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Kryptosysteme auf der Basis

diskreter Logarithmen

1. Diffie Hellman Schl̈usselaustausch

2. El Gamal Systeme

3. Angriffe auf Diskrete Logarithmen

4. Elliptische Kurven



KRYPTOGRAPHIE UNDKOMPLEXITÄT §5: 1 KRYPTOSYSTEME AUF DERBASIS DISKRETERLOGARITHMEN

Schwächen des RSA

• Schlüssel m̈ussen sehr groß werden
– Faktorisierungsalgorithmen können Schl̈ussel bis 1024 Bit angreifen

– Blockgr̈oße muß auf 2048 Bit oder größer anwachsen

– Wachsende Blockgröße machtVerschl̈usselung ineffizient

· Potenzierung modulon ben̈otigtO(||n||3) Schritte

· Zeit für Verschl̈usselung langer Nachrichten wächst quadratisch

– Verschl̈usselung braucht neue algebraische Problemeals Fundament
Schwer zu brechende kleine Schlüssel oder effizientere Verschlüsselung

• Semantische Sicherheit nicht sichergestellt
– Zahlentheoretisches Verfahren enthält keine Randomisierung

– Gleiche Nachrichten werden imm auf gleiche Art verschlüsselt

– Verschl̈usselungsprotokoll sollte Zufall mit einbauen



KRYPTOGRAPHIE UNDKOMPLEXITÄT §5: 2 KRYPTOSYSTEME AUF DERBASIS DISKRETERLOGARITHMEN

Diskrete Logarithmen

• Umstellung der RSA Ver-/Entschl̈usselung
– RSA: Gegebeny = xe mod n bestimmex = e

√
y mod n

– DL: Gegebeny = ex mod n bestimmex = loge y mod n

– Formulierbar f̈ur beliebige zyklische Gruppenanstelle vonZn

e muß keine Zahl seinsondern nur Gruppenelement der Ordnungn

• Algebraische Formulierung des Problems
– Sei(G, ·) multiplikative Gruppe,g Element der Ordnungn

Für y ∈ 〈g〉 ist derdiskrete Logarithmus von y zur Basisg

(bezeichnet alsx = logg y) die eindeutige Zahlx<n mit y = gx

• Welche Gruppen sind geeignet?
– Prime Restklassen modulo einer Primzahl (Z

∗
p, ·)

– Punktgruppe einer elliptischen Kurveüber endlichen K̈orpern
– Hyperelliptische Kurven, Gruppen imaginär-quadratischer Ordnungen ...
Verzicht auf numerische Struktur macht Logarithmen z.T. erheblich

schwerer zu berechnen als Wurzeln über Z
n



KRYPTOGRAPHIE UNDKOMPLEXITÄT §5: 3 KRYPTOSYSTEME AUF DERBASIS DISKRETERLOGARITHMEN

Diskrete Logarithmen am Beispiel

• Logarithmen zur Basis 2 modulo 13
– Berechne Potenzen von 2 zur Basis 13 mit Elementen ausZ

∗
13

x 1 2 3 4 5 6 7 8 9 10 11 12
2x 2 4 8 3 6 12 11 9 5 10 7 1

– Umstellung nach Logarithmen (Ordnung von 2 istn = 12)
y 1 2 3 4 5 6 7 8 9 10 11 12
log2 y 0 1 4 2 9 5 11 3 8 10 7 6

– Logarithums ist eine Zahlx<n, kein Gruppenelement

• Logarithmen zur Basis 5 modulo 19
– Berechne Potenzen von 5 zur Basis 19 mit Elementen ausZ

∗
19

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
5x 5 6 11 17 9 7 16 4 1 5 6 11 17 9 7 16 4 1

