Automatisierte Logik und Programmierung

Teil I

Formalisierung

Automatisierte Logik und Programmierung

Einheit 2

Grundkonzepte formaler Kalküle

1. Syntax und Semantik

... am Beispiel der Prädikatenlogik

2. Konzeptionelle Betrachtungen

- Definitorische Erweiterung
- Objekt- und Metasprache
- Klassische vs. intuitionistische Mathematik
- Evidenzsemantik

3. Prinzipien formaler Beweisführung

FORMALE KALKÜLE

Simulation semantischer Schlußfolgerungen durch Regeln für symbolische Manipulation

• Regelanwendung ohne Nachdenken

- Umgeht Mehrdeutigkeiten der natürlichen Sprache
- Erlaubt schematische Lösung mathematischer Probleme

Beispiele: Differentialkalkül, Fourier-Transformationen, Computer Algebra, Formale Logik

• Kernbestandteile:

- Formale Sprache (Syntax + Semantik)
- Ableitungssystem (Axiome + Inferenzregeln)

• Wichtige Eigenschaften logischer Kalküle

- Korrekt, vollständig, automatisierbar
- Leicht verständlich, ausdrucksstark, ggf. konstruktiv

Kalküle in dieser Veranstaltung

Prädikatenlogik

- Schlußfolgerungen aus der logischen Struktur einer Aussage

• λ-Kalkül

– Schließen über das Resultat von Berechnungen

• Einfache Typentheorie

- Prinzipien des Schließens über Eigenschaften von Algorithmen

• Konstruktive (intuitionistische) Typentheorie

- Uniformer Kalkül für Logik, Berechnung und Programmeigenschaften
- Formalisiert Grundkonzepte von Mathematik und Programmierung
- Fundamentale Theorie: konstruktive Auslegung + direkte Semantik
- Implementiert im Nuprl System

Beschreibung formaler Sprachen

• Syntax: Präzisierung des Vokabulars

- Formale Struktur der Sprache (Notation, textliche Erscheinungsform)
- Beschreibbar durch mathematische Definitionsgleichungen oder durch formale Grammatiken

• Semantik: Präzisierung der Bedeutung von Text

- Interpretation syntaktisch korrekter Ausdrücke in informaler Zielsprache Beschreibbar durch Interpretationsfunktion: Quellsymbole \mapsto Zielobjekte ... aber was ist die Bedeutung der Zielsprache?
- Direkte Semantik für Grundlagentheorien (Mengentheorie, Typentheorie) Mathematische Präzisierung der intuitiven Bedeutung

Formalisierung umgangssprachlicher Aussagen

Studenten, die im Hauptstudium mindestens 120 Leistungspunkte erreichen, haben die Diplomhauptprüfung bestanden

Mögliche Formalisierungen

- ohne Struktur -DP0-14.3
- Aussagenlogik- 120-Leistungspunkte \Rightarrow Diplom-bestanden
- ∀student. Leistungspunkte-erreicht(student,120) ⇒ Diplom-bestanden(student) zu viel Text
- $\forall s. (lp(s)>120) \Rightarrow D(s)$ typisch Prädikatenlogik
- $-\forall s$:Student. (lp(s)>120) \Rightarrow D(s) $Pr\ddot{a}dikatenlogik\ mit\ Sorten$

Anforderungen an eine Formalisierungssprache

- Kurz, prägnant, maschinenlesbar
- Frei wählbare Symbole für Prädikate, Operatoren, Platzhalter für Objekte
- Fest definierte Symbole für logische Bezüge (Konnektive, Quantoren)
- Eventuell fest definierte Symbole für wichtige Standardkonzepte (Gleichheit, ...)
- Eventuell Klassifizierung von Bereichen bzw. (Daten-)typen in Quantoren

Syntax der Prädikatenlogik MIT SORTEN UND GLEICHHEIT

• (Abzählbare) Alphabete für erlaubte Symbole

 $-\mathcal{V}$: Variablensymbole x,y,z,\ldots $-\mathcal{F}^i$: *i*-stellige Funktionssymbole, $\mathcal{F} = \bigcup_{i=0}^{\infty} \mathcal{F}^i$ $f,q,h,\ldots,a,b,c,\ldots$

 $-\mathcal{P}^{i}$: *i*-stellige Prädikatssymbole, $\mathcal{P} = \bigcup_{i=0}^{\infty} \mathcal{P}^{i}$ P.Q.R...

- T: Bereichssymbole (Typen / Sorten) S.T...

