Automatisierte Logik und Programmierung

Einheit 9

Logik und Programmierung in der Typentheorie

- 1. Die Curry-Howard Isomorphie
- 2. Der leere Datentyp
- 3. Konstruktive und klassische Logik
- 4. Beweise als Programme
- 5. Konstruktion effizienter Algorithmen

• Logik kann in Typstruktur eingebettet werden

- Prinzip "Propositions-as-types" macht Aussagen zu Datentypen
- Termrepräsentation eines Beweises der Aussage wird Element des Typs

• Logik kann in Typstruktur eingebettet werden

- Prinzip "*Propositions-as-types*" macht Aussagen zu Datentypen
- Termrepräsentation eines Beweises der Aussage wird Element des Typs

• Gleichheit ist das grundlegende Prädikat

- Dargestellt als Typ $s = t \in T$ mit kanonischem Element Ax
- Mathematisch lassen sich alle Prädikate mit Gleichheiten beschreiben

• Logik kann in Typstruktur eingebettet werden

- Prinzip "*Propositions-as-types*" macht Aussagen zu Datentypen
- Termrepräsentation eines Beweises der Aussage wird Element des Typs

• Gleichheit ist das grundlegende Prädikat

- Dargestellt als Typ $s = t \in T$ mit kanonischem Element Ax
- Mathematisch lassen sich alle Prädikate mit Gleichheiten beschreiben

• Konnektive entsprechen Typkonstruktoren

- Curry-Howard Isomorphie: Inferenzregeln entsprechen einander
 - · Implikation verhält sich wie (unabhängiger) Funktionenraum
 - · Allquantor verhält sich wie abhängiger Funktionenraum

• Logik kann in Typstruktur eingebettet werden

- Prinzip "*Propositions-as-types*" macht Aussagen zu Datentypen
- Termrepräsentation eines Beweises der Aussage wird Element des Typs

• Gleichheit ist das grundlegende Prädikat

- Dargestellt als Typ $s = t \in T$ mit kanonischem Element Ax
- Mathematisch lassen sich alle Prädikate mit Gleichheiten beschreiben

• Konnektive entsprechen Typkonstruktoren

- Curry-Howard Isomorphie: Inferenzregeln entsprechen einander
 - · Implikation verhält sich wie (unabhängiger) Funktionenraum
 - · Allquantor verhält sich wie abhängiger Funktionenraum
- Welche Typkonstrukte ensprechen den anderen Konnektiven?

• Logik kann in Typstruktur eingebettet werden

- Prinzip "*Propositions-as-types*" macht Aussagen zu Datentypen
- Termrepräsentation eines Beweises der Aussage wird Element des Typs

• Gleichheit ist das grundlegende Prädikat

- Dargestellt als Typ $s = t \in T$ mit kanonischem Element Ax
- Mathematisch lassen sich alle Prädikate mit Gleichheiten beschreiben

• Konnektive entsprechen Typkonstruktoren

- Curry-Howard Isomorphie: Inferenzregeln entsprechen einander
 - · Implikation verhält sich wie (unabhängiger) Funktionenraum
 - · Allquantor verhält sich wie abhängiger Funktionenraum
- Welche Typkonstrukte ensprechen den anderen Konnektiven?

• Logik wird zur konservativen Erweiterung

- Isomorphie macht "echte" Erweiterung der CTT überflüssig

Logik vs. Typentheorie: Implikation & Allquantor

$$\Gamma \vdash A \Rightarrow B$$

$$\text{BY impI}$$

$$\Gamma, A \vdash B$$

$$\Gamma, A \Rightarrow B, \Delta \vdash C$$

$$\text{BY impE } i$$

$$\Gamma, A \Rightarrow B, \Delta \vdash A$$

$$\Gamma, \Delta, B \vdash C$$

$$\Gamma \vdash \forall x : T . A$$

$$\text{BY allI } *$$

$$\Gamma, x' : T \vdash A[x'/x]$$

$$\Gamma, \forall x : T . A, \Delta \vdash C$$

$$\text{BY allE } i \ t$$

$$\Gamma, \forall x : T . A, \Delta, A[t/x] \vdash C$$

```
\Gamma \vdash A \rightarrow B \mid \text{ext } \lambda x \cdot b \mid
                                                   BY lambdaFormation 1 THEN ...
                                                  \Gamma, x:A \vdash B ext b
                                               \Gamma, pf \colon A \rightarrow B, \Delta \vdash C ext b[pf a, /y]
                                                  BY independent_functionElimination i THEN ...
                                                  \Gamma, pf \colon A \rightarrow B, \Delta \vdash A ext a_{\parallel}
                                                  \Gamma, y:B, \Delta \vdash C ext b
                                               \Gamma \vdash x: T \rightarrow A \mid \text{ext } \lambda x' \cdot a \mid
                                                   BY lambdaFormation 1 THEN ...
                                                  \Gamma, x':T \vdash A[x'/x] [ext a]
                                               \Gamma, pf: x:T \rightarrow A, \Delta \vdash C ext u[pf t / y]
                                                  BY dependent_functionElimination i t
\Gamma, \forall x:T.A, \Delta, A[t/x] \vdash C \Gamma, pf: x:T \rightarrow A, \Delta \vdash t \in T [Ax]
                                                  \Gamma, pf: x:T \rightarrow A, y:A[t/x], \Delta \vdash C ext u_{\parallel}
```

$$\Gamma \vdash A \wedge B$$

BY andI

$$\Gamma \vdash A$$

$$\Gamma \vdash B$$

$$\Gamma \vdash A \times B \text{ [ext } \langle a, b \rangle \text{]}$$

BY independent_pairFormation

$$\Gamma \vdash A \text{ [ext } a_{\text{]}}$$

$$\Gamma \vdash B \mid \text{ext } b \mid$$

$$\Gamma \vdash A \land B$$

BY and I

$$\Gamma \vdash A$$

$$\Gamma \vdash B$$

$$\Gamma, A \wedge B, \Delta \vdash C$$

BY and i

$$\Gamma, A, B, \Delta \vdash C$$

$$\Gamma \vdash A \times B \mid \text{ext } \langle a, b \rangle \mid$$

BY independent_pairFormation

$$\Gamma \vdash A \mid \text{ext } a \mid$$

$$\Gamma \vdash B \mid \text{ext } b \mid$$

$$\Gamma$$
, $z \colon A \times B$, $\Delta \vdash C$ ext let $\langle a, b \rangle = z$ in u_1

BY productElimination i

$$\Gamma$$
, $z \colon A \times B$, $a \colon A$, $b \colon B$, $\Delta[\langle a, b \rangle/z] \vdash C[\langle a, b \rangle/z]$ jext u_{\parallel}

$$\Gamma \vdash A \land B$$

BY and I

$$\Gamma \vdash A$$

$$\Gamma \vdash B$$

$$\Gamma, A \wedge B, \Delta \vdash C$$

BY and i

$$\Gamma, A, B, \Delta \vdash C$$

$$\Gamma \vdash \exists x : T . A$$

BY exI t

$$\Gamma \vdash A[t/x]$$

$$\Gamma \vdash A \times B \text{ [ext } \langle a, b \rangle \text{]}$$

BY independent_pairFormation

$$\Gamma \vdash A \mid \text{ext } a \mid$$

$$\Gamma \vdash B \mid \text{ext } b \mid$$

$$\Gamma$$
, $z \colon A \times B$, $\Delta \vdash C$ ext let $\langle a, b \rangle = z$ in u_1

BY productElimination i

$$\Gamma$$
, $z \colon A \times B$, $a \colon A$, $b \colon B$, $\Delta[\langle a, b \rangle/z] \vdash C[\langle a, b \rangle/z]$ [ext u_j

$$\Gamma \vdash x: T \times A \text{ [ext } \langle t, a \rangle \text{]}$$

BY dependent_pairFormation 1 t THEN ...

$$\Gamma \vdash t \in T$$
 [Ax]

$$\Gamma \vdash A[t/x] \mid \text{ext } a_{\parallel}$$

$$\Gamma \vdash A \land B$$

BY and I

$$\Gamma \vdash A$$

$$\Gamma \vdash B$$

$$\Gamma, A \wedge B, \Delta \vdash C$$

BY and i

$$\Gamma, A, B, \Delta \vdash C$$

$$\Gamma \vdash \exists x : T . A$$

BY exI t

$$\Gamma \vdash A[t/x]$$

$$\Gamma, \exists x : T.A, \Delta \vdash C$$

BY exE i **

$$\Gamma$$
, x' : T , $A[x'/x]$, $\Delta \vdash C$

$$\Gamma \vdash A \times B \text{ [ext } \langle a, b \rangle \text{]}$$

BY independent_pairFormation

$$\Gamma \vdash A \mid \text{ext } a \mid$$

$$\Gamma \vdash B \mid \text{ext } b \mid$$

$$\Gamma$$
, $z \colon A \times B$, $\Delta \vdash C$ ext let $\langle a, b \rangle = z$ in u_{\parallel}

BY productElimination i

$$\Gamma$$
, $z \colon A \times B$, $a \colon A$, $b \colon B$, $\Delta[\langle a, b \rangle/z] \vdash C[\langle a, b \rangle/z]$ ext u_{\parallel}

$$\Gamma \vdash x: T \times A \mid \text{ext } \langle t, a \rangle \mid$$

BY dependent_pairFormation 1 t THEN ...

$$\Gamma \vdash t \in T \mid Ax \mid$$

$$\Gamma \vdash A[t/x] \mid \text{ext } a_{\parallel}$$

$$\Gamma$$
, $z \colon x \colon T \times A$, $\Delta \vdash C$ ext let $\langle x', a \rangle = z$ in u_{\parallel}

BY productElimination i THEN thin i

$$\Gamma$$
, $x':T$, $a:A[x'/x]$, $\Delta \vdash C$ ext u_{\parallel}

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {m S}$
$egin{aligned} & Urteil & m{T}[m{x_i}]_{m{ ext{ext}}} & (Variablen & m{x_i} \in m{S_i}) \end{aligned}$	Beweis \boldsymbol{t} von \boldsymbol{T} (Annahmen $\boldsymbol{S_i}$)

Typ	Formel
$oxed{Deklaration oldsymbol{x}:} oldsymbol{S}$	$Annahme\ der\ Formel\ {m S}$
$egin{aligned} Urteil & m{T}[m{x_i}]_{m{ ext{ext}}} & (Variablen & m{x_i} \in m{S_i}) \end{aligned}$	Beweis \boldsymbol{t} von \boldsymbol{T} (Annahmen $\boldsymbol{S_i}$)
Funktioneraum $A{ ightarrow}B$	Implikation $A \Rightarrow B$