– Ordnung von 5 ist nurn = 9: 〈5〉 = {1; 4; 5; 6; 7; 11; 16; 17}
– Umstellung nach Logarithmen für die Elemente von〈5〉

y 1 4 5 6 7 9 11 16 17
log5 y 9 17 1 11 6 5 3 7 4



Kryptographie und Komplexit ät

Einheit 5.1

Diffie Hellman Schlüsselaustausch

1. Protokoll f̈ur sicheren Schlüsselaustausch

2. Sicherheit des Verfahrens

3. Verallgemeinerung auf beliebige Gruppen



KRYPTOGRAPHIE UNDKOMPLEXITÄT §5.1: 1 DIFFIE HELLMAN SCHLÜSSELAUSTAUSCH

Diffie Hellman Schlüsselaustausch

Sicherer Austausch von Schl̈usseln

• Protokoll mit Diskreten Logarithmen über Zp

– WählePrimzahlp undErzeugerg vonZp mit 2≤g≤p−2

p undg werden nicht geheim gehalten
– Alice wählt zuf̈allige Zahla ∈{0, .., p−2} und berechnetA = ga mod p

Alice hält a geheimund schicktA an Bob
– Bob ẅahlt zuf̈allige Zahlb ∈{0, .., p−2} und berechnetB = gb mod p

Bob ḧalt b geheimund schicktB an Alice
– Alice berechnetBa mod p = ga·b mod p

Bob berechnetAb mod p = ga·b mod p

– Gemeinsamer SchlüsselK = ga·b mod p ist nur Alice und Bob bekannt

• Beispiel für n=17 und g=3
– Alice wählt a=7und berechnetA = ga mod 17 = 2187 mod 17 = 11

– Bob ẅahlt b=4und berechnetB = gb mod 17 = 81 mod 17 = 13

– Der gemeinsame Schlüssel istK = Ab mod 17 = 14641 mod 17 = 4



KRYPTOGRAPHIE UNDKOMPLEXITÄT §5.1: 2 DIFFIE HELLMAN SCHLÜSSELAUSTAUSCH

Sicherheit des Diffie Hellman Schlüssels

• Angreifer kennt p, g, A und B

– p, g, A undB wurdenüber unsichere Kan̈ale ausgetauscht

– Methode zur Bestimmung des gemeinsamen SchlüsselsK ist bekannt

– UmK = Ab mod p = Ba mod p zu berechnen, m̈usste Angreifer
entwedera oderb bestimmen k̈onnen

• Angreifer muß diskreten Logarithmus l ösen
– UmK zu bestimmen muß Angreifer entwedera = logg A

oderb = logg B ausrechnen k̈onnen

– Andere Methode, gemeinsamen Schlüssel zu brechen ist nicht bekannt

– Äquivalenz desDiffie-Hellman Problems(bestimmega·b ausga undgb)
zum Problem des diskreten Logarithmus (berechnelogg A) nicht bewiesen

• Berechnung diskreter Logarithmen ist schwer
– Beste bekannte Verfahren für Zp liegen inLn[1/3, 1.92]

Effizienteste Verfahren sind auf andere Gruppen nicht anwendbar



KRYPTOGRAPHIE UNDKOMPLEXITÄT §5.1: 3 DIFFIE HELLMAN SCHLÜSSELAUSTAUSCH

Alternativen zu Z
∗
p

• Verfahren möglich auf beliebigen Gruppen
– Gruppen m̈ussen zyklisch sein und erzeugende Elemente haben
– Multiplikation/ und Potenzierung mußeffizient implementierbarsein
– Diffie-Hellman Problem muß schwer zu lösen sein

(Zp, +) ist ungeeignet, dalogg A = A·g−1 leicht zu berechnen

• Protokoll nahezu identisch
– WähleErzeugerg der GruppeG mit Ordnungn
– Alice wählt zuf̈allige Zahla ∈{1, .., n−1} und berechnetA = ga ∈G

– Bob ẅahlt zuf̈allige Zahlb ∈{1, .., p−1} und berechnetB = gb ∈G

– Alice berechnetBa = ga·b – Bob berechnetAbga·b

– Gemeinsamer SchlüsselK = ga·b ist nur Alice und Bob bekannt

• Vorteil alternativer Gruppen
– Gruppenoperationen sind komplexer undschwerer zu invertieren
– Lösung des Diffie-Hellman Problems kann sich nicht (nur) auf

zahlentheoretische Zusammenhänge sẗutzen
– Größere Sicherheit bei geringerer Schlüssell̈ange m̈oglich


