t in the Herbrand Universe of
S in such a way that:
(1) 'tl = t2' E S implies VM(tl) = VM(tZ)
(2) 'tl ~ t2' E S implies Vg(tl) # VM(tZ)
(3) VM(Xi) = VM(yi), 1 <-- i <-- r,
implies VMOC(xl X~)) = VM(f(y l yr)) (where f
ranges over all function symbols and xi, y~ over all terms)

The first two conditions require that M satisfies each
atomic formula of S. The third condition requires M to
satisfy the substitutivity axiom of equality.

Before defining VM we first construct the term universe
i=0 T~ of S inductively as follows:

T o = T
Ti+~ = {f(t~, . . . , t~)lti ~ Ti} t.J Ti

(where f ranges over all function symbols occurring in
S.) Note that the term universe T= is identical as a set to
the Herbrand Universe, but is constructed differently.

Next, pick a representative term from each of the
equivalence classes induced by --" on T, and define the
function a : T--* T that assigns to each term in T the
representative of its class.

The inductive construction of model M follows:

I. I f t E To, let v~t(t) = a(t)
II. I f t C ~+~ - Tj,j_> 0, and t = f (t a , t2 tr), then let

f V M (f (X l , . . . , Xr)) i f 3 f (x l X~)E T)
VM(t) = ~ and VM~) = VM(ti), 1 <-- i < r

Lf(vM(tl) VM(t~)) otherwise.

Note that M is a Herbrand model, i.e., it always
assigns values from the Herbrand Universe. The notation
" f (vM(t l) VM(t~))" is intended to represent the func-
tion symbol denoted b y f followed by the terms obtained
by evaluating VM(t~) for each i.

Note also that VM would not seem to be uniquely
defined, owing to the existential choice implicit in the
definition. In a moment, however, it will be clear that
only one choice is possible.

585

Now, we need to show that M satisfies (1), (2), and
(3) above. (1) and (2) hold since 'tl = t2' E S :=~ tl --" t2

a(tx) = a(t2) ~ vM(tl) = VM(t2) and 'h ~ tz' E S ~ tl
Z tz ~ a(tl) # a(t2) =~ VM(tl) ~ VM(tZ).

It remains to show that (3) holds, i.e., that VM(Xi) =
VM(yi), 1 <<_ i <_ r, implies that VM(f(x l Xr)) = VM
(f (y l yr)). This is proved by induction on the maxi-
m u m m of the term universe heights of f (x1 xr),

f (y l y~):

BASlS: m = 0
Then xi, y i , f (x ~ X r) , f (y l fir) are all in T, and
so

VM(Xi) = VM(y i) ~ a (x i) = a (y i) =~ x i "-- y i

~ f (x l xr) "- f (y l yr) ~ a (f (x l X r)) =

a (f (y l yr))
V M (f (X l , - . . , X r)) = V M (f (y l y r))

as required.
INDUCTION STEP: m > 0.

First consider the case in which the height o f f (x1 ,
. . . . x~) is strictly greater than that o f f (y~ y~). In
this case, vM(f(x l Xr)) = VM(f(zl Zr)), where

f (z l z~) is o f lesser height t h a n f (x l x~), and
VM(Xi) = VM(Zi). (Note thatf(za zr) is possibly the
same as f (y l yr) .) NOW since VM(yi) = VM(Xi) ----
VM(Zi), we have by induction hypothesis that

• M (f (X l X r))

= V M (f (Z l , . . . , Z~)) = vMOC(Yl)Jr))

as required.
In the remaining case, f (x l Xr) a n d f (y l y~)

are of the same height. Now if there exists a term f (z~ ,
. . . . Zr) of lower height such that VM(Zi) = VM(Xi),
the argument above can be used. Otherwise, VM(f(x~,
. . . . Xr)) = f(VM(X,) VM(Xr)) = f (l / M (y l)
vM(yr)) = VM(f(yx y~)) as required. []

It might be noted that (3) implies the uniqueness of
M as it has been defined above. Of course, the uniqueness
was not essential to the proof.

Acknowledgmen t . The author is grateful to Drs. R.
S. Boyer, J Strother Moore, E. Horowitz, W. Bledsoe
and the reviewers for their observations and general
helpfulness.

Received January 1977; revised June 1977

References
1. Ackermann, W. Solvable Cases of the Decision Problem, North-
Holland Publishing Co., Amsterdam, 1954, pp. 102-103.
2. Mendelson, E. Introduction to Mathematical Logic, D. Van
Nostrand Co., Inc., Princeton, New Jersey, 1964.
3. Oppen, D., and Nelson, G. Fast Decision Algorithms Based on
Union and Find. Proceedings of 8th Symposium on Foundations of
Computer Science, Princeton, N.J., Nov. 1977.
4. Robinson, G., and Wos, L. Paramodulation and Theorem-
Proving in First-order Theories with Equality. Machine Intelligence 4,
D. Michie and B. Meltzer, Eds., American Elsivier, N.Y., 1969 pp.
135-150.
5. Tarjan, R. Efficiency of a good but not linear set-union
algorithm, J. ACM, 22, 2 (April 1975), 215-225.

Communications July 1978
of Volume 21
the ACM Number 7