Typ *Formel* Deklaration x:SAnnahme der Formel S $Urteil \ T[x_i]_{|ext \ t|} \ \ (Variablen \ x_i \in S_i) \ \ Beweis \ t \ von \ T \ (Annahmen \ S_i)$ Funktioneraum $A \rightarrow B$ Implikation $A \Rightarrow B$ Universelle Quantifizierung $\forall x:T.A$ Funktionenraum $x: T \rightarrow A$

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {m S}$
$egin{array}{c} \textit{Urteil} \; m{T}[m{x_i}]_{ ext{ext}} \; \; (\textit{Variablen} \; m{x_i} \in m{S_i}) \end{array}$	Beweis \boldsymbol{t} von \boldsymbol{T} (Annahmen $\boldsymbol{S_i}$)
Funktioneraum $A \rightarrow B$	Implikation $A \Rightarrow B$
Funktionenraum $x:T \rightarrow A$	Universelle Quantifizierung $\forall x : T . A$
Produkt $\boldsymbol{A} \times \boldsymbol{B}$	Konjunktion $\boldsymbol{A} \wedge \boldsymbol{B}$

Typ *Formel* Deklaration x:SAnnahme der Formel S $Urteil \ T[x_i]_{|ext \ t|} \ (Variablen \ x_i \in S_i) \ Beweis \ t \ von \ T \ (Annahmen \ S_i)$ Funktioneraum $A \rightarrow B$ Implikation $A \Rightarrow B$ Universelle Quantifizierung $\forall x:T$. AFunktionenraum $x:T \rightarrow A$ Konjunktion $A \wedge B$ Produkt $A \times B$ Existentielle Quantifizierung $\exists x : T . A$ Produkt $x: T \times A$

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {m S}$
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	Beweis t von T (Annahmen S_i)
Funktioneraum $A \rightarrow B$	Implikation $A \Rightarrow B$
Funktionenraum $x\!:\!T\!\!\to\!\!A$	Universelle Quantifizierung $\forall x : T . A$
Produkt $\boldsymbol{A} \times \boldsymbol{B}$	Konjunktion $\boldsymbol{A} \wedge \boldsymbol{B}$
Produkt $\boldsymbol{x} : \boldsymbol{T} \times \boldsymbol{A}$	Existentielle Quantifizierung $\exists x : T . A$
	Disjunktion $\boldsymbol{A} \vee \boldsymbol{B}$

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {\color{red} S}$
$egin{aligned} & Urteil & m{T}[m{x_i}]_{ ext{ext }t_{ ext{j}}} & (Variablen & m{x_i} \in m{S_i}) \end{aligned}$	Beweis t von T (Annahmen S_i)
Funktioneraum $A \rightarrow B$	Implikation $A \Rightarrow B$
Funktionenraum $x:T \rightarrow A$	Universelle Quantifizierung $\forall x : T . A$
Produkt $\mathbf{A} \times \mathbf{B}$	Konjunktion $\boldsymbol{A} \wedge \boldsymbol{B}$
Produkt $x:T\times A$	Existentielle Quantifizierung $\exists x : T . A$
Disjunkte Vereinigung $A+B$	Disjunktion $\boldsymbol{A} \vee \boldsymbol{B}$

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {\color{red} S}$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	Beweis t von T (Annahmen S_i)
Funktioneraum $A \rightarrow B$	Implikation $A \Rightarrow B$
Funktionenraum $x:T \rightarrow A$	Universelle Quantifizierung $\forall x : T . A$
Produkt $\boldsymbol{A} \times \boldsymbol{B}$	Konjunktion $\boldsymbol{A} \wedge \boldsymbol{B}$
Produkt $x:T\times A$	Existentielle Quantifizierung $\exists x : T.A$
Disjunkte Vereinigung $A+B$	Disjunktion $\boldsymbol{A} \vee \boldsymbol{B}$
	Falschheit ff

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {m S}$
$egin{aligned} egin{aligned} Urteil & m{T}[m{x_i}]_{m{ ext{ext}}} & (Variablen & m{x_i} \in m{S_i}) \end{aligned}$	Beweis \boldsymbol{t} von \boldsymbol{T} (Annahmen $\boldsymbol{S_i}$)
Funktioneraum $A{ ightarrow}B$	Implikation $A \Rightarrow B$
Funktionenraum $x\!:\!T\!\!\to\!\!A$	Universelle Quantifizierung $\forall x:T$. A
Produkt $\boldsymbol{A} \times \boldsymbol{B}$	Konjunktion $\boldsymbol{A} \wedge \boldsymbol{B}$
Produkt $\boldsymbol{x} : \boldsymbol{T} \times \boldsymbol{A}$	Existentielle Quantifizierung $\exists x : T . A$
Disjunkte Vereinigung $A+B$	Disjunktion $\boldsymbol{A} \vee \boldsymbol{B}$
Leerer Datentyp Void	Falschheit ff

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {\color{red} S}$
$egin{aligned} egin{aligned} Urteil & m{T}[m{x_i}] \ ext{[ext } m{t}_{\!\! egin{subarray}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Beweis t von T (Annahmen S_i)
Funktioneraum $A \rightarrow B$	Implikation $A \Rightarrow B$
Funktionenraum $x\!:\!T\!\!\to\!\!A$	Universelle Quantifizierung $\forall x:T$. A
Produkt $\boldsymbol{A} \times \boldsymbol{B}$	Konjunktion $\boldsymbol{A} \wedge \boldsymbol{B}$
Produkt $\boldsymbol{x}\!:\!\boldsymbol{T}\!\times\!\boldsymbol{A}$	Existentielle Quantifizierung $\exists x : T . A$
Disjunkte Vereinigung $A+B$	Disjunktion $\boldsymbol{A} \vee \boldsymbol{B}$
Leerer Datentyp Void	Falschheit ff
	Negation $\neg A$

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {\color{red} S}$
$egin{aligned} egin{aligned} Urteil & m{T}[m{x_i}] \ ext{[ext } m{t}_{\!\! egin{subarray}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Beweis \boldsymbol{t} von \boldsymbol{T} (Annahmen $\boldsymbol{S_i}$)
Funktioneraum $A { ightarrow} B$	Implikation $A \Rightarrow B$
Funktionenraum $x\!:\!T\!\!\to\!\!A$	Universelle Quantifizierung $\forall x:T$. A
Produkt $\boldsymbol{A} \times \boldsymbol{B}$	Konjunktion $\boldsymbol{A} \wedge \boldsymbol{B}$
Produkt $\boldsymbol{x}\!:\!\boldsymbol{T}\!\times\!\boldsymbol{A}$	Existentielle Quantifizierung $\exists x : T . A$
Disjunkte Vereinigung $A+B$	Disjunktion $\boldsymbol{A} \vee \boldsymbol{B}$
Leerer Datentyp Void	Falschheit ff
Funktioneraum $A o Void$	Negation $\neg A$

Typ	Formel
$Deklaration \ m{x}:m{S}$	$Annahme\ der\ Formel\ {\color{red} S}$
$egin{aligned} egin{aligned} Urteil & m{T}[m{x_i}] \ ext{[ext } m{t}_{\!\! egin{subarray}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Beweis t von T (Annahmen S_i)
Funktioneraum $A \rightarrow B$	Implikation $A \Rightarrow B$
Funktionenraum $x\!:\!T\!\!\to\!\!A$	Universelle Quantifizierung $\forall x:T$. A
Produkt $\boldsymbol{A} \times \boldsymbol{B}$	Konjunktion $\boldsymbol{A} \wedge \boldsymbol{B}$
Produkt $\boldsymbol{x} : \boldsymbol{T} \times \boldsymbol{A}$	Existentielle Quantifizierung $\exists x : T . A$
Disjunkte Vereinigung $A+B$	Disjunktion $\boldsymbol{A} \vee \boldsymbol{B}$
Leerer Datentyp Void	Falschheit ff
Funktioneraum $A o Void$	Negation $\neg A$

Logik ist "umsonst", wenn wir A+B und Void haben

• Vereinigung der Elemente zweier Typen

• Vereinigung der Elemente zweier Typen

- Ursprung der Elemente von A+B muß erkennbar bleiben
 - · Elemente werden durch "Marker" gekennzeichnet
 - · Mathematische Notation inl(a) bzw. inr(b) (linke/rechte Injektion)

• Vereinigung der Elemente zweier Typen

- Ursprung der Elemente von A+B muß erkennbar bleiben
 - · Elemente werden durch "Marker" gekennzeichnet
 - · Mathematische Notation inl(a) bzw. inr(b) (linke/rechte Injektion)
- Nichtkanonisches Element analysiert Marker und verwertet Element
 - · Programmiernotation case e of $\mathsf{inl}(a) \mapsto u \mid \mathsf{inr}(b) \mapsto v$

• Vereinigung der Elemente zweier Typen

- Ursprung der Elemente von A+B muß erkennbar bleiben
 - · Elemente werden durch "Marker" gekennzeichnet
 - · Mathematische Notation inl(a) bzw. inr(b) (linke/rechte Injektion)
- Nichtkanonisches Element analysiert Marker und verwertet Element
 - · Programmiernotation case e of $\mathsf{inl}(a) \mapsto u \mid \mathsf{inr}(b) \mapsto v$

• Boolescher Typ ist ein Spezialfall

- Vereinigung zweier einelementiger Typen: $\mathbb{B} \equiv \text{Unit+Unit}$
- Durch Marker entstehen genau zwei unterscheidbare Elemente
- Nichtkanonisches Element analysiert nur den Marker

• Vereinigung der Elemente zweier Typen

- Ursprung der Elemente von A+B muß erkennbar bleiben
 - · Elemente werden durch "Marker" gekennzeichnet
 - · Mathematische Notation inl(a) bzw. inr(b) (linke/rechte Injektion)
- Nichtkanonisches Element analysiert Marker und verwertet Element
 - · Programmiernotation case e of $\mathsf{inl}(a) \mapsto u \mid \mathsf{inr}(b) \mapsto v$

• Boolescher Typ ist ein Spezialfall

- Vereinigung zweier einelementiger Typen: $\mathbb{B} \equiv \text{Unit+Unit}$
- Durch Marker entstehen genau zwei unterscheidbare Elemente
- Nichtkanonisches Element analysiert nur den Marker

• Aufzählungstypen sind Verallgemeinerung

- Wichtiges Konzept vieler moderner Programmiersprachen
- Viele Marker werden unterschieden
- Nichtkanonisches Element entspricht komplexer Fallunterscheidung

Fallunterscheidung und Aufzählung von Alternativen

Syntax:

Kanonisch: S+Tunion $\{\}(S;T)$

> inl(e)**inl**{}(*e*)

> inr(e)**inr**{}(*e*)

Nichtkanonisch: case e of $inl(x) \mapsto u \mid inr(y) \mapsto v$ decide $\{\}(e; x.u; y.v)$

Fallunterscheidung und Aufzählung von Alternativen

Syntax:

Kanonisch: S+Tunion $\{\}(S;T)$

> inl(e)**inl**{}(*e*)

> inr(e)**inr**{}(*e*)

Nichtkanonisch: case e of $inl(x) \mapsto u \mid inr(y) \mapsto v$ decide $\{\}(e; x.u; y.v)$

Auswertung:

case
$$\operatorname{inl}(s)$$
 of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \qquad \xrightarrow{\beta} \qquad u[s/x]$ case $\operatorname{inr}(t)$ of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \qquad \xrightarrow{\beta} \qquad v[t/y]$

ase
$$\operatorname{inr}(t)$$
 of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \xrightarrow{\beta} v[t/y]$

Fallunterscheidung und Aufzählung von Alternativen

Syntax:

Kanonisch: S+Tunion $\{\}(S;T)$

> inl(e)**inl**{}(*e*)

> inr(e)**inr**{}(*e*)

Nichtkanonisch: case e of $inl(x) \mapsto u \mid inr(y) \mapsto v$ decide $\{\}(e; x.u; y.v)$

Auswertung:

case
$$\operatorname{inl}(s)$$
 of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \qquad \xrightarrow{\beta} \qquad u[s/x]$ case $\operatorname{inr}(t)$ of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \qquad \xrightarrow{\beta} \qquad v[t/y]$

Semantik:

$$\begin{array}{lll} S_1\!\!+\!T_1 = S_2\!\!+\!T_2 & \equiv & S_1\!\!=\!\!S_2 \text{ und } T_1\!\!=\!\!T_2 \\ \operatorname{inl}(s_1\!\!) = \operatorname{inl}(s_2\!\!) \in S\!\!+\!\!T & \equiv & S\!\!+\!\!T \text{ Typ und } s_1\!\!=\!\!s_2\!\!\in\!\!S \\ \operatorname{inr}(t_1\!\!) = \operatorname{inr}(t_2\!\!) \in S\!\!+\!\!T & \equiv & S\!\!+\!\!T \text{ Typ und } t_1\!\!=\!\!t_2\!\!\in\!\!T \end{array}$$

Fallunterscheidung und Aufzählung von Alternativen

Syntax:

Kanonisch: S+Tunion $\{\}(S;T)$

> inl(e)**inl**{}(*e*)

> inr(e)**inr**{}(*e*)

Nichtkanonisch: case e of $inl(x) \mapsto u \mid inr(y) \mapsto v$ decide $\{\}(e; x.u; y.v)$

Auswertung:

case
$$\operatorname{inl}(s)$$
 of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \qquad \xrightarrow{\beta} \qquad u[s/x]$ case $\operatorname{inr}(t)$ of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \qquad \xrightarrow{\beta} \qquad v[t/y]$

Semantik:

$$\begin{array}{lll} S_1\!\!+\!T_1 = S_2\!\!+\!T_2 & \equiv & S_1\!\!=\!\!S_2 \text{ und } T_1\!\!=\!\!T_2 \\ \operatorname{inl}(s_1) = \operatorname{inl}(s_2) \in S\!\!+\!\!T & \equiv & S\!\!+\!\!T \text{ Typ und } s_1\!\!=\!\!s_2\!\!\in\!\!S \\ \operatorname{inr}(t_1) = \operatorname{inr}(t_2) \in S\!\!+\!\!T & \equiv & S\!\!+\!\!T \text{ Typ und } t_1\!\!=\!\!t_2\!\!\in\!\!T \end{array}$$

Inferenzregeln und Taktiken im Appendix A.3.3 des Nuprl Manuals

$$\Gamma \vdash A \lor B$$
BY orI1
 $\Gamma \vdash A$

$$\Gamma \vdash A + B \text{ [ext inl}(a)]$$

BY inlFormation j
 $\Gamma \vdash A \text{ [ext } a]$
 $\Gamma \vdash B \in \mathbb{U}_j \text{ [Ax]}$

$$\Gamma \vdash A \lor B$$
BY orI1
 $\Gamma \vdash A$

$$\Gamma \vdash A \lor B$$
BY orI2
 $\Gamma \vdash B$

$$\Gamma \vdash A + B \text{ [ext inl } (a) \text{]}$$

$$\text{BY inlFormation } j$$

$$\Gamma \vdash A \text{ [ext } a \text{]}$$

$$\Gamma \vdash B \in \mathbb{U}_j \text{ [Ax]}$$

$$\Gamma \vdash A + B \text{ [ext inr } (b) \text{]}$$

$$\text{BY inrFormation 1 THEN } \dots$$

$$\Gamma \vdash B \text{ [ext } b \text{]}$$

Inferenzregeln sind im wesentlichen isomorph

Einführung eines leeren Datentyps

• Simulierbar durch "leere Gleichheiten"

Einführung eines leeren Datentyps

- Simulierbar durch "leere Gleichheiten"
 - $\ \text{Void} \ \equiv \ \mathtt{X} : \mathbb{U}_1 \ \longrightarrow \ \mathtt{X} = \mathtt{X} {\longrightarrow} \mathtt{X} \in \mathbb{U}_1$

Einführung eines Leeren Datentyps

• Simulierbar durch "leere Gleichheiten"

- $\ \text{Void} \ \equiv \ \mathtt{X} : \mathbb{U}_1 \ \longrightarrow \ \mathtt{X} = \mathtt{X} {\longrightarrow} \mathtt{X} \in \mathbb{U}_1$
- $Void \equiv 0 = 1 \in \mathbb{Z}$

• Simulierbar durch "leere Gleichheiten"

- $\ \mathsf{Void} \ \equiv \ \mathtt{X} : \mathbb{U}_1 \ \rightarrow \ \mathtt{X} = \mathtt{X} {\longrightarrow} \mathtt{X} \in \mathbb{U}_1$
- $Void \equiv 0 = 1 \in \mathbb{Z}$
- $Void \equiv T = F \in \mathbb{B}$

- Simulierbar durch "leere Gleichheiten"
 - $\text{Void} \equiv X : \mathbb{U}_1 \rightarrow X = X \rightarrow X \in \mathbb{U}_1$
 - $Void \equiv 0 = 1 \in \mathbb{Z}$
 - $Void \equiv T = F \in \mathbb{B}$
- Wichtige Eigenschaften

• Simulierbar durch "leere Gleichheiten"

- $\text{Void} \equiv X : \mathbb{U}_1 \rightarrow X = X \rightarrow X \in \mathbb{U}_1$
- $Void \equiv 0 = 1 \in \mathbb{Z}$
- $Void \equiv T = F \in \mathbb{B}$

• Wichtige Eigenschaften

- Void $\times T$ ist Datentyp ohne Elemente
- Void+T ist isomorph zu T

Einführung eines Leeren Datentyps

• Simulierbar durch "leere Gleichheiten"

- $\text{Void} \equiv X : \mathbb{U}_1 \rightarrow X = X \rightarrow X \in \mathbb{U}_1$
- $Void \equiv 0 = 1 \in \mathbb{Z}$
- $Void \equiv T = F \in \mathbb{B}$

• Wichtige Eigenschaften

- Void $\times T$ ist Datentyp ohne Elemente
- Void+T ist isomorph zu T
- $-T \rightarrow Void$ muß leer sein, wenn T nicht leer ist (entspricht Falschheit)

Einführung eines Leeren Datentyps

• Simulierbar durch "leere Gleichheiten"

- $\text{Void} \equiv X : \mathbb{U}_1 \rightarrow X = X \rightarrow X \in \mathbb{U}_1$
- $\text{Void} \equiv 0 = 1 \in \mathbb{Z}$
- $Void \equiv T = F \in \mathbb{B}$

• Wichtige Eigenschaften

- Void $\times T$ ist Datentyp ohne Elemente
- Void+T ist isomorph zu T
- $-T \rightarrow Void$ muß leer sein, wenn T nicht leer ist (entspricht Falschheit)
- Void $\to T$ muß das Element $\lambda x.t$ für jedes beliebige t haben

Einführung eines leeren Datentyps

• Simulierbar durch "leere Gleichheiten"

- Void $\equiv X : \mathbb{U}_1 \rightarrow X = X \rightarrow X \in \mathbb{U}_1$
- $Void \equiv 0 = 1 \in \mathbb{Z}$
- $Void \equiv T = F \in \mathbb{B}$

• Wichtige Eigenschaften

- Void $\times T$ ist Datentyp ohne Elemente
- Void+T ist isomorph zu T
- $-T \rightarrow Void$ muß leer sein, wenn T nicht leer ist (entspricht Falschheit)
- Void $\to T$ muß das Element $\lambda x.t$ für jedes beliebige t haben

• Void braucht nichtkanonisches Element

 $-\operatorname{any}(x)$ mit $\operatorname{any}(x) \in T$ für $x \in \operatorname{Void}$

• Simulierbar durch "leere Gleichheiten"

```
- Void \equiv X : \mathbb{U}_1 \rightarrow X = X \rightarrow X \in \mathbb{U}_1
```

- Void \equiv 0 = 1 \in \mathbb{Z}
- $Void \equiv T = F \in \mathbb{B}$

• Wichtige Eigenschaften

- Void $\times T$ ist Datentyp ohne Elemente
- Void+T ist isomorph zu T
- $-T \rightarrow Void$ muß leer sein, wenn T nicht leer ist (entspricht Falschheit)
- Void $\to T$ muß das Element $\lambda x.t$ für jedes beliebige t haben

• Void braucht nichtkanonisches Element

- $-\operatorname{any}(x)$ mit $\operatorname{any}(x) \in T$ für $x \in \operatorname{Void}$
- Definition als primitiver Datentyp zu bevorzugen

Einführung eines Leeren Datentyps

• Simulierbar durch "leere Gleichheiten"

- $\text{Void} \equiv X : \mathbb{U}_1 \rightarrow X = X \rightarrow X \in \mathbb{U}_1$
- Void \equiv 0 = 1 \in \mathbb{Z}
- $Void \equiv T = F \in \mathbb{B}$

• Wichtige Eigenschaften

- Void $\times T$ ist Datentyp ohne Elemente
- Void+T ist isomorph zu T
- $-T \rightarrow Void$ muß leer sein, wenn T nicht leer ist (entspricht Falschheit)
- Void $\to T$ muß das Element $\lambda x.t$ für jedes beliebige t haben