• Terme: Formalisierung mathematischer Objekte

- Variablen $x \in \mathcal{V}$, Konstante $f \in \mathcal{F}^0$ (atomare Terme)

 $-f(t_1,\ldots,t_n)$, wobei t_1,\ldots,t_n Terme, $f\in\mathcal{F}^n$

• Formeln: Formalisierung mathematischer Aussagen

- Konstante ff, Aussagenvariable $P \in \mathcal{P}^0$ (atomare Formeln)

 $t_1 = t_2, P(t_1, \ldots, t_n), \text{ wobei } t_1, t_2, ..., t_n \text{ Terme, } P \in \mathcal{P}^n$

 $-\neg A$, $A \land B$, $A \lor B$, $A \Rightarrow B$, $\forall x : T \cdot A$, $\exists x : T \cdot A$, (A) wobei A, B Formeln, $x \in \mathcal{V}, T \in \mathcal{T}$

Beispiele für Terme und Formeln

• Korrekte Terme

```
x \in \mathcal{V}
-\mathbf{x}
                                                                                                             24 \in \mathcal{F}^0
-24
                                                                                   \mathtt{peter} \in \mathcal{V}, \, \mathtt{vater} \in \mathcal{F}^1
- vater(peter)
-\max(2,3,4), \max(\text{plus}(4,\text{plus}(5,5)),23,5)
```

• Korrekte Formeln

- $(4=plus(2,3)) \Rightarrow ff$
- Sein ∨ ¬Sein, lange_währt ⇒ endlich_gut
- $-\forall x: \mathbb{N}.\exists y: \mathbb{Z}. \leq (*(y,y),x) \wedge (x,*(plus(y,1),plus(y,1)))$

• Keine Formeln

- plus(plus(2,3),4)

Term

− ∧ so_weiter

Formel links von A fehlt

 $-\forall x: \mathbb{N}. x(4)=x$

Variable als Funktionszeichen

Kontext bestimmt Rolle von Symbolen

- $\forall f: F. f(4)=0$ Quantifizierung über Funktionszeichen (higher-order)
- $\forall x \ x = x$

Typsymbol fehlt (unsortierte Prädikatenlogik)

KONVENTIONEN SPAREN KLAMMERN

```
\exists y : \mathbb{N}. \text{ gerade}(y) \land \geq (y,2) \Rightarrow y=2 \land >(y,20) \text{ heißt?}
  -\exists y: \mathbb{N}. \text{ (gerade(y) } \land \geq (y,2)) \Rightarrow \text{ (y=2 } \land >(y,20)) ??
  -\exists y: \mathbb{N}. \text{ gerade(y)} \land (\geq (y,2)) \Rightarrow (y=2) \land (y,20))??
  -\exists y: \mathbb{N}. \text{ (gerade(y) } \land \text{ (} \geq \text{(y,2)} \Rightarrow \text{y=2)} \text{)} \land \text{>(y,20)} ??
```

• Prioritäten zwischen verschiedenen Konnektiven

 $-\neg$ bindet stärker als \land , dann folgt \lor , dann \Rightarrow , dann \exists , dann \forall . $A \wedge \neg B$ entspricht $A \wedge (\neg B)$ $A \wedge B \vee C$ entspricht $(A \wedge B) \vee C$ $\exists x:T.\ A \land B$ entspricht $\exists x:T.\ (A \land B)$

Achtung: Unterschiedliche Konventionen in verschiedenen Lehrbüchern

- ullet Rechtsassoziativität bei Iteration von \wedge , \vee , \Rightarrow $-A \Rightarrow B \Rightarrow C$ entspricht $A \Rightarrow (B \Rightarrow C)$
- Keine Klammern bei Funktions-/Prädikatssymbolen
 - -Px entspricht P(x) und fxy entspricht f(x,y)

Definitorische Erweiterung

• Konservative Erweiterung der Objektsprache

- Neues Konstrukte sind definitorische Abkürzung für existierende objektsprachliche Ausdrücke (ggf. mit Parametern)
- Beispiel: Aquivalenz in der Prädikatenlogik

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$$

- Bedeutung wird auf Semantik bestehender Konstrukte abgestützt

• Erlaubt kleinen Grundformalismus

- Einfache Syntax und Semantik
- Einfaches Inferenzsystem
- Eigenschaften leicht beweisbar

• Erhöht Flexibilität des Formalismus

- Ergibt umfangreiche formale Sprache
- Erlaubt freiere Syntax

Objekt- und Metasprache

Präsentation von Kalkülen hat zwei Sprachebenen

• Objektsprache:

- Sprache des Kalküls, in dem formalisiert wird
- Formale Sprache mit präzise definierter Syntax
- Beispiel: $(\exists x:T. P_1(x) \lor P_2(x)) \Rightarrow \neg(\forall x:T. \neg P_1(x) \land \neg P_2(x))$

• Metasprache:

- Sprache, um Aussagen über den Kalkül zu machen
 - · Beschreibung von Syntax, Semantik, Eigenschaften des Kalküls
- Natürliche, oft stark schematisierte Sprache
- Enthält Objektsprache, angereichert um syntaktische Metavariablen
- Beispiel: aus $(\exists x:T.A \lor B)$ folgt $\neg (\forall x:T.\neg A \land \neg B)$

