Kryptographie und Komplexit at

Einheit 5

Kryptosysteme auf der Basis

diskreter Logarithmen

1. Diffie Hellman Schiisselaustausch
2. El Gamal Systeme
3. Angriffe auf Diskrete Logarithmen
4. Elliptische Kurven



SCHWACHEN DES RSA I

e Schllissel missen sehr grold werden
— Faktorisierungsalgorithmeroknen Schissel bis 1024 Bit angreifen
— Blockgiolie muld auf 2048 Bit oder @fer anwachsen
— Wachsende BlockgfRe macht/erschlisselung ineffizient
- Potenzierung modula berbtigt O(|n|?) Schritte
- Zeit fur Verschilisselung langer Nachrichterashst quadratisch

— Verschlisselung braucht neue algebraische Problals\&undament
Schwer zu brechende kleine Sabsel oder effizientere Verscisiselung

e Semantische Sicherheit nicht sichergestellt
— Zahlentheoretisches Verfahren didtlkeine Randomisierung
— Gleiche Nachrichten werden imm auf gleiche Art vergskelt

— Verschlisselungsprotokoll sollte Zufall mit einbauen
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DISKRETE LOGARITHMEN I

e Umstellung der RSA Ver-/Entschlisselung
—RSA: Gegebeny = z° mod n bestimmer = \/y mod n
—DL: Gegeben, = ¢" mod n bestimmer = log, y mod n
— Formulierbar @ir beliebige zyklische Gruppeanstelle vorZ,
e mul keine Zahl seisondern nur Gruppenelement der Ordnung

¢ Algebraische Formulierung des Problems
— Sei(G, ) multiplikative Gruppeyg Element der Ordnung
FUr y € (g) ist derdiskrete Logarithmus von y zur Basisg
(bezeichnet al$: = log, y) die eindeutige Zaht<n mity = g*

¢ \Welche Gruppen sind geeignet?
— Prime Restklassen modulo einer Primzatj), ()
— Punktgruppe einer elliptischen Kuruéer endlichen Krpern

— Hyperelliptische Kurven, Gruppen imagmquadratischer Ordnungen ...
Verzicht auf numerische Struktur macht Logarithmen z.T. erheblich
schwerer zu berechnen als Wurzeln tber Z
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DISKRETE LOGARITHMEN AM BEISPIEL I

e Logarithmen zur Basis 2 modulo 13

— Berechne Potenzen von 2 zur Basis 13 mit ElementeZaus

r |1{2(3|/4|5| 6| 7(8/9|10|11 |12
271214836 (12|11(9|5|10| 7| 1

— Umstellung nach Logarithme®¢dnung von 2 ist, = 12)

Y 1{2/3/4/5/6| 7(8/9/10|11 |12
logoby|011(4(2(9/5]113|8(10| 7| 6

— Logarithums ist eine Zahl<n, kein Gruppenelement

e Logarithmen zur Basis 5 modulo 19

— Berechne Potenzen von 5 zur Basis 19 mit ElementeZaus

x |12 3| 4/5/6| 7/8|9|10(11/12|13|14|15|16|1/7|18
5*|5|6(11|17(9|7/16|4|1| 5| 611|177 9| 7 16| 4| 1

—Ordnung von 5ist nun = 9: (5) = {1:4;5;6;7;11;16; 17}
— Umstellung nach Logarithmeiirfdie Elemente vorb)

Y 1] 4]5] 6[7]9[11[16]17
log-y| 917 |1[11|6|5] 3| 7| 4
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1. Protokoll fir sicheren Sclilsselaustausch
2. Sicherhelt des Verfahrens

3. Verallgemeinerung auf beliebige Gruppen



DIFFIE HELLMAN SCHLUSSELAUSTAUSCH I

Sicherer Austausch von Schisseln

o Protokoll mit Diskreten Logarithmen Uber Zj,
— WahlePrimzahlp undErzeugery vonZ, mit 2<g<p—2
p und g werden nicht geheim gehalten
— Alice wahlt zuallige Zahla {0, .., p—2} und berechnetl = ¢“ mod p
Alice halt « geheimund schickt4 an Bob
— Bob wahlt zufallige Zahlb < {0, .., p—2} und berechneB = ¢’ mod p
Bob halt b geheimund schicktB an Alice
— Alice berechnef3® mod p = ¢** mod p
Bob berechnet4’ mod p = ¢* mod p
— Gemeinsamer SddselX = ¢“* mod p ist nur Alice und Bob bekannt
e Beispiel fuir n=17 und g=3
— Alice wahlta=7und berechnetl = ¢ mod 17 = 2187 mod 17 = 11
— Bob wahltb=4und berechneB = ¢’ mod 17 = 81 mod 17 = 13
— Der gemeinsame Sdldsel istA’ = A® mod 17 = 14641 mod 17 = 4
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SICHERHEIT DES DIFFIE HELLMAN SCHLUSSELS I

e Angreifer kennt p, g, Aund B
—p, g, Aund B wurdenuber unsichere Kaile ausgetauscht
— Methode zur Bestimmung des gemeinsamenias@lsi’ ist bekannt

—Um K = A’ mod p = B* mod p zu berechnen, irsste Angreifer
entwedelr oderb bestimmen Ennen

e Angreifer mul3 diskreten Logarithmus losen

—Um K zu bestimmen mul3 Angreifer entweder log, A
oderb = log, B ausrechnendnnen

— Andere Methode, gemeinsamen S&sel zu brechen ist nicht bekannt

— Agquivalenz deDiffie-Hellman Problemgbestimmey®® ausg® und ")
zum Problem des diskreten Logarithmbgiechneog, A) nicht bewiesen

e Berechnung diskreter Logarithmen ist schwer

— Beste bekannte VerfahrearfzZ, liegeninL,[1/3, 1.92]
Effizienteste Verfahren sind auf andere Gruppen nicht adian

KRYPTOGRAPHIE UNDKOMPLEXITAT §5.1: 2 DIFFIE HELLMAN SCHLUSSELAUSTAUSCH




ALTERNATIVEN ZU Z; |

e Verfahren moglich auf beliebigen Gruppen
— Gruppen missen zyklisch sein und erzeugende Elemente haben
— Multiplikation/ und Potenzierung mufdfizient implementierbasein
— Diffie-Hellman Problem mul3 schwer zoiden sein
(Zy, +) ist ungeeignet, divg, A = A-g~! leicht zu berechnen
e Protokoll nahezu identisch
— WahleErzeugery der Gruppes mit Ordnungn
— Alice wahlt zufallige Zahla € {1, ..,n—1} und berechnetl = ¢“ <G
— Bob wahlt zufallige Zahlb< {1, ..,p—1} und berechneB = ¢’ <G
— Alice berechnef3* = ¢*” — Bob berechnetl’¢*?’
— Gemeinsamer SdidselX = ¢’ ist nur Alice und Bob bekannt

¢ \Vorteil alternativer Gruppen
— Gruppenoperationen sind komplexer wathwerer zu invertieren
— Losung des Diffie-Hellman Problems kann sich nicht (nur) auf

zahlentheoretische Zusammanige dfitzen
— Grol3ere Sicherheit bei geringerer Stddelange noglich
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