• Void braucht nichtkanonisches Element

 $-\operatorname{any}(x)$ mit $\operatorname{any}(x) \in T$ für $x \in \operatorname{Void}$

• Definition als primitiver Datentyp zu bevorzugen

- Leere Menge ist grundlegendes mathematisches Konzept

Einführung eines Leeren Datentyps

• Simulierbar durch "leere Gleichheiten"

- $\text{Void} \equiv X : \mathbb{U}_1 \rightarrow X = X \rightarrow X \in \mathbb{U}_1$
- Void \equiv 0 = 1 \in \mathbb{Z}
- $Void \equiv T = F \in \mathbb{B}$

• Wichtige Eigenschaften

- Void $\times T$ ist Datentyp ohne Elemente
- Void+T ist isomorph zu T
- $-T \rightarrow Void$ muß leer sein, wenn T nicht leer ist (entspricht Falschheit)
- Void $\to T$ muß das Element $\lambda x.t$ für jedes beliebige t haben

• Void braucht nichtkanonisches Element

 $-\operatorname{any}(x)$ mit any $(x) \in T$ für $x \in Void$

• Definition als primitiver Datentyp zu bevorzugen

- Leere Menge ist grundlegendes mathematisches Konzept
- Konservative Erweiterungen liefern keine nichtkanonische Elemente

DER LEERE DATENTYP PRÄZISIERT

Gegenstück zur leeren Menge und zur logischen Falschheit

Syntax:

Kanonisch: Void **void**{}()

Nichtkanonisch: any(e) $any{}(e)$

DER LEERE DATENTYP PRÄZISIERT

Gegenstück zur leeren Menge und zur logischen Falschheit

Syntax:

Kanonisch: Void **void**{}()

Nichtkanonisch: any(e) $any{}(e)$

Auswertung: —

DER LEERE DATENTYP PRÄZISIERT

Gegenstück zur leeren Menge und zur logischen Falschheit

Syntax:

Kanonisch: Void **void**{}()

Nichtkanonisch: any(e) $any{}(e)$

Auswertung: —

Semantik:

Void = Void

 $e = e \in Void$ gilt niemals

Der leere Datentyp präzisiert

Gegenstück zur leeren Menge und zur logischen Falschheit

Syntax:

Kanonisch: Void **void**{}()

Nichtkanonisch: any(e) $any{}(e)$

Auswertung: —

Semantik:

Void = Void

 $e = e \in \mathsf{Void}$ gilt niemals

Inferenzregeln:

```
\Gamma \vdash \mathsf{Void} = \mathsf{Void} \in \mathbb{U}_j [Ax]
   BY voidEquality
```

$$\Gamma \vdash \mathsf{any}(s) = \mathsf{any}(t) \in T \text{ [Ax]} \qquad \qquad \Gamma, \ z \colon \mathsf{Void}, \ \Delta \vdash C \text{ [ext any}(z)]$$
 BY any Equality BY void Elimination i
$$\Gamma \vdash s = t \in \mathsf{Void} \text{ [Ax]}$$

$$\Gamma$$
, $z\colon \mathsf{Void}$, $\Delta \vdash C$ [ext any (z)] BY voidElimination i

In $Void \rightarrow T$ muß T kein Typ sein

In Void $\rightarrow T$ muß T kein Typ sein

In Void $\rightarrow T$ muß T kein Typ sein

$$\vdash \mathsf{Void} \rightarrow (\lambda x. \lambda y. y) \in \mathbb{U}_1$$

In Void $\rightarrow T$ muß T kein Typ sein

```
\vdash \mathsf{Void} \rightarrow (\lambda x.\lambda y.y) \in \mathbb{U}_1
      BY independent_functionEquality
      \mid \ \vdash \ \mathsf{Void} \ \in \ \mathbb{U}_1
```

In Void $\rightarrow T$ muß T kein Typ sein

```
\vdash \mathsf{Void} \rightarrow (\lambda x . \lambda y . y) \in \mathbb{U}_1
     BY independent_functionEquality
      \mid \ \vdash \ \mathsf{Void} \ \in \ \mathbb{U}_1
      | BY voidEquality
        x: Void \vdash \lambda x. \lambda y. y \in \mathbb{U}_1
```

In Void $\rightarrow T$ muß T kein Typ sein

```
\vdash \mathsf{Void} \rightarrow (\lambda x . \lambda y . y) \in \mathbb{U}_1
     BY independent_functionEquality
      \mid \ \vdash \ \mathsf{Void} \ \in \ \mathbb{U}_1
       BY voidEquality
       x: Void \vdash \lambda x. \lambda y. y \in \mathbb{U}_1
       BY voidElimination 1
```

In Void $\rightarrow T$ muß T kein Typ sein

- Ausdruck ist für $T=\lambda x.\lambda y.y$ oder $T=0=1 \in 2$ typisierbar

```
\vdash \mathsf{Void} \rightarrow (\lambda x . \lambda y . y) \in \mathbb{U}_1
     BY independent_functionEquality
      \mid \; \vdash \; \mathsf{Void} \; \in \; \mathbb{U}_1
       BY voidEquality
       x: Void \vdash \lambda x. \lambda y. y \in \mathbb{U}_1
       BY voidElimination 1
```

Gilt auch für Simulationen von Void

• λz . (λx . x x) (λx . x x) wird typisierbar

 $\bullet \lambda z. (\lambda x. xx) (\lambda x. xx)$ wird typisierbar $\vdash \forall T : \mathbb{U}_1 . \ \lambda z . \ (\lambda x . x x) \ (\lambda x . x x) \in Void \rightarrow T$ BY allI

```
T: \mathbb{U}_1 \vdash \lambda z. (\lambda x. xx) (\lambda x. xx) \in Void \rightarrow T
BY lambdaEquality 1
  T: \mathbb{U}_1, z: Void \vdash (\lambda x. xx) (\lambda x. xx) \in T
   BY voidElimination 2
 T: \mathbb{U}_1 \vdash Void \rightarrow T \in \mathbb{U}_1
 BY independent_functionEquality
    T: \mathbb{U}_1 \vdash \mathsf{Void} \in \mathbb{U}_2
   BY voidEquality
   T: \mathbb{U}_1, x: Void \vdash T \in \mathbb{U}_1
   BY hypothesisEquality 1
```

 $\bullet \lambda z. (\lambda x. xx) (\lambda x. xx)$ wird typisierbar $\vdash \forall T : \mathbb{U}_1 . \ \lambda z . \ (\lambda x . x x) \ (\lambda x . x x) \in Void \rightarrow T$ BY allI $T: \mathbb{U}_1 \vdash \lambda z. (\lambda x. xx) (\lambda x. xx) \in Void \rightarrow T$ BY lambdaEquality 1 $T: \mathbb{U}_1, z: Void \vdash (\lambda x. xx) (\lambda x. xx) \in T$ BY voidElimination 2 $T: \mathbb{U}_1 \vdash Void \rightarrow T \in \mathbb{U}_1$ BY independent_functionEquality $T: \mathbb{U}_1 \vdash Void \in \mathbb{U}_2$ BY voidEquality $T: \mathbb{U}_1$, $x: Void \vdash T \in \mathbb{U}_1$

• Gilt auch für Simulationen von Void

BY hypothesisEquality 1

• λz . (λx . xx) (λx . xx) wird typisierbar

```
\vdash \forall T : \mathbb{U}_1 . \lambda z . (\lambda x . x x) (\lambda x . x x) \in \mathsf{Void} \rightarrow \mathsf{T}
    BY allI
      T: \mathbb{U}_1 \vdash \lambda z. (\lambda x. xx) (\lambda x. xx) \in Void \rightarrow T
      BY lambdaEquality 1
         T: \mathbb{U}_1, z: Void \vdash (\lambda x. xx) (\lambda x. xx) \in T
         BY voidElimination 2
        T: \mathbb{U}_1 \vdash Void \rightarrow T \in \mathbb{U}_1
        BY independent_functionEquality
          T: \mathbb{U}_1 \vdash Void \in \mathbb{U}_2
          BY voidEquality
          T: \mathbb{U}_1, x: Void \vdash T \in \mathbb{U}_1
          BY hypothesisEquality 1
```

- Gilt auch für Simulationen von Void
- Extrahierte Terme sind stark normalisierbar

• λz . (λx . xx) (λx . xx) wird typisierbar

```
\vdash \forall T : \mathbb{U}_1 . \lambda z . (\lambda x . x x) (\lambda x . x x) \in \mathsf{Void} \rightarrow \mathsf{T}
    BY allI
      T: \mathbb{U}_1 \vdash \lambda z. (\lambda x. xx) (\lambda x. xx) \in Void \rightarrow T
      BY lambdaEquality 1
         T: \mathbb{U}_1, z: Void \vdash (\lambda x. xx) (\lambda x. xx) \in T
         BY voidElimination 2
        T: \mathbb{U}_1 \vdash Void \rightarrow T \in \mathbb{U}_1
        BY independent_functionEquality
          T: \mathbb{U}_1 \vdash Void \in \mathbb{U}_2
          BY voidEquality
          T: \mathbb{U}_1, x: Void \vdash T \in \mathbb{U}_1
         BY hypothesisEquality 1
```

- Gilt auch für Simulationen von Void
- Extrahierte Terme sind stark normalisierbar
 - Regeln erzeugen keine Extrakt-Terme mit Selbstreferenz

Logik als Konservative Erweiterung

$oldsymbol{P}\wedgeoldsymbol{Q}$	=	$and\{\}(A;B)$	=	$P{ imes}Q$
$oldsymbol{P}ee oldsymbol{Q}$	=	$or\{\}(A;B)$	=	$P{+}Q$
$P \Rightarrow Q$	=	$implies\{\}(A;B)$	=	$P{ ightarrow}Q$
$\neg P$	=	$not\{\}(A)$	=	$P{ ightarrow}{\sf Void}$
ff	=	false{}()	=	Void
$\exists x\!:\!T\!\cdot\!P[x]$	=	$all\{\}(T;x.A)$	=	$x\!:\!T\! imes\!P[x]$
$orall x\!:\!T\!:\!P[x]$	=	$exists\{\}(T;x.A)$	=	$x\!:\!T{ ightarrow}P[x]$
$\mathbb{P}_{\!\!\boldsymbol{i}}$	=	prop { <i>i</i> :1}()	=	$\mathbb{U}_{m{i}}$