• Unterscheidung zuweilen durch Fonts / Farben

- Ansonsten aus Kontext eindeutig erkennbar

Semantik der Prädikatenlogik (I) Interpretation in der Mengentheorie

• Interpretation \mathcal{I} :

- Universum \mathcal{U} + Interpretations funktion ι

\bullet Freie Wahl von ι auf elementaren Symbolen

$-\iota(x)$ Objekt aus \mathcal{U}	$(x \in \mathcal{V})$
$-\iota(f)$ n-stellige Funktion $\phi:\mathcal{U}^n{ ightarrow}\mathcal{U}$	$(f\!\in\!\mathcal{F}^n)$
$-\iota(T)$ Teilmenge von $\mathcal U$	$(T\!\in\!\mathcal{T})$
$-\iota(P)$ Funktion $\Pi:\mathcal{U}^n{\longrightarrow}\{wahr,falsch\}$	$(P \in \mathcal{P}^n)$

• Homomorphe Fortsetzung auf Terme und Formeln

$$-\iota(f(t_1,\ldots,t_n)) = \iota(f)(\iota(t_1),\ldots,\iota(t_n))$$

$$-\iota(ff) = \text{falsch}$$

$$-\iota(t_1 = t_2) = \text{wahr, falls } \iota(t_1) \text{ und } \iota(t_2) \text{ in } \mathcal{U} \text{ gleich (sonst falsch)}$$

$$-\iota(P(t_1,\ldots,t_n)) = \iota(P)(\iota(t_1),\ldots,\iota(t_n)).$$

$$-\iota(A) = \iota(A)$$

Semantik der Prädikatenlogik (II) Fortsetzung von ι auf zusammengesetzte Formeln

$$\iota(\neg A) \qquad = \begin{cases} \text{ wahr } \text{ falls } \iota(A) = \text{ falsch} \\ \text{ falsch } \text{ sonst} \end{cases}$$

$$\iota(A \land B) \qquad = \begin{cases} \text{ wahr } \text{ falls } \iota(A) = \text{ wahr } \text{ und } \iota(B) = \text{ wahr} \\ \text{ falsch } \text{ sonst} \end{cases}$$

$$\iota(A \lor B) \qquad = \begin{cases} \text{ wahr } \text{ falls } \iota(A) = \text{ wahr } \text{ oder } \iota(B) = \text{ wahr} \\ \text{ falsch } \text{ sonst} \end{cases}$$

$$\iota(A \Rightarrow B) \qquad = \begin{cases} \text{ wahr } \text{ falls } \text{ aus } \iota(A) = \text{ wahr } \text{ immer } \iota(B) = \text{ wahr } \text{ folgt} \\ \text{ falsch } \text{ sonst} \end{cases}$$

$$\iota(\forall x \colon T \cdot A) \qquad = \begin{cases} \text{ wahr } \text{ falls } \iota_x^u(A) = \text{ wahr } \text{ für alle } u \in \iota(T) \\ \text{ falsch } \text{ sonst} \end{cases}$$

$$\iota(\exists x \colon T \cdot A) \qquad = \begin{cases} \text{ wahr } \text{ falls } \iota_x^u(A) = \text{ wahr } \text{ für ein } u \in \iota(T) \\ \text{ falsch } \text{ sonst} \end{cases}$$

Semantik der Prädikatenlogik (II) – klassisch Fortsetzung von ι auf zusammengesetzte Formeln

$$\iota(\neg A) \qquad = \begin{cases} \text{ wahr } \text{ falls } \iota(A) = \text{ falsch} \\ \text{ falsch } \text{ sonst} \end{cases}$$

$$\iota(A \land B) \qquad = \begin{cases} \text{ wahr } \text{ falls } \iota(A) = \text{ wahr } \text{ und } \iota(B) = \text{ wahr} \\ \text{ falsch } \text{ sonst} \end{cases}$$

$$\iota(A \lor B) \qquad = \begin{cases} \text{ falsch } \text{ falls } \iota(A) = \text{ falsch } \text{ und } \iota(B) = \text{ falsch} \\ \text{ wahr } \text{ sonst} \end{cases}$$

$$\iota(A \Rightarrow B) \qquad = \begin{cases} \text{ falsch } \text{ falls } \iota(A) = \text{ wahr } \text{ und } \iota(B) = \text{ falsch} \\ \text{ wahr } \text{ sonst} \end{cases}$$

$$\iota(\forall x \colon T \colon A) \qquad = \begin{cases} \text{ wahr } \text{ falls } \iota_x^u(A) = \text{ wahr } \text{ für alle } u \in \iota(T) \\ \text{ falsch } \text{ sonst} \end{cases}$$

$$\iota(\exists x \colon T \colon A) \qquad = \begin{cases} \text{ falsch } \text{ falls } \iota_x^u(A) = \text{ falsch } \text{ für alle } u \in \iota(T) \\ \text{ wahr } \text{ sonst} \end{cases}$$

$$\mathsf{Ist } \text{ das wirklich } \text{ dasselbe?}$$

Intuitionistische vs. Klassische Mathematik

• Was genau heißt oder, wann immer, es gibt?