Logik als Konservative Erweiterung

$oldsymbol{P}\wedgeoldsymbol{Q}$	=	$and\{\}(A;B)$	=	$P{ imes}Q$
$oldsymbol{P}ee oldsymbol{Q}$	=	$or\{\}(A;B)$	=	$P{+}Q$
$P \Rightarrow Q$	=	$implies\{\}(A;B)$	=	$P{ ightarrow} Q$
$\neg P$	=	$not\{\}(A)$	=	$P{ ightarrow}{\sf Void}$
ff	=	false{}()	=	Void
$\exists x\!:\!T\!\cdot\!P[x]$	=	$all\{\}(T;x.A)$	=	$x\!:\!T\! imes\!P[x]$
$orall x\!:\!T\!:\!P[x]$	=	$exists\{\}(T;x.A)$	=	$x\!:\!T{ ightarrow}P[x]$
$\mathbb{P}_{m{i}}$	=	$prop\{i:1\}()$	=	$\mathbb{U}_{m{i}}$

Vordefiniert in der Nuprl Bibliothek core_1

• Eingebettete (getypte) Logik ist intuitionistisch

- Eingebettete (getypte) Logik ist intuitionistisch
 - Propositions-as-types definiert die intuitionistische Prädikatenlogik (\mathcal{J})
 - Beweisregeln sind gleich, magic nicht simulierbar

- Eingebettete (getypte) Logik ist intuitionistisch
 - Propositions-as-types definiert die intuitionistische Prädikatenlogik (\mathcal{J})
 - Beweisregeln sind gleich, magic nicht simulierbar
- Wichtige Sätze der Logik sind leicht zu zeigen

- Eingebettete (getypte) Logik ist intuitionistisch
 - Propositions-as-types definiert die intuitionistische Prädikatenlogik (\mathcal{J})
 - Beweisregeln sind gleich, magic nicht simulierbar
- Wichtige Sätze der Logik sind leicht zu zeigen Schnitteliminationssatz:
 - Ist $\Gamma \vdash C$ in \mathcal{LJ} beweisbar, dann gibt es einen Beweis ohne Schnittregel
 - · Beweis durch Normalisierung der Extraktterme

- Eingebettete (getypte) Logik ist intuitionistisch
 - Propositions-as-types definiert die intuitionistische Prädikatenlogik (\mathcal{J})
 - Beweisregeln sind gleich, magic nicht simulierbar
- Wichtige Sätze der Logik sind leicht zu zeigen Schnitteliminationssatz:
 - Ist $\Gamma \vdash C$ in \mathcal{LJ} beweisbar, dann gibt es einen Beweis ohne Schnittregel
 - · Beweis durch Normalisierung der Extraktterme
 - $-\mathcal{LJ}$ ist konsistent

- Eingebettete (getypte) Logik ist intuitionistisch
 - Propositions-as-types definiert die intuitionistische Prädikatenlogik (\mathcal{J})
 - Beweisregeln sind gleich, magic nicht simulierbar
- Wichtige Sätze der Logik sind leicht zu zeigen Schnitteliminationssatz:
 - Ist $\Gamma \vdash C$ in \mathcal{LJ} beweisbar, dann gibt es einen Beweis ohne Schnittregel
 - · Beweis durch Normalisierung der Extraktterme
 - $-\mathcal{LJ}$ ist konsistent
 - · andernfalls gäbe es einen schnittfreien Beweis für '-ff'

Konsequenzen der Curry-Howard Isomorphie

• Eingebettete (getypte) Logik ist intuitionistisch

- Propositions-as-types definiert die intuitionistische Prädikatenlogik (\mathcal{J})
- Beweisregeln sind gleich, magic nicht simulierbar

• Wichtige Sätze der Logik sind leicht zu zeigen Schnitteliminationssatz:

- Ist $\Gamma \vdash C$ in \mathcal{LJ} beweisbar, dann gibt es einen Beweis ohne Schnittregel
 - · Beweis durch Normalisierung der Extraktterme
- $-\mathcal{LJ}$ ist konsistent
 - · andernfalls gäbe es einen schnittfreien Beweis für '-ff'

• Weitere Logiken ebenfalls einbettbar

- Ungetypte Logik (verwende **Top** Typ als Default)
- Prädikatenlogik beliebiger Stufe (gleiche Definition wie zuvor)
- Funktionenkalküle höherer Ordnung

Konsequenzen der Curry-Howard Isomorphie

• Eingebettete (getypte) Logik ist intuitionistisch

- Propositions-as-types definiert die intuitionistische Prädikatenlogik (\mathcal{J})
- Beweisregeln sind gleich, magic nicht simulierbar

• Wichtige Sätze der Logik sind leicht zu zeigen Schnitteliminationssatz:

- Ist $\Gamma \vdash C$ in \mathcal{LJ} beweisbar, dann gibt es einen Beweis ohne Schnittregel
 - · Beweis durch Normalisierung der Extraktterme
- $-\mathcal{LJ}$ ist konsistent
 - · andernfalls gäbe es einen schnittfreien Beweis für '-ff'

• Weitere Logiken ebenfalls einbettbar

- Ungetypte Logik (verwende **Top** Typ als Default)
- Prädikatenlogik beliebiger Stufe (gleiche Definition wie zuvor)
- Funktionenkalküle höherer Ordnung

EINBETTUNG DER KLASSISCHEN LOGIK IN CTT

• Eliminiere Konstruktivität aus Repräsentation

ff	\equiv false $\{\}$ ()	■ Void
eg A	$\equiv not\{\}(A)$	$\equiv A{ ightarrow}{ m Void}$
$\boldsymbol{A} \wedge \boldsymbol{B}$	$\equiv and\{\}(A;B)$	$\equiv A \times B$
$orall x\!:\!T$. $oldsymbol{A}$	$\equiv all\{\}(T;x.A)$	$\equiv x\!:\!T{ ightarrow} A$
$\boldsymbol{A}\vee_{c}\boldsymbol{B}$	$\equiv orc\{\}(A;B)$	$\equiv \neg (\neg A \land \neg B)$
$A \Rightarrow_c B$	$\equiv impc\{\}(A;B)$	$\equiv \ eg A \lor_c B$
$\exists_{c}x\!:\!T.A$	$\equiv exc\{\}(T;x.A)$	$\equiv \neg(\forall x : T . \neg A)$

EINBETTUNG DER KLASSISCHEN LOGIK IN CTT

• Eliminiere Konstruktivität aus Repräsentation

```
\equiv false\{\}()
ff
                                                          \equiv Void
\neg A
                      \equiv \mathsf{not}\{\}(A)
                                                          \equiv A \rightarrow Void
                     \equiv and\{\}(A;B)
oldsymbol{A}\wedgeoldsymbol{B}
                                                          \equiv A \times B
\forall x : T . A \equiv all\{\}(T; x . A) \equiv x : T \rightarrow A
                     \equiv \operatorname{orc}\{\{A;B\}\} \equiv \neg(\neg A \land \neg B)
\boldsymbol{A}\vee_{\boldsymbol{c}}\boldsymbol{B}
A \Rightarrow_c B \equiv \mathsf{impc}\{\}(A; B) \equiv \neg A \vee_c B
\exists_c x : T . A \equiv \exp\{\{(T; x . A) \equiv \neg(\forall x : T . \neg A)\}\}
```

• Einbettung ist "korrekt"

Sei • die Einbettung der klassischen Logik und ' die Transformation, welche atomare Teilformel A durch $\neg \neg A$ ersetzt. Gilt $\Gamma \vdash C$ in klassischer Logik, dann gibt es einen intuitionistischen Beweis für $\Gamma^{\circ\prime} \vdash C^{\circ\prime}$

Programmierung in der Typentheorie

• Bisherige CTT liefert nur einfache Programme

- $-\lambda$ -Terme: einfache sequentielle Funktionen
- Paarbildung: einfachste Form einer Datenstruktur
- Operationen auf \mathbb{N} : primitiv-rekursive Funktionen
- Alle anderen Konzepte müssen durch Anwender simuliert werden

Programmierung in der Typentheorie

• Bisherige CTT liefert nur einfache Programme

- $-\lambda$ -Terme: einfache sequentielle Funktionen
- Paarbildung: einfachste Form einer Datenstruktur
- Operationen auf \mathbb{N} : primitiv-rekursive Funktionen
- Alle anderen Konzepte müssen durch Anwender simuliert werden

• "Praktische" Programmierung braucht mehr

- "Echte" Zahlen und grundlegende arithmetische Operationen
- Datencontainer mit flexibler Größe
- Rekursive Daten- und Programmstrukturen
- ... unterstützt durch geeignete Inferenzmechanismen

Programmierung in der Typentheorie

• Bisherige CTT liefert nur einfache Programme

- $-\lambda$ -Terme: einfache sequentielle Funktionen
- Paarbildung: einfachste Form einer Datenstruktur
- Operationen auf \mathbb{N} : primitiv-rekursive Funktionen
- Alle anderen Konzepte müssen durch Anwender simuliert werden

• "Praktische" Programmierung braucht mehr

- "Echte" Zahlen und grundlegende arithmetische Operationen
- Datencontainer mit flexibler Größe
- Rekursive Daten- und Programmstrukturen
- ... unterstützt durch geeignete Inferenzmechanismen

• Unterstütze Verifikation und Synthese

- Das Schreiben von Programmen ist nicht alles
- Verifikation: nachträglicher Beweis von Programmeigenschaften
- Synthese: Erzeuge Programme mit garantierten Eigenschaften

Schlüssel für viele formale Argumente

- Einfachste Formulierung: Peano-Aritmetik
 - Terme \mathbb{N} , 0, $\mathfrak{s}(t)$, $\mathsf{PR}[f, n, x \mapsto g]$ (t) wie zuvor

Schlüssel für viele formale Argumente

- Einfachste Formulierung: Peano-Aritmetik
 - Terme \mathbb{N} , 0, $\mathfrak{s}(t)$, $\mathsf{PR}[f, n, x \mapsto g]$ (t) wie zuvor
- Standardoperationen sind definierbar
 - Konservative Erweiterung mit primitiver Rekursion

```
n+m \equiv PR[n, k,sum \mapsto s(sum)](m)

\mathbf{p}(n) \equiv PR[0, k,pre \mapsto k](n)

n-m \equiv PR[n, k,diff \mapsto \mathbf{p}(diff)](m)

n^*m \equiv PR[0, k,prod \mapsto n+prod](m)
```

Schlüssel für viele formale Argumente

- Einfachste Formulierung: Peano-Aritmetik
 - Terme \mathbb{N} , 0, $\mathfrak{s}(t)$, $\mathsf{PR}[f, n, x \mapsto g]$ (t) wie zuvor
- Standardoperationen sind definierbar
 - Konservative Erweiterung mit primitiver Rekursion

```
n+m \equiv PR[n, k, sum \mapsto s(sum)](m)
\mathbf{p}(n) \equiv \mathsf{PR}[0, \mathsf{k,pre} \mapsto \mathsf{k}](n)
n-m \equiv PR[n, k, diff \mapsto p(diff)](m)
n^*m \equiv PR[0, k, prod \mapsto n + prod](m)
```

- Nachweis von Grundeigenschaften mühsam
 - Die meisten Beweise benötigen aufwendige Induktionen
 - Grundeigenschaften erscheinen in Hunderten von Variationen

Schlüssel für viele formale Argumente

- Einfachste Formulierung: Peano-Aritmetik
 - Terme \mathbb{N} , 0, $\mathfrak{s}(t)$, $\mathsf{PR}[f, n, x \mapsto g]$ (t) wie zuvor
- Standardoperationen sind definierbar
 - Konservative Erweiterung mit primitiver Rekursion

```
n+m \equiv PR[n, k, sum \mapsto s(sum)](m)
\mathbf{p}(n) \equiv \mathsf{PR}[0, \mathsf{k,pre} \mapsto \mathsf{k}](n)
n-m \equiv PR[n, k, diff \mapsto p(diff)](m)
n^*m \equiv PR[0, k, prod \mapsto n + prod](m)
```

- Nachweis von Grundeigenschaften mühsam
 - Die meisten Beweise benötigen aufwendige Induktionen
 - Grundeigenschaften erscheinen in Hunderten von Variationen

Peano-Arithmetik nur theoretisch hinreichend

```
\vdash \forall n : \mathbb{N} . \forall m : \mathbb{N} . n+m = m+n \in \mathbb{N}
    BY all_i THEN all_i
       \dot{n}:\mathbb{N}, m:\mathbb{N} \vdash n+m = m+n \in \mathbb{N}
```

```
\vdash \forall n : \mathbb{N} . \forall m : \mathbb{N} . n+m = m+n \in \mathbb{N}
    BY all_i THEN all_i
      n:\mathbb{N}, m:\mathbb{N} \vdash n+m = m+n \in \mathbb{N}
       BY natElimination 2
       n:\mathbb{N}, m:\mathbb{N} \vdash n+0 = 0+n \in \mathbb{N}
```

```
\vdash \forall n : \mathbb{N} . \forall m : \mathbb{N} . n+m = m+n \in \mathbb{N}
    BY all_i THEN all_i
      n:\mathbb{N}, m:\mathbb{N} \vdash n+m = m+n \in \mathbb{N}
       BY natElimination 2
       | n: \mathbb{N}, m: \mathbb{N} \vdash n+0 = 0+n \in \mathbb{N}
        | BY prReduceBase
           n:\mathbb{N}, m:\mathbb{N} \vdash n = 0+n \in \mathbb{N}
```

```
\vdash \forall n : \mathbb{N} . \forall m : \mathbb{N} . n+m = m+n \in \mathbb{N}
   BY all_i THEN all_i
     n:\mathbb{N}, m:\mathbb{N} \vdash n+m = m+n \in \mathbb{N}
       BY natElimination 2
      | n: \mathbb{N}, m: \mathbb{N} \vdash n+0 = 0+n \in \mathbb{N}
        | BY prReduceBase
         n:\mathbb{N}, m:\mathbb{N} \vdash n = 0+n \in \mathbb{N}
        BY natElimination 1
```

```
\vdash \forall n : \mathbb{N} . \forall m : \mathbb{N} . n+m = m+n \in \mathbb{N}
    BY all i THEN all i
      \mathbf{\hat{n}} : \mathbb{N}, \ \mathbf{m} : \mathbb{N} \vdash \mathbf{n} + \mathbf{m} = \mathbf{m} + \mathbf{n} \in \mathbb{N}
        BY natElimination 2
       | n: \mathbb{N}, m: \mathbb{N} \vdash n+0 = 0+n \in \mathbb{N}
         | BY prReduceBase
            n:\mathbb{N}, m:\mathbb{N} \vdash n = 0+n \in \mathbb{N}
           BY natElimination 1
             [n:\mathbb{N}, m:\mathbb{N} \vdash 0 = 0+0 \in \mathbb{N}]
             | BY symmetry THEN prReduceBase
                  \hat{n}:\mathbb{N}, m:\mathbb{N} \vdash 0 = 0 \in \mathbb{N}
                  BY zeroEquality
```

```
\vdash \forall n : \mathbb{N} . \forall m : \mathbb{N} . n+m = m+n \in \mathbb{N}
     BY all i THEN all i
       \mathbf{\hat{n}} : \mathbb{N}, \ \mathbf{m} : \mathbb{N} \vdash \mathbf{n} + \mathbf{m} = \mathbf{m} + \mathbf{n} \in \mathbb{N}
         BY natElimination 2
        | n: \mathbb{N}, m: \mathbb{N} \vdash n+0 = 0+n \in \mathbb{N}
           | BY prReduceBase
              n:\mathbb{N}, m:\mathbb{N} \vdash n = 0+n \in \mathbb{N}
             BY natElimination 1
               [n:\mathbb{N}, m:\mathbb{N} \vdash 0 = 0+0 \in \mathbb{N}]
               | BY symmetry THEN prReduceBase
                [n:\mathbb{N}, m:\mathbb{N} \vdash 0 = 0 \in \mathbb{N}]
                 BY zeroEquality
                 \mathbf{n}\!:\!\mathbb{N}, \mathbf{m}\!:\!\mathbb{N}, \mathbf{k}\!:\!\mathbb{N}, f_k\!:\!\mathbf{k}\!=\!\mathbf{0}\!+\!\mathbf{k}\in\mathbb{N} \vdash \mathbf{s}(\mathbf{k}) = \mathbf{0}\!+\!\mathbf{s}(\mathbf{k}) \in \mathbb{N}
```

```
\vdash \forall n : \mathbb{N} . \forall m : \mathbb{N} . n+m = m+n \in \mathbb{N}
    BY all i THEN all i
      n:\mathbb{N}, m:\mathbb{N} \vdash n+m = m+n \in \mathbb{N}
        BY natElimination 2
       | n: \mathbb{N}, m: \mathbb{N} \vdash n+0 = 0+n \in \mathbb{N}
         | BY prReduceBase
           n:\mathbb{N}, m:\mathbb{N} \vdash n = 0+n \in \mathbb{N}
           BY natElimination 1
            [n:\mathbb{N}, m:\mathbb{N} \vdash 0 = 0+0 \in \mathbb{N}]
            BY symmetry THEN prReduceBase
                n:\mathbb{N}, m:\mathbb{N} \vdash 0 = 0 \in \mathbb{N}
                BY zeroEquality
             n:\mathbb{N}, m:\mathbb{N}, k:\mathbb{N}, f_k:k=0+k\in\mathbb{N}\vdash s(k)=0+s(k)\in\mathbb{N}
               BY symmetry THEN prReduceUp THEN symmetry
               \texttt{n}: \mathbb{N}, \texttt{m}: \mathbb{N}, \texttt{k}: \mathbb{N}, f_k: \texttt{k} = \texttt{0} + \texttt{k} \in \mathbb{N} \vdash \texttt{s}(\texttt{k}) = \texttt{s}(\texttt{0} + \texttt{k}) \in \mathbb{N}
               BY succEquality THEN hypothesis 4
```

```
\vdash \forall n : \mathbb{N} . \forall m : \mathbb{N} . n+m = m+n \in \mathbb{N}
    BY all i THEN all i
      n:\mathbb{N}, m:\mathbb{N} \vdash n+m = m+n \in \mathbb{N}
       BY natElimination 2
       | n: \mathbb{N}, m: \mathbb{N} \vdash n+0 = 0+n \in \mathbb{N}
         BY prReduceBase
           n:\mathbb{N}, m:\mathbb{N} \vdash n = 0+n \in \mathbb{N}
           BY natElimination 1
            [n:\mathbb{N}, m:\mathbb{N} \vdash 0 = 0+0 \in \mathbb{N}]
            BY symmetry THEN prReduceBase
               n:\mathbb{N}, m:\mathbb{N} \vdash 0 = 0 \in \mathbb{N}
               BY zeroEquality
             n:\mathbb{N}, m:\mathbb{N}, k:\mathbb{N}, f_k:k=0+k\in\mathbb{N}\vdash s(k)=0+s(k)\in\mathbb{N}
               BY symmetry THEN prReduceUp THEN symmetry
               \texttt{n}: \mathbb{N}, \texttt{m}: \mathbb{N}, \texttt{k}: \mathbb{N}, f_k: \texttt{k} = \texttt{0} + \texttt{k} \in \mathbb{N} \vdash \texttt{s}(\texttt{k}) = \texttt{s}(\texttt{0} + \texttt{k}) \in \mathbb{N}
               BY succEquality THEN hypothesis 4
         n:\mathbb{N}, m:\mathbb{N}, k:\mathbb{N}, f_k:n+k=k+n\in\mathbb{N}\vdash n+s(k)=s(k)+n\in\mathbb{N}
         BY :
```

ZAHLEN IN CTT: SYNTAX

Explizite Formalisierung der wichtigsten arithmetischen Konzepte

ZAHLEN IN CTT: SYNTAX

Explizite Formalisierung der wichtigsten arithmetischen Konzepte

```
Kanonisch:
                                                                             int{}()
                                                                             natural_number\{n:n\}()
                         n
                          s<t
                                                                             s<t.
                                                                             minus\{\}(natural\_number\{n:n\}())
Nichtkanonisch:
                                                                             minus\{\}(u)
                                                                             \mathsf{add}\{\}(\underline{u};\underline{v})
                          u+v
                                                                             \operatorname{sub}\{\}(\underline{u};\underline{v})
                                                                             \operatorname{mul}\{\}(u;v)
                          u*v
                                                                             \operatorname{div}\{\}(\underline{u};\underline{v})
                          u \div v
                         u rem v
                                                                             rem{}\{(u;v)
                         if |u| = |v| then s else t
                                                                             int_eq(u; v; s; t)
                         if |u| < |v| then s else t
                                                               less(\overline{u}; \overline{v}; s; t)
                          ind(\underline{u}; x, f_x.s; base; y, f_y.t) ind{}(\underline{u}; x, f_x.s; base; y, f_y.t)
```