- Gilt $A \vee B$, wenn man angeben kann, welches von beiden wahr ist?
- Gilt $A \Rightarrow B$, wenn man zeigen kann, wie B aus A folgt?
- Gilt $\exists x.A$, wenn man ein x angeben kann, für das A wahr ist?

• Gesetz vom ausgeschlossenen Dritten: $A \vee \neg A$

- Heißt "Eine Aussage ist wahr oder ihr Gegenteil ist wahr"
- Grundannahme der "klassischen" Mathematik aber unbeweisbar
- Nicht identisch mit: "Eine Aussage ist wahr oder falsch"

• Intuitionistische (konstruktive) Mathematik

- Versteht alle mathematischen Aussagen konstruktiv
- Ist für Schließen über Algorithmen naheliegender
- Gesetz vom ausgeschlossenen Dritten wird Entscheidbarkeitsaussage
- Formaler Unterschied gering aber Beweise werden z.T. komplizierter

NICHTKONSTRUKTIVE MATHEMATISCHE GESETZE

$\bullet \neg \neg A \Rightarrow A$

- Wenn das Gegenteil falsch ist, dann muß eine Aussage nicht wahr sein
- Der Widerspruchsbeweis sagt nicht, warum die Aussage wahr sein soll
- Äquivalent zu $A \vee \neg A$

$\bullet A \Rightarrow B \Rightarrow \neg A \lor B$

- Wenn wir wissen warum eine Aussage aus einer anderen folgt, dann wissen wir noch nicht ob die erste falsch oder die zweite wahr ist

$\bullet \neg (\neg A \land \neg B) \Rightarrow A \lor B$

- Wenn zwei Aussagen nicht gleichzeitig falsch sind, dann ist noch nicht klar, welche von beiden wahr ist.

$$\bullet \neg (\forall x : T . \neg P(x)) \Rightarrow \exists x : T . P(x)$$

– Wenn eine Aussage nicht für alle Elemente falsch ist, dann wissen wir noch nicht, für welches sie wahr ist

Interpretation von Formeln

Sei ι die "Standardinterpretation" und $\iota(\mathbf{x}) = \frac{dreizehn}{dt}$

```
• \iota(\leq (\max(2,3,4),7))
  = \iota(\leq)(\iota(\max(2,3,4)),\iota(7))
  = \prod_{<} (\iota(\max)(\iota(2),\iota(3),\iota(4)), sieben))
  = \Pi < (\phi_{max}(zwei, drei, vier), sieben)
  = \Pi_{<}(vier, sieben)
  = wahr
• \iota(\exists x : \mathbb{N}. \leq (\max(2,3,4),x))
  = wahr gdw. \iota_x^u(\leq (\max(2,3,4),x)) = \text{wahr für ein } u \in \iota(\mathbb{N}) \text{ ist}
  =:
  = wahr gdw. \Pi_{\leq}(vier, \iota_x^u(\mathbf{x})) = wahr für eine Zahl u
  = wahr gdw. \Pi_{<}(vier,u) = wahr für eine Zahl u
  = wahr
                      (wähle u = f \ddot{u} n f)
```

Modelle und Gültigkeit

 \bullet Modell $\mathcal M$ von A

$$(\mathcal{M} \models A)$$

- Interpretation $\mathcal{M} = (\iota, \mathcal{U})$ mit $\iota(A) = \mathsf{wahr}$
- A gültig

jede Interpretation ist ein Modell für A

• A erfüllbar

es gibt ein Modell für A

• A widerlegbar

es gibt ein Modell für $\neg A$

• A widersprüchlich

es gibt kein Modell für A

ullet A folgt logisch aus Formelmenge ${\mathcal E}$

$$(\mathcal{E} \models A)$$

- $-\operatorname{Aus} \mathcal{I} \models E$ für alle $E \in \mathcal{E}$ folgt $\mathcal{I} \models A$ (semantisch gültiger Schluß)
- ullet Theorie ${\mathcal T}$
 - Erfüllbare Formelmenge mit allen Formeln, die daraus logisch folgen

GÜLTIGKEIT VON FORMELN

$$(\leq (4,+(3,1)) \Rightarrow \leq (+(3,1),4)) \Rightarrow \leq (+(3,1),4)$$
 erfüllbar, nicht gültig

$$<(4,+(3,1)) \land \neg <(4,+(3,1))$$

unerfüllbar

$$(\leq (4, +(3, 1)) \land \leq (+(3, 1), 4)) \Rightarrow \leq (+(3, 1), 4)$$
 gültig

$$\forall x: \mathbb{N}. x < 0$$

erfüllbar, nicht gültig

$$\exists x : \mathbb{N}. x > 0$$

erfüllbar, nicht gültig

$$\neg (\exists x : \mathbb{N}. x > 0)$$

erfüllbar, nicht gültig

Symbole \leq , +, 3, 4, 1, \mathbb{N} , > haben keine feste Bedeutung

EINE ALTERNATIVE FORM, SEMANTIK ZU DEFINIEREN

• Interpretation in Zielsprache ist unintuitiv

- Bedeutung der Zielsprache muß präzisiert werden
- Für grundlegende Objektsprachen sollte man dies besser direkt tun

• Mengentheorie ist keine konstruktive Zielsprache

- Objekte haben keine Standardrepräsentation
- Operationen auf Struktur von Objekten sind nicht beschreibbar

• Direkte Semantik präzisiert Intuition

- Urteile weisen Basiskonzepten intuitiv verständliche Bedeutung zu
 - · Explizite Urteile erklären Bedeutung atomarer Konstrukte
 - · Homomorphe Fortsetzung auf komplexe Konstrukte
- Beschreibung verbal oder in formaler Metasprache
 - · Formale Semantik erleichtert Entwicklung von Inferenzregeln ist aber selbst kein Beweissystem

Beispiel: Evidenzsemantik für Prädikatenlogik

Welche Evidenz gibt es für Gültigkeit von Formeln?

- Atomare Formeln sind intuitiv gültig oder widersprüchlich
 - Gebe explizite Evidenz für Gültigkeit von 4 = +(1,3), ...
 - Gebe explizite Evidenz für Widersprüchlichkeit von 0=1, ...
 - Unbeweisbare oder uninterpretierte Formeln sind ohne Evidenz
- Evidenz für komplexe Formeln wird konstruktiv aufgebaut

```
-e Evidenz für Widersprüchlichkeit von A \mapsto e Evidenz für \neg A
```

 $-e_a, e_b$ Evidenzen für A bzw. B $\mapsto (e_a, e_b)$ Evidenz für $A \wedge B$

 $-e_a$ Evidenz für A \mapsto inl (e_a) Evidenz für $A \vee B$

 \mapsto inr (e_b) Evidenz für $A \vee B$ $-e_b$ Evidenz für B

 $-e_b$ Evidenz für B wenn e_a Evidenz für $A \mapsto \lambda e_a.e_b$ Evidenz für $A \Rightarrow B$

 $-e_a[a]$ Evidenz für A[a] $\mapsto (a,e_a[a])$ Evidenz für $\exists x:T.A$

 $-e_a[a]$ Evidenz für A[a] für alle a in $T \mapsto \lambda a.e_a[a]$ Evidenz für $\forall x:T.A$

Aufwendiger, aber präziser als modelltheoretische Semantik

FORMALE DIREKTE SEMANTIK DES DATENTYPS Z

• Erlaubte Symbole

 $-+,-,*,/,0,1,2,3,\ldots$ sowie \mathbb{Z},\in , Variablen und logische Konnektive

• Terme:

- Variablen x oder Konstanten $0, 1, 2, 3, \ldots$
- Funktionsanwendungen -t, t_1+t_2 , t_1-t_2 , $t_1^*t_2$, t_1/t_2

• Formeln:

- atomare Formel: $t \in \mathbb{Z}$
- zusammengesetzte Formeln wie in der Prädikatenlogik

• Formale Urteile für atomare Formeln

- $-0 \in \mathbb{Z}, \quad 1 \in \mathbb{Z}, \quad 2 \in \mathbb{Z}, \dots$
- $-t \in \mathbb{Z}$ falls $t \in \mathbb{Z}$
- $-t_1+t_2\in\mathbb{Z}, \quad t_1-t_2\in\mathbb{Z}, \quad t_1^*t_2\in\mathbb{Z}, \quad t_1/t_2\in\mathbb{Z} \quad \text{falls} \quad t_1\in\mathbb{Z} \text{ und } t_2\in\mathbb{Z}$

• Urteile für zusammengesetzte Formeln wie zuvor

FORMALE BEWEISFÜHRUNG

Syntaktische Manipulation formaler Ausdrücke unter Berücksichtigung der Semantik

• Konversion: Umformung in semantisch äquivalente Ausdrücke

- Konversion ist werterhaltende Termersetzung
- Inferenz: Erzeugung logischer Konsequenzen einer Formelmenge

$$aus \ A \ und \ A \Rightarrow B \ folgt \ B: \qquad \frac{A, \ A \Rightarrow B}{B}$$

- Inferenz erhält Gültigkeit von Aussagen aber erlaubt Abschwächung
- Inferenz ist vielseitiger für logisches Schließen

Grundkonzepte von (Inferenz)kalkülen

- Regelschema A_1, \ldots, A_n : aus A_1 und A_n folgt CPrämissen Konklusion
 - **Axiom**: Regel ohne Prämissen
 - $-\Gamma \vdash_{rs} C$: Konkrete Anwendung des Regelschemas rs

Ableitung

- Folge von Formeln $F_1, ..., F_k$ wobei Formel F_i durch Anwendung eines Regelschemas auf einige der Formeln $F_1, ..., F_{i-1}$ entsteht

• Theorem

- Formel, die sich durch Anwendung endlich vieler Regeln ableiten läßt
- Wahrheit ist nicht dasselbe wie Beweisbarkeit
 - Korrektheit eines Kalküls: alle Theoreme sind gültig ... einer Regel: Gültigkeit der Konklusion folgt aus Gültigkeit der Prämissen
 - Vollständigkeit: alle gültigen Aussagen sind Theoreme · unmöglich für ausdrucksstarke Theorien (Arithmetik, Analysis, ...)