ZAHLEN IN CTT: SYNTAX

Explizite Formalisierung der wichtigsten arithmetischen Konzepte

```
Kanonisch:
                                                                    int{}()
                                                                    natural_number\{n:n\}()
                      n
                       s<t
                                                                    s<t.
                                                                    minus\{\}(natural\_number\{n:n\}())
Nichtkanonisch:
                                                                    minus\{\}(u)
                                                                    add{\{\}(u;v)}
                       u+v
                                                                    sub\{\}(u;v)
                                                                    \operatorname{mul}\{\}(u;v)
                       u*v
                      u \div v
                                                                    \operatorname{div}\{\}([u]; [v])
                                                                    rem{}\{(u;v)
                      u rem v
                      if \overline{u} = \overline{v} then s else t
                                                                    int_eq(u; v; s; t)
                      if |u| < |v| then s else t
                                                             less(\overline{u}; \overline{v}; s; t)
                       ind(\underline{u}; x, f_x.s; base; y, f_y.t) ind{}(\underline{u}; x, f_x.s; base; y, f_y.t)
```

Alternative Display Form der Induktion:

rec-case u of $x<0 \mapsto [f_x].s \mid 0 \mapsto base \mid y>0 \mapsto [f_y].t$

Auswertung Arithmetischer Operationen

```
ind(0; x, f_x.s; base; y, f_y.t)
                                                base
                                  \stackrel{\beta}{\longrightarrow}
ind(n; x, f_x.s; base; y, f_y.t)
                                                t[n, ind(n-1; x, f_x.s; base; y, f_y.t) / y, f_y]
                                                                                                      (n>0)
                                      \xrightarrow{\beta}
                                                s[-n, ind(-n+1; x, f_x.s; base; y, f_y.t) / x, f_x]  (n>0)
ind(-n; x, f_x.s; base; y, f_y.t)
-i
                                                Negation von i (als Zahl)
i+j
                                                Summe von i und j
i-j
                                                Differenz von i und j
i*j
                                                Produkt von i und j
i \div j
                                               0, falls j=0; sonst Integer-Division von i und j
i \operatorname{rem} j
                                               0, falls j=0; sonst Divisionsrest von i und j
                                               s, falls i = j; ansonsten t
if i=j then s else t
if i < j then s else t
                                               s, falls i < j; ansonsten t
```

Arithmetik: Semantik und Inferenzsystem

Semantik:

Arithmetik: Semantik und Inferenzsystem

Semantik:

Inferenzsystem:

- 31 Inferenzregeln und zugehörige Taktiken
- Entscheidungsprozedur **arith** für elementare Arithmetik

Details im Appendix A.3.8 des Nuprl Manuals

Arithmetik: Semantik und Inferenzsystem

Semantik:

Inferenzsystem:

- 31 Inferenzregeln und zugehörige Taktiken
- Entscheidungsprozedur **arith** für elementare Arithmetik

Details im Appendix A.3.8 des Nuprl Manuals

Datenbankkonzepte:

- Große Sammlung zusätzlicher Definitionen und Theoreme Entstanden durch Bedarf von Benutzer-Anwendungen (unvollständig)

Details in den Standard-Theorien int_1 int_2 num_thy_1 der Nuprl-Bibliothek

LISTEN

Grundform des Datencontainers

Syntax:

Kanonisch: T list $list{}{T)$

nil{}()

 $cons{}\{\}(e_1;e_2)$ $e_1 :: e_2$

Nichtkanonisch: list_ind(e; base; x, l, f_{xl} .up) list_ind{}(e; base; x, l, f_{xl} .up)

LISTEN

Grundform des Datencontainers

Syntax:

Kanonisch: T list.

nil{}()

 $cons{}\{\}(e_1;e_2)$ $e_1 :: e_2$

Nichtkanonisch: list_ind([e]; base; x, l, f_{xl} .up) list_ind{}([e]; base; x, l, f_{xl} .up)

Alternative Display Form der Induktion:

rec-case e of $[] \mapsto base \mid x :: l \mapsto [f_{xl}] \cdot up$

 $list{}{T)$

LISTEN

Grundform des Datencontainers

Syntax:

Kanonisch: T list $list{}{T)$

nil{}()

 $e_1 :: e_2$ $\mathsf{cons}\{\}(e_1;e_2)$

Nichtkanonisch: list_ind([e]; base; x, l, f_{xl} .up) list_ind{}([e]; base; x, l, f_{xl} .up)

Alternative Display Form der Induktion:

```
rec-case e of [] \mapsto base \mid x::l \mapsto [f_{xl}] \cdot up
```

Datenbankkonzepte:

- $hd(e), tl(e), e_1@e_2 length(e), map(f;e), rev(e), e[i], e[i..j^-], ...$
- Details in Standard Theorie list_1

LISTEN: REDUKTION UND SEMANTIK

Auswertung:

```
list_ind([]; base; x, l, f_{xl}.t)
list\_ind(s::u; base; x, l, f_{xl}.t)
                   \xrightarrow{\beta} t[s, u, \text{list\_ind}(u; base; x, l, f_{xl}, t)/x, l, f_{xl}]
```

LISTEN: REDUKTION UND SEMANTIK

Auswertung:

```
list_ind([]; base; x, l, f_{xl}.t)
                    \xrightarrow{\beta} base
list_ind(s::u; base; x, l, f_{xl}.t)
                    \xrightarrow{\beta} t[s, u, \text{list\_ind}(u; base; x, l, f_{xl}, t)/x, l, f_{xl}]
```

Semantik:

$$\begin{array}{lll} T_1 {\sf list} &= T_2 {\sf list} & \equiv & T_1 \!\!=\! T_2 \\ & & & & \equiv & T \, {\sf Typ} \\ e_1 \!\!:: e_2 \!\!=\! e_1 \!\!\!':: e_2 \!\!\!' \in T \, {\sf list} & \equiv & T \, {\sf Typ} \, {\sf und} \, e_1 \!\!\!=\! e_1 \!\!\!' \in T \, {\sf und} \, e_2 \!\!\!=\! e_2 \!\!\!' \in T \, {\sf list} \\ & & & \equiv & T_1 \!\!\!=\! T_2 \!\!\!\in\! \mathbb{U}_j \end{array}$$

LISTEN: REDUKTION UND SEMANTIK

Auswertung:

```
list_ind([]; base; x, l, f_{xl}.t)
                    \xrightarrow{\beta} base
list_ind(s::u; base; x, l, f_{xl}.t)
                    \xrightarrow{\beta} t[s, u, \text{list\_ind}(u; base; x, l, f_{xl}, t)/x, l, f_{xl}]
```

Semantik:

$$\begin{array}{lll} T_1 \text{list} &= T_2 \text{list} & \equiv & T_1 \!\!=\! T_2 \\ & & & & \equiv & T \text{ Typ} \\ e_1 \!\!:: e_2 \!\!=\! e_1 \!\!\!':: e_2 \!\!\!' &\in T \text{ list} & \equiv & T \text{ Typ und } e_1 \!\!\!=\! e_1 \!\!\!' \in T \text{ und } e_2 \!\!\!=\! e_2 \!\!\!' \in T \text{ list} \\ & & \equiv & T_1 \!\!\!=\! T_2 \!\!\in\! \mathbb{U}_j \end{array}$$

Inferenzregeln und Taktiken im Appendix A.3.10 des Nuprl Manuals

- Logik: $\forall \exists \land \lor \Rightarrow \neg$ True False
 - Abbildung auf existierende Typen durch Verwendung der Curry-Howard Isomorphie (StandardTheorie core_1)

- Logik: $\forall \exists \land \lor \Rightarrow \neg$ True False
 - Abbildung auf existierende Typen durch Verwendung der Curry-Howard Isomorphie (StandardTheorie core_1)
- Singulärer Typ: Unit $\equiv 0 \in \mathbb{Z}$
 - Einziges Element ist Ax (StandardTheorie core_1)

- Logik: $\forall \exists \land \lor \Rightarrow \neg$ True False
 - Abbildung auf existierende Typen durch Verwendung der Curry-Howard Isomorphie (StandardTheorie core_1)
- Singulärer Typ: Unit $\equiv 0 \in \mathbb{Z}$
 - Einziges Element ist Ax

(StandardTheorie core_1)

- - $-tt \equiv inI(Ax), ff \equiv inr(Ax), ...$ (StandardTheorie bool_1)
 - Einbettung in Logik durch $\uparrow b \equiv \text{if } b \text{ then True else False}$

- Logik: $\forall \exists \land \lor \Rightarrow \neg$ True False
 - Abbildung auf existierende Typen durch Verwendung der Curry-Howard Isomorphie (StandardTheorie core_1)
- Singulärer Typ: Unit $\equiv 0 \in \mathbb{Z}$
 - Einziges Element ist Ax

(StandardTheorie core_1)

- - $-tt \equiv inI(Ax), ff \equiv inr(Ax), ...$ (StandardTheorie bool_1)
 - Einbettung in Logik durch $\uparrow b \equiv \text{if } b \text{ then True else False}$
- Rekursive Funktionen:
 - Y-Kombinator $Y \equiv \lambda f$. $(\lambda x.f(x x)) (\lambda x.f(x x))$
 - -letrec $f x = e \equiv Y(\lambda f.\lambda x.e)$

Wichtige benutzerdefinierte Typen

- Logik: $\forall \exists \land \lor \Rightarrow \neg$ True False
 - Abbildung auf existierende Typen durch Verwendung der Curry-Howard Isomorphie (StandardTheorie core_1)
- Singulärer Typ: Unit $\equiv 0 \in \mathbb{Z}$
 - Einziges Element ist Ax

(StandardTheorie core_1)

- - $-tt \equiv inI(Ax), ff \equiv inr(Ax), ...$ (StandardTheorie bool_1)
 - Einbettung in Logik durch $\uparrow b \equiv \text{if } b \text{ then True else False}$
- Rekursive Funktionen:
 - Y-Kombinator $Y \equiv \lambda f$. $(\lambda x.f(x x)) (\lambda x.f(x x))$
 - -letrec $f x = e \equiv Y(\lambda f.\lambda x.e)$

Weitere Typen definiert durch fortgeschritteneren Konzepte

Wie liest man Urteile aus Sicht der Programmierung?

$oldsymbol{T} \in \mathbb{U}_{oldsymbol{j}}$	$oldsymbol{t} \in oldsymbol{T}$	$oldsymbol{T}$ [ext $oldsymbol{t}_{oldsymbol{eta}}$

Wie liest man Urteile aus Sicht der Programmierung?

$oldsymbol{T} \in \mathbb{U}_{oldsymbol{j}}$	$oldsymbol{t} \in oldsymbol{T}$	$oldsymbol{T}$ [ext $oldsymbol{t}_{\! extsf{J}}$
T ist eine Menge	t ist Element von T	T ist nicht leer (inhabited)

Lesart der Typentheorie

Wie liest man Urteile aus Sicht der Programmierung?