KALKÜLAUSRICHTUNGEN

Kalküle sind Hilfsmittel, keine Beweismethode

Synthetisch

- Bottom-up Vorgehensweise

- Schlüsse von Axiomen zur Aussage
- Übliche Art, fertige Beweise zu präsentieren

Analytisch

$$\vdash A \land B \Rightarrow B \land A$$
 BY impI
$$A \land B \vdash B \land A \text{ BY andE 1}$$

$$A, B \vdash B \land A \text{ BY andI}$$

$$A, B \vdash B \text{ BY hypothesis 2}$$

$$A, B \vdash A \text{ BY hypothesis 1}$$

- Schlüsse von Zielaussage zu notwendigen Voraussetzungen
- Top-down Vorgehensweise, hilfreicher für Entwicklung von Beweisen

KALKÜLARTEN

• Axiom-orientiert: Frege-Hilbert-Kalküle

- Sehr mächtig, aber aufwendige Beweissuche

(synthetisch)

Konnektivorientiert

Natürliches Schließen $\mathcal{NK}, \mathcal{NJ}$

(synthetisch)

- Einfache Regeln für Einführung und Analyse von Konnektiven
- Separate globale Verwaltung von noch offenen Annahmen

Sequenzenkalküle

 $\mathcal{LK}, \mathcal{LJ}$

(synthetisch)

- Natürliche Inferenzregeln mit lokaler Verwaltung von Annahmen

Tableaux-Kalküle

(analytisch)

- Kompakte, unabhängig entstandene Variante des Sequenzenkalküls

Refinement Logic

(analytisch)

- Analytischer Sequenzenkalkül, **gut für interaktive Beweissuche**
- Maschinennah: Resolutions-/Konnektionskalküle
 - Maschinennahe analytische Kalküle, gut für automatisches Beweisen

ANHANG

Frege-Hilbert-Kalküle

• Sehr viele Axiomenschemata

$$(A1)$$
 $A \Rightarrow A$

$$(A2)$$
 $A \Rightarrow (B \Rightarrow A)$

$$(A3) \quad (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

$$(A4) \quad (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$$

$$(A5) \quad A \Rightarrow A \lor B$$

$$(A6)$$
 $A \Rightarrow B \lor A$

(A7)
$$(A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \lor B \Rightarrow C))$$

$$(A8) \quad A \land B \Rightarrow A$$

$$(A9) \quad A \land B \Rightarrow B$$

(A10)
$$(C \Rightarrow A) \Rightarrow ((C \Rightarrow B) \Rightarrow (C \Rightarrow A \land B))$$

(A11)
$$(A \wedge B \vee C) \Rightarrow (A \vee C) \wedge (B \vee C)$$

(A12)
$$(A \lor C) \land (B \lor C) \Rightarrow (A \land B \lor C)$$

(A13)
$$(A \lor B) \land C \Rightarrow (A \land C \lor B \land C)$$

$$(A14) \quad (A \land C \lor B \land C) \Rightarrow (A \lor B) \land C$$

$$(A15)$$
 $(A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A)$

(A16)
$$A \land \neg A \Rightarrow B$$

$$(A17) \quad (A \land (A \Rightarrow B)) \Rightarrow B$$

(A18)
$$(A \land C \Rightarrow B) \Rightarrow (C \Rightarrow (A \Rightarrow B))$$

(A19)
$$(A \Rightarrow (A \land \neg A)) \Rightarrow \neg A$$

• Nur eine Inferenzregel

(mp)
$$\frac{A , A \Rightarrow B}{B}$$

• Beweise mathematisch elegant aber unnatürlich

$$(1) A \wedge B \Rightarrow A$$
 (A8)

$$(2) A \wedge B \Rightarrow B \tag{A9}$$

$$(3) (A \land B \Rightarrow B) \Rightarrow ((A \land B \Rightarrow A) \Rightarrow (A \land B \Rightarrow B \land A)) \tag{A10}$$

(4)
$$(A \land B \Rightarrow A) \Rightarrow (A \land B \Rightarrow B \land A)$$
 (mp mit (2), (3))

(5)
$$(A \wedge B \Rightarrow B \wedge A)$$
 (mp mit (1), (4))

NATÜRLICHE DEDUKTION \mathcal{NK}

• Lesbare, kompaktifizierte Beweisdarstellung

- Beweisbaum mit Formeln und schematischen Inferenzregeln als Ubergänge
- Globale Verwaltung temporärer Annahmen
- Synthetischer Aufbau (ungünstig für Suche nach Beweisen)

• Inferenzfiguren gruppiert nach logischen Symbolen

- Einführungsregel: Welche Voraussetzungen machen eine Formel gültig?
- Eliminationsregel: Was folgt aus einer gegebenen Formel?

- Einziges Axiom $A \vee \neg A$ nur für klassische Logik erforderlich

BEISPIEL: ((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C) MATHEMATISCHER BEWEIS

- 1. Wir nehmen an $(A \Rightarrow B) \land (B \Rightarrow C)$ sei erfüllt
- 2. Wir nehmen weiter an, daß A gilt.
- 3. Aus der ersten Annahme folgt ($A \Rightarrow B$)
- 4. und mit der zweiten dann auch B.
- 5. Aus der ersten Annahme folgt auch, daß (B \Rightarrow C) gilt
- 6. und mit der vierten dann auch C.
- 7. Es ergibt sich, daß C unter der Annahme A gilt. Also folgt $A \Rightarrow C$
- 8. Insgesamt folgt $A \Rightarrow C$ unter der Annahme $(A \Rightarrow B) \land (B \Rightarrow C)$. Damit gilt die Behauptung: ((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)

BEISPIEL: ((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C) Beweis in \mathcal{NK}

1.
$$(A \Rightarrow B) \land (B \Rightarrow C)$$

Annahme

2. A

Annahme

3. (A
$$\Rightarrow$$
 B)

 \wedge -E mit (1)

 \Rightarrow -E mit (2) und (3)

5. (B
$$\Rightarrow$$
 C)

 \wedge -E mit (1)

$$\Rightarrow$$
 -E mit (4) und (5)

7.
$$(A \Rightarrow C)$$

 \Rightarrow -I mit (2) und (6) — (2) entfällt

8. (A
$$\Rightarrow$$
 B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C) \Rightarrow -I mit (1) und (7) — (1) entfällt

Schematischer Beweis in Baumstruktur

$$\begin{array}{c|c}
\hline
(A) & \underline{\begin{bmatrix} (A \Rightarrow B) \land (B \Rightarrow C) \end{bmatrix}} & \land -E \\
\hline
(A \Rightarrow B) & & \Rightarrow -E & \underline{\begin{bmatrix} (A \Rightarrow B) \land (B \Rightarrow C) \end{bmatrix}} & \land -E \\
\hline
B & & & & & & \\
\hline
(B \Rightarrow C) & & & \Rightarrow -I \\
\hline
(A \Rightarrow C) & & & \Rightarrow -I
\\
\hline
((A \Rightarrow B) \land (B \Rightarrow C)) & \Rightarrow & (A \Rightarrow C)
\end{array}$$

SEQUENZENKALKÜLE

- Modifikation von Natürlicher Deduktion
 - Schließen über Aussagen mit Annahmen (Mengen von Formeln)
- Grundkonzept Sequenz: $\underbrace{A_1,..,A_n}_{\text{Antezedent }\Gamma} \vdash \underbrace{B_1,..,B_m}_{\text{Sukzedent }\Phi}$
 - Lesart "Eine der Formeln B_i folgt aus den Annahmen A_1, \ldots, A_n "
 - Zielsequenz $\vdash C$ ("Formel C gilt ohne weitere Annahmen")
- Semantik entspricht $A_1 \wedge ... \wedge A_n \Rightarrow B_1 \vee ... \vee B_m$
 - Homomorphe Fortsetzung von Interpretationen

$$\iota(A_1,\ldots,A_n \vdash B_1,\ldots,B_m) \ = \left\{ \begin{array}{ll} \text{wahr} & \text{falls aus } \iota(A_1) = \text{wahr} \\ & \text{und } \ldots \iota(A_n) = \text{wahr} \\ & \text{immer } \iota(B_1) = \text{wahr} \\ & \text{oder } \ldots \iota(B_m) = \text{wahr folgt} \\ & \text{falsch sonst} \end{array} \right.$$

• Begriffe Modell, Gültigkeit, Erfüllbarkeit analog

Inferenz in Sequenzenkalkülen

- ullet Synthetische Beweise wie bei \mathcal{NK}
 - Lokale Sicht: keine globale Verwaltung von Annahmen nötig
- Regeln manipulieren Sequenzen statt Formeln
 - Eliminationsregeln \mapsto Einführungsregeln links für Antezedent (-L)

$$\frac{A \wedge B}{A} \wedge -E \quad wird \ zu \quad \frac{\Gamma, A \vdash \Phi}{\Gamma, A \wedge B \vdash \Phi} \wedge -L$$