$oldsymbol{T} \in \mathbb{U}_{oldsymbol{j}}$	$oldsymbol{t} \in oldsymbol{T}$	$oldsymbol{T}$ [ext $oldsymbol{t}_{ extstyle j}$
T ist eine Menge	t ist Element von T	T ist nicht leer (inhabited)
T ist Proposition	t ist Beweis für T	T ist wahr (beweisbar)

Lesart der Typentheorie

Logische Sicht: "Propositionen als Datentypen"

Wie liest man Urteile aus Sicht der Programmierung?

$oldsymbol{T} \in \mathbb{U}_{oldsymbol{j}}$	$oldsymbol{t} \in oldsymbol{T}$	$m{T}$ [ext $m{t}_{\! extsf{j}}$
T ist eine Menge	t ist Element von T	T ist nicht leer (inhabited)
T ist Proposition	t ist Beweis für T	T ist wahr (beweisbar)
T ist Intention	t ist Methode , T zu erfüllen	T ist erfüllbar (realisierbar)

Lesart der Typentheorie

Logische Sicht: "Propositionen als Datentypen"

Philosophische Sichtweise (Heyting)

Wie liest man Urteile aus Sicht der Programmierung?

$oldsymbol{T} \in \mathbb{U}_{oldsymbol{j}}$	$oldsymbol{t} \in oldsymbol{T}$	$oldsymbol{T}$ [ext $oldsymbol{t}_{oldsymbol{eta}}$
T ist eine Menge	t ist Element von T	T ist nicht leer (inhabited)
T ist Proposition	t ist Beweis für T	T ist wahr (beweisbar)
T ist Intention	t ist Methode , T zu erfüllen	T ist erfüllbar (realisierbar)
T ist Problem	t ist Methode, T zu lösen	T ist lösbar

Lesart der Typentheorie

Logische Sicht: "Propositionen als Datentypen"

Philosophische Sichtweise (Heyting)

Konstruktive Sicht (Kolmogorov)

• Typentheorie ist verwendbar für Programmierung

- Typentheorie ist verwendbar für Programmierung
 - $-t \in T$: "t ist Programm, das die Spezifikation T erfüllt"

- Typentheorie ist verwendbar für Programmierung
 - $-t \in T$: "t ist Programm, das die Spezifikation T erfüllt"
 - $-\vdash T$ ext t_{\mid} ': Aufgabe, ein Programm zu konstruieren

- Typentheorie ist verwendbar für Programmierung
 - $-t \in T$: "t ist Programm, das die Spezifikation T erfüllt"
 - $\vdash T$ ext t_{\mid} ': Aufgabe, ein Programm zu konstruieren
- Beweise für ∀-∃-Theoreme beschreiben Programme

- Typentheorie ist verwendbar für Programmierung
 - $-t \in T$: "t ist Programm, das die Spezifikation T erfüllt"
 - $\vdash T$ ext t_{\parallel} ': Aufgabe, ein Programm zu konstruieren
- Beweise für ∀-∃-Theoreme beschreiben Programme
 - Beweis für $\vdash \forall n : \mathbb{N} . \exists r : \mathbb{N} . r^2 \leq n \land n \leq (r+1)^2$ liefert Extrakt-Term p_{sqrt} der Form λn . $\langle r, \langle pf_1, pf_2 \rangle \rangle$ mit $r = \lfloor \sqrt{n} \rfloor$

- Typentheorie ist verwendbar für Programmierung
 - $-t \in T$: "t ist Programm, das die Spezifikation T erfüllt"
 - $\vdash T$ ext t_{\parallel} ': Aufgabe, ein Programm zu konstruieren
- Beweise für ∀-∃-Theoreme beschreiben Programme
 - Beweis für $\vdash \forall n: \mathbb{N}. \exists r: \mathbb{N}. r^2 \leq n \land n \leq (r+1)^2$ liefert Extrakt-Term p_{sqrt} der Form λn . $\langle r$, $\langle pf_1, pf_2 \rangle \rangle$ mit $r = \lfloor \sqrt{n} \rfloor$
 - Quadratwurzelprogramm kann aus Beweis extrahiert werden
 - \cdot sqrt $\equiv \lambda$ n. let $\langle r, pf \rangle = p_{sqrt}(n)$ in r

- Typentheorie ist verwendbar für Programmierung
 - $-t \in T$: "t ist Programm, das die Spezifikation T erfüllt"
 - $-\vdash T$ ext t_{\parallel} ': Aufgabe, ein Programm zu konstruieren
- Beweise für ∀-∃-Theoreme beschreiben Programme
 - Beweis für $\vdash \forall n : \mathbb{N} . \exists r : \mathbb{N} . r^2 \leq n \land n \leq (r+1)^2$ liefert Extrakt-Term p_{sqrt} der Form λn . $\langle r$, $\langle pf_1, pf_2 \rangle \rangle$ mit $r = \lfloor \sqrt{n} \rfloor$
 - Quadratwurzelprogramm kann aus Beweis extrahiert werden
 - \cdot sqrt \equiv λ n. let $\langle r, pf \rangle = p_{sqrt}(n)$ in r
- Konstruktives Auswahlaxiom formal beweisbar

```
(\forall x:S. \exists y:T. spec \langle x,y\rangle) \Rightarrow \exists f:S \rightarrow T. \forall x:S. spec \langle x,f(x)\rangle
```

- Typentheorie ist verwendbar für Programmierung
 - $-t \in T$: "t ist Programm, das die Spezifikation T erfüllt"
 - $-\vdash T$ ext t_{\parallel} ': Aufgabe, ein Programm zu konstruieren
- Beweise für ∀-∃-Theoreme beschreiben Programme
 - Beweis für $\vdash \forall n : \mathbb{N} . \exists r : \mathbb{N} . r^2 \leq n \land n \leq (r+1)^2$ liefert Extrakt-Term p_{sqrt} der Form λn . $\langle r$, $\langle pf_1, pf_2 \rangle \rangle$ mit $r = \lfloor \sqrt{n} \rfloor$
 - Quadratwurzelprogramm kann aus Beweis extrahiert werden
 - \cdot sqrt $\equiv \lambda$ n. let $\langle r, pf \rangle = p_{sqrt}(n)$ in r
- Konstruktives Auswahlaxiom formal beweisbar

$$\vdash \forall \texttt{S}, \texttt{T} : \mathbb{U}_{j} . \forall \texttt{spec} : \texttt{S} \times \texttt{T} \rightarrow \mathbb{P}_{j} .$$

$$(\forall \texttt{x} : \texttt{S} . \exists \texttt{y} : \texttt{T} . \texttt{spec} \langle \texttt{x}, \texttt{y} \rangle) \ \Rightarrow \ \exists \texttt{f} : \texttt{S} \rightarrow \texttt{T} . \forall \texttt{x} : \texttt{S} . \texttt{spec} \langle \texttt{x}, \texttt{f} (\texttt{x}) \rangle$$

Programmentwicklung ist dasselbe wie Beweisführung

Synthese eines Quadratwurzelprogramms

• Formaler Beweis mit Standardinduktion

```
\forall n : \mathbb{N}. \exists r : \mathbb{N}. r^2 \leq n < (r+1)^2
BY allR
   n: \mathbb{N} \vdash \exists r: \mathbb{N}. r^2 \leq n < (r+1)^2
   BY NatInd 1
    ....basecase....
         \vdash \exists r : \mathbb{N}. \ r^2 < 0 < (r+1)^2
   / BY existsR [O] THEN Auto
    ....upcase....
          \mathtt{i}: \mathbb{N}^+, \mathtt{r}: \mathbb{N}, \mathtt{r}^2 \leq \mathtt{i} - 1 < (\mathtt{r} + 1)^2 \vdash \exists \mathtt{r}: \mathbb{N}. \ \mathtt{r}^2 \leq \mathtt{i} < (\mathtt{r} + 1)^2
          BY Decide (r+1)^2 < i THEN Auto
           .....Case 1.....
                 i:\mathbb{N}^+, r:\mathbb{N}, r^2 \le i-1 < (r+1)^2, (r+1)^2 < i
                 \vdash \exists r : \mathbb{N}. \ r^2 < i < (r+1)^2
           / BY existsR [r+1] THEN Auto'
           .....Case 2.....
                 i: \mathbb{N}^+, r: \mathbb{N}, r^2 < i-1 < (r+1)^2, \neg ((r+1)^2 < i)
                 \vdash \exists r : \mathbb{N}. \ r^2 < i < (r+1)^2
           / BY existsR [r] THEN Auto
```

• Extrahierter linearer Algorithmus (nach Projektion)

```
let rec sqrt n = if n=0 then 0
                     else let r = sqrt (n-1) in
                     if (r+1)^2 \le n then r+1 else r
```

Erzeugung eines effizienteren Algorithmus

• Formaler Beweis mit Binärinduktion

```
\forall n: \mathbb{N}. \exists r: \mathbb{N}. r^2 < n < (r+1)^2
BY allR
   n: \mathbb{N} \vdash \exists r: \mathbb{N}. r^2 \leq n < (r+1)^2
   BY Nat.Ind4 1
    ....basecase....
          \vdash \exists r : \mathbb{N}. \ r^2 < 0 < (r+1)^2
   / BY existsR [O] THEN Auto
    ....upcase.....
          i:\mathbb{N}, \quad r:\mathbb{N}, \quad r^2 \leq i \div 4 < (r+1)^2 \quad \vdash \quad \exists r:\mathbb{N}. \quad r^2 \leq i < (r+1)^2
          BY Decide \lceil ((2*r)+1)^2 \leq i \rceil THEN Auto
           .....Case 1.....
                 i:\mathbb{N}, r:\mathbb{N}, r^2 \le i \div 4 < (r+1)^2, ((2*r)+1)^2 < i
                \vdash \exists r : \mathbb{N}. \ r^2 < i < (r+1)^2
          / BY existsR \lceil (2*r)+1 \rceil THEN Auto'
           .....Case 2.....
                 i:\mathbb{N}, r:\mathbb{N}, r^2 \le i \div 4 < (r+1)^2, \neg (((2*r)+1)^2 \le i)
                 \vdash \exists \mathbf{r} : \mathbb{N}. \ \mathbf{r}^2 < \mathbf{i} < (\mathbf{r+1})^2
          / BY existsR [2*r] THEN Auto
```

• Extrahierter Algorithmus hat logarithmische Laufzeit

```
let rec sqrt n = if n=0 then 0
                    else let r = sqrt(n/4) in
                    if (2*r+1)^2 < n then 2*r+1 else 2*r
```