- Einführungsregeln \mapsto Einführungsregeln rechts für Sukzedent (-R)

$$\neg -R \qquad \frac{\Gamma, A \vdash \Phi}{\Gamma \vdash \Phi, \neg A} \qquad \neg -L \qquad \frac{\Gamma \vdash \Phi, A}{\Gamma, \neg A \vdash \Phi} \\
 \land -R \qquad \frac{\Gamma \vdash \Phi, A \qquad \Gamma \vdash \Phi, B}{\Gamma \vdash \Phi, A \land B} \qquad \land -L \qquad \frac{\Gamma, A \vdash \Phi}{\Gamma, A \land B \vdash \Phi} \qquad \frac{\Gamma, B \vdash \Phi}{\Gamma, A \land B \vdash \Phi} \\
 \lor -R \qquad \frac{\Gamma \vdash \Phi, A}{\Gamma \vdash \Phi, A \lor B} \qquad \frac{\Gamma \vdash \Phi, B}{\Gamma \vdash \Phi, A \lor B} \qquad \lor -L \qquad \frac{\Gamma, A \vdash \Phi}{\Gamma, A \lor B \vdash \Phi} \qquad \Rightarrow -L \qquad \frac{\Gamma, A \vdash \Phi}{\Gamma, A \lor B \vdash \Phi} \qquad \Rightarrow -L \qquad \frac{\Gamma \vdash \Phi, A \qquad \Delta, B \vdash \Psi}{\Gamma, \Delta, A \Rightarrow B \vdash \Phi, \Psi} \\
 axiom \qquad \frac{A \vdash A}{A \vdash A} \qquad \qquad Schnitt \qquad \frac{\Gamma \vdash \Phi, A \qquad A, \Delta \vdash \Psi}{\Gamma, \Delta \vdash \Phi, \Psi}$$

- Mehrere Sukzedentenformeln nur für klassische Logik erforderlich
- Originalformulierung des Kalküls \mathcal{LK} verwendet Listen von Formeln Kalkül benutzt strukturelle Regeln zur Simulation von Formelmengen

SEQUENZENBEWEIS FÜR ((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)

Axiom

Axiom

3. A,
$$A \Rightarrow B \vdash B$$

$$\Rightarrow$$
 -E mit (1), (2)

5. A,
$$A \Rightarrow B$$
, $B \Rightarrow C \vdash C$

$$\Rightarrow$$
 -E mit (3), (4)

6. A,
$$(A \Rightarrow B) \land (B \Rightarrow C) \vdash C$$

7.
$$(A \Rightarrow B) \land (B \Rightarrow C) \vdash A \Rightarrow C$$

$$\Rightarrow$$
 -

8.
$$\vdash$$
 (A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)

$$\Rightarrow$$
 -

Schematischer Beweis in Baumstruktur

Konstruktive vs. klassische Beweiskalküle

$\bullet \mathcal{NK}$ und \mathcal{LK} haben intuitionistische Varianten

- $-\mathcal{NJ}$: Kalkül verwendet nur konnektionsbezogene Inferenzregeln Keine gesonderten Axiome erforderlich
- $-\mathcal{LJ}$: Sukzedent enthält genau eine Formel ("single conclusioned") Regeln dürfen nie zwei oder mehr Sukzedentenformeln erzeugen

• Die intuitionistische Form erscheint natürlicher

- Die Grundform der Kalküle liefert immer die konstruktive Logik
- Nichtkonstruktive Schlüsse erfordern besondere Konstrukte
 - $\cdot \mathcal{NK}$: gesondertes "künstliches" Axiom $A \vee \neg A$ wird hinzugefügt
 - · LK: zu beweisende Schlußfolgerung steht nicht eindeutig fest ... man kann mitten im Beweis das Beweisziel wechseln
- Nichtkonstruktive Beweise sind allerdings zuweilen erheblich kürzer

Synthetische vs. analytische Beweiskalküle

• Synthetische Form unterstützt Beweispräsentation

- Beweis führt von Annahmen zum Endergebnis
- Offen bleibt, wie man zu den anfänglichen Annahmen kommt

• Analytische Form unterstützt Beweissuche

- Umkehrung der Inferenzregeln bzw. ihrer Lesart

$$\frac{\Gamma, A \land B \vdash \Phi}{\Gamma, A, B \vdash \Phi} \land L$$

- Geeigneter zur Entwicklung von Beweisen
 - · Suche hinreichende Voraussetzungen für Gültigkeit einer Aussage
 - · Iterativer Prozess verfeinert Beweisziel in Teilziele, bis keine unbewiesenen Voraussetzungen übrigbleiben
 - · Sequenzen enthalten alle beweisrelevanten Informationen für eine lokale Durchführung dieses Prozesses,
- Synthetischer Beweis ist Umkehrung des fertigen Beweisbaums

→ Refinement Logic: (Konstruktiver) analytischer Sequenzenkalkül

- Besonders geeignet für computergestützte interaktive Beweisführung